We solve, theoretically and numerically, the problems of optimal portfolio choice and indifference valuation in a general continuous-time setting. The setting features (i) ambiguity and time-consistent ambiguity-averse preferences, (ii) discontinuities in the asset price processes, with a general and possibly infinite activity jump part next to a continuous diffusion part, and (iii) general and possibly nonconvex trading constraints. We characterize our solutions as solutions to backward stochastic differential equations (BSDEs). Generalizing Kobylanski’s result for quadratic BSDEs to an infinite activity jump setting, we prove existence and uniqueness of the solution to a general class of BSDEs, encompassing the solutions to our portfolio choice and valuation problems as special cases. We provide an explicit decomposition of the excess return on an asset into a risk premium and an ambiguity premium, and a further decomposition into a piece stemming from the diffusion part and a piece stemming from the jump part. We further compute our solutions in a few examples by numerically solving the correspondingBSDEs using regression techniques.

Netspar, Network for Studies on Pensions, Aging and Retirement, is een denktank en kennisnetwerk. Netspar is gericht op een goed geïnformeerd pensioendebat.

MEER OVER NETSPAR


Missie en strategie           •           Netwerk           •           Organisatie           •          Podcasts
Board Brief            •            Werkprogramma 2023-2027           •           Onderzoeksagenda

OVER NETSPAR

Onze partners

B20231704_PGIM_Blacklogo2
B20221103_Zwitserlevengrayscale
B20231704_PensioenFederatie_Blacklogo
B20231704_DNB_Blacklogo
B20160708_tilburg university
Bekijk al onze partners