In this paper we focus on robust linear optimization problems with uncertainty regions defined by ϕ-divergences (for example, chi-squared, Hellinger, Kullback–Leibler). We show how uncertainty regions based on ϕ-divergences arise in a natural way as confidence sets if the uncertain parameters contain elements of a probability vector. Such problems frequently occur in, for example, optimization problems in inventory control or finance that involve terms containing moments of random variables, expected utility, etc. We show that the robust counterpart of a linear optimization problem with ϕ-divergence uncertainty is tractable for most of the choices of ϕ typically considered in the literature. We extend the results to problems that are nonlinear in the optimization variables. Several applications, including an asset pricing example and a numerical multi-item newsvendor example, illustrate the relevance of the proposed approach.

Netspar, Network for Studies on Pensions, Aging and Retirement, is een denktank en kennisnetwerk. Netspar is gericht op een goed geïnformeerd pensioendebat.

MEER OVER NETSPAR


Missie en strategie           •           Netwerk           •           Organisatie           •          Magazine
Netspar Brief            •            Werkprogramma 2019-2023           •           Onderzoekagenda

OVER NETSPAR

Onze partners

B20160708_dnb
svb
B20211216_shell download
B20160708_uva
B20200924_Ortec Finance logo 250px_banner_small
Bekijk al onze partners