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Chapter 1 
 

Introduction and Outline 
 
 
Individual persons, companies and other entities are exposed to several risks that potentially can 
lead to undesirable financial consequences. For example, for an individual person it could be 
damage to a car, property damage, living longer or shorter than expected, expenses related to 
health and several other risks. Companies could be exposed to, amongst others, a liability claim, 
a company building on fire, damage to the products and disabled employees. These risks can be 
transferred by buying an insurance policy at an insurance company. In exchange for this the 
insurance company receives a premium from the policyholder. The insurance company pools the 
risks so that the results on the individual policies compensate each other. 
 
As a result of writing insurance business for decennia, most insurers have to pay considerable 
amounts in the future to their policyholders. The company holds a reserve to cover for this, 
which is based on a valuation of these future insurance liabilities. Besides this, the insurance 
company is exposed to several risks, for which it holds additional capital. As such, valuation of 
insurance liabilities and measuring and managing the risks are two major building blocks for 
running an insurance company successfully. This thesis is a combination of papers on several 
issues related to valuation and risk management for insurers.  
 
In the remainder of this chapter some more background is given on valuation and risk 
management for insurers, followed by an outline and discussion of the research presented in this 
thesis.  
 

1.1 Valuation and Risk Management for Insurers 
 
At this moment, most insurers are reporting their liabilities on a ‘book value’ basis, where the 
economic assumptions are often not directly linked to the financial market. Furthermore, 
regulators require additional (solvency) capital to be held by insurers which is a fixed percentage 
of the reserve, premiums or claims and thus not based on the actual risks of the insurer. However, 
in recent years there has been an increasing amount of attention of the insurance industry for 
market valuation of insurance liabilities and the quantification of insurance risks. Important 
drivers of this development are the introduction of IFRS 4 Phase 2 and Solvency 2. 
 
With the introduction of Solvency 2 and IFRS 4 Phase 2 (both expected in 2013) insurers face 
major challenges. IFRS 4 Phase 2 will define a new accounting model for insurance contracts, 
based on market values of liabilities. In the document ‘Preliminary Views on Insurance 
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Contracts’ (May 2007, discussion paper) the International Accounting Standards Board (IASB) 
states that an insurer should base the measurement of all its insurance liabilities (for reserving) 
on best estimates of the contractual cash flows, discounted with current market discount rates. 
On top of this, margins that market participants are expected to require for bearing risk should be 
added to this. The IASB is currently further developing the standards, of which a consultation 
paper will appear in 2010.  
 
Solvency 2 will lead to a change in the regulatory required solvency capital for insurers. Under 
Solvency 2 the so-called Solvency Capital Requirement (SCR) will be risk-based, and market 
values of assets and liabilities will be the basis for these calculations. The directive1 of Solvency 
2 prescribes that the reserve “... shall be equal to the sum of the best estimate and a risk 
margin…” and that “the best estimate will correspond to the probability-weighted average of 
future cash-flows, taking account of the time value of money, using the relevant risk-free interest 
rate term structure”. Furthermore, it states that “the calculation of the best estimate shall be 
based upon up-to-date and credible information and realistic assumptions, and be performed 
using adequate, applicable and relevant actuarial and statistical methods”. 
 
The SCR aims to reflect all of the risks an insurance company is exposed to: market risk, 
operational risk, life underwriting risk, health underwriting risk, non-life underwriting risk, 
counterparty default risk and intangible asset risk. CEIOPS2, the advising committee of the 
European Commission on Solvency 2, has developed a standard formula that leads to a required 
solvency margin that is aimed at covering all risks over a one-year horizon with a probability of 
99,5%. However, insurance companies are encouraged to develop their own internal models to 
reflect the specific risks of the company more accurately.    
 
Given the above, it is clear that the measurement of future cash flows and its uncertainty thus 
becomes more and more important. 
 

1.2 Outline 
 
This thesis consists of a collection of papers that each tackle a specific issue in valuation or risk 
management for insurers. First chapter 2 will cover some general concepts that are used 
throughout the thesis, mainly relating to stochastic processes of some kind.  
 
Life insurance products often have profit sharing features in combination with guarantees. 
Valuation of these so-called embedded options is one of the key challenges in market valuation 
of the insurance liabilities. Chapter 3 and 4 are both covering the valuation of specific embedded 
options. In chapter 3 analytical approximations for prices of swap rate dependent embedded 
options are developed. These options are very common in products of European insurers. 
Chapter 4 covers the valuation of Guaranteed Annuity Options, which have been written by U.K. 
insurance companies for many years. The valuation of embedded options is not only a valuation 
issue, it is also an important aspect in risk management. After all, the risk of variations in the 
                                                 
1 See ‘Directive of the European parliament and of the council on the taking-up and pursuit of the business of 
insurance and re-insurance (Solvency 2)’ of the European parliament. 
2 Committee of European Insurance and Occupational Pensions Supervisors 
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prices of embedded options is a risk element that has to be managed by the insurance company, 
for example by hedging this risk exposure. 
 
Important risks to be quantified for Life insurers (and pension funds) are mortality and longevity 
risk. Chapter 5 and 6 will both cover different aspect in quantifying these risks. Chapter 5 will 
introduce a new stochastic mortality model for the population of a country. Chapter 6 will focus 
on another stochastic model that is the missing link to come to a full stochastic mortality model 
for specific insurance portfolios. The latter also gives the opportunity to quantify the basis risk 
that is involved when insurance portfolios are hedged with instruments of which the payoff 
depends on country population mortality rates. 
 
The other underwriting risks, related to the health and non-life business, are treated in chapter 7. 
Usually, reserving and risk management for this business is based on actuarial techniques that 
are applied to aggregated data. This chapter describes a new stochastic reserving technique on 
the level of individual claims (micro-level). 
 
The remainder of this chapter contains a short introduction on the subjects covered in the 
different chapters. 

1.2.1  Chapter 3: Valuation of Swap Rate Dependent Embedded Options 
Many life insurance products have profit sharing features in combination with guarantees. These 
so-called embedded options are often dependent on or approximated by forward swap rates. In 
practice, these kinds of options are mostly valued by Monte Carlo simulation, a computer 
intensive calculation technique. However, for risk management calculations and reporting 
processes, lots of valuations are needed.  Therefore a more efficient method to value these 
options would be helpful.  
 
In this chapter analytical approximations are derived for these kinds of options. The analytical 
approximation for options where profit sharing is paid directly is almost exact while the 
approximation for compounding profit sharing options is also satisfactory. In addition, the 
proposed analytical approximation can be used as a control variate in Monte Carlo valuation of 
options for which no analytical approximation is available, such as similar options with 
management actions. This considerately speeds up the calculation process for these options. 
Furthermore, it’s also possible to construct analytical approximations when returns on additional 
assets (such as equities) are part of the profit sharing rate. 

1.2.2  Chapter 4: Valuation of Guaranteed Annuity Options using a Stochastic Volatility 
Model for Equity Prices 

Guaranteed Annuity Options are options providing the right to convert a policyholder’s 
accumulated funds to a life annuity at a fixed rate when the policy matures. These options were a 
common feature in UK retirement savings contracts issued in the 1970’s and 1980’s when 
interest rates were high, but caused problems for insurers as the interest rates began to fall in the 
1990’s. Currently, these options are frequently sold in the U.S. and Japan as part of variable 
annuity products.  
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The last decade the literature on pricing and risk management of these options evolved. Until 
now, for pricing these options generally a process for equity prices is assumed where volatility is 
constant. However, given the long maturities of the insurance contracts a stochastic volatility 
model for equity prices would be more suitable. In this chapter explicit expressions are derived 
for prices of guaranteed annuity options assuming stochastic volatility for equity prices and 
either a 1-factor or 2-factor Gaussian interest rate model. The results indicate that the impact of 
ignoring stochastic volatility can be significant. 

1.2.3  Chapter 5: On stochastic mortality modeling 
The last decennium a vast literature on stochastic mortality models has been developed, mainly 
for use in risk management. All well known models have nice features but also disadvantages. In 
this chapter a stochastic mortality model is proposed that aims at combining the nice features 
from existing models, while eliminating the disadvantages. More specifically, the model fits 
historical data very well, is applicable to a full age range, captures the cohort effect, has a non-
trivial (but not too complex) correlation structure and has no robustness problems, while the 
structure of the model remains relatively simple. Also, the chapter describes how to incorporate 
parameter uncertainty in the model. Furthermore, a version of the model is given that can be used 
for pricing. 

1.2.4  Chapter 6: Stochastic portfolio specific mortality and the quantification of mortality 
basis risk 

Chapter 5 will describe several stochastic mortality models that have been developed over time, 
usually applied to mortality rates of a country population.  However, these models are often not 
directly applicable to insurance portfolios because:  
a) For insurers and pension funds it is more relevant to model mortality rates measured in 

insured amounts instead of measured in number of policies. 
b)  Often there is not enough insurance portfolio specific mortality data available to fit such 

stochastic mortality models reliably.  
Therefore, in this chapter a stochastic model is proposed for portfolio specific mortality 
experience. Combining this stochastic process with a stochastic country population mortality 
process leads to stochastic portfolio specific mortality rates, measured in insured amounts. The 
proposed stochastic process is applied to two insurance portfolios, and the impact on the height 
of the longevity risk is quantified. Furthermore, the model can be used to quantify the basis risk 
that remains when hedging portfolio specific mortality risk with instruments of which the payoff 
depends on population mortality rates. 

1.2.5  Chapter 7: Micro-level stochastic loss reserving 
The last decennium also a substantial literature about stochastic loss reserving for the non-life 
insurance business has been developed. Apart from few exceptions, all of these papers are based 
on data aggregated in run-off triangles. However, such an aggregate data set is a summary of an 
underlying, much more detailed data based that is available to the insurance company. This data 
set at individual claim level as will be referred to as ‘micro-level data’. In this chapter it is 
investigated whether the use of such micro-level claim data can improve the reserving process. A 
realistic micro-level data set on general liability claims (material and injury) from a European 
insurance company is modeled. Stochastic processes are specified for the various aspects 
involved in the development of a claim: the time of occurrence, the delay between occurrence 
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and the time of reporting to the company, the occurrence of payments and their size and the final 
settlement of the claim. These processes are calibrated to the historical individual data of the 
portfolio and used for the projection of future claims. Through an out-of-sample prediction 
exercise it is shown that the micro-level approach provides the actuary with detailed and valuable 
reserve calculations. A comparison with results from traditional actuarial reserving techniques is 
included. For our case-study reserve calculations based on the micro-level model are preferable: 
compared to traditional methods, they reflect real outcomes in a more realistic way. 
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Chapter 2 
 

Stochastic processes 
 
 
At the heart of most valuation and all risk management calculations are assumptions about the 
stochastic processes of the relevant variables. Stochastic processes required for valuation are 
often of a different nature than the stochastic processes required for risk management. 
 
For the valuation of embedded options it is important that the underlying stochastic model is 
arbitrage free. Arbitrage free means that it is not possible to generate a non-zero payoff without 
any initial investment. A convenient way to accomplish this is the use of a so-called ‘risk-
neutral’ model. The risk-neutral stochastic processes used in this thesis are described in section 
2.1.  
 
For risk management it is more important that the stochastic processes are as realistic as possible 
reflecting the dynamics of the underlying stochastic variable. This means that a ‘real-world’ 
model is required. The real-world stochastic processes used in this thesis are described in section 
2.2. 
 

2.1 Risk Neutral Stochastic Processes for Valuation 
 
In this thesis the topics regarding valuation of embedded options require arbitrage free stochastic 
processes for interest rates and equity prices. The stochastic processes used are members of a 
more general class of models, the affine jump-diffusions. This section describes this general 
class of models and the specific interest rate and equity model used in this thesis. This will be 
preceded by a short introduction in the notion of martingales and measures. The section ends 
with a short discussion about stochastic processes for valuation of unhedgeable insurance risks.   

2.1.1 Martingales and Measures 
The foundation of option pricing theory is the assumption that arbitrage opportunities do not 
exist. Another important underlying concept is completeness of the economy. If in an economy 
the payoffs of all derivative securities can be replicated by a self-financing trading strategy, the 
economy is called complete. If no arbitrage opportunities and no transaction costs exist in an 
economy, the value of a self-financing trading strategy should be equal to the value of the 
corresponding derivative. If this would not be the case, arbitrage opportunities exist. 
 
Harrison and Kreps (1979) and Harrison and Pliska (1981) brought the concepts of arbitrage free 
and completeness together in what is called ‘The Fundamental Theorem of Asset Pricing’. Any 
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asset which has strictly positive prices for all future times is called a numéraire. Numéraires can 
be used to denominate all prices in an economy (instead of Euro’s or Dollars). A martingale is a 
stochastic process with a zero drift. Harrison and Kreps (1979) and Harrison and Pliska (1981) 
proved that a continuous economy is complete and arbitrage free if for every choice of numéraire 
there exists a unique equivalent martingale measure. In other words, given a choice of numéraire, 
there is a unique probability measure such that the relative price processes are martingales. This 
important result is very useful for option valuation. 
 
For example, say that price at time t of an option H maturing at time T relative to the price of 
security M is defined as V. Then under the relevant measure QM the process V is a martingale. 
This means that: 
 

(2.1) [ ] 







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

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where EM[⋅] is the expectation under the relevant measure. By choosing a convenient numéraire 
the option price calculation can be simplified considerably in some cases.  
 
Usually as a starting point the riskless money-market account is used as the numéraire. Under the 
unique probability measure corresponding to this numéraire the expected return on all assets is 
equal to the risk-free rate. Therefore, this measure is called the risk-neutral measure, usually 
denoted as Q. Often stochastic processes intended to be used for valuation are defined in the risk-
neutral measure. However, sometimes it is more convenient to change to another measure. 
 
Consider two numéraires N and M with the martingale measures QN and QM. Geman et al (1995) 
proved that the Radon-Nikodym derivative that changes the equivalent martingale measure QM 
into QN is given by: 
 

(2.2) )(
)(/)(
)(/)(

t
tMTM
tNTN

dQ
dQ

M

N

ρ==  

 
Girsanov’s Theorem states that if this Radon-Nikodym derivative can be written as: 
 

(2.3) 



 −= ∫ ∫

t tM dsssdWst
0 0

2)(5.0)()(exp)( κκρ  

 
where WM is a Brownian motion under the measure QM. This leads to: 
 

(2.4) ∫ +=−=
t NMMN dttdWdWordsstWtW
0

)()()()( κκ  

 
So in order to use Girsanov’s Theorem the process κ(t) has to be found that yields (2.3). An 
application of Ito’s Lemma shows that dρ(t) = ρ(t)κ(t)dWM , showing that ρ(t) is a martingale 
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under the measure QM under the condition 2

0

1
exp | ( ) |

2

t

s dsκ
  

Ε < ∞  
   

∫ . Now applying Ito’s 

Lemma to the ratio (2.2) will give κ(t). 

2.1.2 Affine Jump-Diffusions 
The stochastic processes used in this thesis for interest rates and equity prices are part of a 
broader class of models, called the affine jump-diffusions. A class of affine models was 
introduced first in the context of interest rates by Duffie and Kan (1996). Later this is generalized 
by Duffie et al (2000) and Duffie et al (2003). The class of affine jump-diffusions provides a 
flexible and general model structure combined with analytical tractability. The latter feature 
facilitates the calibration and simulation of such models. Well known term structure models that 
are members of this class are, amongst others, the models of Hull and White (1993), Cox et al 
(1985) and Longstaff and Schwartz (1992). Next to the equity price model of Black and Scholes 
(1973) also the stochastic volatility models of Heston (1993), Schöbel and Zhu (1999) and the 
stochastic volatility with jumps model of Bates (1996) are members of this class. 
 
The class of affine jump-diffusions can be defined as follows. Let X be a real-valued n-
dimensional Markov process satisfying: 
 
(2.5) ( ) ( )( ) ( ) ( ) ( ) ( )dX t X t dt X t dW t dZ tµ σ= + +  
 
Where W(t) is a standard Brownian motion in ℜn, µ(⋅) ∈ ℜn, σ(⋅) ∈ ℜn x n, and Z is a pure jump 
process whose jumps have a fixed probability distribution v and arrive with intensity λ(X(t)). The 
jump times of Z are the jump times of a Poisson process with time-inhomogeneous intensity. 
Poisson processes are further highlighted in section 2.2. The process X is affine if and only if the 
diffusion coefficients are of the following form: 
 
(2.6) 0 1( )x K K xµ = +     for K=(K0,K1) ∈ ℜn × ℜn x n 
 
(2.7) ( ) ( ) ( )0 1( ) ( )T

ij ijij
x x H H xσ σ = +     for H=(H0,H1) ∈ ℜn x n × ℜn x n x n 

 
(2.8) 0 1( )x l l xλ = +     for l=(l0,l1) ∈ ℜ × ℜn 
 
(2.9) 0 1( )r x xρ ρ= +     for ρ=(ρ0,ρ1) ∈ ℜn × ℜn x n 
 
where r(x) is the short term interest rate. Now it can be proved that the characteristic function of 
X(t), including the effects of any discounting, is known in closed form up to the solution of a 
system of Ordinary Differential Equations. Duffie et al (2000) show that for u ∈ Cn the Fourier 
transform φ (u,X(t),t,T) of X(t), conditional on filtration Ft , is given by: 
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(2.10) ( )
( )( )

( ) ( ) ( ) ( ), ( ), , |

T

t

r X s ds
uX t A t B t X t

tu X t t T e e F eφ
−

+
 ∫ = Ε = 
  

  

 
where A(⋅) and B(⋅) satisfy the following system of Ricatti equations: 
  

(2.11) ( )0 0 0 0

( ) 1
( ) ( ) ( ) ( ) 1

2
TdA t

K B t B t H B t l B t
dt

ρ θ= − − − −    

 

(2.12) ( )1 1 1 1

( ) 1
( ) ( ) ( ) ( ) 1

2
T TdB t

K B t B t H B t l B t
dt

ρ θ= − − − −    

 
with boundary conditions A(T) = 0 and B(T) = u. The ‘jump transform’ θ (⋅) is given by: 
 
(2.13) ( ) ( )n

czc e dv zθ
ℜ

= ∫  

  
In general the solutions of A(⋅)and B(⋅) have to be computed numerically, although the well 
known models mentioned above result in explicit expressions for A(⋅) and B(⋅). 

2.1.3 Gaussian interest rate models 
In this thesis the underlying interest rate model for the valuation is the class of multi-factor 
Gaussian models. Special cases of this class of models are the 1-factor and 2-factor Hull-White 
model, which are often used in practice. These models are appealing because of their analytical 
tractability. 
 
The Gaussian interest rate models are also a special case of the affine term structure models 
introduced by Duffie and Kan (1996). The m-factor Gaussian model describes the stochastic 
process for the instantaneous short rate as follows3: 
 
(2.14) )()()( ttYtr α+′= 1  
 
(2.15) ( ) ( ) ( )QdY t CY t dt dW t= − + ∑  
 
where WQ(t) is a m-dimensional Brownian motion under the risk-neutral measure and C and Σ 
are m x m matrices. C is a diagonal matrix. 
 
The function α(t) is chosen in such a way that the fit of the model to the initial term structure is 
perfect. The covariance matrix of the Y-variables is equal to ΣΣ’. 
 
The analytical tractability of this model makes it possible to obtain bond prices analytically, from 
which swap and zero rates can be derived. The price at time t of a zero bond maturing at time T 
is given by: 
                                                 
3 See Brigo & Mercurio (2006) for an extensive explanation of and pricing formulas for the 2-factor Gaussian model. 
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(2.16) ( ) ( )

1

( , ) ( , ) exp ( , ) ( )
m

i i

i

D t T A t T B t T Y t
=

 = − 
 

∑  

 
where  ( )))(exp(1/1),( )()(

)( tTAATtB iiii
i −−−=  

 
The expression for A(t,T) is further specified for the 1-factor and 2-factor case in chapter 4.  

2.1.4 Stochastic volatility model for equity prices 
In a seminal paper Black & Scholes (1973) made a major breakthrough in the pricing of equity 
options. The underlying stochastic model for equity prices has become known as the Black-
Scholes model. The Black-Scholes model assumes the volatility to be constant. However, in 
practice the volatility varies through time. For this reason a significant literature has evolved on 
alternative models that incorporate stochastic volatility. Next to leading to more realistic 
dynamics of the stochastic process for equity prices, these models have the advantage that they 
provide a better fit of the model to actual market (option) data. This is an important feature for 
being able to adequately price more exotic options such as embedded options in insurance 
products. Well known stochastic volatility models are the models of Hull and White (1987), 
Stein and Stein (1991), Heston (1993) and Schöbel and Zhu (1999).  
 
The aim in chapter 4 is to combine a stochastic volatility model for equity prices with a 
stochastic interest rate model. Van Haastrecht et al (2009) show that it is possible to obtain an 
explicit expression for the price of European equity options when the Schöbel and Zhu (1999) 
model is combined with a stochastic Gaussian model for interest rates, explicitly taking into 
account the correlation between those processes. That makes this combined model suitable for 
valuation of the Guaranteed Annuity Options in chapter 4. 
 
In the Schöbel and Zhu (1999) model, the process for equity price S(t) under the risk-neutral 
measure Q is:  
 

(2.17) 0

( )
( ) ( ) ( ) (0)

( )
Q

S

dS t
r t dt v t dW t S S

S t
= + =  

(2.18) ( ) 0( ) ( ) ( ) (0)Q
vdv t v t dt dW t v vκ ψ τ= − + =  

 
Here v(t), which follows an Ornstein-Uhlenbeck process, is the (instantaneous) stochastic 
volatility of the equity S(t). The parameters of the volatility process are the positive constants ? 
(mean reversion), v0 (short-term mean), ?  (long-term mean) and t  (volatility of the volatility). 

2.1.5 Stochastic processes for valuation of unhedgeable insurance risks 
The valuation of insurance liabilities also requires the valuation of (unhedgeable) insurance risks. 
For example, mortality models for the valuation of mortality or longevity liabilities (or 
derivatives) are given by Dahl (2004), Schrager (2006), Cairns et al (2006b) and Bauer et al 
(2008). The models of Dahl (2004) and Schrager (2006) belong to the general class of affine 
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jump-diffusions defined in paragraph 2.1.2 and as a result allow for closed form expressions of 
the survival rate.  
 
Usually insurance risk models are calibrated to historical data and are therefore defined in the 
real world measure, denoted by P. Given the techniques mentioned in paragraph 2.1.1, one could 
apply a change of measure to risk neutral measure Q, under which the insurance liability can be 
valued. However, in this case one crucial condition is not satisfied, being the completeness of the 
economy. As explained in paragraph 2.1.1, the completeness of the economy forces the risk 
neutral measure Q to be unique. The market for insurance risks is far from complete, meaning 
that the insurance risks are unhedgeable and therefore a range of possibilities for Q exist. As 
mentioned by Cairns et al (2006a) the choice of Q needs to be consistent with the limited market 
information, but beyond this restriction the choice of Q becomes a modeling assumption.  
 
An alternative method for valuation in incomplete markets is the use of utility functions and the 
principle of equivalent utility, see Young and Zariphopoulou (2002), Young and Moore (2003) 
and Young (2004). This principle implies that the maximal expected utility with and without the 
specific insurance risk are examined. The compensation at which the insurer is indifferent 
between the two alternative alternatives yields the value of the unhedgeable insurance risk. 
However, this approach is currently only feasible for relatively simple products.   
 

2.2 Real World Stochastic Processes for Risk Management 
 
As mention above, for risk management it is particularly important that the stochastic processes 
used realistically reflect the observed characteristics of the underlying stochastic variable. In 
chapter 5 and 6 parametric models are fit to yearly observations, leading to time series of fitted 
variables. Stochastic processes have to be fit to these time series, for which the Autoregressive 
Integrated Moving Average (ARIMA) models can be used. These are described in paragraph 
2.2.1. The stochastic processes needed in chapter 7 are of a different nature and are described in 
paragraph 2.2.2. 

2.2.1 ARIMA Time Series Models 
A seminal work on the estimation and identification of ARIMA models is the monograph by Box 
and Jenkins (1976). Additional details and discussion of more recent topics can be found in for 
example Mills (1990), Enders (2004) and Hamilton (1994). An important issue is whether a time 
series process is stationary, meaning that the distribution of the variable of interest does not 
depend on time. If this is not case, the first step would be to difference the time series until the 
differenced time series is stationary. Box and Jenkins found that usually only one or two 
differencing operations are required. 
 
The general ARIMA(p, d, q)  model for a time series of a variable yt can be written as: 
 
(2.10) *d

t ty y=V  

 * *
0

1 1

p q

t i t i t i t i
i j

y yα α ε β ε− −
= =

= + + +∑ ∑  
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where the α‘s and β‘s are the unknown parameters, the ε’s are independent and identically 
distributed normal errors and  ∆d represents the differencing, meaning ∆0yt = yt, ∆1yt = yt – yt-1,  
∆2yt = (yt – yt-1) - (yt-1 – yt-2), etc. The parameter p is the number of lagged values of yt, 
representing the order of the autoregressive (AR) dimension of the model, and q is the number of 
lagged values of the error term, representing the order of the moving average (MA) dimension of 
the model. 
 
Box and Jenkins define three steps for the development of an ARIMA model: 
 

1) Model identification and model selection: determining the values for p, d, q. 
2) Parameter estimation: either by using Maximum Likelihood or (non-linear) Least 

Squares estimation. 
3) Diagnostic checking: testing whether the estimated model meets the specifications of a 

stationary univariate process.   
 
Often an extension is needed to allow the modeling of multivariate time series. This requires a 
multivariate generalization of the ARIMA process, see for example Verbeek (2008). 

2.2.2 Poisson processes and renewal processes 
The required stochastic processes in chapter 7 are of a different nature than those described 
above. Poisson processes and the related renewal processes are convenient concepts for 
modeling the development process of individual claims. For an extensive overview of these 
techniques, see Cook and Lawless (2007).  
 
Poisson Processes   A Poisson process describes situations where events occur randomly in such 
a way that the numbers of events in non-overlapping time intervals are independent. Poisson 
processes are therefore Markov, with an intensity function: 
 

(2.11) ( ) ( )
0

Pr ( ) ( ) 1
| ( ) lim ( )

t

N t t N t
t H t t

t
λ ρ

∆ ↓

+ ∆ − =
= =

∆
 

 
Where N(t) is the cumulative number of events occurring over the time interval [0,t] and H(t) is 
the process history. In the case where ρ(t) is constant, ρ(t) = ρ, the process is called 
homogeneous. Otherwise, it is inhomogeneous. The above specification implies: 
 

(2.12) ( ) ( ) ~ ( )
t

s

N t N s Poisson u duρ
 

−  
 
∫    

 
Position Dependent Marked Poisson Process (PDMPP)  In chapter 7 the individual claims 
process is modeled as a PDMPP. A marked Poisson process with intensity ρ(t) and position-
dependent marks is a process 
 
(2.13) ( ) 1,....,

( , )i i i N
T Z

=
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where the claims counting process N(t) is an inhomogeneous Poisson point process with intensity 
ρ(t), points Ti and marks Zi. The (Zt)t>0 are mutually independent, are independent of the Poisson 
point process N(⋅) and have time-dependent probability assumptions. 
 
Renewal processes   Related to the Poisson process is the renewal process, in which the waiting 
(gap) times between successive events are statistically independent: that is, an individual is 
‘renewed’ after each event occurrence. Renewal models for waiting times are defined as 
processes for which 
 

(2.14) ( ) ( )( )
| ( )

N t
t H t h t Tλ −= −    

 
where h(⋅) is the hazard rate and 

( )N t
t T −−  is the time since the most recent event before t.  

 
Often used models for the time to an event, say T, are the Exponential, Weibull and the 
Gompertz distribution. These distributions have the convenient property that the hazard function 
has a simple form. The following hazard functions g(u) are implied by these distributions: 

-   T ~ Exponential(λ) ⇒   h(u) = λ (constant hazard) 
-   T ~ Weibull(α,γ)    ⇒   h(u) = αγuγ-1  
-   T ~ Gompertz(α,γ)  ⇒   h(u) = γeαu 

 
Other possibilities are a piecewise constant specification for the hazard rate or the Cox 
proportional hazard model (see Cox (1972)).  
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Chapter 3 
 

Valuation of swap rate dependent 
embedded options*  

 
 
 
* This chapter has appeared as: 
 
PLAT, R. AND A.A.J. PELSSER (2008): Analytical approximation for prices of swap rate 
dependent embedded options in insurance products, Insurance: Mathematics and Economics 44, 
pp. 124-134 
 
 

3.1 Introduction 
 
An important part of the market valuation of liabilities is the valuation of embedded options. 
Embedded options are options that have been sold to the policyholders and are often the more 
complex features in insurance products. An embedded option that is very common in insurance 
products in Europe, is a profit sharing rule based on a (moving average) fixed income rate, in 
combination with a minimum guarantee. This fixed income rate is either from an external source 
or could be the book value return on a fixed income portfolio. For example, in the Netherlands 
the profit sharing is often based on the so-called u-yield, which is more or less an average return 
of several treasury rates. In other parts of Europe, the book value return on the fixed income 
portfolio is often the basis for the profit sharing. In practice the exact rates are difficult to 
determine and to project forward, and implied volatilities from the market are not available. 
Therefore, often the euro swap rate is used as a proxy. So what remains is the valuation of an 
option on a moving or weighted average of forward and historic swap rates. 
     
Most insurers use Monte Carlo simulations for the valuation of their embedded options. The 
advantage of this is that many kinds of options can be valued with it (including the more 
complex ones) and that it gives one uniform simulation framework that is applicable for various 
embedded options. However, an important disadvantage is the computational time it requires. 
Embedded option calculations are required for Fair Value reporting, Market Consistent 
Embedded Value, Asset Liability Management, product development and pricing, Economic 
Capital calculations and Mergers & Acquisitions. For most of these purposes several calculations 
are required. For the calculation of Economic Capital for example 20.000 or more simulations 
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are used and in each of these scenario's the market value of liabilities (and thus the value of 
embedded options) has to be calculated. Also for other purposes, often sensitivities and analysis 
of changes are necessary. If an insurer then also exists of several business units or legal entities, 
the total computational time can be significant. Therefore, analytical solutions for the valuation 
of embedded options would be very helpful. 
     
In this chapter analytical approximations are derived for the above mentioned swap rate 
dependent embedded options. The underlying interest rate model is a multi-factor Gaussian 
model. This model is very appealing because of its analytical tractability. Also, the model 
implicitly accounts for the volatility skew to some extent, what is important for these kind of 
options because those are in most cases not at-the-money. Because of this the model is often 
used in practice (in most cases the 1-factor or 2-factor Hull-White variant). Analytical 
approximations are derived for the case of direct payment of profit sharing, as well as for the 
case of compounding profit sharing. In case of (very) complex options with management actions, 
the analytical approximation for the direct payment case can be used as a control variate in 
combination with Monte Carlo simulation, reducing the computational time to a great extent. 
 
It could well be that an insurance company has other kinds of embedded options for which no 
analytical approximations are available. These embedded options probably have to be valued 
using Monte Carlo simulation. Since the multi-factor Gaussian models are often used in practice, 
the analytical approximation for the swap rate dependent options can in that case be used in 
conjunction with the simulation model that may be required for the valuation of other embedded 
options. This results in a consistent underlying interest rate model for the valuation of embedded 
options, despite the fact that perhaps some of the options are valued with Monte Carlo 
simulations and others with analytical formulas. 
     
The basis for the analytical approximation is the result of Schrager and Pelsser (2006), who have 
developed an approximation for swaption prices for affine term structure models (of which the 
multi-factor Gaussian models are a subset). They determine the dynamics of the swap rate under 
the relevant swap measure and these dynamics are approximated by replacing some low-variance 
martingales by their time zero values. This technique is already used extensively in the context of 
Libor Market Models and given the results of Schrager and Pelsser, it also proves to work well in 
an affine setting. By use of the Change of Numéraire techniques developed by Geman et al 
(1995), the result of Schrager and Pelsser can be used to derive analytical approximations for 
swap rate dependent options. 
 
Most of the existing literature on valuation of embedded options in insurance products focuses 
on Unit Linked products, with-profits products or Guaranteed Annuity Options. For example, 
Grosen and Jorgensen (2000), Schrager and Pelsser (2004) and Castellani et al (2007) developed 
analytical approximations for Unit Linked type products with guarantees. Wilkie et al (2003) use 
numerical techniques to value Guaranteed Annuity Options, while Sheldon and Smith (2004) 
developed analytical formulas for these products. Nielsen and Sandmann (2002) and Prieul et al 
(2001) use numerical techniques for valuation of With-Profits contracts. 
 
However, to our knowledge there has been little focus on profit sharing based on (moving 
average) fixed income rates, despite this being one of the most common types of profit sharing in 
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Europe. Our contribution to the existing literature is that we provide analytical approximations 
for these kinds of profit sharing. Analytical approximations for direct payment of profit sharing 
and for compounding profit sharing are given, while a combination with returns on other assets 
(such as equities) is also possible. In addition, the proposed analytical approximation can be used 
as a control variate in Monte Carlo valuation of options for which no analytical approximation is 
available, such as similar options with management actions. This potentially reduces the number 
of simulations required to a great extent. 
 
Some of the techniques proposed in this chapter can also be used for financial products, such as 
options on an average of Constant Maturity Swap (CMS) rates, (callable) CMS accrual swaps 
and (callable) CMS range notes. 
     
The remainder of the chapter is organized as follows. First, in section 3.2 the characteristics of 
the swap rate dependent embedded options are described. In section 3.3 the underlying Gaussian 
interest model is given. In section 3.4 the Schrager-Pelsser result for swaptions is repeated and 
this is applied to the direct payment case in section 3.5. In section 3.6 possibilities are given for 
more complex embedded options. Then numerical examples are worked out in section 3.7 and 
conclusions are given in section 3.8. 
 

3.2 Swap rate dependent embedded options 
 
Traditional non-linked life insurance products often guarantee a certain insured amount. 
Common practice was (and often still is) to calculate the price of this insurance by discounting 
the expected cash flows with a relatively low interest rate, called the technical interest rate. Often 
this is combined with profit sharing, where some reference return is paid out to the policyholder 
if this exceeds the technical interest rate, possibly under subtraction of a margin. There exist 
various types of profit sharing, such as: 
 

- Profit sharing based on an external reference index 
- Profit sharing based on the (book or market value) return on the underlying investment 

portfolio 
- Profit sharing based on the performance and profits of the insurance company 
- Profit sharing of the so-called with-profits products, where regular and terminal bonuses 

are given though the life of the product, based on the return of the underlying investment 
portfolios. The terms of these policies often contain management actions that allow the 
insurance companies to reduce the risks of these products. 

 
In most cases where the profit sharing rate depends on a certain fixed income rate, the exact 
profit sharing rate is either very complex or not fully known, or implied volatilities from the 
market are not available. In practice, these kinds of options are often valued using an (average) 
forward swap rate as an approximation for the profit sharing rate. The profit sharing payoff PS(t) 
in year t is in that case: 
 
(3.1) }0)),()(({)()( tKtRcMaxtLtPS −=  
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where L(t) is the profit sharing basis, c is the percentage that is distributed to the policyholder 
and K(t) is the strike of the option. The strike equals the sum of the technical interest rate TR(t) 
and a margin. In most cases, either the margin or the c is used for the benefits of the insurer. R(t) 
is the profit sharing rate and is a (weighted) average of historic and forward swap rates. 
 
The profit sharing as described in (3.1) is a call option on a rate R(t) and has to be valued using 
option valuation techniques. The profit sharing is either paid directly or is being compounded 
and paid at the end of the contract. 
 
Note that it depends on the specific profit sharing rules whether the swap rate is a good 
approximation for the profit sharing rate. This has to be verified for each specific profit sharing 
arrangement. Below two examples are given of profit sharing arrangements where the swap rate 
is often used as approximation in practice.    
 
Example 1 – book value return on underlying portfolio 
One of the most common forms of profit sharing across the European life insurance business is 
the one where the profit sharing rate is based on the book value return of the underlying fixed 
income portfolio4. To be able to value this option, assumptions have to be made about the 
reinvestment strategy. An example of how this problem is often tackled in practice is to assume: 
   - a certain average turnover rate δ  
   - a reinvestment strategy favoring m-year maturity assets.  
   - the m-year swap rate being an approximation for the yield on the m-year maturity assets 
 
Given these assumptions the book value return of the portfolio can be modeled as follows: 
 
(3.2) )()1()1()( , tytRtR mtt ++−−= δδ  
 
where yt,t+m(t) is the m-year swap rate at time t. The book value return on time t can also be 
expressed in terms of the current book value return R(0), leading to an exponentially weighted 
moving average: 
 

(3.3) ∑
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being a weighted combination of forward swap rates and the current book value return. 
 
Another approach that is often used is approximating the book value return by a moving average 
of swap rates: 
 

(3.4) ∑
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where n (= 1/δ) is the number of fixings of the moving average. 

                                                 
4 This is common practice in for example France, Germany, Italy, Czech Republic, Switzerland and Norway. 
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Example 2 – “u-rate” profit sharing in the Netherlands 
In the Netherlands the most common form of profit sharing is based on a moving average of the 
so-called u-rate. The u-rate is the 3-months average of u-rate-parts, where the subsequent u-rate-
parts are weighted averages of an effective return on a basket of government bonds. This leads to 
a complicated expression, and no implied volatilities are available for government bonds. 
Therefore, it is common practice in the Netherlands to approximate the u-rate or the u-yield parts 
by a swap-rate5. That means that the profit sharing rate is approximated by a moving average of 
swap rates, as in (3.4).                      � 
 
Besides the direct payment and compounding versions of (3.1), other variants of this profit 
sharing exist, such as: 
 

1) Profit sharing including the return on an additional asset 
2) (Compounding) profit sharing with additional management actions or other complex 

features. 
 
In case of 1), the underlying investment portfolio also contains additional non-fixed income 
assets. This means that the profit sharing rate is a combination of a (weighted) moving average 
of swap rates and the return on additional assets. The profit sharing rate could then be expressed 
as: 
 

(3.5) ,( ) ( )
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where S

jw  is the weight in additional asset Sj, 
jSr  is the return on that asset and 

∑ ∑ =+ .1S
l
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k ww  

 
In case of 2), the insurer has added management actions or other complexities to the profit 
sharing rules, mainly to lower the risk exposure for the insurer.  
 
In the following sections analytical approximations are developed for prices of embedded 
options where the profit sharing rate depends on or is approximated by forward swap rates. Note 
that the developed formulas are approximating swap rate dependent embedded options. When 
considering the results or using the formulas one always has to be aware of the fact that the first 
error is introduced when the swap rate is being used as a proxy for the profit sharing rate.  
 

3.3 The underlying interest rate model 
 
The analytical approximations in this chapter are based on an underlying multi-factor Gaussian 
interest rate model. This model is described in paragraph 3.3.1. Paragraph 3.3.2 gives a 

                                                 
5 Historical data that show that u-rate parts have behaved similarly as swap rates in the past, is available upon 
request.   
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discussion whether similar techniques as developed in this chapter can be used for analytical 
valuation of the options described in section 3.2 given other underlying interest rate models. 

3.3.1 Multi-factor Gaussian models 
As mentioned in paragraph 2.1.3, the underlying interest rate model for the valuation is the class 
of multi-factor Gaussian models. These models are very appealing because of their analytical 
tractability. This makes the model easy to implement, while there are also more possibilities for 
analytical approximations (or solutions) for embedded options 
 
In the swaption market, the observed implied Black volatility is varying for different strike levels, 
leading to the so-called volatility skew. This volatility skew exists because the market apparently 
does not believe in lognormally distributed swap rates. Instead, the volatility skew seems to 
indicate a distribution that is closer to the normal distribution6. Therefore, the Gaussian models 
implicitly account for the volatility skew to a certain extent. This is also an appealing property of 
these models in the context of embedded options in insurance products, since these options are in 
most cases not at-the-money. 

3.3.2 Valuation for other interest rate models 
This paragraph gives a discussion whether similar techniques as developed in this chapter can be 
used for analytical valuation of the options described in section 3.2 given other underlying 
interest rate models. 
 
General affine models 
Schrager and Pelsser (2006) developed approximations for swaption prices for general affine 
interest rate models. For non-Gaussian affine models they come to an approximate solution for 
swaption prices for which only a numerical integration is necessary. An approximation for the 
characteristic function of the swap rate under the swap measure and the method of Carr and 
Madan (1999) is used for this. As a first step in this process they derive approximate dynamics 
for the swap rate in similar fashion as described in section 3.4. With an additional approximation 
a square-root process for the swap rate results.  
 
Dassios and Nagaradjasarma (2006) develop explicit prices for Asian options, given an 
underlying square root process. They also obtain distributional results concerning the square-root 
process and its average over time, including analytic formulae for their joint density and 
moments. 
 
For the embedded options discussed in this chapter a suggested approach would be to use the 
approximate dynamics for the swap rate from Schrager and Pelsser (2006) and combine this with 
the techniques in Dassios and Nagaradjasarma (2006).  
 
Libor Market Model (LMM) 
As mentioned in section 3.4, the approximation technique used in this chapter is already used 
extensively in the context of Libor Market Models. For example, Brigo and Mercurio (2006) use 

                                                 
6 See Levin (2004) for a discussion on this issue. 
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the technique for approximation of swaption prices in the LMM model. Gatarek (2003) uses it to 
approximate prices of Constant Maturity Swaps. 
 
Now when using this technique, the resulting distribution of the approximate swap rate in the 
LMM model is lognormal. However, for the valuation of the embedded options in this chapter 
the distribution of the average swap rate is needed. In case the swap rate is lognormally 
distributed, the distribution of the average swap rate is unknown. This is a well known problem 
in the context of valuation of Asian options. Methods for approximate analytical valuation of 
options on the average of lognormally distributed variables are proposed in, amongst others, 
Levy (1992), Curran (1994) and Rogers and Shi (1995). Lord (2006) gives an overview of 
existing methods, compares the quality of those numerically and develops approximations that 
outperform the other methods. 
 
Swap Market Model (SMM) 
In a standard SMM as proposed by Jamshidian (1997) each swap rate is modeled in its own swap 
measure, making it hard to apply for pricing of most exotic interest rate products. This could be 
one of the reasons that the SMM has not been discussed extensively in financial literature. The 
co-sliding SMM proposed by, amongst others, Pietersz and Van Regenmortel (2006) seems 
promising though and is applicable especially for Constant Maturity Swap (CMS) and swap rate 
products. 
 
In the SMM the swap rate is modeled directly in a lognormal setting, so no approximation of the 
distribution of the swap rate in the swap measure is necessary. A price for the profit sharing 
options discussed in this chapter can be obtained by applying the relevant convexity and timing 
adjustments and using one of the above mentioned techniques for approximate analytical 
valuation of Asian options.  
 

3.4 The Schrager-Pelsser result for swaptions 
 
Schrager and Pelsser (2006) developed an approximation for swaption prices for affine interest 
rate models. In this section their main result for the Gaussian models is repeated. 
 
The swap rate yn,N is the par swap rate at which a person would like to enter into a swap contract 
with a value of 0, starting at time Tn (first payout at time Tn+1) and lasting until TN. The swap rate 
at time t is given by: 
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where Y

k 1−∆  is the market convention for the calculation of the daycount fraction for the swap 
payment at Tk. When using Pn+1,N (t) as a numéraire, all Pn+1,N (t) rebased values must be 
martingales under the measure Qn+1,N , associated with this numéraire. That means that yn,N  is a 
martingale under this so-called swap measure, which is introduced by Jamshidian (1998). When 
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applying Ito’s Lemma to the model defined in (2.14) and (2.15) the following dynamics for the 
swap rate yn,N(t) under the swap measure result: 
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Where dWn+1,N is a m-dimensional Brownian motion under the swap measure Qn+1,N 

corresponding to the numéraire Pn+1,N (t). Schrager and Pelsser (2006) determine the partial 
derivatives in (3.7), which are stochastic, and approximate these by replacing low-variance 
martingales by their time zero values. This technique is already used extensively in the context of 
Libor Market Models7 and given the results of Schrager and Pelsser, it also proves to work well 
in an affine setting. This approximation makes the swap rate volatility deterministic and thus 
leads to a normally distributed forward swap rate. The approach described leads to an analytical 
approximation for the integrated variance of yn,N  (associated with a Tn x TN  swaption) over the 
interval [0,Tn] (for the proof, see appendix 3a): 
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where DP(t,Tn) = D(t,Tn) / Pn+1,N(t), the bond price normalized by the numéraire. 
 
The result is an easy to implement analytical approach to calibrate Gaussian models to the 
swaption market. A nice by-product of the approach (as opposed to other approaches for 
approximating swaption prices) is that the dynamics of the swap rates are approximated. These 
approximate dynamics can be used for approximating prices of other swap-rate dependent 
options.  
 

3.5 Analytical approximation – direct payment 
 
Assume that the profit sharing rate at time Ti is a weighted average of τ-year maturity swap rates 
with weights wk and the averaging period is from time Ti –s to time Ti : 
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where Σ wk =1. 
                                                 
7 See Andersen and Andreasen (1998), Gatarek (2003) and Brigo and Mercurio (2006). 
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In case of direct payment of profit sharing, the embedded option is in fact a strip of options that 
mature at time Ti (i=1,2,…) and lead to a direct payment of an option payoff on R(Ti) on these 
dates. Since the individual yk,k+τ (k)’s are approximately normally distributed (see section 3.4), 
R(Ti) is also approximately normally distributed. So to value the option the expectation and the 
variance of R(Ti) have to be approximated under the Ti-forward measure and feed into a Gaussian 
option formula for each time Ti. For determining the variance of R(Ti) the covariance’s of the 
yk,k+τ (k)’s with the yl,l+τ (k)’s have to be specified. 

3.5.1 Determining the expectation of R(Ti) 
The above means that each individual option has to be priced in the Ti-forward measure. To 
come to the expectations of R(Ti) under the right measure the following steps are necessary: 
 

a) For each (forward) swap rate yn,N a change of measure has to be done from the swap 
measure Qn+1,N to the Tn-forward measure QTn. 

b) If the payoff of the option on the average of the swap rates is at time Ti, for each of the 
individual swap rates observed at time (Ti-s), a change of measure has to be done from the 
(Ti-s)-forward measure to the Ti-forward measure. 

 
The corrections mentioned above can be interpreted as convexity corrections (a) and timing 
corrections (b). The formulas for these corrections are given in (3.11) and (3.12), of which the 
proofs are given in appendix 3b. Note that due to the changes of measure it’s not guaranteed that 
the quality of the approximation will remain. Therefore, this will be tested in section 3.7. 
 
The convexity correction CCn,N(Tn) for time Tn > 0 for the swap rate yn,N  is: 
 

(3.11) 
( ) ( )

( ) ( )
, ( ) , ,

1 1 ( ) ( )

1ˆ( )
ii jj nA A Tm m

i j
n N n ij n N n N

i j ii jj

e
CC T C G

A A

 + 

= =

 −
≈ ∑  

+  
∑∑ % %  

 

 







∆−= ∑

+=

−
−

−
N

nk
k

PTAY
k

TA

jj

j
Nn TDee

A
Gwhere kjjnjj

1
1

)(

)(
, ),0(

1~ )()(  

  
The timing correction TCn,N(Tn,Tn+u) representing a change of measure from time Tn > 0 to Tn+u is: 
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For Tn < 0, the convexity corrections and the timing corrections are 0. Note that in the derivation 
of (3.11) also stochastic terms are replaced by their time zero values, leading to a deterministic 
convexity correction. 
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The expectation )( iTRµ  of R(Ti) becomes: 
 

(3.13) [ ]∑
−=

+++ ++≈
i

si

i

T

Tk
ikkkkkkkTR TkTCkCCyw ),()()0( ,,,)( τττµ  

 
The convexity correction is positive and the timing correction is negative, so they are partly 
offsetting each other. The formulas (3.11) and (3.12) have the same structure as in case of the 
swaptions in section 3.4, so the implementation is not much more complicated than that.   

3.5.2 Determining the variance of R(Ti) 
Given that the drift term is deterministic, the change of measure has no impact on the volatility, 
so expression (3.8) can be used to determine the variance of R(Ti). The variance 2

)( iTRσ  of R(Ti) is: 
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where Cov(.) is the covariance between the swap rates. From stochastic calculus we know (for s 
≤ t): 
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Using this and expression (3.8) the covariance between swap rates is  
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where lk ∧ = min(k,l). 

3.5.3 Pricing formulas 
The total value of the embedded option is the sum of the values of the strip of options that 
mature at time Ti (i=1,2,…). The profit sharing specified in (3.1) is in fact a call option on the 
normally distributed rate R(Ti) with expectation (3.13) and variance (3.14) under the Ti-forward 
measure. 
 
Let ϕµ,σ(⋅) be the density of a Gaussian random variable with mean µ and standard deviation σ , 
Φµ,σ  the corresponding distribution function and Φ = Φ0,1.  
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The value at time 0 of the profit sharing payoff PS(Ti) at time Ti is8: 
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The total value of the profit sharing at time 0 is then: 
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When the profit sharing payoff at a time > 0 is dependent on observations at a time < 0, a slight 
adjustment has to be done. In that case the expectation to be valued is: 
 

(3.19) 

[ ] [ ]
[ ]0 0

0

( ) (0, ) ( ) { ( ) ( ) ,0}

(0, ) ( ) { ( ) ( ) ( ) ,0}

(0, ) ( ) { ( ) ( ) ,0}

Ti

Ti

Ti

Q
i i i i

Q
i i i t i t

Q
i i i t

V PS T D T L T E Max R T K t

D T L T E Max R T R T K t

D T L T E Max R T K t

> ≤

∗
>

= −

= + −

 = − 

  

 

0,0

0

,0 )()()()()(,)()( ≤
∗

=
+>

=

=
+≤ −=== ∑∑

−

ti

T

Tk
kkkti

T

Tk
kkkti TRtKtKandkywTRkywTRwhere

i

j

j

si

ττ  

 
So these profit sharing options can be priced with a relatively simple and relatively easy to 
implement Gaussian option formula.  
 

3.6 Valuation for more complex profit sharing rules 
 
In section 3.5 an analytical approximation is derived for the case of direct payment of the profit 
sharing payoff specified in (3.1). However, in practice other variants of this profit sharing exist, 
such as: 
 

1) Compounding variant of the profit sharing in (3.1) 
2) Profit sharing including the return on an additional asset 
3) (Compounding) profit sharing with additional management actions or other complex 

features 
 

                                                 
8 These results can be derived in a similar fashion in case of a put-option on rate R(Ti). 
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For 1) and 2), an analytical approximation can be derived in line with the approximation 
developed in section 3.5. For 3), either volatility scaling or Monte Carlo simulation will be 
necessary. In case of Monte Carlo simulation, the approximation in (3.17) can be used as a 
control variate, potentially reducing the amount of simulations necessary to a great extent.  

3.6.1 Compounding profit sharing 
It is also common that profit sharing is not paid directly, but is compounded and paid out at the 
end of the contract term. Valuation of this option with Monte Carlo simulation often takes a 
significant amount of time. The reason for this is the dependency of the profit sharing rates on 
the future cash flows, resulting in the need to use the original liability cash flow model in a 
stochastic way. An analytical approximation would significantly (even more than in the direct 
payment case) reduce computational time, since these formulas can be used as input for the 
liability cash flow model without the need to run these stochastically.  
 
Let the maturity of the product be Tn and total payoff L(Tn) be of the form: 
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where the definition of the variables is as in (3.1) and s(Ti) is the probability that the policyholder 
stays in the portfolio. 
 
The distribution of the right term of (3.20) is unknown so there is no analytical expression for 
this payoff. However, if we assume that the R(Ti)’s are independent (which is obviously a crude 
assumption in this case), the expectation of L(Tn) under the Tn-forward measure is: 
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where the latter expectations can be calculated with (3.17), excluding the term D(0,Ti) L(Ti). 
Note that this expectation has to be determined under the Tn-forward measure by making a 
timing correction to time Tn using formula (3.12). 
 
The value of the compounding profit sharing option would then be: 
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Despite the crude assumption on independence, the analytical approximation could still work 
well. When the expected R(Ti)’s are low, the impact of the compounding effect is relatively low, 
resulting in a relatively good approximation of the time value of the option. When the expected 
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R(Ti)’s are high, the impact of the compounding effect is relatively high and the quality of the 
approximation will be less (in terms of time value). However, in this case the total value of the 
option will also be high and the impact of approximation errors in the time value on the total 
value will be less. This reasoning is being tested in section 3.7. 
 
Instead of using this analytical approximation, it is also possible to use Monte Carlo simulation 
with the analytical approximation of (3.17) as a control variate, reducing the amount of 
simulations needed significantly. This technique is further described in paragraph 3.6.3. 

3.6.2 Profit sharing including the return on an additional asset 
In some cases the underlying investment portfolio also contains additional non-fixed income 
assets. The profit sharing rate could then be expressed as in (3.5). 
 
Assume that the additional asset class Sj follows a standard geometric Brownian motion under 
the risk neutral measure Q: 
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In this case there is an analytical expression for the distribution of return rSj and the covariances 
with yk,k+m, under normally distributed stochastic interest rates in a T-forward measure. The 
analytical expression for the distribution of rSj is worked out in Brigo and Mercurio (2006) for 
the 1-factor model and the result is similar for multi-factor models. The covariance’s with yk,k+τ 
can be determined using (3.15) and the formulas in Brigo and Mercurio (2006). 
 
In practice, often rSj is a book value return. The specification of this book value return can be 
complex and possibly differs for every insurance company. Often, Monte Carlo simulations are 
necessary. However, an alternative is the approach described above, where the volatility 
parameters σSj can be calibrated to results of Monte Carlo simulation or derived from historical 
patterns of book value returns relative to total returns. 

3.6.3 Additional management actions or other complex features 
In some cases the insurer has added management actions or other complexities to the profit 
sharing rules, mainly to lower the risk exposure for the insurer. In most cases, it’s not possible to 
properly value these options analytically. Other possibilities would then be: 
 

a) Use a volatility scaling factor that is calibrated to results obtained with Monte Carlo 
simulation and use this as input for the analytical approximation in (3.17) and (3.22). 

b) Value the option with Monte Carlo simulation, using the analytical approximation in 
(3.17) as a control variate. 

 
Both possibilities are described below. 
 
a) Volatility scaling factor 
When the impact of the management actions or complexities is expected to be low or in cases 
where it is sufficient to use an approximation, one could use a volatility scaling factor f(Ti), such 
that: 
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The factor f(Ti) can be calibrated for each time Ti to output from Monte Carlo simulation. 
This approach can be useful when lots of valuations are needed, for example for Economic 
Capital or Asset Liability Management calculations. 
 
b) Control Variate technique 
When the impact of the management actions or complexities is significant and exact valuation is 
necessary, Monte Carlo simulation can be used in conjunction with a control variate algorithm. 
For a thorough description of the control variate technique, see for example Glasserman (2004). 
When using the control variate algorithm, the value of the profit sharing is: 
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where V[PS]sim  is the simulated value of the profit sharing option, Xsim is the simulated value of 
another asset X and E[X] is the expected value of X, which is assumed to be known. When 
choosing the proper control variate, the standard error of the Monte Carlo estimate can be 
reduced significantly. This means that significantly less simulations are needed to come to an 
estimate with the same quality as an ordinary Monte Carlo estimation. 
 
The deterministic coefficient b that minimizes the standard error of the Monte Carlo estimation is 
given by: 
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The control variate algorithm is most effective when the correlation between PS and X is high. 
Therefore a suitable choice for the control variate would be a carefully selected combination of 
payer swaptions or CMS caplets9.  
 
An alternative can be the use of the direct payment option of section 3.5 as control variate. Since 
the management actions or complexities are added to a profit sharing as in (3.1), the correlation 
between this profit sharing and the direct payment variant of (3.1) is probably very high. 
Therefore, using the direct payment option of section 3.5 as a control variate would significantly 
reduce the number of simulations necessary. This can be implemented by adding the 
approximate dynamics (A.4) to the simulations to determine Xsim and using (3.17) to determine 
E[X]. 
 
An example of the benefits of this technique is the following. In section 3.7 the quality of the 
approximation (3.17) is assessed. For testing this quality, the option values coming from (3.17) 
were in first instance compared with the result of 1.000.000 Monte Carlo simulations. The result 
from the simulations is seen as the “true” value, since the standard error of the estimation is 

                                                 
9 The authors thank the anonymous referee for this suggestion. 
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sufficiently low for this number of simulations. Now when we use the same option (valued under 
the approximate dynamics) as a control variate and (3.17) as its expected value, only 1.000 
simulations are needed to come to the same standard error. Of course in this case the correlation 
between the option to be valued and the control variate is almost maximal, but one could imagine 
that in case of more complex options the reduction of the number of simulations needed would 
still be substantial. 
 
Whether the carefully selected combination of payer swaption / CMS caplets or the direct 
payment option of section 3.5 performs better as a control variate, will be subject for future 
research. An advantage of the selection of simpler instruments is that the market price of these 
instruments is usually available, so no model assumption has to be used for the valuation of this 
part. 
 

3.7 Numerical examples 
 
In this section the results of the approximation formulas will be shown for 2 example products 
and compared with the “true” values resulting from Monte Carlo simulation. When considering 
the results one has to be aware of the fact that before using the approximation already “errors” 
are introduced in the valuation, for example in the calibration of the interest rate model to market 
prices and by using the swap rate as a proxy for the profit sharing rate. 

7.1 Example 1: 10-year average of 7-year swap rate, direct payment 
This example is a specification of (3.1) and (3.4) with direct payment. This specification is for 
example commonly applied in pricing the u-rate profit sharing in the Netherlands, where the 7-
year swap rate is often used as a proxy for the u-rate. Also, as in (3.4) it can be interpreted as a 
proxy for profit sharing based on the book value return on a underlying fixed income portfolio 
with an assumed turnover rate of 10% and a reinvestment strategy favoring 7-year maturity 
assets (on average). The underlying interest rate model used is a 2-factor Gaussian interest rate 
model. 
 
The data used for the profit sharing basis and the technical interest rates are based on an example 
portfolio of a long term pension insurance portfolio, with cash flows up to 50 years ahead. This 
data is given in appendix 3c, along with the yield curve, implied volatility matrix and the specific 
parameter setting of the 2-factor Gaussian interest rate model. A margin of 0.5% is applied and c 
is assumed to be 1. 
 
The analytical approximation described in section 3.5 is tested with Monte Carlo simulation, 
where 5000 (antithetic) simulations are used in combination with the control variate technique 
described in paragraph 3.6.310. The results are given in table 3.1, where the total value of the 
option is given for both approaches and for different yield curve, volatility, mean reversion and 
strike sensitivities. 
 
                                                 
10 Note, as described in paragraph 6.3, that 1.000 simulations in combination with the described control variate 
technique leads to a similar standard error as 1.000.000 simulation without the control variate technique. For this 
example b = 1 is used. 
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Table 3.1: comparison analytical / Monte Carlo approach, example 1 
Total option value Analytical Monte Carlo error %
Base scenario 103.32 103.19 0.12 0.12%
Interest rates: + 1.5% 207.41 207.20 0.21 0.10%
Interest rates: - 1.5% 37.10 36.88 0.22 0.59%
Volatilities: + 0.15% 131.36 130.96 0.40 0.31%
Volatilities: - 0.15% 76.08 75.99 0.08 0.11%
Mean reversion: + 1.5% 93.16 93.03 0.13 0.14%
Mean reversion: -1.5% 116.26 116.00 0.26 0.22%
Strike: +1% 35.82 36.00 -0.18 -0.49%
Strike: -1% 238.18 237.73 0.46 0.19%  
 
The table shows that the quality of the analytical approximation is excellent for all calculated 
scenarios. Note that the error as a percentage of the total value of the insurance liabilities would 
be around 0.01% in most cases.  
 
The analytical approximation is potentially more exact than Monte Carlo simulation (without 
using a control variate algorithm), since the number of simulations used in practice is usually less 
than 1.000.000. 
 
In table 3.2 a comparison between the analytical approximation and Monte Carlo simulation is 
given for different swap rate maturities and averaging periods. The table shows that the quality 
of the analytical approximation is also excellent for these product variants. 
 
Table 3.2: comparison analytical /  Monte Carlo – sensitivities* 
Error of approximation

Swap rate maturity

112,48 112,33 102,50 102,39 86,26 86,14

114,22 113,99 104,65 104,38 92,10 91,89

117,81 117,35 106,89 106,52 95,18 94,83

* In each cell, top left: analytical price, top right: Monte Carlo, bottom: percentage error
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3.7.2 Example 2: 10-year average of 7-year swap rate, compounding option 
In this example the value of compounded profit sharing is calculated for a savings product with 
maturity 20. The compounding profit sharing is of form (3.20), where again the 10-year average 
of 7-year swap rates is used as the profit sharing rate. The assumed technical interest rate is 3.5%, 
s(Ti) is assumed to be 1 and a margin of 0.5% is applied. The fund value at the start of the 
projection is 1.000. 
 
The analytical approximation described in paragraph 3.6.1 is tested with Monte Carlo simulation, 
where 100.000 (antithetic) simulations are used. The results are given in table 3.3, where again 
the total value of the option is given for both approaches and for different yield curve, volatility, 
mean reversion and strike sensitivities. Also results are included for different maturities of the 
insurance product. 
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Table 3.3: comparison analytical / Monte Carlo approach, example 2 
Total option value Analytical Monte Carlo error %
Base scenario 115,37 117,47 -2,10 -1,78%
Interest rates: + 1.5% 228,08 234,12 -6,05 -2,58%
Interest rates: - 1.5% 38,95 39,57 -0,62 -1,56%
Volatilities: + 0.15% 136,24 140,19 -3,96 -2,82%
Volatilities: - 0.15% 94,83 96,19 -1,36 -1,41%
Mean reversion: + 1.5% 109,01 110,83 -1,82 -1,65%
Mean reversion: -1.5% 122,81 125,80 -2,99 -2,38%
Strike: +1% 32,03 32,21 -0,17 -0,54%
Strike: -1% 276,14 282,00 -5,86 -2,08%
Maturity product: 15 80,69 80,78 -0,09 -0,11%
Maturity product: 25 147,38 154,10 -6,73 -4,37%  
 
The table shows that the quality of the analytical approximation is reasonable for all calculated 
scenarios. Note that the error as a percentage of the initial fund value is less than 0.5% in most 
cases. The assumption of independent profit sharing rates over time introduces an additional 
error. However, considering the “errors” made earlier in the process (calibration of interest rate 
model, approximation with swap rate) and the quality of the assumptions usually made for non-
economic parameters (mortality, lapses), the error could still be considered as being acceptable. 
The results for different maturities indicate that the quality of the approximation decreases when 
the maturity of the product exceeds 20 years. 
 
In table 3.4 a comparison for different swap rate maturities and averaging periods is given. The 
table shows that the quality of the analytical approximation is increasing (decreasing) when the 
averaging period is longer (shorter). 
 
Table 3.4: comparison analytical /  Monte Carlo – sensitivities* 
Error of approximation

Swap rate maturity

123,80 128,20 113,52 115,91 126,43 126,12

125,88 129,88 117,31 119,86 131,15 130,42

124,55 127,68 117,59 119,50 132,52 131,98

* In each cell, top left: analytical price, top right: Monte Carlo, bottom: percentage error

15
-2,45% -1,60% 0,41%

10
-3,08% -2,13% 0,56%

5
-3,43% -2,06% 0,25%

Averaging period

5 10 15

 
 
 
As mentioned in 3.6.1 the quality of the approximation (in terms of time value of the option) is 
less when the impact of the compounding is relatively high. However, since the total value of the 
option is higher in this case, the error will still be reasonable in terms of the total value of the 
option (as shown in the table above). This effect is also shown in figure 3.1, where the results of 
the analytical and the Monte Carlo approach are given for different yield curve sensitivities for 
example 2.     
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Figure 3.1: comparison analytical / Monte Carlo approach, example 2 

Comparison option value analytical / monte carlo

0

50

100

150

200

250

-1.50% -1% -0.50% actual +0.50% +1.00% +1.50%

Yield curve sensitivities

V
al

u
e 

o
p

ti
o

n

Monte Carlo Analytical

Total option value

Time value option

 
 

3.8 Conclusions 
 
In this chapter analytical approximations are derived for prices of swap rate dependent embedded 
options in insurance products. In practice these options are often valued using Monte Carlo 
simulations. However, for risk management calculations and reporting processes, lots of 
valuations are needed and therefore a more efficient method to value these options would be 
helpful. The basis for the approximations is the result of Schrager and Pelsser (2006), who 
derived an approximate distribution for the forward swap rates under the relevant swap measure. 
After some changes of measure, this result is used to derive analytical approximations for swap 
rate dependent embedded options, given an underlying multi-factor Gaussian interest rate model.  
 
The analytical approximation for options with direct payment is almost exact while the 
approximation for compounding options is also satisfactory. For similar options with additional 
management actions that significantly impact the option value, no analytical approximation is 
possible. However, using the analytical approximation for an option with direct payment as a 
control variate, the number of Monte Carlo simulations can be reduced significantly for these 
kinds of options. Furthermore, it’s also possible to construct analytical approximations when 
returns on additional assets (such as equities) are part of the profit sharing rate. 
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Appendix 3a: proof of (3.8) 
 
Each element of the vector of derivatives of (3.7) can be written as: 
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where DP(t,Tn) = D(t,Tn) / Pn+1,N(t), the bond price normalized by the numéraire.    
 
Note that since bond prices in this model are stochastic, the volatility of the swap rate is 
stochastic as well. The approximation of Schrager and Pelsser consists of replacing the stochastic 
terms DP(t,Ti) by their time zero values DP(0,Ti). This results in: 
 

(3.28) 

)(

)(
),0(),()0(

),0(),(),0(),(
)(

)(

)(
,

1

)(
1,

)()(
)(

,

tY

ty
TDTtBy

TDTtBTDTtB
tY

ty

i
Nn

N

nk
k

P
k

iY
kNn

N
P

N
i

n
P

n
i

i
Nn

∂

∂
=∆+

+−≈
∂

∂

∑
+=

−

   

 
This approximation makes the swap rate volatility deterministic and thus leads to a normally 
distributed forward swap rate. Furthermore, we can rewrite 
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Using this, (3.28) can be split in a time dependent part and a constant part: 
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So in the approximate model, the swap rate at time Tn is given by: 
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By using Ito’s Isometry, this leads to an analytical expression for the integrated variance of yn,N  

(associated with a Tn x TN  swaption) over the interval [0,Tn]: 
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Appendix 3b: proofs of (3.11) and (3.12) 
 
Proof of (3.11) 
A change of measure has to be done from the swap measure Qn+1,N to the Tn-forward measure 
QTn. In this case the Radon-Nikodym derivative is: 
 

(3.33) 

∑∑
+=

−
+=

−

+

∆∆
== N

nk
k

Y
k

N

nk
k

Y
k

nn
Nn

T

TDTtD

TDTtD
t

dQ
dQ n

1
1

1
1

,1

),0(),(

),0(),(
)(ρ  

 
Then using Ito’s Lemma leads to: 
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where κ(t) is an 1 x m vector with for each element κ(i)(t): 
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Now like in appendix 3a replacing the stochastic terms DP(t,Ti) by their time zero values DP(0,Ti) 
and using (3.29) results in: 
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Using (3.30) and integrating dyn,N leads to the following formula for the convexity correction 
CCn,N(Tn) for time Tn > 0 for the swap rate yn,N:: 
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Proof of (3.12) 
In this case the Radon-Nikodym derivative is: 
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Then using the same procedure as above: 
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Using (3.30) and integrating dyn,N leads the following formula for the timing correction 
TCn,N(Tn,Tn+u) representing a change of measure from time Tn > 0 to Tn+u : 
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Appendix 3c: input example 1 
 
In this appendix the data and assumptions are given that are used for example 1. The data used 
for the profit sharing basis L(t) and the technical interest rates TR(t) are based on an example 
portfolio of a long term pension insurance portfolio and are given in table 3.5. 
 
Table 3.5: used data for profit sharing basis and technical interest rate  

Time TR(t) L(t) Time TR(t) L(t)
0 3.8% 1,000 25 3.6% 655
1 3.7% 1,043 26 3.6% 625
2 3.7% 1,066 27 3.5% 594
3 3.7% 1,060 28 3.5% 563
4 3.7% 1,054 29 3.5% 532
5 3.7% 1,046 30 3.5% 501
6 3.7% 1,038 31 3.5% 470
7 3.7% 1,028 32 3.5% 440
8 3.7% 1,016 33 3.5% 410
9 3.7% 1,004 34 3.5% 381

10 3.7% 991 35 3.5% 353
11 3.7% 976 36 3.5% 326
12 3.7% 961 37 3.5% 300
13 3.7% 944 38 3.5% 275
14 3.6% 926 39 3.5% 251
15 3.6% 907 40 3.4% 228
16 3.6% 887 41 3.4% 206
17 3.6% 865 42 3.4% 186
18 3.6% 842 43 3.4% 167
19 3.6% 819 44 3.4% 149
20 3.6% 794 45 3.4% 132
21 3.6% 768 46 3.4% 116
22 3.6% 741 47 3.4% 102
23 3.6% 713 48 3.4% 89
24 3.6% 684 49 3.4% 77  

 
The swap curve used is from ultimo 2006 and the parameters of the 2 factor Gaussian interest 
rate model are calibrated to the swaption implied volatility surface at the same date. This 
information is given in table 3.6 (where σ and a belong to factor 1 and η and b to factor 2). 
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Table 3.6: swap curve, implied volatility surface and parameters 2F Gaussian model 
Swaption ATMF Volatility Surface

Expiry/Tenor 1Y 2Y 3Y 4Y 5Y 7Y 10Y 15Y 20Y 25Y 30Y

1Y 14,3% 14,0% 14,4% 14,5% 14,5% 14,3% 14,0% 13,5% 13,0% 13,0% 12,9%

2Y 14,6% 14,9% 15,0% 14,9% 14,8% 14,6% 14,2% 13,6% 13,2% 13,0% 12,9%

3Y 15,1% 15,0% 15,1% 15,0% 14,8% 14,5% 14,1% 13,6% 13,2% 13,1% 12,9%

4Y 15,1% 15,0% 15,0% 14,8% 14,6% 14,2% 13,9% 13,4% 13,1% 13,0% 12,8%

5Y 14,8% 14,8% 14,7% 14,5% 14,3% 14,0% 13,6% 13,2% 12,9% 12,8% 12,6%

7Y 14,0% 14,0% 14,0% 13,9% 13,6% 13,4% 13,1% 12,9% 12,4% 12,4% 12,2%

10Y 13,0% 13,1% 13,1% 13,0% 12,8% 12,7% 12,5% 12,1% 11,8% 11,6% 11,4%

15Y 12,0% 12,0% 12,0% 12,0% 12,0% 12,0% 12,0% 11,6% 11,2% 11,0% 10,9%

20Y 11,6% 11,6% 11,6% 11,7% 11,8% 11,8% 11,8% 11,2% 10,8% 10,5% 10,5%

30Y 11,1% 11,1% 11,2% 11,3% 11,3% 11,3% 11,3% 10,7% 10,6% 10,7% 10,7%

Time Swap Rate Parameters
1 4,08% σ 0,51%
2 4,14% a 2,75%
3 4,12% η 0,28%
4 4,12% b 2,75%
5 4,13% rho 0,497
6 4,14%
7 4,15%
8 4,16%
9 4,18%

10 4,20%
15 4,28%
20 4,31%
30 4,29%
40 4,25%
50 4,20%  
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Chapter 4 
 

Valuation of Guaranteed Annuity 
Options using a Stochastic 

Volatility Model for Equity Prices*  
 
 
 
* This chapter is based on: 
 
HAASTRECHT, A., R. PLAT AND A.A.J. PELSSER (2009): Valuation of Guaranteed Annuity 
Options using a Stochastic Volatility Model for Equity Prices, Accepted for publication in 
Insurance: Mathematics and Economics 
 
 

4.1 Introduction 
 
As mentioned in chapter 3, life insurers often include embedded options in the terms of their 
products. One of the most familiar embedded options is the Guaranteed Annuity Option (GAO). 
A GAO provides the right to convert a policyholder’s accumulated funds to a life annuity at a 
fixed rate when the policy matures. These options were a common feature in retirement savings 
contracts issued in the 1970’s and 1980’s in the United Kingdom (UK). According to Bolton et 
al. (1997) the most popular guaranteed conversion rate was about 11%. Due to the high interest 
rates at that time, the GAOs were far out of the money. However, as the interest rate levels 
decreased in the 1990’s and the (expected) mortality rates improved, the value of the GAOs 
increased rapidly and amongst others led to the downfall of Equitable Life in 2000. Currently, 
similar options are frequently sold under the name Guaranteed Minimum Income Benefit (GMIB) 
in the U.S. and Japan as part of variable annuity products. The markets for variable annuities in 
the U.S. and Japan have grown explosively over the past years, and a growth in Europe is also 
expected, see Wyman (2007).  
 
The last decade the literature on pricing and risk management of these options evolved. 
Approaches for risk management and hedging of GAOs were described in Dunbar (1999), Yang 
(2001), Wilkie et al. (2003) and Pelsser (2003). The pricing of GAOs and GMIBs has been 
described by several authors, for example van Bezooyen et al. (1998), Boyle and Hardy (2001), 
Ballotta and Haberman (2003), Boyle and Hardy (2003), Biffis and Millossovich (2006), Chu 
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and Kwok (2007), Bauer et al. (2008) and Marshall et al. (2009). In most of these papers, the 
focus is on unit linked deferred annuity contracts purchased originally by a single premium. 
Generally a standard geometric Brownian motion is assumed for equity prices. However, 
Ballotta and Haberman (2003) and Chu and Kwok (2007) noted that, given the long maturities of 
the insurance contracts, a stochastic volatility model for equity prices would be more suitable.  
 
In this chapter explicit expressions are derived for prices of GAOs, assuming stochastic volatility 
for equity prices and (of course) stochastic interest rates. The model used for this is the Schöbel-
Zhu Hull-White (SZHW) model, introduced in van Haastrecht et al. (2009). The model combines 
the stochastic volatility model of Schöbel and Zhu (1999) with the 1-factor Gaussian interest rate 
model of Hull and White (1993), taking the correlation structure between those processes 
explicitly into account. Furthermore, this is extended to the case of a 2-factor Gaussian interest 
rate model. 
  
The remainder of the chapter is organized as follows. First, in Section 4.2 the characteristics of 
the GAO are given. Section 4.3 describes the SZHW model to be used for the pricing of the 
GAO and section 4.4 discusses its calibration. In Section 4.5 explicit pricing formulas are 
derived for the GAOs given an underlying SZHW model. These results are extended to a 2-factor 
Hull-White model in Section 4.6. In Section 4.7 two numerical examples are worked out: the 
first shows the impact of stochastic volatility on the pricing of the GAO, whilst the second 
example deals with a comparison of the efficiency of our explicit formula for the 2-factor model 
with existing methods in the literature. Conclusions are given in Section 4.8.  
 

4.2 Guaranteed Annuity Contract  
 
A GAO gives the holder the right to receive at the retirement date T either a cash payment equal 
to the investment in the equity fund S(T) or a life annuity of this investment against the 
guaranteed rate g. A rational policy holder would choose the greater of the two assets. In other 
words, if at inception, the policy holder is aged x and the normal retirement date is at time T , 
then the annuity value at maturity is S(T ) + H(T ) with GAO payoff H(T) equal to 
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provided that the policy holder is still alive at that time. Here (x)+ = max(x,0), g is the guaranteed 
rate, P(T, ti) the zero-coupon bond at time T maturing at ti and ci the insurance amounts for time i 
multiplied by the probability of survival from time T until time ti for the policyholder. Without 
loss of generality, we will use unit insured amounts in the remainder of this chapter. Furthermore, 
we assume that the survival probabilities are independent of the equity prices and interest rates. 
Note that  
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where K = 1/g. This last equality shows that one can interpret the GAO as a quanto call option 

with strike K on the zero-coupon bond portfolio 
0

( , )
n

i i
i

c P T t
=
∑  which is paid out using the 

exchange rate/currency S(T), see Boyle and Hardy (2003). Under the risk-neutral measure Q, 
which uses the money market account B(T ),  
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as numéraire, the price of this option can be expressed as  
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where r-xpx denotes the probability that the policy holder aged x survives r - x years, i.e. until the 
retirement age r at time T. To derive an explicit expression for the GAO of (4.4), it is more 
convenient to measure payments in terms of units of stock instead of money market values. 
Mathematically, we can establish this by using the equity price S(T ) as numéraire and changing 
from the risk-neutral measure to the equity-price measure QS, see Geman et al. (1995). Under the 
equity-price measure QS, the GAO price is then given by  
 

(4.5) 
0

( ) (0) ( , )
S

n
Q

r x x i i
i

C T p gS c P T t K
+

−
=

  = Ε −  
   
∑ . 

 
To evaluate this expectation we need to take into account the dynamics of the zero-coupon bonds 
prices P(T, ti) under the equity price measure. 
  
Apart from the guaranteed rate, the drivers of the GAO price are the interest rates, the equity 
prices, the correlation between those, and the survival probabilities. The combined model for 
interest rates and equity prices is explained in Section 4.3. This model needs an assumption for 
the correlation, which could be derived from historical data. Note that if it is assumed that equity 
prices and interest rates are independent, it does not matter which model is assumed for equity 
prices. Both from historical data as well from market quotes, one however rarely finds that the 
equity prices and interest rates behave in an independent fashion. As this dependency structure is 
one of the main driver for the GAO price and its sensitivities, a non-trivial structure therefore has 
to be taken into account for a proper pricing and risk management of these derivatives, see Boyle 
and Hardy (2003), Ballotta and Haberman (2003) or Bauer (2009).  
 

4.3 The Schöbel-Zhu-Hull-White model  
 
The model used in this chapter is the Schöbel-Zhu Hull-White (SZHW) model, introduced in van 
Haastrecht et al. (2009). The model combines the stochastic volatility model of Schöbel and Zhu 
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(1999) with the 1-factor Gaussian interest rate model of Hull and White (1993), taking explicitly 
into account the correlation between these processes. In the SZHW model, the process for equity 
price S(t) under the risk-neutral measure is the Schöbel and Zhu (1999) model described in 
paragraph 2.1.4.:  
 

(4.6) 0

( )
( ) ( ) ( ) (0)

( )
Q

S

dS t
r t dt v t dW t S S

S t
= + =  

(4.7) ( ) 0( ) ( ) ( ) (0)Q
vdv t v t dt dW t v vκ ψ τ= − + =  

 
Here v(t), which follows an Ornstein-Uhlenbeck process, is the (instantaneous) stochastic 
volatility of the equity S(t). The parameters of the volatility process are the positive constants ? 
(mean reversion), v0 (short-term mean), ?  (long-term mean) and t  (volatility of the volatility). 
We assume the interest rates are given by a one-factor Hull and White (1993) process, whose 
dynamics under Q can be parameterized by  
 
(4.8) 0( ) ( ) ( ) (0)r t t x t r rα= + =  
 
(4.9) ( ) ( ) ( ) (0) 0Q

xdx t ax t dt dW t xσ= − + =  
 
Here a (mean reversion) and σ (volatility) are the positive parameters of the model. The function 
α(t) can be used to fit the current term structure of interest rates exactly, see Pelsser (2000) or 
Brigo and Mercurio (2006). Under the above dynamics for the equity, volatility and interest rates 
explicit expressions for the prices of European equity options exist, see van Haastrecht et al. 
(2009). Moreover the model allows for a general correlation structure, i.e.  
 
(4.10) ( ) ( ) , ( ) ( ) , ( ) ( )Q Q Q Q Q Q

v S vS x S xS x v xvdW t dW t dt dW t dW t dt dW t dW t dtρ ρ ρ= = =  
 
where ρvS, ρxS and ρxv are the instantaneous correlation parameters between the Brownian 
motions of the equity price, the stochastic volatility and the interest rate. Having the flexibility to 
correlate the equity price with both stochastic volatility and stochastic interest rates yields a 
realistic model, which is of practical importance for the pricing and hedging of options with 
long-term exposures such as guaranteed annuities, see Boyle and Hardy (2003).  
 
It is hardly necessary to motivate the inclusion of stochastic volatility in a long-term derivative 
pricing model. First, compared to constant volatility models, stochastic volatility models are 
significantly better able to fit the market’s option data, see Andreasen (2006) or Andersen and 
Brotherton-Ratcliffe (2001). Second, as stochastic interest rates and stochastic volatility are 
empirical phenomena, the addition of these factors yields a more realistic model, which becomes 
important for the pricing and especially the hedging of long-term derivatives. The addition of 
stochastic volatility and stochastic interest rates as stochastic factors is important when 
considering long-maturity equity derivatives and has been the subject of empirical investigations 
most notably by Bakshi et al. (2000). These authors show that the hedging performance of delta 
hedging strategies of long-maturity options improves when stochastic volatility and stochastic 
interest rates are taken into account.  
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Stochastic volatility models have been described by several others, for example Stein and Stein 
(1991), Heston (1993), Schöbel and Zhu (1999), Duffie et al. (2000), Duffie et al. (2003), van 
der Ploeg (2006) and van Haastrecht et al. (2009). Also regime-switching models are suggested 
in the literature for the pricing of equity-linked insurance policies, see Hardy (2001) and Brigo 
and Mercurio (2006). In the limit of an infinite number of regimes these models again converge 
to a continuous-time stochastic volatility model, however in discrete time they can benefit from a 
greater analytical tractability. A proper model assessment greatly depends on the properties of 
the embedded options in the insurance contract. 
  
To investigate the impact of using a stochastic volatility model on the pricing of GAOs, note that 
the GAO directly depends on the stochastic interest rates, the underlying equity fund and the 
correlation between the rates and the equity. For the pricing of GAOs we therefore choose to use 
the SZHW model over other stochastic volatility models, as this model distinguishes itself 
models by an explicit incorporation of the correlation between the underlying equity fund and the 
term structure of interest rates, whilst maintaining a high degree of analytical tractability.  
 
In Section 4.7 the impact of stochastic volatility on the pricing of GAOs is investigated. That is, 
we compare the pricing of GAOs in the SZHW stochastic volatility model with the Black-
Scholes Hull-White (BSHW) constant volatility model. The BSHW process for equity prices S(t) 
under the risk neutral measure Q is:  
 

(4.11) 0

( )
( ) ( ) (0)

( )
Q

S S

dS t
r t dt dW t S S

S t
σ= + =  

 
where the interest rate process r(t) follows Hull and White (1993) dynamics as in (4.8) and with 
the instantaneous correlation between Brownian motions of the interest rate and the equity price 
equal to  
 
(4.12) ( ) ( )Q Q

S x xSdW t dW t dtρ=  
 
In the following section both the SZHW and BSHW model are calibrated to market data.  
 

4.4 Calibration of the SZHW and BSHW model  
 
To come up with a fair analysis of the impact of stochastic volatility on the pricing of GAOs, we 
first calibrate the BSHW and SZHW model to the same market’s option data per end July 2007. 
This is done by first calibrating the interest rate parameters, than estimating the effective 
correlation between the interest rates and equity, and finally we specify the equity components of 
the BSHW/SZHW model. We detail the calibration approach below.  
 
Interest Rates   First we calibrate the Hull and White (1993) interest rate models to EU and U.S. 
swaption markets. The option prices and corresponding swap curves are obtained from 
Bloomberg. Here a total of 151 swaption prices, which are contributed by various issuers and 
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maintained by Bloomberg, can be found for different tenors and maturities ranging from 1 to 30 
years. For the calibration of the interest rate model we used close (mid) swaption prices per 31st 
of July 2007. We calibrate the Hull and White (1993) models to these prices by minimizing the 
sum of the squared differences between the model’s and the market’s swaption implied 
volatilities. For the U.S. market, the mean average price error is 1.88% and for the EU market 
1.34% which is very good given the large set of option prices that is fitted using only 2 interest 
rate parameters. 
  
Terminal Correlation   After calibrating the interest rate component, we need to calibrate the 
equity and correlation parameters. For the equity component of the GAO we assume a large 
stock index, for which the Eurostoxx50 index (EU) and the S&P500 (U.S.) are used. The 
Eurostoxx50 consists of 50 large European companies and is traded on the Dow-Jones exchange, 
whilst the S&P500 is maintained by Standard & Poors and consists of NASDAQ and NYSE 
denoted shares. The effective 10 years correlation between the log equity returns and the interest 
rates is determined by time series analysis of the 10-year swap rate and the log returns of the 
EuroStoxx50 (EU) and S&P500 (U.S.) index over the period from February 2002 to July 2007. 
For the EU and the U.S. this resulted in correlation coefficients of 34.65% and 14.64% between 
the interest rates and the log equity returns.  
 
It is well known that it is hard to calibrate the correlation coefficient. Furthermore large bid-ask 
spreads have to be paid to hedge this risk, which shows that the markets for correlation risks are 
unfortunately not very liquid. As a result, additional capital needs to be reserved in order to 
protect against this unhedgeable risk. 
  
Equity   Using the interest rate and correlation parameters determined in the previous steps, the 
equity specific parameters are calibrated to option prices on the EuroStoxx50 (EU) and S&P500 
(U.S.) index. These option prices are obtained from the implied volatility service of MarkIT, a 
financial data provider, which provides (mid) implied volatility quotes by averaging quotes from 
a large number of issuers. For large indices a total of 94 liquid quotes are available for 10 
maturities ranging from 1 month up to 15 years, and 10 strikes ranging from 60% to 200%. 
  
To aid a fair comparison between the models, the SZHW model is calibrated in such a way that 
the effective correlation between interest rates and equity prices is equal to that of the BSHW 
process. Finally, as the considered GAO in Section 4.7 only depends on terminal asset price 
distribution after 10 years, we have calibrated the equity model to market option prices maturing 
in 10 years time. This estimation is performed by minimizing the sum of absolute differences 
between market’s and model’s implied volatilities. The calibration results to the Eurostoxx50 
and S&P500 are shown in table 4.1 below.  
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Table 4.1: calibration results for the SZHW and BSHW models, for EU and U.S. 

strike Market SZHW BSHW strike Market SZHW BSHW
80 27,8% 27,9% 26,4% 80 27,5% 27,5% 25,8%
90 27,1% 27,1% 26,4% 90 26,6% 26,6% 25,8%
95 26,7% 26,7% 26,4% 95 26,2% 26,2% 25,8%
100 26,4% 26,4% 26,4% 100 25,8% 25,8% 25,8%
105 26,0% 26,0% 26,4% 105 25,4% 25,4% 25,8%
110 25,7% 25,7% 26,4% 110 25,0% 25,0% 25,8%
120 25,1% 25,1% 26,4% 120 24,3% 24,4% 25,8%

EU US

 
 
The tables show that SZHW is significantly better in capturing the market’s implied volatility 
structure and provides an extremely good fit. The fit of the BSHW model is relatively poor. 
Furthermore, a direct consequence of the log-normal distribution of the BSHW model, it that the 
asset returns have thin tails, which does not correspond to historical data nor to the market’s 
view on long-term asset returns. The SZHW model provides a more realistic picture on the 
market’s view on long-term asset returns as it can incorporate heavy-tailed returns. The latter can 
be made especially clear by looking at the risk-neutral densities of the log-asset price of the 
SZHW and BSHW model. These are plotted in figure 4.1 below for the BSHW and SZHW 
model, calibrated to EU option prices.  
 
Figure 4.1: risk-neutral density of the log-asset price for the SZHW and BSHW model  
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Clearly, the SZHW model incorporates the skewness and heavy-tails seen in option markets (see 
Bakshi et al. (1997)) a lot more realistically than the BSHW model. The effects of these log-asset 
price distributions on the pricing of GAOs, combined with correlated interest rates, are analyzed 
in Section 4.7.  
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4.5 Pricing the Guaranteed Annuity Option under stochastic volatility 
and stochastic interest rates  

 
For the pricing of the GAO in the SZHW model, i.e. the evaluation of (4.5), we need to consider 
the pricing of zero-coupon bonds in the Gaussian interest rate model. In the Hull and White 
(1993) model, one has the following expression for the time-T price of a zero-coupon bond P(T,ti) 
maturing at time ti:  
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and with PM(0, s) denoting the market’s time zero discount factor maturing at time s. Using 
(4.13), we have for the GAO price (4.5) under the equity price measure QS:  
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To further evaluate this expression, we first have to consider the dynamics of x(T ) under the 
equity price measure QS in the SZHW model.  

4.5.1 Taking the equity price as numéraire  
To change the money market account numéraire into the equity price numéraire, we need to 
calculate the corresponding Radon-Nikodym derivative (see Geman et al. (1995)), which is given 
by  
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The multi-dimensional version of Girsanov’s theorem (see Oksendal (2005)) hence implies that  
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(4.20) ( ) ( ) ( )
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are Brownian motions under QS. Hence under QS one has the following model dynamics for the 
volatility and interest rate process 
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. After some calculations one can show that:  
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Using Ito’s isometry and Fubini’s theorem, we have that x(T ) is normally distributed with mean 
µx and variance σx

2 given by 
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4.5.2 Explicit formula for the GAO price  
Using the results from the previous paragraph, we can now further evaluate the expression (4.17) 
for the GAO price in the SZHW model: as the zero-coupon bond price is a monotone function of 
one state variable, x(T ), one can use the Jamshidian (1989) result and write the call option (4.17) 
on the sum of zero-coupon bonds as a sum of zero-coupon bond call options: let x* solve  
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and let 
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Using Jamshidian (1989), we have that the price of GAO is equal to the price of a sum of zero-
coupon bond options, i.e.  
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As x(T) is normally distributed, we have that P(T, ti) = A(T,ti)e-B(T,ti)x(T ) is log-normally 
distributed. Provided that we know the mean Mi and variance Vi of ln P(T, ti) under QS, one can 
directly express the above expectation in terms of the Black and Scholes (1973) formula: 
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where N denotes the cumulative standard normal distribution function. To determine Mi and Vi, 
recall from (4.26) and (4.27) that x(T ) is normally distributed with mean µx and variance σx

2. 
Hence with P(T, ti) = A(T, ti)e-B(T,ti)x(T ), one can directly obtain that the mean Mi and variance Vi 
of ln P(T, ti) are given by  
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(4.38) ln ( , ) ( , )i i i xM A T t B T t µ= −  
 
(4.39) 2 2( , )i i xV B T t σ=  
 
Hence under the SZHW dynamics (4.6)-(4.9), we have derived the explicit formula (4.34) for the 
price of a GAO under stochastic volatility and correlated stochastic interest rates. With this result, 
we are able to investigate the impact of stochastic volatility on the pricing of GAOs, which will 
be the subject of paragraph 4.7.1.  
 

4.6 Extension to two-factor interest rate model 
 
A one-factor assumption for the short interest rate unfortunately means that all future interest 
rates are driven by one factor. As reported in Brigo and Mercurio (2006), principal components 
analysis shows that the full interest rate curve is (depending on the currency) typically driven by 
two or more factors. When calibrating to European swaption prices, it is demonstrated that a 
two-factor Gaussian model gives significantly better fits and produces more realistic future 
interest rate curves. Furthermore, as noted in Chu and Kwok (2007), the one-factor assumption 
typically leads to a full correlation of all future interest rates. In particular these authors 
recommend using a two-factor interest rate model for the pricing of long-term derivatives and 
GAO contracts in particular. In this section, we therefore generalize the setting of the previous 
section from one to two-factor Gaussian interest rates. That is under the risk-neutral measure Q, 
we assume the following dynamics for the short interest rate process:  
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Here a, b (mean reversion) and σ, η (volatility) are the positive parameters of the model and |ρxy| 
< 1. The deterministic function ϕ(t) can be used to exactly fit the current term structure of 
interest rates, see Brigo and Mercurio (2006) who name this model the ‘G2++’ model. Much of 
the analytical structure of the one-factor Gaussian is preserved in this two-factor setting. For 
example prices of time T zero-coupon bonds maturing at time ti are given by 
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Substituting the zero-coupon bond expression (4.44) into the pricing equation (4.5) and 
evaluating this expectation, results in the following explicit expression for the GAO price:  
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and where y* is the unique solution of 
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The proof of (4.48) is given in appendix 4a.  
 
In the pricing formula (4.48) it remains to determine the first two moments of x(T ) and y(T ) and 
the (terminal) correlation between x(T) and y(T ), under the equity price measure QS . These are 
given in appendix 4b. Note that in the pricing formula (4.48), one is integrating a Gaussian 
probability density function against a bounded function. Because the Gaussian density functions 
decays very rapidly11, one can therefore truncate the integration domain in an implementation of 
(4.48) to a suitable number of standard deviations σx around the mean µx.  
 

4.7 Numerical examples  
 
In this section two numerical examples are given. In paragraph 4.7.1 the values of the GAO 
using the stochastic volatility model described in Section 4.3 are compared with values that 
result when a geometric Brownian motion is assumed for equity prices. Paragraph 4.7.2 deals 
with sensitivity analyses of different risk drivers. In paragraph 4.7.3 our approach for two-factor 
interest rate models is compared with the methods described in Chu and Kwok (2007).  

4.7.1 Comparison results SZHW model and Black-Scholes Hull-White model  
In this section the impact of stochastic volatility of equity prices is shown for an example policy. 
The results for the SZHW model given in (4.6)-(4.9) are compared with a model that combines a 
Black-Scholes process for equity prices with a one-factor Hull White model for interest rates, the 
so-called Black-Scholes-Hull-White (BSHW) model given in (4.11)-(4.12). The SZHW and 
BSHW models are both calibrated to market information (implied volatilities and interest rates) 
per end July 2007, see Section 4.4.  
 
In the example, the policyholder is 55 years old, the retirement age is 65, giving the maturity T of 
the GAO option of 10 years. Furthermore, S(0) is assumed to be 100. The survival rates are 
based on the PNMA00 table of the Continuous Mortality Investigation (CMI) for male 
pensioners12.  
 
In table 4.2 the prices for the GAO are given for different guaranteed rates g for both models. 
The results for the SZHW model are obtained using the explicit expressions given in (4.33) - 
(4.39). The pricing formula for the BSHW is a special case of this, and is also derived in Ballotta 
and Haberman (2003). The results are determined for EU data and U.S. data with an equity-
interest rate correlation of respectively 0.347 and 0.146 (see Section 4.4). The table presents the 
total value of the GAO as well as the time value. The time value is determined as the difference 
between the total value and the (forward) intrinsic value. The latter is determined by setting all 
volatilities to zero. While the total value gives the impact on the total prices, the time value gives 
more insight in the relative impact of the models (since those only have impact on the time 
value). Also, the time value of the GAO is often reported separately, for example within 
Embedded Value reporting of insurers. The at-the-money guaranteed rate g is 8,44% for the U.S. 
and 8,23% for the EU. 
                                                 
11 For instance, 99,9999% of the probability mass of a Gaussian density function lies within five standard deviations 
around its mean. 
12 This table is available at: http://www.actuaries.org.uk/knowledge/cmi/cmi_tables/00_ series_tables 
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Table 4.2: comparison of GAO values for the SZHW and BSHW model   

g SZHW BSHW Rel. Diff g SZHW BSHW Rel. Diff
8,23% 3,82 3,07 + 24,5% 8,23% 3,82 3,07 + 24,5%

7% 0,59 0,39 + 50,7% 7% 0,59 0,39 + 50,7%
8% 2,89 2,26 + 28,0% 8% 2,89 2,26 + 28,0%
9% 8,40 7,25 + 15,8% 9% 2,43 1,29 + 88,9%
10% 17,02 15,53 + 9,6% 10% -0,11 -1,60 -93,0%
11% 27,37 25,69 + 6,5% 11% -0,93 -2,60 -64,4%
12% 38,30 36,47 + 5,0% 12% -1,17 -2,99 -61,0%
13% 49,35 47,37 + 4,2% 13% -1,28 -3,26 -60,7%

g SZHW BSHW Rel. Diff g SZHW BSHW Rel. Diff
8,44% 5,43 4,84 + 12,0% 8,44% 5,43 4,84 + 12,0%

7% 1,04 0,88 + 18,0% 7% 1,04 0,88 + 18,0%
8% 3,54 3,11 + 13,6% 8% 3,54 3,11 + 13,6%
9% 8,53 7,74 + 10,3% 9% 7,27 6,47 + 12,3%
10% 16,06 14,90 + 7,8% 10% 4,15 2,99 + 39,1%
11% 25,42 23,96 + 6,1% 11% 2,86 1,40 + 104,2%
12% 35,73 34,06 + 4,9% 12% 2,53 0,86  + 195,5%
13% 46,43 44,58 + 4,1% 13% 2,58 0,74  + 250,1%

EU, Total Value EU, Time Value

U.S., Total Value U.S., Time Value

 
 
The table shows that the use of a stochastic volatility model such as the SZHW model has a 
significant impact on the total value of the GAO. The value increases with 4% -50% for a EU 
data and 4% ­18% for a U.S. data, depending on the level of the guarantee.  
 
These price differences are not caused by a volatility effect as both models are calibrated to the 
same market data in Section 4.4. Figure 4.1 however showed that the distribution of equity prices 
under a SZHW process has a heavy left tail, but also relatively more mass on the right of the 
distribution compared to the BSHW process. Given a positive correlation between equity prices 
and interest rates, and the fact that the GAO pays off when interest rates are low, this means that 
for the SZHW model there will be some very low payoffs for equity prices in the left tail, but 
relatively higher payoffs for the remaining scenarios. This is illustrated in table 4.3. For the EU 
data and g = 8,23%, 50.000 Monte Carlo simulations are generated for both models and the 
discounted payoffs are segmented in specific intervals.  
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Table 4.3: classification in intervals of payoffs of SZHW and BSHW model 
Payoff SZHW BSHW Diff

0 58,3% 58,5% -0,2%
(0,1] 7,5% 5,2% 2,2%

(1,10] 22,0% 26,3% -4,3%
(10,20] 7,2% 6,8% 0,4%
(20,30] 2,7% 1,9% 0,8%
(30,40] 1,2% 0,7% 0,4%
(40,50] 0,5% 0,3% 0,2%
(50,60] 0,3% 0,1% 0,1%
(60,70] 0,2% 0,1% 0,1%
(70,80] 0,1% 0,1% 0,0%
(80,90] 0,1% 0,0% 0,0%

(90,100] 0,0% 0,0% 0,0%
(100,110] 0,0% 0,0% 0,0%

> 110 0,1% 0,0% 0,1%  
 
The table shows that indeed:  

- SZHW has relatively much payoffs in the interval (0,1) due to the heavy left tail.  
-  For the remaining intervals, SZHW has more mass to the right, illustrated by the less 

frequent payoffs in the interval (1,10) and more frequent payoffs in the intervals greater 
than 10. 

   
Since the models only have an impact on the time value, the relative changes in time value for 
in-the­money GAOs are higher, which is also illustrated in table 4.2. One might wonder why the 
time values for the EU data as negative for high levels of g. The reason for this is that due to the 
positive correlation between interest rates and equity prices, higher equity volatility means that 
there is a higher chance of lower payoffs, leading to a lower total option value compared to the 
intrinsic value. For the U.S. data no negative time values are reported. Reason for this is that due 
to the lower correlation between interest rates and equity prices, the effect described above is less 
significant than the positive impact of interest rates on the time value.  

4.7.2 Impact of different risk drivers  
As noted in Section 4.2, we assume that the survival probabilities are independent of the equity 
prices and interest rates. It is interesting though to see the impact of significant changes in those 
survival probabilities on the GAO price and to compare it with the impact of changes in equity 
prices and interest rates. To get a feeling about this, we apply shocks for these risk drivers as 
defined in the technical specifications of the Quantitative Impact Study 5 (QIS5) of CEIOPS. 
QIS5 is the basis for the Solvency 2, a new risk-based framework for regulatory required 
solvency capital. The shocks are aimed to represent the 99.5% percentile on a 1 year horizon.  
 
Table 4.4 shows the impact of 2 shifts in survival probabilities. The shifts are based on a 25% 
reduction of mortality rates (longevity risk) and a 15% increase in mortality rates (mortality risk). 
Table 4.5 shows the impact of 2 shifts in the yield curve. The shifts are given in Appendix 4d. 
Table 4.6 shows the impact of shocks of +39% and -/ - 39% on equity prices.  
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Table 4.4: impact of survival probabilities on GAO total value 

g SZHW qx * 75% qx * 115% g SZHW qx * 75% qx * 115%
8,23% 3,82 7,28 2,53 8,23% 5,43 9,08 3,88

7% 0,59 1,61 0,31 7% 1,04 2,88 0,85
8% 2,89 5,82 1,85 8% 3,54 7,61 3,07
9% 8,40 13,63 6,17 9% 8,53 15,22 7,71
10% 17,02 24,01 13,72 10% 16,06 25,05 14,90
11% 27,37 35,49 23,38 11% 25,42 36,13 24,01
12% 38,30 47,25 33,86 12% 35,73 47,76 34,14
13% 49,35 59,05 44,52 13% 46,43 59,56 44,68

EU, Total value U.S., Total value

 
 
Table 4.5: impact of changes in yield curve on GAO total value 

g SZHW rates down rates up g SZHW rates down rates up
8,23% 3,82 9,91 1,11 8,23% 5,43 10,48 1,54

7% 0,59 2,49 0,10 7% 1,04 3,42 0,25
8% 2,89 8,10 0,77 8% 3,54 8,83 1,15
9% 8,40 17,38 3,24 9% 8,53 17,20 3,58
10% 17,02 28,80 8,65 10% 16,06 27,69 8,21
11% 27,37 40,94 16,71 11% 25,42 39,27 15,05
12% 38,30 53,23 26,19 12% 35,73 51,26 23,50
13% 49,35 65,54 36,13 13% 46,43 63,37 32,79

EU, Total value U.S., Total value

 
 
Table 4.6: impact of shocks on equity prices on GAO total value 

g SZHW equity up equity down g SZHW equity up equity down
8,23% 3,82 5,31 2,33 8,23% 5,43 7,55 3,31

7% 0,59 0,81 0,36 7% 1,04 1,45 0,63
8% 2,89 4,01 1,76 8% 3,54 4,92 2,16
9% 8,40 11,67 5,12 9% 8,53 11,86 5,20
10% 17,02 23,66 10,38 10% 16,06 22,32 9,80
11% 27,37 38,04 16,70 11% 25,42 35,33 15,51
12% 38,30 53,24 23,36 12% 35,73 49,66 21,80
13% 49,35 68,60 30,10 13% 46,43 64,54 28,32

EU, Total value U.S., Total value

 
 
Although the impact differs for different strike levels, the tables show that the impact of the 
different risk drivers is reasonably similar for this particular example. Table 4.4 shows that 
indeed the GAO value increases significantly when a shift down is applied to the mortality rates. 
A shift up in mortality rate has the opposite effect on the value of the GAO. Similar effects can 
be seen in table 4.5 for the yield curve shifts. Note that the impact of the yield curve shifts is 
(coincidently) approximately equal to a 1% shift in the strike level. Of course, higher (lower) 
equity prices will lead to higher (lower) payments, as shown in table 4.6. But for low strike 
prices, the impact of changes in equity prices is less than the impact of interest rates and 
longevity  

4.7.3 Comparison results of the two-factor model with Chu and Kwok (2007)  
A special case of our modeling framework is considered in Chu and Kwok (2007), namely an 
equity model with constant volatility. Chu and Kwok (2007) argue that for a two-factor Gaussian 
interest rate model no analytical pricing formulas exist. Therefore they propose three 
approximation methods for the valuation of GAOs:  
 
Method of minimum variance duration: This method approximates the annuity with a single 
zero-coupon bond and minimizes the approximation error by choosing the maturity of the zero-
coupon bond to be equal to the stochastic duration.  
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Edgeworth expansion: This method makes use of the Edgeworth approximation of the 
probability distribution of the value of the annuity (see Collin-Dufresne and Goldstein (2002)). 
 
Affine approximation: This method approximates the conditional distributions of the risk factors 
in affine diffusions. 
 
In the paper the runtimes and approximation errors are compared with benchmark results using 
Monte Carlo simulations and the method of minimum variance duration comes out most 
favorably. The other approximation methods do have very long runtime, the Edgeworth 
expansion method requires even more time then a Monte Carlo simulation.  
 
However, as we have shown in section 4.6, it is possible to derive an explicit expression where 
only a single numerical integration is needed for the case of a two-factor Gaussian interest rate 
model. It takes hardly any runtime (a couple of hundreds of seconds) to do this numerical 
integration, whilst it provides exact results. Table 4.7 shows a comparison of the results for the 
different methods and a Monte Carlo simulation with 1.000.000 sample paths, which are 
compared to the exact GAO prices obtained by the quasi closed-form expression in (4.48). The 
parameter setting used is the same as in Chu and Kwok (2007) and is given in Appendix 4e. 
Numbers in parentheses are relative differences compared to the exact formula for the GAO 
price. Values that are within the 95% confidence interval of the Monte Carlo estimates are 
starred (*) and made bold. 
 
Table 4.7: comparison GAO prices for different methods 

Monte 
r0 Strike Exact Carlo

0,5% 127% 11,800* 11,810* (-0,1%) 11,816 (-0,1%) 11,791* (-0,1%) 11,792
1,0% 123% 9,756* 9,771* (-0,2%) 9,750* (-0,1%) 9,741* (-0,1%) 9,749
1,5% 118% 7,874* 7,896* (-0,3%) 7,848* (-0,3%) 7,853* (-0,3%) 7,868
2,0% 114% 6,169* 6,195 (-0,4%) 6,129 (-0,6%) 6,142* (-0,4%) 6,163
2,5% 110% 4,661* 4,686 (-0,5%) 4,620 (-0,9%) 4,631 (-0,6%) 4,656
3,0% 106% 3,373* 3,391 (-0,5%) 3,341 (-1,0%) 3,346 (-0,8%) 3,368
3,5% 103% 2,322* 2,327* (-0,2%) 2,300 (-0,9%) 2,304* (-0,7%) 2,317
4,0% 99% 1,510* 1,501* (-0,6%) 1,490 (-1,3%) 1,506* (-0,3%) 1,507
4,5% 96% 0,921* 0,901 (-2,2%) 0,894 (-2,9%) 0,931 (-1%) 0,92
5,0% 93% 0,525* 0,498 (-5,1%) 0,492 (-6,2%) 0,544 (-3,6%) 0,524
5,5% 90% 0,278* 0,252 (-9,4%) - - 0,278
6,0% 88% 0,136* 0,115 (-15,4%) - - 0,135
6,5% 85% 0,061* 0,047 (-23,3%) - - 0,061
7,0% 83% 0,025* 0,017 (-32,8%) - - 0,025

Affine
Approximation

Min. Var.
Duration

Edgeworth
Expansion

 
 
The table shows that the approximation methods considered by Chu and Kwok (2007) break 
down for higher interest rates, where the guarantee is out-the-money. Note hereby that the first 
moment of the underlying distribution is the main driving factor for the option price, while for 
the price of out-of-the-money options the higher moments play a more important role, see Brigo 
and Mercurio (2006). Taking into account that the mean of the underlying annuity is determined 
exactly in the approximations, this implies that these methods have severe difficulties in 
estimating the higher moments of the underlying distribution, resulting in poor an approximation 
quality of the out-of-money GAOs, see Table 4.7.  
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The explicit (quasi closed-form) exact formula (4.48) does give highly accurate prices for GAOs 
across for all strike levels. Both the Monte Carlo method as the explicit formula are unbiased. 
Differences between the Monte Carlo method and the exact formula are sampling errors as we 
can see that the 95% confidence interval of the Monte Carlo method for all cases is overlapping 
with the price of the explicit exact formula. Typically such Monte Carlo noise increases for out-
of-the-money options (see Glasserman (2003)) as can also be seen from table 4.7 for the 
considered GAOs. The careful reader may notice that in the above example the sign of the 
difference between the Monte Carlo price and the exact formula is always negative, which is due 
to the fact that the same set of Monte Carlo paths is used for all strikes.  
 
Where the Affine approximation method and the Edgeworth expansion method require a very 
long runtime (according to Chu and Kwok (2007), the runtime of the Edgeworth expansion is 
even larger than of the Monte Carlo method with 100.000 sample paths), the runtime of the 
explicit expression derived in this chapter is comparable to the method of minimum variance 
duration and takes only a few hundreds of a second. The closed-form exact approach proposed in 
Section 4.6 is preferable compared to the approaches described in Chu and Kwok (2007), as it 
gives exact GAO prices over all strike levels whilst being computationally very efficient.  
 

4.8 Conclusions  
 
In this chapter explicit expressions are given for the pricing of GAOs using a stochastic volatility 
model for equity prices. The considered framework further allows for one-factor and two-factor 
Gaussian interest rate models, whilst taking the correlation between the equity, the stochastic 
volatility and the stochastic interest rates explicitly into account. The basis for the explicit 
formulas for GAOs lies in the fact that under the equity price measure, the GAO can be written 
in terms of an option on a sum of coupon bearing bonds: after some calculations the Jamshidian 
(1989) result can be used that expresses the latter option on a sum into a sum of options which 
can be priced in closed-form. For one-factor interest rate models the price of a GAO can be 
expressed as a sum of Black and Scholes (1973) options, whereas an explicit expression using a 
single integral can be established for the case of a two-factor Gaussian interest rate model.  
 
The results in this chapter indicate that the impact of using a stochastic volatility model is 
significant. In the considered empirical test cases we found that the prices for the GAOs using a 
stochastic volatility model for equity prices are considerably higher in comparison to the 
constant volatility model, especially for GAOs with out-of-the-money strikes.  
 
A special case of our modeling framework, that is an equity model with constant volatility, is 
considered in Chu and Kwok (2007). These authors argue that for a two-factor Gaussian interest 
rate model no analytical pricing formulas exist and propose several approximation methods for 
the valuation of GAOs. In this chapter we did derive an explicit expression for the price of a 
GAO in terms of a single numerical integral, which called for a comparison between these 
valuation methods. The numerical results show that the use of the quasi closed-form exact 
approach is preferable compared to the approaches described in Chu and Kwok (2007), as it 
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gives exact GAO prices over all strike levels whilst being computational very efficient to 
compute.  
 

Appendix 4a: Pricing of a coupon bearing option under a two-factor 
interest rate model 

 
Let the pair x(T), y(T) follow a bivariate normal distribution with means µx, µy, variances σx

2, σy
2 

and correlation ρxy. The probability density function f(x, y) of (x(T ), y(T )) is hence given by  
 
 
 
 
(4.55) 
 
 
Furthermore, let the time T price of the zero-coupon bond P(T, ti) maturing at time ti be given by  
 
(4.56) ( , , ) ( ) ( , , ) ( )( , ) ( , ) i iB a T t x T B b T t y T

i iP T t A T t e− −=   
 
We then come to the following proposition. 
 
Proposition A.1 The expected value of the coupon-bearing option maturing at time T, paying 
coupons ci at times i = 0,..., n and with strike K is given by a one-dimensional integral: 
 
 
 
 
 
 
 
 
 
(4.57)  
 
 
 
Proof The result is analogous to the derivation of the swaption price under the two-factor 
Gaussian interest rate model, we therefore refer to equation (4.31) in Brigo and Mercurio (2006) 
on pp. 158-159 and the corresponding proof on pp. 173-175.  
 



 56 

( ) ( ) ( )

0 0

(0)
( ) 1

( )

( ) ( )
( )

S S

aT T aT
xS

T T
T u a T u Q a T u QxS

v x

v
x T e e e

a a

e e dW u e dW u
a

κ

κ

ψ ψ
ρ σ

κ

ρ στ
σ

κ

− − −

− − − − − −

 −   = − + −    − 

 + − + − ∫ ∫

%

%

% %
%

%

Appendix 4b: Moments and terminal correlation of the two-factor 
Gaussian interest rate model  

 
To determine the moments of x(T ) and y(T) under the equity price measure, we need to consider 
the dynamics of (4.40), given under the risk-neutral measure Q, under the equity price measure 
QS. To change the underlying numéraire (see Geman et al. (1996)), we calculate the 
corresponding Radon-Nikodym derivative which is given by  
 

(4.58) 2

0 0
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(0) ( ) 2
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Q

S
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The multi-dimensional version of Girsanov’s theorem (see Oksendal (2005)) hence implies that  
 
(4.59) ( ) ( ) ( )

SQ Q
S SdW t dW t v t dt−a  

 
(4.60) ( ) ( ) ( )
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(4.62) ( ) ( ) ( )

SQ Q
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are Brownian motions under QS. Hence under QS one has the following model dynamics for the 
volatility and interest rate process 
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(4.65) ( ) 0( ) ( ) ( ) (0)
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κψ

ψ
κ

=%
%

. Integrating the latter dynamics yields the following explicit 

expressions:  
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(4.67)  
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(4.68)  
 
 
 
 
 
Using Ito’s isometry, we have that (x(T ), y(T)) is normally distributed with means µx, µy, 
variances σx

2, σy
2 and correlation ρxy(T) given by 
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Appendix 4c: Special case: independent equity price process or pure 
interest rate guaranteed annuities  

 
If one does not link the GAO to the performance of the equity (e.g. seen in the Netherlands) the 
expression (4.4) for the GAO price can be simplified significantly. One then has that the GAO 
price is given by  
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where the above expectation is taken with respect to the T-forward measure QT, which uses the 
zero-coupon bond price maturing at time T as numéraire. Moreover, also in case one assumes the 
equity price is independent from the annuity, e.g. according to Boyle and Hardy (2003) and 
Pelsser (2003), one ends up with the same expectation as (4.78); one only has to multiply the 
currency P(0, T) with the expectation future equity price, i.e. in (4.79) one only has to multiply 
this formula with the expected future equity price. In the following paragraphs we will derive 
explicit expressions for the GAO price under both one-factor and two-factor Gaussian interest 
rates.  

C.1 Hull-White model  
Under QT, one has the following expression for the stochastic process x(T), driving the short 
interest rate (see Brigo and Mercurio (2006), Pelsser (2000)):  
 

(4.80) ( )
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hence from Ito’s isometry, we have x(T) is normally distributed with mean µx and variance σx

2 
given by  
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Just as in Section 4.5, we have that x(T ) is normally distributed with the same variance σx

2, but 
with a different mean µx

T . Hence completely analogous to Section 4.5, one can use the 
Jamshidian (1989) result and write the call option on the sum of zero-coupon bonds as a sum of 
zero-coupon bond call options: let x* solve  
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and let 
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Using Jamshidian (1989), we have that the price of GAO is equal to the price of a sum of zero-
coupon bond options, i.e.  
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As the bond price again follows a log-normal distribution, one can express the GAO price in 
terms of the Black and Scholes (1973) formula: 
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where 
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(4.90) ln ( , ) ( , )i i i xM A T t B T t µ= −  
 

(4.91) ( )22 ( , ) T
i i xV B T t σ=  

 
and note that the above expression only deviates from (4.33) in the different means and variances 
for the x(T ) process.  

C.2 Gaussian Two-factor model  
Under QT, one has the following expression for the stochastic processes x(T ), y(T ) that drive the 
short interest rate (see Brigo and Mercurio (2006)):  
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hence x(T), y(T) are normally distributed with means µx

T, µy
T, variances σx

2, σy
2 and correlation 

ρxy(T ) given by: 
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Hence analogously to Section 4.6, one has that the GAO price is given by  
 
(4.97) ( )( ) (0, ) , , , , ( )T T
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where G is given by an explicit expression, defined by equation (4.57) of appendix 4a.  
 

Appendix 4d: Yield curve shocks  
 
In paragraph 4.7.2 the 2 shocks given in table 4.8 are applied to the yield curves. These shocks 
are aimed to represent the 99.5% percentile on a 1 year horizon in the Quantitative Impact Study 
5 (QIS 5) of CEIOPS.  
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Table 4.8: yield curve changes for the up and down shock in QIS5 
Maturity up down

1 75% -75%
2 65% -65%
3 56% -56%
4 50% -50%
5 46% -46%
6 42% -42%
7 39% -39%
8 36% -36%
9 33% -33%
10 31% -31%
11 30% -30%
12 29% -29%
13 28% -28%
14 28% -28%
15 27% -27%
16 28% -28%
17 28% -28%
18 28% -28%
19 29% -29%
20 29% -29%
21 29% -29%
22 30% -30%
23 30% -30%
24 30% -30%
25 30% -30%
26 30% -30%
27 30% -30%
28 30% -30%
29 30% -30%
30 30% -30%  

 

Appendix 4e: Model setup of the Chu and Kwok (2007) case  
 
In this appendix we describe the numerical input of the example being used in Chu and Kwok 
(2007). We also report the relative differences between the GAO price obtained by their methods 
and the explicit expression in (4.48) for that example. Note that as the Black-Scholes-G2++ 
model, used in Chu and Kwok (2007), is special case of the Schöbel-Zhu-G2++ considered in 4.6, 
we can one on one translate their parameters into our modeling framework. As the notation is 
slightly different, we explicitly provide this translation into our modeling framework.  
 
The GAO is specified using the guaranteed rate g = 9%, the current age of the policy holder x = 
50 and his retirement age r = 65, with corresponding probability of survival r-xpx = 0.9091 and 
time to expiry for the GAO equal to T = 15 years. The equity price is modeled by the Black and 
Scholes (1973) model with parameters q = 5%, S(0) = 100 exp(-q T ) = 47,24 and σS = 10%, 
where q denotes the continuous dividend rate and σS the constant volatility of the equity price. 
The current (continuous) yield curve is given by (4.98) and for the G2++ interest rate model (e.g. 
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see Brigo and Mercurio (2006)) the following parameters are used: a = 0,77, b = 0,08, σ = 2%, 
η= 1%, ρxy = -0.7, where the correlations between equity and interest rate drivers given by ρxS = 
0,5 and ρyS = 0,0071. Finally, the i-year survival probabilities ci from policy holder’s retirement 
age 65 are provided in the following table:  
 
Table 4.9: i-year survival probabilities from policy holder’s retirement age 65  

c0 1,000 c9 0,830 c18 0,489 c27 0,100
c1 0,987 c10 0,802 c19 0,441 c28 0,073
c2 0,973 c11 0,771 c20 0,393 c29 0,050
c3 0,958 c12 0,737 c21 0,345 c30 0,033
c4 0,941 c13 0,702 c22 0,298 c31 0,020
c5 0,923 c14 0,663 c23 0,252 c32 0,012
c6 0,903 c15 0,623 c24 0,209 c33 0,006
c7 0,881 c16 0,580 c25 0,168 c34 0,003
c8 0,857 c17 0,535 c26 0,132 c35 0,001  

 
In paragraph 4.7.3 we compared the prices of the explicit solution (4.48) and estimates obtained 
using 1.000.000 Monte Carlo simulations with the Minimum Variance, the Edgeworth and 
Affine Approximation method which are used in Chu and Kwok (2007). These results can be 
found in table 7.6, where a comparison is given for different levels r0 of the yield curve provided 
by the (continuous) yields  
 
(4.98) Y(T ) = r0 + 0,04(1 – e-0,2T)  
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Chapter 5 
 

On Stochastic Mortality Modeling*  
 
 
 
* This chapter has appeared as: 
 
PLAT, R. (2009): On Stochastic Mortality Modeling, Insurance: Mathematics and Economics 45 
(3), pp. 393-404 
 
 

5.1 Introduction 
 
As mentioned in chapter 1, important risks to be quantified are mortality and longevity risk. Not 
only is this an important risk for most (life) insurers and pension funds, the resulting solvency 
margin will also be part of the fair value reserve. Reason for this is that it is becoming best 
practice for the quantification of the risk margin to apply a Cost of Capital rate to the solvency 
capital necessary to cover for unhedgeable risks, such as mortality and longevity risks. 
 
There is a vast literature on stochastic modeling of mortality rates. Often used models are for 
example those of Lee and Carter (1992), Renshaw and Haberman (2006), Cairns et al (2006a), 
Currie et al (2004) and Currie (2006). For an extensive review we refer to section 5.2. 
 
All well known models have nice features but also disadvantages. In this chapter a mortality 
model is proposed that aims at combining the nice features from existing models, while 
eliminating the disadvantages of existing models. More specifically, the model fits historical data 
very well, is applicable to a full age range, captures the cohort effect, has a non-trivial (but not 
too complex) correlation structure, has no robustness problems and can take into account 
parameter risk, while the structure of the model remains relatively simple. 
  
The remainder of the chapter is organized as follows. First, in section 5.2 the existing literature is 
extensively reviewed, focusing on stochastic mortality models and the criteria for them. In 
section 5.3 a new mortality model is proposed. Section 5.4 describes the fitting procedure of the 
model and gives results of the fitting process for mortality of different countries. Section 5.5 
shows simulation results of mortality rates and the results of a robustness test. In section 5.6 a 
risk neutral version of the model is given, which can be used for pricing. Section 5.7 describes a 
possible method to account for parameter risk for the proposed mortality model. Conclusions are 
given in section 5.8. 
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5.2 Literature review: criteria and models 
 
Due to the increasing focus on risk management and measurement for insurers and pension funds, 
the literature on stochastic mortality models has developed rapidly during the last decennium. In 
this section an overview of current literature on stochastic mortality models and criteria for them 
is given.  

5.2.1 Criteria for stochastic mortality models 
It is important to consider whether a specific stochastic mortality model is a good model or not. 
Therefore, Cairns et al (2008a) defined criteria against which a model can be assessed: 
 

1) Mortality rates should be positive. 
2) The model should be consistent with historical data. 
3) Long-term dynamics under the model should be biologically reasonable. 
4) Parameter estimates and model forecasts should be robust relative to the period of data 

and range of ages employed. 
5) Forecast levels of uncertainty and central trajectories should be plausible and consistent 

with historical trends and variability in mortality data. 
6) The model should be straightforward to implement using analytical methods or fast 

numerical algorithms. 
7) The model should be relatively parsimonious. 
8) It should be possible to use the model to generate sample paths and calculate prediction 

intervals. 
9) The structure of the model should make it possible to incorporate parameter uncertainty 

in simulations. 
10) At least for some countries, the model should incorporate a stochastic cohort effect. 
11) The model should have a non-trivial correlation structure. 

 
An important additional criterion is that the model is applicable for a full age range. Some 
models are designed for higher ages only (say 60 years or older). However, the portfolios of 
insurers and pension funds usually exist of policyholders from age 20 and older. One would want 
to model the mortality rates and their dependencies for the whole portfolio consistently, therefore 
the model should be applicable for the whole age range. 
 
The existing models meet most of the above criteria. However, as far as we know, none of the 
existing models meet all of the above criteria (although some are close), see section 5.8 and 
Cairns et al (2007). 

5.2.2 Stochastic mortality models 
Stochastic mortality models either model the central mortality rate or the initial mortality rate 
(see Coughlan et al (2007)). The central mortality rate mx,t  is defined as: 
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(5.1) ,
,

,

#x t
x t

x t

D deaths during calendar year t aged x last birthday
m

E average population during calendar year t aged x last birthday
= =  

 
The initial mortality rate qx is the probability that a person aged x dies within the next year. The 
different mortality measures are linked by the following approximation: 
 
(5.2) 1 xm

xq e−≈ −  
 
One of the most well known stochastic mortality models is the model of Lee and Carter (1992): 
 
(5.3) ,ln( )x t x x tm a b κ= +  
 
where ax and bx are age effects and κt is a random period effect. Cairns et al (2007, 2008a and 
2008b) noted several disadvantages of the Lee-Carter model: 
 

- It is a 1-factor model, resulting in mortality improvements at all ages being perfectly 
correlated (trivial correlation structure). 

- For countries where a cohort effect is observed in the past, the model gives a poor fit to 
historical data. 

- The uncertainty in future death rates is proportional to the average improvement rate bx. 
For high ages this can lead to this uncertainty being too low, since historical 
improvement rates have often been lower at high ages. 

- The basic version of the model can result in a lack of smoothness in the estimated age 
effect bx. 

 
There is whole strand of literature on additions or modifications of the Lee-Carter model, for 
example Brouhns et al (2002), Lee and Miller (2001), Booth et al (2002), Girosi and King (2005), 
De Jong and Tickle (2006), Delwarde et al (2007) and Renshaw and Haberman (2003). Most of 
these models tackle one of the problems of the Lee-Carter model, but the other disadvantages 
still remain. 
 
The first model that incorporated the cohort effect was proposed in Renshaw and Haberman 
(2006): 
 
(5.4)   1 2

,ln( )x t x x t x t xm a b bκ γ −= + +  
 
where γt-x is a random cohort effect that is a function of the year of birth (t-x). 
For countries where a cohort effect is observed in the past, this model provides a significant 
better fit to the historical data. However, CMI (2007) and Cairns et al (2007, 2008b) find that the 
Renshaw-Haberman suffers from a lack of robustness. Furthermore, although the model has an 
additional stochastic factor for the cohort effect, for most of the simulated mortality rates the 
correlation structure is still trivial. Especially when using a wide age range, the simulated cohort 
parameters are only relevant for the higher ages in the far end of the projection.  
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Currie (2006) introduced a simplification of the Renshaw-Haberman model that removes the 
robustness problem: 
 
(5.5) ,ln( )x t x t t xm a κ γ −= + +  
 
However, the fit quality is less good compared to the Renshaw-Haberman model, and the 
problem with the trivial correlation structure still remains. 
 
When fitting models (5.4) and (5.5) to an age range of say 20-85, the modeled cohort effect can 
result in odd looking humps in the projected mortality rates over time. This problem will be 
further highlighted in the next paragraph. 
 
Furthermore, Cairns et al (2008b) observe that for England & Wales and United States data, the 
fitted cohort effect appears to have a trend in the year of birth. This suggests that the cohort 
effect compensates the lack of a second age-period effect, as well as trying to capture the cohort 
effect in the data.  
 
Cairns et al (2006a) introduced the following model: 
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where x  is the mean age in the sample range and 1 2( , )t tκ κ  is assumed to be a bivariate random 
walk with drift. Cairns et al (2007) also introduced some additions on model (5.6), amongst 
others capturing the cohort effect. The models have multiple factors that result in a (desired) non-
trivial correlation structure, while the structure of the model is relatively simple. However, those 
models are all designed for higher ages only. When using these models for full age ranges, the fit 
quality will be relatively poor and the projections are likely to be biologically unreasonable. 

5.2.3 Problems with modeling cohort effect 
Various explanations have been put forward for cohort effects that have been identified in the 
past. For example, for the United Kingdom Willets (2004) mentions historical patterns of 
smoking behavior and the impact of early life experience on health in later life. He states that 
there are a number of reasons to believe that this cohort effect will have an enduring impact on 
rates of mortality improvement in future decades.  
 
The investigations on cohort effects often concentrate on birth years until about 1945. This is 
natural, since in most cases the cohort effect is an effect on health in later life, so one needs 
observations of mortality rates for middle age and higher ages to verify the existence of the 
cohort effect. When applying models (5.4) and (5.5) to a full age range, say 20-85, cohort 
parameters are also fitted for birth years 1945-1980. This means that for these birth years, 
(cohort) movements for young ages (which can be volatile) are projected into the future. This 
affects the mortality rates for higher ages in a similar degree, since the cohort effect is usually 
modeled in a multiplicative way. However, given the possible nature of the movements for these 
specific birth years (for example AIDS, drug and alcohol abuse and violence) it is unclear 
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whether these effects do have a persistent effect on the future mortality rates for these cohorts. 
And if so, it is questionable whether a high relative cohort effect for young ages will have a 
similar relative effect on mortality of higher ages, given the nature of the cohort effect for young 
ages13. 
 
Figure 5.1 shows a best estimate and percentiles of mortality rates for 75 years old males, using 
the Currie (2006) model applied to United States mortality for an age range of 20-84. 
 
       
   Figure 5.1: projected mortality rates, 75 years old male – Currie (2006) model 
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The figure shows an odd-looking hump around 2020-2040 and flattening of projected mortality 
thereafter, corresponding with patterns in the fitted cohort parameters for birth years 1945-1980. 
 
Given the considerations above and the odd-looking results when taking into account cohort 
effects of recent birth years, it might be wise to only include the cohort effect for early birth 
years (say until year 1945) in the fitting of the model. The cohort effect for later birth years (so > 
1945) can be simulated from the fitted distributions. An additional advantage of this is that the 
simulation of the cohort effect becomes relevant for higher ages already in the beginning of the 
projection, leading to a non-trivial correlation structure. 
 

5.3 A new stochastic mortality model 
 
The models mentioned in the previous section all have some nice features: 
 

- the ax term of the Lee-Carter model makes it suitable for full age ranges 

                                                 
13 Note that the Renshaw-Haberman tries to capture this in the parameter 2

xb . However, this is based on the cohort 
effects for earlier birth years, which could have a significantly different nature.  
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- the Renshaw-Haberman model addresses the cohort effect and fits well to historical data 
- the Currie model has a simpler structure then the Renshaw-Haberman model, making it 

more robust 
- the models of Cairns et al (2006a, 2007) have multiple factors, resulting in a non-trivial 

correlation structure, while the structure of the model is relatively simple 
 
In this section a mortality model is proposed that combines those nice features, while eliminating 
the disadvantages mentioned in the previous section.  

5.3.1 The proposed model 
As for most other stochastic mortality models, the quantity of interest is the central mortality rate 
mx,t. The proposed model for mx,t is: 
 
(5.7)  ( ) ( )1 2 3

,ln( )x t x t t t t xm a x x x xκ κ κ γ+
−= + + − + − +  

 
where ( ) ( )max ,0x x x x+− = − . The model has 4 stochastic factors, but has a similar relatively 
simple structure as the Currie (2006) and the Cairns et al (2006a, 2007) models.  
 
The ax is similar as in the Lee-Carter model and makes sure that the basic shape of the mortality 
curve over ages is in line with historical observations. Next to the ax, the model has 4 stochastic 
factors 1 2 3( , , , )t t t t xκ κ κ γ − . The parameters of the model can be fitted using the methodology 
described in section 5.4, after which suitable ARIMA-processes (see paragraph 2.2.1) are 
selected for the various factors. 
 
The factor κ1 represents changes in the level of mortality for all ages. Following the reasoning in 
Cairns et al (2006b), the (long-term) stochastic process for this factor should not be mean 
reverting. Reason for this is that it is not expected that higher mortality improvements in some 
years will surely be compensated by lower mortality improvements in later years. 
 
The factor κ2 allows changes in mortality to vary between ages, to reflect the historical 
observation that improvement rates can differ for different age classes. 
 
Furthermore, historical data seems to indicate that the dynamics of mortality rates at lower ages 
(up to age 40 / 50) can be (significantly) different at some times. For example, think of 
developments like AIDS, drugs and alcohol abuse, and violence. The factor κ3 is added to 
capture these dynamics. 
 
The factor γt-x is capturing the cohort effect, in the same way as the models of Currie (2006) and 
Cairns et al (2007). As mentioned in paragraph 5.2.2, the process for this factor should not have 
a trend. Therefore, a trendless mean reverting process will be assumed for γt-x. 
 
Next to γt-x, the factors κ2 and κ3 allow the model to have a non-trivial correlation structure 
between ages. Fitting non-stationary ARIMA-process for factors κ2 and κ3 could result (in some 
scenarios) in projected scenarios where the shape of the mortality curve over ages is not 
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biologically reasonable. Therefore, a stationary (mean reverting) process will be assumed for 
these factors.   
 
In most cases mortality projections for a wide age range are needed. However, if one is only 
interested in higher ages (say age 60 and older), the factor κ3 is not needed and can be left out. 
This reduces the model to: 
 
(5.8) ( )1 2

,ln( )x t x t t t xm a x xκ κ γ −= + + − +  
 
This reduced model still has all the favorable characteristics of model (5.7), but is more suitable 
for high ages only. 

5.3.2 Identifiability constraints     
Just like most stochastic mortality models, the proposed mortality model has an identifiability 
problem, meaning that different parameterizations could lead to identical values for ln(mx,t). Note 
that the following parameterization leads to similar values for ln(mx,t):   
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where ψ1, ψ2 and d are constants. 
 
This can be resolved by setting identifiability constraints. We use the approach of Cairns et al 
(2007, model M6) for this, leading to the following constraints: 
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where c0 and c1 are the earliest and latest year of birth to which a cohort effect is fitted, and c = 
t–x . The rationale behind the choice of first two constraints is that if the function ψ1 + ψ2 (t-x) is 
fitted to γt-x the constraints ensure that 1 2ˆ ˆ 0ψ ψ= = . This results in a fitted process for γt-x that 
will fluctuate around 0 and there will be no constant trend up or down. This means that the 
constraints in (5.10) force the process of γt-x only to be used to capture the cohort effect and not 
to compensate lack of age-period effects. The third constraint is only used to normalize the 
estimates for κ3. 
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Other approaches for setting the identifiability constraints are also possible, see for example 
Cairns et al (2007) and Renshaw and Haberman (2006). 
 

5.4 Fitting the model 
 
An important aspect of stochastic mortality models is the quality of the fit of the model to 
historical mortality data. In this section the methodology for fitting the model is described, and a 
comparison of fit quality with other models is made for mortality rates of the United States (US), 
England & Wales (E&W) and The Netherlands (NL). 

5.4.1 Fitting methodology 
Brouhns et al (2002) described a fitting methodology for the Lee-Carter model based on a 
Poisson model. The main advantage of this is that it accounts for heteroskedasticity of the 
mortality data for different ages. This method has been used more commonly after that, also for 
other models, see for example Renshaw and Haberman (2003, 2006) and Cairns et al (2007). 
 
This fitting methodology will be applied to the model proposed in section 5.3. Therefore, the 
number of deaths is modeled using the Poisson model, implying: 
 
(5.11) Dx,t ∼ Poisson(Ex,t mx,t)      
 
where Dx,t is the number of deaths, Ex,t  is the exposure (see (5.1)) and mx,t is modeled as in (5.7).  
The parameter set φ is fitted with maximum likelihood estimation, where the log-likelihood 
function of model (5.11) is given by: 
 
(5.12) ( ) ( ){ }, , , , , ,

,

; , ln ( ) ( ) ln !x t x t x t x t x t x t
x t

L D E D E m E m Dφ φ φ = − − ∑  

 
Because of the specific nature of the problem, there are (as far as we know) no commercial 
statistical packages that implement this Poisson regression with constraints. Therefore we have 
used the R-code of the (free) software package “Lifemetrics” as a basis for fitting (5.12)14. 
Another reason for using this is to make an honest comparison of the fit quality of the model 
proposed in this chapter and existing models (also modeled in Lifemetrics), which is the topic of 
the next paragraph. 
 
Besides estimates for ax, the fitting procedure described above leads to time series of estimations 
of κ1, κ2, κ3 and γt-x. The next step in fitting the model is selecting and fitting a suitable ARIMA-
process to these time series (see paragraph 5.4.3). 

                                                 
14 See www.lifemetrics.com and http://www.r-project.org/. Lifemetrics is an (open source) toolkit for measuring and 
managing longevity and mortality risk, designed by J.P. Morgan. 
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5.4.2 Comparison of fit quality with existing models 
To evaluate whether the proposed model fits historical data well, we have fitted the model to 
three different data sets and compared the fitting results with those of models from the 
Lifemetrics toolkit. The three used data sets are: 
- United States, Males, 1961-2005, ages 20-84 
- England & Wales, Males, 1961-2005, ages 20-89 
- The Netherlands, Males, 1951-2005, ages 20-90 
 
The data consists of numbers of deaths Dx,t and the corresponding exposures Ex,t and is extracted 
from www.mortality.org15.  
 
As in Cairns et al (2007), the models are compared using the Bayes Information Criterion (BIC). 
The measure BIC provides a trade-off between fit quality and parsimony of the model. The BIC 
is defined as: 
 

(5.13) ( ) 1ˆ ln
2

BIC L K Nφ= −    

 
where φ̂  is the maximum likelihood estimate of the parameter vector, N is the number of 
observations and K is the number of parameters being estimated. 
 
Table 5.1 gives a comparison of the fitting results (in terms of BIC) of the model proposed in 
section 5.3 and existing models (fitted with the Lifemetrics toolkit). 
 
Table 5.1: comparison BIC for proposed model and existing models  
BIC mortality models * U.S. E&W NL
Plat -24.506 -18.151 -18.425
Renshaw-Haberman (2006) -25.971 -18.062 -18.632
Currie (2006) -37.489 -19.805 -18.597
Lee-Carter (1992) -47.542 -22.949 -20.353
Cairns et al (2007, model M7) -56.571 -27.730 -21.055
Cairns et al (2006) -294.928 -66.744 -31.511
* higher BIC is more favorable  
 
The table shows that for these specific data sets the proposed model gives the best fitting results, 
closely followed by the Renshaw-Haberman model. The BIC for the other models is (sometimes 
significantly) less. The models of Cairns et al (2006a, 2007) do not perform very well for this 
age range, since they are designed for higher ages only. 
 
In the fitting process of the models above the cohort effect was taken into account for all birth 
years of the dataset. However, given the reasons mentioned in paragraph 5.2.3, for the remaining 
of this chapter we will exclude the cohort effect for birth years later than 1945 in the fitting of 
the model. In general this will reduce the quality of the fit somewhat, as is shown in table 5.2. 
                                                 
15 Note that a longer history is available. We used these historic periods (for the U.S. and E&W) to be able to 
roughly compare results with Cairns et al (2007) and Cairns et al (2008). 
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Table 5.2: results BIC when excluding cohorts > 1945 
BIC mortality models * U.S. E&W NL
Plat -24.506 -18.151 -18.425
Plat (exluding cohorts > 1945) -32.392 -18.927 -18.378
* higher BIC is more favorable  
 
The fitting results of the model are still good when excluding the cohort effect for birth years > 
1945, certainly considering the fact that the BIC of the other models which include a cohort 
effect (Renshaw-Haberman (2006), Currie (2006) and Cairns et al (2007)) would also be less 
favorable when excluding these birth years16. 
 
Note that the proposed model nests the model of Currie (2006). For nested models, the use of a 
likelihood ratio test is more appropriate than the use of the BIC measure. The likelihood ratio 
(LR) test can be used to test the null hypothesis that the nested model (in this case, the Currie 
(2006) model) is the correct model against the alternative that the more general model (the model 
proposed in this chapter) is correct. The likelihood ratio test statistic is: 
 

(5.14) ( ) ( )ˆ2LR L Lξ φ φ = − 
%  

 
where ( )ˆL φ  is the log-likelihood of the general model and ( )L φ%  of the nested model. 

Under the null hypothesis, ξLR has a Chi-squared distribution with J degrees of freedom, J being 
the additional parameters being estimated in the general model compared to the nested model. 
Therefore, the null hypothesis can be rejected if: 
 
(5.15) 2

,LR J αξ χ>  
 
where α is the significance level. Alternatively, the p-value can be determined for this test: 
 

(5.16) ( ) ( )( )2 1 ˆ1 2Jp L Lχ φ φ−  = − − 
%   

 
The p-value is the probability of obtaining the observed value, assuming that the null hypothesis 
is true. If the p-value is lower than α, the null hypothesis is rejected. Table 5.3 shows the results 
of the likelihood ratio test for the three data sets.  

                                                 
16 An alternative way of presentation could be to exclude the birth years > 1945 for all models that include the 
cohort effect and compare the BIC on that basis. However, the other models are all fitted with the Lifemetrics tool 
that includes all birth years. 



 73 

Table 5.3: LR test, null hypothesis Currie (2006) model against proposed model 
Likelihood Ratio Degrees of

test statistic freedom p-value
U.S. 26.677 89 < 0,0001
E&W 4.023 89 < 0,0001
Holland 1.245 109 < 0,0001  
 
The table shows that for each data set the null hypothesis is rejected overwhelmingly. Therefore, 
the conclusion above (based on BIC results) that the model proposed in this chapter is preferable 
to the nested Currie (2006) model is supported by the results from the likelihood ratio test.     

5.4.3 Fitting the ARIMA processes – U.S. Males 
In the remainder of this chapter, we will focus on the population of U.S. males17. The next step in 
the process is selecting and fitting a suitable ARIMA-process to the time series of κ1, κ2, κ3 and 
γt-x.  The fitted parameters κ1, κ2, κ3 and γt-x for U.S. males are given in figure 5.2. The figure 
shows that the pattern of the important parameter κ1 is well-behaved. The patterns of the other 
parameters all reveal some autoregressive behavior. 
Since the factor κ1 drives a significant part of the uncertainty in mortality rates, its relatively 
regular behavior (for this particular dataset) will also show in the projected uncertainty (in other 
words, the confidence intervals will be relatively narrow). 
     
Figure 5.2: estimated values of κ1, κ2, κ3 and γt-x 
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17 To be able to compare simulation results with Cairns et al (2007), we can either use US males or E&W males. The 
choice for U.S. males is more or less arbitrary. 
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Now for each of these time series all relevant ARIMA(p,d,q) processes for the range p, d, q = 0, 
1, 2, 3 are fitted and the most favorable process in terms of BIC is selected. The selected ARIMA 
processes are: 
 
- κ1: ARIMA(0,1,0) 
- κ2, κ3 and γt-x: ARIMA(1,0,0), no constant 
 
It is commonly assumed (see Renshaw and Haberman (2006), CMI (2007) and Cairns et al 
(2008b), that the process for γt-x is independent of the other processes, so the parameters of this 
process can be fitted independently using Ordinary Least Squares (OLS). The other processes 
can be fitted simultaneously using Seemingly Unrelated Regression (SUR, see Zellner (1963)). 
 
Table 5.4 gives the fitted parameters, standard errors, t-ratios and BIC’s and table 5.5 shows the 
fitted standard deviations (on the diagonal) and correlations. 
 
Table 5. 4: fitted parameters for the processes yt+1 - yt  = θ1 and  yt+1 =  θ2 yt *  
Fit results

θ 1
0,0022 -5,925

θ 2
0,0495 19,280 0,0656 12,871 0,0361 25,941

BIC

* In each cell for ? 1  and ? 2 , top: fitted parameter, bottom left: standard error, bottom right: t-ratio

120,83 267,65 229,21 163,55

-0,0131

0,9539 0,8440 0,9366

κ 1 κ 2 κ 3 γ t-x

 
 
Table 5.5: fitted standard deviations (on the diagonal) and correlations 

κ 1 κ 2 κ 3 γ t-x

κ 1
0,0150 0,2539 0,0274 0

κ 2
0,2539 0,0005 0,0144 0

κ 3
0,0274 0,0144 0,0012 0

γ t-x 0 0 0 0,0175  
 

5.5 Mortality projections – U.S. Males 
 
Cairns et al (2008b) performed an extensive assessment of the out-of-sample performance of 
several stochastic mortality models, focusing on England & Wales and U.S. Males between 60 
and 90 years old. The main criteria used in this assessment were biological reasonableness and 
robustness of the (stochastic) forecasts. Based on these criteria and specifically for these datasets, 
they concluded that the models of Lee and Carter (1992), Renshaw and Haberman (2006) and 
Cairns et al (2007, model M8) did not perform in a satisfactory way. Furthermore, they 
concluded that the models of Currie (2006) and Cairns et al (2006, 2007 model M7) did produce 
plausible results and seem robust. 
 
This section shows the simulation results and results of robustness tests for the proposed 
mortality model. 
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U.S. Male - age 65
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U.S. Male - age 84
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5.5.1 Simulation results – U.S. Males 
Using the fitted ARIMA processes and the fitted values for ax and γt-x (see appendix 5a), future 
mortality rate scenarios for U.S. males can be constructed using Monte Carlo simulation. Figure 
5.3 shows simulation results for ages 25, 45, 65 and 84 for U.S. males18. The best estimate 
projection is given and the 5% and 95% percentiles. 
 
The results are biologically plausible. For higher ages, the widths of the confidence intervals are 
broadly similar as the models of which Cairns et al (2008b) concluded that they produced 
biologically plausible results. The results for younger ages (25 and 45) also seem plausible, 
where the observed historical variability is reflected in the confidence intervals.   
 
    Figure 5.3: simulation results for U.S. Males 

 

5.5.2 Robustness of simulation results 
Some models suffer from a lack of robustness. For example, Cairns et al (2007, 2008b) find that 
the Renshaw-Haberman model is not robust for changes in range of years. They link this to the 
shape of the likelihood function. Robust models probably have a unique maximum that remains 
broadly unchanged when the range of years or ages is changed. Models that lack robustness 
possibly have more than one maximum, so when changing the range of years or ages the 
optimizer can jump from one local maximum to another, yielding different parameter estimates.  
 

                                                 
18 Simulation results for England & Wales and the Netherlands are given in appendix 5b. 



 76 

The model proposed in this chapter is tested for robustness using the same test as in Cairns et al 
(2008b). This means that the simulation results above are compared with those of two 
sensitivities. These sensitivities are: 

1) The model is fitted only to historical data from 1981-2005 (instead of 1961-2005) 
2) The model (5.7) is fitted to historical data from 1961-2005, but the stochastic models for 

κ1, κ2, κ3 and γt-x are only fitted to a restricted set of parameter estimates (being only the 
final 24 κ(i)’s and the final 45 γt-x’s)   

 
Of course, if there is a change in trend or variability in the period 1981-2005 compared to 1961-
2005, it is inevitable, for all models, that the simulation results will be somewhat different. 
 
The results are given in appendix 5c and are not significantly different as the results shown in 
paragraph 5.5.1. The confidence intervals for age 25 are wider, due to the higher variability for 
younger ages in the past 25 years. Conclusion is that the proposed model is robust for the 
sensitivities given above. 
 
Furthermore, a backtest is carried out, meaning that the model is fitted to historical data from 
1961-1986 and the forecast results are compared with the actual observations for the period 
1987-2005. Also for this backtest, the proposed model performs adequately (see the results in 
appendix 5c). 

5.5.3 Comparison with other models 
Paragraph 5.5.1 and 5.5.2 showed that the proposed model produces plausible results and seems 
robust. Cairns et al (2008b) came to the same conclusion for the models of Currie (2006) and 
Cairns et al (2006, 2007 model M7).  
 
The models of Cairns et al (2006, 2007 model M7) are designed for higher ages, so will not 
produce plausible results for lower ages. Compared to those models the proposed model has the 
advantage that it does produce plausible results for a full age range. 
 
Compared to the model of Currie (2006) the proposed model has the advantage that it has a non-
trivial correlation structure. This is important because often insurers and pension funds have 
different type of exposures for younger or middle ages (term insurance, pre-retirement spouse 
option) than for higher ages (pensions, annuities). Aggregating these different types of exposures 
can only be done sufficiently if the model has a non-trivial correlation structure. Assuming an 
almost perfect correlation between ages, as in the Currie (2006) model, will possibly lead to an 
overstatement of the diversification benefits that arise when aggregating these exposures. 
 

5.6 Risk neutral specification of the model 
 
The model proposed in section 5.3 is set up in the so-called real-world measure, suitable for 
assessing risks for example in the context of Solvency 2. For pricing instruments of which the 
payoff depends on future mortality rates, a risk adjusted pricing measure has to be defined. A 
common approach is to specify a risk neutral measure Q that is a suitable basis for pricing, see 
for example Milevsky and Promislow (2001), Dahl (2004), Schrager (2006), Cairns et al (2006a, 
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2006b) and Biffis et al (2006). The risk neutral specification proposed below is in line with the 
approach of Cairns et al (2006a).  
 
Note that the market for longevity or mortality instruments is currently (very) far from complete. 
Consequence of this is that the risk neutral measure Q is not unique. Given the absence of any 
market price data, it seems wise to keep the specification of the risk neutral process relatively 
simple. For the same reason, it is difficult to judge whether one risk neutral mortality model is 
better than another. 

5.6.1 Risk neutral dynamics 
The stochastic process for the factors κ1, κ2, κ3 and γt-x in the real world measure P can generally 
be specified as: 
 
(5.17) ( )1 1, P

t t t tε− −Κ = Θ Κ + Σ Ζ  
 
Where Κt is the vector with factors κ1, κ2, κ3 and γt-x, Θ(Kt-1, εt-1) is the drift of the process, ΣΣ ’ 
is the covariance matrix and ZP is a 4 x 1 vector with standard normal random variables under 
measure P. 
 
Now the proposed dynamics under the risk neutral measure Q are: 
 

(5.18) 
( )
( )

1 1

1 1

,

,

Q
t t t t

Q
t t t

ε λ

ε λ

− −

− −

 Κ = Θ Κ + Σ Ζ − 
= Θ Κ − Σ + Σ Ζ

 

 
where the vector λ represents the “market price of risk” associated with the process Kt. Like 
Cairns et al (2006a), we assume that the market price of risk is constant over time. When market 
prices for longevity or mortality derivatives are available, the vector λ should be calibrated in 
such a way that the theoretical prices under the measure Q are approximately equal to market 
prices. 

5.6.2 Calibration of the market price of risk 
Currently, there is no developed market for longevity derivatives. However, Loeys et al (2007) 
have the opinion that q-forwards are most likely to become the basis of a longevity market. 
Therefore, in this paragraph the risk neutral model (5.18) is calibrated to q-forward prices. Of 
course, calibration to other instruments such as longevity bonds or survivor swaps, would also be 
possible.    
 
A q-forward is a simple capital market instrument with similar characteristics as an interest rate 
swap. The instrument exchanges a realized mortality rate in a future period for a pre-agreed fixed 
mortality rate. This is shown in figure 5.4. The pre-agreed fixed mortality rate is based on a 
projection of mortality rates, coming from the Lifemetrics toolkit. 
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Figure 5.4: working of a q-forward 
 

 
 
 
 
 

 
For example, when the realized mortality rate is lower than expected, the pension / annuity 
insurer will receive a payment which (partly) compensates the increase of the expected value of 
the insurance liabilities (caused by the decreasing mortality rates). 
 
The basis for the instrument is the (projected) mortality of a country population, not the mortality 
of a specific company or portfolio. This makes the product and the pricing very transparent 
compared to traditional reinsurance. 
 
Although there have been some transactions involving q-forwards, currently no market quotes 
for q-forwards are publicly available. However, Loeys et al (2007) give an indication and 
examples on how such an instrument would be priced in practice. In absence of real market data, 
we calibrate the model to q-forward prices resulting from these examples.  
 
Loeys et al (2007) give the following formula for setting the fixed q-forward rate: 
 
(5.19) qforward = (1 – horizon * Sharpe ratio * qvol) * qexpected   
 
where they have used 10 years for the horizon of the derivative, 25% for the Sharpe ratio and the 
volatility qvol based on historical data. Table 5.6 shows the results for q-forwards with a horizon 
of 10 and starting ages of 35, 45, 55 and 65, where qexpected is based on model (5.7). Since in this 
chapter the central mortality rate mx,t is modeled, the results are also translated into these terms, 
which makes the calibration easier.  
 
Table 5.6: indication q-forward rate for horizon 10 and translation to m-forward 

Age start Age end q vol q expected q forward m expected m forward h
35 45 2,31% 0,306% 0,288% 0,307% 0,289% 0,060
45 55 1,53% 0,709% 0,682% 0,712% 0,685% 0,039
55 65 1,01% 1,618% 1,578% 1,632% 1,590% 0,026
65 75 1,47% 3,542% 3,412% 3,606% 3,471% 0,038  

 
Now interpreting mforward as the expectation under the risk neutral measure and mexpected as the 
expectation under real world measure leads to: 
 
(5.20) ( ) ( ), ,end end end end

Q P
x t x tE m g E m=   

 
where xend and tend are age and year at the end of the contract and g can be extracted from the 
market (or in this case, from table 6). Taking logarithms leads to: 
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(5.21) ( ) [ ] ( ), ,ln ln ln

end end end end

Q P
x t x tE m g E m   = +     

 
Because the only difference between the processes under Q and P is in the drift term, we can 
assume that: 
 
(5.22)    ( ) ( ) ( ) ( ) [ ], , , ,ln ln ln ln ln

end end end end end end end end

Q P Q P
x t x t x t x tE m E m E m E m g       − = − =        

 
Now since this difference in the drift term is the matrix -Σλ, for a horizon k the following holds: 
 

(5.23) ( ) ( ), ,
1

ln ln
end end end end

k
Q P

x t x t t
t

E m E m W λ
=

   − = − Σ    ∑  

 
where Wt is the matrix of weights that are used to translate the values for κ1, κ2, κ3 and γt-x into 
values for ln(mx,t). This leads to: 
 

(5.24) 
1

k

t
t

h W λ
=

= Σ∑  

 
where h = -ln[g], of which the values are given in the table above. From (5.24) the market prices 
of risk can be solved: 
 

(5.25) 
1

1

ˆ
k

t
t

W hλ
−

=

 = Σ 
 
∑  

 
Now we use this formula to calibrate the market prices of risk to the q-forwards specified above. 
The weights matrices Wt vary slightly for each year t depending on the development of the age:  
 

(5.26) 

( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 45 45 1

1 55 55 1

1 65 65

1 75 75 0

t

t

x x

x x
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x x c

x x

+

+

+

+

 − −
 
 − −

=  
− − 

  − − 

 

 
where ct = 0 for t < 5 and ct = 1 otherwise. Reason for this time dependence is that the simulated 
cohort effect gradually comes into the projections for age 65. The right bottom item of Wt is 0 
because for age 75 the cohort effect does not play a role within the horizon of 10 year for this age. 
 
Applying formula (5.25) using (5.26), the results in table 5 and the vector h from table 5.6 leads 
to the calibrated market prices of risk given in table 5.7. 
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Table 5.7: market prices of risk  

λ

κ 1 1,2430

κ 2 0,9793

κ 3 -0,5756
γ t-x -0,7338  

 
When the market develops and a number of q-forward prices are available, the market prices of 
risk can be calibrated by minimizing the squared errors between the theoretical prices and the 
market prices: 
 

(5.27) 
2

1 1

ˆ
p k

i
i t

i t

Min h W
λ

λ λ
= =

 = − Σ 
 

∑ ∑   

 
where p is the number of q-forwards the model is calibrated to. 
 

5.7 Parameter Uncertainty 
 
As mentioned in the criteria for stochastic mortality models in paragraph 5.2.1, the structure of 
the model should make it possible to incorporate parameter uncertainty in simulations. There are 
three possible approaches for including this parameter uncertainty: 
 

1) Using a formal Bayesian framework, see Cairns (2000) and Cairns et al (2006a) 
2) Simulate the parameter values using the estimates and the standard errors obtained in the 

estimation process 
3) Applying a bootstrap procedure such as described in Brouhns et al (2005) and Renshaw 

and Haberman (2008) 
 
In a Bayesian framework a prior, possibly non-informative, distribution is assumed for the 
parameters. Combining this prior distribution with the sample data and the assumed density 
function of a particular stochastic process leads to a posterior distribution. This posterior 
distribution can be used to assess the parameter uncertainty.  
 
Approach 2) uses the standard errors of the fitted parameters to incorporate the parameter 
uncertainty. When least squares or maximum likelihood estimation is used the estimators are 
either normally or asymptotically normally distributed. 
 
Approach 3) uses bootstrapping techniques, either applied to Dx,t (semi-parametric bootstrap) or 
to the residuals , ,x t x tD D− %  (residual bootstrap), 
 
While a formal Bayesian approach is more elegant than approach 2) and 3), it generally leads to 
significantly more complexity. Market Chain Monte Carlo (MCMC) methods or importance 
sampling might be necessary, because the posterior distribution often does not belong to a known 



 81 

class of probability density functions (see for example Kleibergen and Hoek (1996)). Since the 
approaches should not lead to significantly different parameter uncertainty, it is questionable 
whether it is worth increasing the complexity of the model significantly for slightly more 
elegance. Therefore, approach 1) does not have our preference. 
 
By using approach 2), parameter uncertainty can be incorporated in the model proposed in this 
chapter. For the stochastic processes of κ1, κ2, κ3 and γt-x the estimates and standard errors given 
in table 4 can be used as the moments of the normal distributions of the parameters. For the 
parameter estimates of the γt-x‘s (until birth year 1945) and the ax’s the standard errors have to be 
calculated separately. Starting point for this (see for example Verbeek (2008)) is the vector of 
first derivatives of the log-likelihood function, the so-called score vector s(φ): 
 

(5.28) ( ) ( ) ( ) ( )
1 1

N N
i

i
i i

L L
s s

φ φ
φ φ

φ φ= =

∂ ∂
= = =

∂ ∂∑ ∑         

 
where φ is the parameter set, Li(φ) is de log-likelihood function for observation i and N is the 
number of observations. Now the covariance matrix Vpar to be used can be estimated with: 
 

(5.29) ( ) ( )
1

1

ˆ ˆ
N

par i i
i

V s sφ φ
−

=

 ′=  
 
∑  

 
The standard errors for the γt-x‘s (until birth year 1945) and the ax’s are the square roots of the 
relevant diagonal elements. 
 
Approach 2) is the most practical method. However, Renshaw and Haberman (2008) noted that 
the confidence intervals for the Lee-Carter and Renshaw-Haberman models vary for different 
versions of identifiability constraints when using this method. This phenomenon was not seen 
when using approach 3). Although the question remains whether their conclusion still holds for 
other models (such as the one proposed in this chapter) and different sort of constraints (such as 
the ones used in this chapter and in Cairns et al (2007, model M6), approach 3) seems the most 
appropriate method for addressing parameter uncertainty in the model proposed in this chapter.    
 

5.8 Conclusions 
 
All well known stochastic mortality models have nice features but also disadvantages. In this 
chapter a stochastic mortality model is proposed that aims at combining the nice features from 
existing models, while eliminating the disadvantages.  
 
The chapter shows that the fit of the model to historical data is better than the well-known 
mortality models. Also, the model has 4 stochastic factors, leading to a (desired) non-trivial (but 
not too complex) correlation structure between ages. Due to a (Lee-Carter type) variable that 
describes the shape of the mortality curve over ages and the inclusion of a separate stochastic 
factor for young ages, the model is applicable to a full age range. Furthermore, the model 
captures the cohort effect and has no robustness problems. The chapter also describes how to 
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incorporate parameter uncertainty into the model. 
 
In paragraph 5.2.1, a list of criteria for stochastic mortality models is given. Table 5.8 shows 
whether the existing models and the proposed model meet those criteria. A large part of the table 
is based on Cairns et al (2007) and the conclusions in Cairns et al (2008b).  
 
Table 5.8: comparison of stochastic mortality models – satisfaction of criteria * 
Satisfaction of criteria mortality models Renshaw & Lee & Cairns et al Cairns et al

Haberman Currie Carter (2006) (2007, M7) Plat
1) Positive mortality rates + + + + + +
2) Consistency historical data + + + / - + + +
3) Long-term biological reasonableness + + + + + +
4) Robustness - + + + + +
5) Forecasts biological reasonable + + +/- + + +
6) Ease of implementation + + + + + +
7) Parsimony +/- +/- + + +/- +/-
8) Possibility generating sample paths + + + + + +
9) Allowance for parameter uncertainty + + + + + +
10) Incorporation cohort effects + + - - + +
11) Non-trivial correlation structure +/- +/- - + + +
12) Applicable for full age range +/- +/- +/- - - +
*  +: meets criterion,  +/-: partly meets criterion,  -: does not meet criterion  
 
The table shows that, apart from partly meeting the parsimony criteria, the proposed model meets 
all of the criteria. None of the existing models meet all of the criteria. Of the existing models, the 
model of Currie (2006) is most close to meeting all criteria. However, the advantages of the 
proposed model compared to the model of Currie (2006) are: 

- Better fit to historical data 
- Non-trivial correlation structure, which is important in solvency calculations 
- Better applicable to a full age range, amongst others due to the inclusion of a separate 

factor for younger ages 
 
So by combining the nice features of the existing models, the proposed model has eliminated the 
disadvantages of those models, and as a result the model meets all of the criteria set for 
stochastic mortality models. 
 
For pricing purposes, a risk neutral version of the model is given, that can be used for pricing. 
This model is calibrated to some indicative prices for longevity derivatives. 
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Appendix 5a: U.S. Male - estimates for ax and γt-x 
 
 

age ax age ax birth year γt-x birth year γt-x
20 -6,3983 53 -4,6403 1881 -0,1202 1914 0,0773
21 -6,3328 54 -4,5587 1882 -0,1103 1915 0,0708
22 -6,3382 55 -4,4660 1883 -0,1057 1916 0,0609
23 -6,3483 56 -4,3843 1884 -0,0940 1917 0,0544
24 -6,3826 57 -4,3008 1885 -0,0839 1918 0,0603
25 -6,3812 58 -4,1935 1886 -0,0743 1919 0,0340
26 -6,3777 59 -4,1249 1887 -0,0967 1920 0,0554
27 -6,3645 60 -4,0197 1888 -0,0553 1921 0,0366
28 -6,3301 61 -3,9471 1889 -0,0321 1922 0,0400
29 -6,3426 62 -3,8376 1890 -0,0370 1923 0,0313
30 -6,3080 63 -3,7746 1891 -0,0574 1924 0,0376
31 -6,2548 64 -3,7040 1892 -0,0361 1925 0,0402
32 -6,2078 65 -3,6100 1893 -0,0074 1926 0,0361
33 -6,1571 66 -3,5483 1894 -0,0067 1927 0,0297
34 -6,1303 67 -3,4648 1895 0,0075 1928 0,0203
35 -6,0643 68 -3,3801 1896 0,0329 1929 -0,0057
36 -6,0026 69 -3,3068 1897 0,0244 1930 -0,0050
37 -5,9383 70 -3,2088 1898 0,0321 1931 -0,0184
38 -5,8493 71 -3,1444 1899 0,0016 1932 -0,0152
39 -5,8183 72 -3,0406 1900 0,0576 1933 -0,0128
40 -5,7386 73 -2,9656 1901 0,0834 1934 -0,0360
41 -5,6532 74 -2,8864 1902 0,0396 1935 -0,0347
42 -5,5658 75 -2,7994 1903 0,0703 1936 -0,0477
43 -5,4921 76 -2,7193 1904 0,0711 1937 -0,0651
44 -5,4221 77 -2,6375 1905 0,0702 1938 -0,0717
45 -5,3288 78 -2,5568 1906 0,0690 1939 -0,0751
46 -5,2423 79 -2,4671 1907 0,0705 1940 -0,0709
47 -5,1539 80 -2,3649 1908 0,0809 1941 -0,0697
48 -5,0575 81 -2,2824 1909 0,0615 1942 -0,0914
49 -4,9965 82 -2,1863 1910 0,0749 1943 -0,0632
50 -4,8950 83 -2,0906 1911 0,0785 1944 -0,0831
51 -4,8109 84 -1,9992 1912 0,0655 1945 -0,0702
52 -4,7155 1913 0,0765  
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Appendix 5b: simulation results England & Wales and the 
Netherlands 

 
In this appendix the simulation results for England & Wales (E&W) and the Netherlands are 
given. The best estimate projection is given and the 5% and 95% percentiles. Information about 
the fitted parameters and underlying ARIMA processes is available upon request. 
 
   Figure 5.5: simulation results for England & Wales males 
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  Figure 5.6: simulation results the Netherlands 
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U.S. Male - age 25
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Appendix 5c: simulation results robustness tests 
 
In this appendix the simulation results are given for the sensitivities that have been specified to 
test the robustness of the model: 

1) The model is fitted only to historical data from 1981-2005 (instead of 1961-2005) 
2) The model (5.7) is fitted to historical data from 1961-2005, but the stochastic models for 

κ1, κ2, κ3 and γt-x are only fitted to a restricted set of parameter estimates (being only the 
final 24 κ(i)’s and the final 45 γt-x’s)   

 
 
   Figure 5.7: simulation results sensitivity 1 
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 Figure 5.8: simulation results sensitivity 2) 
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   Figure 5.9: simulation results backtest 
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Chapter 6 
 

Stochastic Portfolio Specific 
Mortality and the Quantification of 

Mortality Basis Risk*  
 
 
 
* This chapter has appeared as: 
 
PLAT, R. (2009): Stochastic Portfolio Specific Mortality and the Quantification of Mortality 
Basis Risk, Insurance: Mathematics and Economics 45 (1), pp. 123-132 
 
 

6.1 Introduction 
 
As noted in chapter 5, there exists a vast literature on stochastic modeling of mortality rates. 
Frequently used models are for example those of Lee and Carter (1992), Brouhns et al (2002), 
Renshaw and Haberman (2006), Cairns et al (2006a), Currie et al (2004) and Currie (2006). 
These models are generally tested on a long history of mortality rates for large country 
populations, such as the United Kingdom or the United States. However, the ultimate application 
is to quantify the risks for specific insurance portfolios. And in practice there is often not enough 
insurance portfolio specific mortality data to fit such stochastic mortality models reliably, since: 

- The historical period for which observed mortality rates for the insurance portfolio are 
available is usually limited, often in a range of only 5 to 15 years. 

- The number of people in an insurance portfolio is much less than the country’s 
population. 

 
Also, for insurers it is more relevant to model mortality rates measured in insured amounts 
instead of measured by the number of people, because in the end the insured amounts have to be 
paid by the insurer. Measuring mortality rates in insured amounts has two effects:  

- Policyholders with higher insured amounts tend to have lower mortality rates 19 . So 
measuring mortality rates in insured amounts will generally lead to lower mortality rates. 

                                                 
19 See for example CMI (2004). 
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- The standard deviation of the observations will increase. For example, the risk of an 
insurance portfolio with 100 males with average salaries will be lower then that of a 
portfolio with 99 males with average salaries and 1 billionaire.  

 
So fitting the before mentioned stochastic mortality models to the limited mortality data of 
insurers, measured in insured amounts, will in many cases not lead to results that are sufficiently 
reliable. In practice, this issue is often solved by applying a (deterministic) portfolio experience 
factor to projected (stochastic) mortality rates of the whole country population. However, it is 
reasonable to assume that this portfolio experience factor is a stochastic variable.   
     
In this chapter a stochastic model is proposed for portfolio specific mortality experience. This 
stochastic process can be combined with the stochastic country population mortality process, 
leading to stochastic portfolio specific mortality rates. The proposed model is, amongst others, 
based on historical mortality rates measured in insured amounts, but can also be used when only 
historical mortality rates measured in number of policies are available.  
 
The model can be used to quantify portfolio specific mortality or longevity risks for the purpose 
of determining the Value at Risk (VaR) or SCR, which could also be the basis for the 
quantification of the Market Value Margin. Also, it gives more insight into the basis risk when 
hedging portfolio mortality or longevity risks with hedge instruments of which the payoff 
depends on country population mortality. The market for mortality or longevity derivatives is 
emerging (see Loeys et al (2007)) and one of the characteristics of these derivatives is that the 
payoff depends on country population mortality. While this certainly has advantages regarding 
transparency and market efficiency, the impact of the basis risk is unclear. This basis risk is the 
result of differences between country population mortality and portfolio specific mortality, which 
is exactly what the proposed model is able to quantify.    
 
Measurement of (portfolio specific) mortality rates in insured amounts has already been used for 
a long time, starting with CMI (1962) and more recently for example in Verbond van 
Verzekeraars20 (2008) and CMI (2008). In these papers portfolio experience factors, measured in 
amounts, are determined based on portfolio data that is collected from a representative part of the 
insurance market. The results of this are frequently used by the market participants as part of an 
estimate of future mortality rates. Furthermore, Brouhns et al (2002) also determine deterministic 
portfolio experience factors for the Belgian annuity policyholders, based on 3 years of historical 
data.  
 
The literature on stochastic modeling of portfolio specific experience and mortality basis risk is 
less developed, possibly because of a lack of historical insurance portfolio data. Van Broekhoven 
(2002) determines a Market Value Margin for portfolio specific mortality risk. However, the 
model is not set up to be easily combined with existing country population models and the 
structure of the model over ages is very restrictive. Since the pattern of the portfolio experience 
factor over ages can vary for different portfolios, there has to be enough flexibility in the 
assumed structure over ages. 
A related paper is the one of Jarner and Kryger (2009) who set up a model for mortality in small 
(country) populations, using the concept of frailty. The model seems to be too complex though to 
                                                 
20 Dutch Association of Insurers 
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be calibrated to the limited data of insurance portfolios. Sweeting (2007) focuses in a more 
qualitative way on basis risk in survivor swaps. More generally, Dahl and Møller (2006) look at 
hedge strategies for mortality risk in life insurance liabilities.      
 
So the model proposed in this chapter is the first stochastic model for portfolio specific mortality 
that: 

- can be combined easily with any stochastic country mortality process 
- has enough flexibility in the assumed structure over ages 
- has a structure that is simple enough to be able to calibrate it to limited historical data of 

life insurance portfolios 
     
The remainder of the chapter is organized as follows. First, in Section 6.2 the general model for 
stochastic portfolio specific experience mortality is defined. In Section 6.3 a 1-factor version of 
this model is applied to two insurance portfolios. Then in Section 6.4 and 6.5 the impact on the 
VaR and on the hedge effectiveness is quantified. Section 6.6 gives conclusions. 
 

6.2 General model for stochastic portfolio specific mortality 
experience 

 
The first step in stochastic modeling of portfolio specific mortality rates is determining the 
historical portfolio mortality rates, measured by insured amounts. There are different kinds of 
definitions for mortality rates which are calculated in a slightly different manner (see Coughlan 
et al (2007)), for example the initial mortality rate or the central mortality rate. Regardless which 
definition is used, it is important that the same mortality rate definition is used for setting the 
country population mortality rates and the portfolio specific mortality rates. In the remaining part 
of this chapter, we use the following definition for the initial mortality rate (see for example 
Namboodiri and Suchindran (1987): 
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where Dx,t is the number of deaths and ,

P
x tN  and ,

U
x tN  are the primo and ultimo total populations. 

The related portfolio mortality rate, measured by insured amounts, is: 
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x tA  and ,

U
x tA  are the insured amounts primo and ultimo for the total portfolio and ,

D
x tA  the 

insured amount of the deaths, for age x and year t.   
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Now the aim is to define a stochastic mortality model for the so-called portfolio experience 
mortality factor Px,t  for age x and year t: 
 

(6.3) ,
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=  

 
where ,

Pop
x tq  is the specific country population mortality rate for age x and year t, determined 

using (6.1). So Px,t represents the relation between a portfolio specific mortality rate (measured 
by insured amounts) and a country population mortality rate. Multiplying stochastic country 
mortality rates with stochastic Px,t’s will give stochastic portfolio specific mortality rates. In this 
context a portfolio is seen as a group of homogenous risks, or a product group. Px,t is specific for 
each product group, it behaves differently for annuities than it does for term insurance. For 
reasons of convenience, the product specific nature is left out of the notation in the remaining of 
the chapter, but the reader should be aware that all of the following is product (group) specific.    

6.2.1 The basic model 
Given that the model will often be based on a limited amount of data, it is desirable that the 
model for Px,t is as parsimonious as possible. Furthermore, the conjecture is that the difference 
between portfolio mortality and country population mortality is expected to be less at the highest 
ages, since the remaining country population at the highest ages is expected to have a relatively 
high percentage of people that are insured and have relatively high salaries. This is corroborated 
by the results in CMI (2004), where the difference between portfolio mortality and country 
population mortality is decreasing with age. Therefore, the proposed model leads to an 
expectation of Px,t  that approaches 1 for the highest ages.    
 
Given the above, we propose to model the mortality experience factor Px,t as: 
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where n is the number of factors of the model, X i (x) is the element for age x in the ith column of 
design matrix X, i

tβ  is the ith element of a vector with factors for year t and ξx,t the error term. 
Another way to define the model is in matrix notation:     
 
(6.5) t t tP X β ξ= + +1  
 
where Pt is the vector of mortality experience factors, βt  the vector with factors and ξt the vector 
of error terms for time t. Furthermore, to ensure that Px,t approaches 1, we require: 
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where ω is the closing age of the mortality table (usually 120).  
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Now given a design matrix X, the vector βt has to be estimated for each year. The structure of X 
(and the corresponding β’s) can be set in different ways, depending on what fits best with the 
data and the problem at hand. One could use for example: 
 

a) principal components analysis to derive the preferred shape of the columns Xi. 
b) a similar structure as the multi-factor model proposed by Nelson and Siegel (1987) for 

modeling of yield curve dynamics. 
c) a more simple structure, for example using 1 factor where the vector X is a linear function 

in age. 
 
a) Principal Components Analysis (PCA) 
Principal components analysis is a statistical technique that linearly transforms an original set of 
variables into a substantially smaller set of uncorrelated variables that represents most of the 
information in the original set of variables. Its goal is to reduce the dimensionality of the original 
data set.  
 
The (m x k) matrix P contains historical observations of Px,t for m years and k ages. Instead of 
assessing the Px,t process for each age individually, the goal of PCA is to derive r linear 
combinations (where r < k) that capture most of the information in the original variables: 
 

(6.7) 
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where Pj is the vector of observations for age class j. 
 
Or, in matrix notation: 
 
(6.8) Z PV=  
 
It can be shown (see for example Jolliffe (1986)) that the difference between the original data set 
and the set of linear combinations can be minimized by taking the eigenvectors of the covariance 
matrix ΣP* of the de-meaned historical observation matrix P* as the columns of matrix V. The 
corresponding eigenvalues λj indicate the proportion of variance that each eigenvector (principal 
component) accounts for. By ordering the eigenvalues in such a way that λ1 ≥ λ2 ≥ … ≥ λk ≥ 0, 
the dimensionality of the problem can be reduced by selecting the r eigenvalues (and the 
corresponding eigenvectors) that explain most of the variance of the original data set. The 
selected eigenvectors can be used as the columns Xi in (6.4). 
 
b) Similar structure as Nelson and Siegel (1987) 
Nelson and Siegel (1987) developed a parsimonious multi-factor model for yield curves that has 
the ability to represent shapes generally associated with yield curves. They model the 
instantaneous forward curve as: 
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(6.9) 1 2 3( ) t t

t t t t tf e eλ τ λ ττ β β β λ− −= + +  
 
where the parameters β1t, β2t, β3t and λt have to be estimated from the observed yield curves. In 
practice λt is often fixed at a pre-specified value, simplifying the estimation procedure. 
 
We are interested in the curve of Px,t over the ages. As mentioned above, the observed shapes of 
this curve are often upward (and sometimes downward) sloping towards 1 for higher ages. So 
although much more erratic, these historical shapes roughly resemble possible shapes (not levels) 
of yield curves. Therefore a structure similar as (6.9) could be used for modeling the Px,t’s. An 
example of a possible 2-factor structure is given in appendix 6a.    
 
c) A more simple structure 
An alternative for structure a) and b) is a more simple structure, for example one where it is 
assumed that Px,t is linear in age for each t. It depends on the size of the insurance portfolio and 
the historical period whether structure a) leads to usable results and structure b) leads to a better 
fit to the data than this simple structure. For very large portfolios, structure a) and b) could be the 
most appropriate solutions. However, for the insurance portfolios considered in this chapter, with 
14 years of history and respectively about 100.000 policies and about 45.000 policies, principle 
components analysis did not lead to usable results, and structure b) did not fit the data better than 
a simple linear structure (see section 6.3).  

6.2.2 Fitting the basic model 
The structure of the model is such that it could be fitted with Ordinary Least Squares (OLS). 
However, the observations Px,t are all based on different exposures to death and observed deaths, 
so there is generally significant heteroscedasticity. Therefore Generalized Least Squares (GLS) 
should be used (Verbeek (2008)). When applying GLS in case of heteroscedasticity, each 
observation is weighted by (a factor proportional to) the inverse of the error standard deviation. 
Fitting this transformed model with OLS gives the GLS estimator, which accounts for the 
heteroscedasticity in the data.  
 
When the available data are a cross-section of group averages with different group sizes and the 
observations are homoscedastic at individual level, the variance of the error term of the group 
averages is inversely related to the number of observations per group. In that case the square root 
of the number of observations in the group can be used as weights (Verbeek (2008)). For the 
problem in this chapter this means that the square root of the number of deaths can be used as 
weights. So using a diagonal weight matrix Wt with these weights and applying it to (6.5) leads 
to a transformed model: 
 
(6.10) ( ) ( )* * *

t t t t t t t t tW P W X W or P Xβ ξ β ξ− = + − = +1 1   
 
Where the vectors or matrices labeled with an * are weighted with Wt. Now applying OLS to 
(6.10) gives the GLS estimator for βt:  
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(6.11) ( ) ( ) ( ) ( )
1 * 1* * *ˆ

t t t t t t tX X X P X W W X X W W Pβ
− −′ ′ ′ ′ ′ ′= − = −1 1  

 
This procedure can be repeated for each historical observation year, leading to a time series of 
vector t̂β . 

6.2.3 Adding stochastic behavior 
Now using the time series of the fitted βt’s, a Box-Jenkins analysis can be performed to 
determine which stochastic process fits the historical data best 21 . However, an important 
requirement in this case is biological reasonableness. For example, when assuming a non-
stationary process such as a Random Walk for the βt’s, in certain scenarios the Px,t ‘s could be 0 
for all ages for some time, which is not biologically reasonable. Since the difference between 
country population mortality and portfolio mortality is dependent on factors that in our 
experience are normally relatively stable (size, composition and relative welfare of the portfolio), 
it does not seem reasonable to assume that this difference can increase without limit. Therefore, a 
stationary process seems the most appropriate in this case. Given the often limited historical 
period of observations and the requirement of parsimoniousness, in most cases the most 
appropriate model will then be a set of correlated first order autoregressive (AR(1)) processes or 
equivalently, a restricted first order Vector Autoregressive (VAR) model: 
 
(6.12) 1 1t t tβ δ β ε−= + Θ +   
 
where Θ1 is a n x n diagonal matrix, δ is a n-dimensional vector and εt is a n-dimensional vector 
of white noise processes with covariance matrix Σ. 
 
Possible alternatives are an unrestricted VAR(1) model or a first order (restricted) Vector Moving 
Average (VMA) model. In some cases an even simpler process than (6.12) is possible, being the 
so-called ARIMA(0,0,0)22 process: 
 
(6.13) t tβ δ ε= +    
 
Model (6.12) and (6.13) can be fitted using OLS equation by equation. From the residuals e of 
the n equations the elements (i,j) of Σ can be estimated as: 
 

(6.14) 
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e e
T K

σ
=
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− ∑  

 
where K is the maximum number of parameters used in either equations i or j (that is 2 when 
both processes are AR(1) processes). 

                                                 
21 This is possible under the assumption that the historical fitted parameters are certain. Another possible approach 
would be to fit the parameters and the stochastic process at once, for example using a state space method combined 
with the Kalman filtering technique. 
22 Note that various names are used for this process in literature. Since the name ARIMA(0,0,0) seems to be the 
most widely used, we have adopted this name in this chapter. 
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An alternative is to estimate this simultaneously with the stochastic processes of the country 
population mortality model, which is the subject of the next paragraph. 
 
When the insurance portfolio has developed significantly over the years, the fitted parameters 
over time are subject to heteroscedasticity. In this case GLS could be used, using either the 
results from table 6.5 in appendix 6b or the square root of the number of deaths (see paragraph 
6.2.2) as weights. When the portfolio has grown significantly and the current size of the portfolio 
is believed to be more representative for the future, the relative weights can also be applied to the 
residuals, weighting the earlier residuals less than the more recent ones. 

6.2.4 Combine the process with the stochastic country population model 
To end up with a stochastic process for portfolio specific mortality rates, the correlation between 
country population mortality rates and the portfolio mortality experience factors has to be taken 
into account. Therefore, the processes of the drivers of these have to be estimated simultaneously. 
Let us assume that the country population mortality is driven by m factors of which the processes 
αt can be written as: 
 
(6.15) 1,....,k

t k k kX k mα α αα η ε= + =   
 
Now when the historical observation period is equal for the country mortality rates and the 
portfolio mortality experience factors, Seemingly Unrelated Regression (SUR, see Zellner (1963)) 
can be applied to fit all processes simultaneously. The processes do not have to be similar, so 
AR(1), Random Walk or other ARIMA models can be combined. 
 
Re-writing (6.12) for each element i in a more general form as i

t i i iX β β ββ η ε= + and combining 
all processes gives: 
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which can be written more compactly as: 
 
(6.17) , , ,Y X α β α β α βη ε= +  
 
Now these processes can be fitted with SUR using the following steps: 
 

1) Fit equation by equation using OLS 
2) Use the residuals to estimate the total covariance matrix Ω̂  with (6.14) 
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3) Estimate η̂  using GLS   
 
To be more specific, the resulting estimator in step 3) is determined as: 
 

(6.18) ( ) ( )1
, 1 , , 1ˆ ˆˆ X X X Yα β α β α βη

−
− −′ ′= Ω Ω  

 
As mentioned earlier, in most cases the historical data period for portfolio mortality will be 
shorter than of country population mortality. In this case an alternative is only to do steps 1) and 
2). In step 1) all available historical observations can be used for the different processes. In step 
2) for the country population mortality the same historical data period should be used as is 
available for the portfolio mortality.  
 

6.3 Application to example insurance portfolios 
 
As mentioned in section 6.2, Px,t is specific for each product group or portfolio of homogeneous 
risks. In this section the general model described in section 6.2 is applied to two insurance 
portfolios23. The portfolios are respectively large and medium sized, and only data for males 
from age 65 on is taken into account. The large portfolio is a collection of collective pension 
portfolios of the Dutch insurers and contains about 100.000 male policyholders aged 65 or older. 
The medium portfolio is an annuity portfolio with about 45.000 male policyholders aged 65 or 
older.  Note that this medium portfolio has developed significantly over time, so had fewer 
policyholders in earlier years. For both portfolios 14 years of historical mortality data is available.  
 
Due to the relatively short historical period an the erratic pattern over the ages of the observed 
Px,t’s, principal components analysis does not give usable or interpretable results for these 
portfolios. To be specific, the resulting shapes of the columns Xi are very erratic and do not have 
a clear interpretation (such as for example level, slope or curvature). 
 
For both portfolios, we examined a collection of 1-, 2-, and 3-factor models and concluded that 
the 2- and 3- factor models did not fit the data much better than a 1-factor model24. Since the 1-
factor model uses fewer parameters, the Bayesian Information Criterion (BIC) 25  is more 
favourable for this structure. Therefore, the model we use is model (6.4) with n = 1 and: 
 

(6.19) 1( ) 1
x

X x x
δ

δ ω
ω δ

−
= − ≤ ≤

−
  

 
where δ is the start age (in this case 65) and ω is the end age (120). So in this formulation of 
model (6.4), the vector X is a linear function in age and, as required, X1(ω) = 0.  
 

                                                 
23 The author thanks the Centrum voor Verzekeringsstatistiek (CVS) and Erik Tornij for the data of the large 
portfolio, and Femke Nawijn and Christel Donkers for the data of the medium portfolio. 
24 The fitting results for the 2-factor and 3-factor models are available upon request. 
25 BIC is a criterion that provides a trade-off between goodness-of-fit and the parsimony of the model.   
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The reason why the 1-factor model fits the data as well as 2- or 3-factor models is that the data 
shows an upward slope for increasing ages, but the pattern along the ages is very volatile. For 
example, figure 6.1 shows two fits for the years 2006 and 2000. Fitting a more complex model 
through this data will not reduce the residuals significantly. Of course, this observation depends 
on the characteristics of the specific portfolio to which the model is fitted. For larger portfolios a 
2- or 3-factor could give better results, since such a model is able to capture more shapes of the 
portfolio experience mortality factor curve.   
 
       Figure 6.1: example fit of model to actual observations for years 2006 and 2000 
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The model is fitted using the procedure described in paragraph 6.2.2, where we have used the 
square root of the number of deaths as weights. The fitted β’s are shown in figure 6.226. Further 
results are given in table 6.5 in appendix 6b. 
 
         Figure 6.2: fitted β’s for historical years 1993-2007 
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26 Note that although we have 14 years of data for both portfolios, the periods are slightly different, having data from 
1993-2006 for the large portfolio and from 1994-2007 for the medium portfolio. 
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For both portfolios the results show an autoregressive pattern for the β’s. Now a stochastic 
process for the future β’s has to be selected. As mentioned in paragraph 6.2.3, a stationary 
process will be most appropriate. Also, since the historical data period is limited, the model 
should be as parsimonious as possible. We have fitted an AR(1), AR(2) and ARIMA(0,0,0) 
process to the data shown in figure 2. For both portfolios the ARIMA(0,0,0) process led to a more 
favorable BIC compared to the other processes. 
 
Because of the significant development of the medium sized portfolio over the historical years, 
GLS is used for fitting the ARIMA(0,0,0) process. The square roots of the relative number of 
deaths in a year are used as weights. Relative means relative to the average number of deaths. 
These weights are also applied to the residuals, giving less weight to years where the portfolio 
was relatively small. Since the large portfolio was relatively stable over time, OLS is used for 
fitting the ARIMA(0,0,0) process for this portfolio.  
 
The fitted processes for the portfolios are: 
 
(6.20) Large portfolio: ˆ0, 2497 , 0,0625t tβ ε σ= − + =    

 
(6.21) Medium portfolio:  ˆ0,3798 , 0,1130t tβ ε σ= − + =  
 
The estimated error standard deviation σ̂  is significantly larger for the medium sized portfolio, 
which is mainly the result of having fewer policyholders. The result of this is shown in figure 6.3, 
where the best estimates and the 99,5% / 0,5% percentiles are given for the portfolio experience 
mortality factors in the year 201627. These specific percentiles are shown because the SCR of 
Solvency 2 is based on a 99,5% percentile. 
 
     Figure 6.3: best estimates and 99,5% / 0,5%  percentiles for both portfolios - 2016 
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The figure shows that for the large portfolio the difference between the best estimate and the 
percentile(s) is in the range 10-15 %-point for ages 65-80. So taking this stochastic behaviour of 
the portfolio experience mortality factor into account can have a reasonable impact on for 
                                                 
27 Since a stationary process is assumed, the figure will be similar for other projection years. 
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example the Value at Risk. As expected, the impact is larger for the medium portfolio, where the 
difference between the best estimate and the percentile(s) is almost 30 %-point at its maximum.  
 

6.4 Numerical example 1: Value at Risk 
 
An important application of the presented model is the quantification of the Value at Risk (VaR) 
or SCR for longevity or mortality risk. In this paragraph the VaR is determined for the two 
portfolios, for different definitions / horizons of the VaR. First the model has to be combined 
with a model for country population mortality risk. 

6.4.1 Stochastic country population mortality model 
For the stochastic country population model we use the model of Cairns et al (2006a): 
 
(6.22) ( )1 2

,logit Pop
x t t tq x xκ κ= + −  

 
Where x  is the mean age in the sample range and 1

tκ  and 2
tκ  the two (stochastic) factors. We 

fitted this model to data of the Dutch population for the years 1950 – 2007. Using the resulting 
time series of parameter estimates, a 2-dimensional random walk process is fitted for the factors. 
The fitted parameters and the covariance matrices, including the covariances with the portfolio 
experience mortality process of both portfolios, are given in appendix 6b.  
 
Now combining the stochastic process above and the process described in section 6.3 leads to 
stochastic portfolio specific mortality rates. Figure 6.4 gives the best estimate mortality rates and 
percentiles for age 65. The percentiles are based on respectively deterministic and stochastic 
Px,t’s. 
 
      Figure 6.4: best estimates and percentiles, with stochastic or deterministic Px,t 
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The figure shows that the additional risk of including stochastic Px,t ’s is highest at the start of the 
projection and decreases slowly in time. The reason for this is that the country population 
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mortality rate risk is gradually increasing over time, resulting in a higher diversification effect 
between country population mortality rates and the Px,t ’s over time. 
 
The percentiles for the medium portfolio seem quite dramatic. However, note that the shown 
percentiles are a result of picking the particular percentile every year, and not picking 1 scenario 
that represents the x%-percentile for the whole projection. Because of the assumed ARIMA(0,0,0) 
process the extremely low outliers will normally be (partially) compensated somewhere in time 
by high outliers. This is shown in figure 6.5, where two random (simulated) scenarios of the β’s 
are given as an example.  
 
        Figure 6.5: two random (simulated) scenarios for β - medium portfolio 
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6.4.2 Impact on Value at Risk 
Now using the described stochastic processes the impact on the VaR of stochastic (instead of 
deterministic) Px,t’s is determined for both portfolios. The (present) value of liabilities is 
calculated for all simulated mortality rate scenarios28. The VaR is then defined as the difference 
between the x%-percentile and the average value of the liabilities. The impact is determined for 
three different definitions / horizons, which are all being used in practice: 

1) 1-year horizon, 99,5% percentile, including effect on best estimate after 1 year 
2) 10-year horizon, 95% percentile, including effect on best estimate after 10 years 
3) Run-off of the liabilities, 90% percentile 

 
So for definitions 1) and 2), at the 1-year or 10-year horizon all parameters are re-estimated 
using the (simulated) observations in the first 1 or 10 years, for each simulated scenario. The 
impact of the new parameterization on the best estimate of liabilities (for each scenario) is taken 
into account in the VaR. The results for the large and medium portfolio are given in respectively 
table 6.1 and table 6.2. 
 

                                                 
28 For convenience we assumed that the portfolios only contain pension or annuity payments, so no spouse pension 
or annuities on a second life. 
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Table 6.1: impact of stochastic Px,t   on VaR – large portfolio (in millions of  Euros) 

VAR definition Deterministic P x,t Stochastic P x,t % difference
1-year, 99,5% 126,4 138,2 + 9,3%
10-year, 95% 182,3 194,3 + 6,6%
Run off, 90% 136,5 145,9 + 6,8%  
 
Table 6.2: impact of stochastic Px,t   on VaR – medium portfolio (in millions of Euros) 

VAR definition Deterministic P x,t Stochastic P x,t % difference
1-year, 99,5% 45,1 73,0 + 61,8%
10-year, 95% 69,2 95,1 + 37,4%
Run off, 90% 54,1 75,1 + 38,8%  
 
Table 6.1 shows that for the large portfolio stochastic Px,t’s lead to a VaR that is about 7%-9% 
higher compared to the VaR calculated with deterministic Px,t’s. Table 6.2 shows that the impact 
for the medium portfolio is very high. The increase in VaR is between 37% and 68%, depending 
on the definition for VaR used. The reason for this is the large increase in volatility due to the 
addition of the stochastic Px,t’s, which is mainly related to the size of the portfolio. Since a large 
part of the insurance portfolios in practice are of this size or smaller, this should be a point of 
attention when developing or reviewing internal models for mortality and longevity. 
 

6.5 Numerical example 2: hedge effectiveness / basis risk 
 
Because of the increasing external requirements and focus on risk measurement and risk 
management, the interest in hedging mortality or longevity risk is also increasing. A result of this 
is that a market for mortality and longevity derivatives is emerging (see Loeys et al (2007)). One 
of the main characteristics of these derivatives is that the payoff depends on country population 
mortality. While this certainly has advantages regarding transparency and market efficiency, the 
impact of the basis risk is unclear. Basis risk is the risk arising from a difference between the 
underlying of the derivative and the actual risk in the liability portfolio. The model presented in 
this chapter can be used to quantify this basis risk. In the example below the basis risk will be 
quantified for the two portfolios, where the longevity risk is (partly) hedged with the so-called q-
forwards.  
 
A q-forward is a simple capital market instrument with similar characteristics as an interest rate 
swap. The instrument exchanges a realized mortality rate in a future period for a pre-agreed fixed 
mortality rate. This is shown in figure 6.6. The pre-agreed fixed mortality rate is based on a 
projection of mortality rates, using a freely available and well documented projection tool29. 
 

                                                 
29 For more information, see http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics 
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Figure 6.6: mechanics of a q-forward 
 

 
 
 
 
 

 
For example, when the realized mortality rate is lower than expected, the pension / annuity 
insurer will receive a payment which (partly) compensates for the increase of the expected value 
of the insurance liabilities (caused by the decreasing mortality rates). 
 
The basis for the instrument is the (projected) mortality of a country population, not the mortality 
of a specific company or portfolio. This makes the product and the pricing very transparent 
compared to traditional reinsurance. 
 
For both insurance portfolios we determined a minimum variance hedge, based on deterministic 
Px,t’s. The hedge is determined for a horizon of 10 years, but including the effect on the best 
estimate after 10 years (conform definition 2 of VaR in paragraph 6.4.2). The hedge is 
determined for age-buckets of 5 years. For every bucket i, the impact of small shocks of the two 
factors of the country population model on the value of the liabilities and the value of an 
appropriate q-forward contract are calculated. The required nominal ia∗  for the q-forward of 
bucket i is then determined as: 
 

(6.23) 1 1 2 2
2 2

1 2
i

l h l h
a

h h
∗ +

=
+

 

 
where li and hi are the impact of the shock of the ith factor on respectively the liabilities (l) and 
the hedge instrument (h). This expression is obtained by solving the required nominal from the 
equation that results when minimising the variance of the hedge result. 
  
The resulting hedge portfolio consists of 5 q-forwards for age-buckets of 5, from age 65 until age 
89. The payoff of such a q-forward depends on the average mortality rate for the 5 ages in the 
bucket. The exact composition of both the hedge portfolios is given in appendix 6c. 
 
Tables 6.3 and 6.4 show the impact on the hedge effectiveness when the Px,t’s are assumed to 
follow the stochastic process described in section 6.3. 
 
Table 6.3: impact of stochastic Px,t   on hedge effectiveness – large portfolio 

VAR unhedged VAR hedged % reduction
Deterministic P x,t 182,3 64,0 64,9%
Stochastic P x,t 194,3 81,9 57,8%  
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Table 6.4: impact of stochastic Px,t   on hedge effectiveness – medium portfolio 
VAR unhedged VAR hedged % reduction

Deterministic P x,t 69,2 23,6 65,8%
Stochastic P x,t 95,1 47,9 49,7%  
 
The tables show that given deterministic Px,t’s, the hedge reduces the VaR with about 65%. The 
risk is not fully hedged, because the hedge is based on small shocks of the two country 
population factors, while the factors in the tails of the distributions (which are relevant for VaR) 
are often more extreme. 
 
For the large portfolio, table 6.3 shows that the hedge quality is decreasing, but is still reasonable. 
The basis risk for this portfolio is therefore limited. The reason for this is that on a longer 
horizon the impact of stochastic Px,t’s levels out because of the assumed autoregressive process. 
 
For the medium portfolio the hedge effectiveness is reduced to a larger extent. The effectiveness 
of the hedge can be improved by periodically adjusting the hedge portfolio. For smaller 
portfolios than this, it is probably questionable whether it is sensible to set up such hedge 
constructions. 
 

6.6 Conclusions 
 
In this chapter a stochastic model is proposed for stochastic portfolio experience. Adding this 
stochastic process to a stochastic country population mortality model leads to stochastic portfolio 
specific mortality rates, measured in insured amounts. The proposed stochastic process is applied 
to two insurance portfolios. The results show that the uncertainty for the portfolio experience 
factor Px,t  can be significant, mostly depending on the size of the portfolio. 
 
The impact of the VaR for longevity risk is quantified. Depending on the definition used, the 
VaR increases by about 7%-9% for the large portfolio. The impact for the medium portfolio is 
very high, with an increase in VaR of 37%-68%. The reason for this is the high increase in 
volatility due to the addition of the stochastic Px,t’s. Since a large part of the insurance portfolios 
in practice are of this size or smaller, this should be a point of attention when developing or 
reviewing internal models for mortality and longevity. 
 
Furthermore, the basis risk is quantified when hedging portfolio specific mortality risk with q-
forwards, of which the payoff depends on country population mortality rates. For the large 
portfolio the hedge quality is decreasing, but is still reasonable. The reason for this is that on a 
longer horizon the impact of stochastic Px,t’s levels out because of the assumed autoregressive 
process. For the medium portfolio hedge effectiveness is reduced to a larger extent. For smaller 
portfolios than this, it is probably questionable whether it is sensible to set up such hedge 
constructions. 
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Appendix 6a: example 2-factor model based on Nelson & Siegel 
 
Nelson and Siegel (1987) proposed a parsimonious model for yield curves, which allows for 
different shapes of the curve. The Nelson-Siegel forward curve can be viewed as a constant plus 
a Laguerre function, which is a polynomial times an exponential decay term. It has three 
elements, respectively for the short, medium and long term. The model is very often used for 
yield curves and could serve as a basis for thinking for the Pt curves that are the subject of this 
chapter. However, the Nelson-Siegel curve cannot directly be used for the Pt curves because Px,t 
should approach 1 near the closing age. Also, another requirement mentioned in section 6.2 is 
that the model is as parsimonious as possible, so a 2-factor model might be more appropriate in 
most cases. 
 
Many variations on the Nelson-Siegel curve are possible. An example of such a model is the 
following model: 
 
(6.24) ( ) ( )1 1 2
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The variable τ is 0 for the starting age of the data (in this case 65 years), τm is a strategically set 
middle point of the age interval (in this case 20, representing age 85), ϕ is the density of a 
standard normal distributed variable, α is a variable that arranges the shape of wτ  and can be set 
at 2 for example, and φ  is a scale variable. The variable λ1 can be solved in such a way that the 
second term of (6.24) approaches 0 for the closing age. The variable λ2 can be solved in such a 
way that the third term of (6.24) is at its maximum somewhere between τ = 0 and τm (in this case 
75 years). The factors are shown in figure 6.7, where x1 represents the second term and x2 the 
third term of (6.24). 
 
As can be seen from the figure and (6.24), the curve starts at age 65 at 1 + β1t  (where β1t  will be 
negative in general) and ends at 1 at higher ages. With the model (6.24) different shapes of the 
curve can be fitted, and the requirements in section 6.2 are met. A disadvantage of the model is 
the large number of parameters, of which some are set more or less arbitrarily. 
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        Figure 6.7: factors for model (A.1) 
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Appendix 6b: further results 
 
Table 6.5 shows the fitting results for the β’s in each year, for the large and medium sized 
portfolio. 
 
Table 6.5: yearly fitting results for β’s 
Results large portfolio Results medium portfolio

Year β s.e. t-ratio Year β s.e. t-ratio
1993 -0,239 0,036 -6,55 1994 -0,333 0,103 -3,23
1994 -0,149 0,041 -3,67 1995 0,127 0,201 0,63
1995 -0,194 0,030 -6,55 1996 -0,243 0,127 -1,92
1996 -0,246 0,033 -7,43 1997 -0,467 0,091 -5,14
1997 -0,228 0,032 -7,20 1998 -0,330 0,056 -5,92
1998 -0,368 0,023 -16,12 1999 -0,143 0,065 -2,21
1999 -0,208 0,036 -5,77 2000 -0,427 0,057 -7,56
2000 -0,261 0,029 -8,91 2001 -0,349 0,089 -3,94
2001 -0,304 0,032 -9,46 2002 -0,331 0,052 -6,32
2002 -0,226 0,033 -6,88 2003 -0,408 0,050 -8,11
2003 -0,168 0,046 -3,62 2004 -0,515 0,035 -14,77
2004 -0,321 0,048 -6,71 2005 -0,462 0,047 -9,81
2005 -0,259 0,042 -6,11 2006 -0,434 0,046 -9,52
2006 -0,325 0,040 -8,18 2007 -0,355 0,079 -4,52  
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Table 6.6 shows the fitted parameters for the 2-dimensional random walk model of section 6.4, 
and the covariance matrix including the covariances with the process of section 6.3. Note that the 
country population parameter estimates slightly differ for the large and medium portfolio, 
because for the medium portfolio the year 2007 is also taken into account. 
 
Table 6.6: fit of country population model and covariance matrices 

 

Fit - large portfolio Fit - medium portfolio
µ σ µ σ

κ 1 -0,006206 0,0312395 κ 1 -0,006722 0,022663
κ 2 0,000182 0,00140485 κ 2 0,000175 0,001436

Covariance matrix - large portfolio Covariance matrix - large portfolio

β κ 1 κ 2 β κ 1 κ 2

β 0,003911 0,000445 0,000041 β 0,013808 0,002174 0,000053
κ 1 0,000445 0,000976 0,000022 κ 1 0,002174 0,000514 0,000020
κ 2 0,000041 0,000022 0,000002 κ 2 0,000053 0,000020 0,000002  

 

Appendix 6c: hedge portfolios 
 
Table 6.7: hedge portfolios for large and medium insurance portfolio 
Characteristics hedge portfolio - large portfolio Characteristics hedge portfolio - medium portfolio

q-forward Start age End age Nominal Tick Size q-forward Start age End age Nominal Tick Size
1 65 69 117.865.528 100 1 65 69 74.346.033 100
2 70 74 34.221.141 100 2 70 74 24.226.106 100
3 75 79 10.420.145 100 3 75 79 3.203.979 100
4 80 84 2.213.481 100 4 80 84 143.135 100
5 85 89 315.640 100 5 85 89 8.224 100  
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Chapter 7 
 

Micro-Level Stochastic Loss 
Reserving*  

 
 
 
* This chapter is based on: 
 
ANTONIO, K. AND R. PLAT (2010): Micro-Level Stochastic Loss Reserving, Working Paper 
 
 

7.1 Introduction 
 
In this chapter a micro-level stochastic model for the run-off of general insurance30 claims is 
developed. Figure 7.1 illustrates the run-off (or development) process of a general insurance 
claim. It shows that a claim occurs at a certain point in time (t1), consequently it is declared to 
the insurer (t2) (possibly after a period of delay) and one or several payments follow until the 
settlement (or closing) of the claim. Depending on the nature of the business and the claim, the 
claim can re-open and payments can follow until the claim finally settles. 
 
Figure 7.1: run-off process of an individual general insurance claim 

Occurence    Loss payments Re-opening    Closure

Closure           payment

          t1 t2     t3        t4     t5         t6    t7           t8    t9

           IBNR
RBNS

        Notification

 
 

                                                 
30 General insurance is also often referred to as ‘Non-Life’ or ‘Property and Casualty’ insurance. 
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At the present moment (say t) the insurer needs to put reserves aside to fulfill its liabilities in the 
future. This actuarial exercise will be denoted as ‘loss-’ or ‘claims reserving’. Insurers, 
shareholders, regulators and tax authorities are interested in a rigorous picture of the distribution 
of future payments corresponding with the open (i.e. not settled) claims in a loss reserving 
exercise. General insurers distinguish between RBNS and IBNR reserves. ‘RBNS’ claims are 
claims that are Reported to the insurer But Not Settled, whereas ‘IBNR’ claims Incurred But are 
Not Reported to the company. For an RBNS claim occurrence and declaration take place before 
the present moment and settlement occurs afterwards (i.e. t  ≥ t2 and t  < t6 (or τ < t9) in figure 7.1). 
An IBNR claim has occurred before the present moment, but its declaration and settlement 
follow afterwards (i.e. t  ∈ [t1,t2) in figure 7.1). The interval [t1, t2] represents the so-called 
reporting delay. The interval [t2, t6] (or [t2, t9]) is often referred to as the settlement delay. Data 
bases within general insurers typically contain detailed information about the run-off process of 
historical and current claims. The structure in figure 7.1 is generic for the kind of information 
that is available. In the remaining of this chapter we will use the label ‘micro-level’ data to 
denote this sort of data structures. 
 
The measurement of future cash flows and its uncertainty becomes more and more important. 
That also gives rise to the question whether the currently used techniques can be improved. In 
this chapter we will address that question for general insurance. Currently reserving for general 
insurance is based on aggregated data in run-off triangles. In a run-off triangle observable 
variables are summarized per arrival year and development year combination. An arrival year is 
the year in which the claim occurred, while the development year refers to the delay in payment 
relative to the origin year. Examples of run-off triangles are given in section 7.6. 
 
There exists a vast literature about techniques for claims reserving, largely designed for 
application to loss triangles. An overview of these techniques is given in England and Verrall 
(2002), Wüthrich and Merz (2008) or Kaas et al (2008). These techniques can be applied to run-
off triangles containing either paid losses or incurred losses (i.e. the sum of paid losses and case 
reserves). The most popular approach is the Chain Ladder approach, largely because of is 
practicality. However, the use of aggregated data in combination with (stochastic variants of) the 
Chain Ladder approach (or similar techniques) gives rise to several issues. A whole literature on 
itself has evolved to solve these issues, which are (in random order): 
 

1) Different results between projections based on paid losses or incurred losses, addressed 
by Quarg and Mack (2008), Posthuma et al (2008) and Halliwell (2009). 

2) Lack of robustness and the treatment of outliers, see Verdonck et al (2009). 
3) The existence of the Chain Ladder bias, see Halliwell (2007) and Taylor (2003). 
4) Instability in ultimate claims for recent arrival years, see Bornhuetter and Ferguson 

(1972). 
5) Modeling negative or zero cells in a stochastic setting, see Kunkler (2004). 
6) The inclusion of calendar year effects, see Verbeek (1972) and Zehnwirth (1994). 
7) The possibly different treatment of small and large claims, see Alai and Wüthrich (2009). 
8) The need for including a tail factor, see for example Mack (1999). 
9) Over parametrization of the Chain Ladder method, see Wright (1990) and Renshaw 

(1994). 
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10) Separate assessment of IBNR and RBNS claims, see Schieper (1991) and Liu and Verrall 
(2009). 

11) The realism of the Poisson distribution underlying the Chain Ladder method. 
12) Not using lots of useful information about the individual claims data, as noted by 

England and Verrall (2002) and Taylor and Campbell (2002). 
 
Most references above present useful additions to the Chain Ladder method, but these additions 
cannot all be applied simultaneously. More importantly, the existence of these issues and the 
substantial literature about it indicate that the use of aggregate data in combination with 
(stochastic variants of) the Chain Ladder approach (or similar techniques) is not fully adequate 
for capturing the complexities of stochastic reserving for general insurance. 
 
England and Verrall (2002) and Taylor and Campbell (2002) questioned the use of aggregate 
loss data when the underlying extensive micro-level data base is available as well. With 
aggregate data, lots of useful information about the claims data remains unused. Covariate 
information from policy, policy holder or the past development process cannot be used in the 
traditional stochastic model, since each cell of the run-off triangle is an aggregate figure. Quoting 
England and Verrall (2002, page 507) “[…] it has to be borne in mind that traditional techniques 
were developed before the advent of desktop computers, using methods which could be evaluated 
using pencil and paper. With the continuing increase in computer power, it has to be questioned 
whether it would not be better to examine individual claims rather than use aggregate data”.  
  
As a result of the observations mentioned above, a small stream of literature has emerged about 
stochastic loss reserving on an individual claim level. Arjas (1989), Norberg (1993) and Norberg 
(1999) formulated a mathematical framework for the development of individual claims. Using 
ideas from martingale theory and point processes, these authors present a probabilistic, rather 
than statistical, framework for individual claims reserving. Haastrup and Arjas (1996) continue 
the work by Norberg and present a first detailed implementation of a micro-level stochastic 
model for loss reserving. They use non-parametric Bayesian statistics which may complicate the 
accessibility of the paper. Furthermore, the case study is based on a small data set with fixed 
claim amounts. Recently, Larsen (2007) revisited the work of Norberg, Haastrup and Arjas with 
a small case-study. However, detailed information about his modeling choices is not available in 
the paper. Zhao et al (2009) and Zhao and Zhou (2009) present a model for individual claims 
development using (semi-parametric) techniques from survival analysis and copula methods. 
However, a case study is lacking in their work. 
 
In this chapter a micro-level stochastic model is used to quantify the reserve and its uncertainty 
for a realistic general liability insurance portfolio. Stochastic processes for the occurrence times, 
the reporting delay, the development process and the payments are fitted to the historical 
individual data of the portfolio and used for projection of future claims and its (estimation and 
process) uncertainty. Both the Incurred But Not Reported (IBNR) reserve as well as the Reported 
But Not Settled (RBNS) reserve are quantified and the results are compared with those of 
traditional actuarial techniques. 
 
We investigate whether the quality of reserves and their uncertainty can be improved by using 
more detailed claims data in this way. A micro-level approach allows much closer modeling of 
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the claims process. Lots of issues mentioned above will not exist when using a micro-level 
approach, because of the availability of lots of data and the potential flexibility in modeling the 
future claims process. For example, covariate information (deductibles, policy limits, calendar 
year) can be included in the projection of the cash flows when claims are modeled at an 
individual level. The use of lots of (individual) data avoids robustness problems and over 
parametrization. Also the problems with negative or zero cells and setting the tail factor are 
circumvented, and small and large claims can be handled simultaneously. Furthermore, 
individual claim modeling can provide a natural solution for the dilemma within the traditional 
literature whether to use triangles with paid claims or incurred claims. This dilemma is important 
because practicing actuaries put high value to their companies’ expert opinion which is 
expressed by setting an initial case reserve. Using micro-level data we use the initial case reserve 
as a covariate in the projection process of future cash flows. 
 
The remainder of the chapter is organized as follows. First, the dataset is introduced in section 
7.2. In section 7.3 the statistical model is described. Results from estimating all components of 
the model are in section 7.4. Section 7.5 presents the prediction routine and section 7.6 shows 
results and a comparison with traditional actuarial techniques. Section 7.7 gives conclusions. 
 

7.2 Data 
 
The data set used in this chapter contains information about a general liability insurance portfolio 
(for private individuals) of a European insurance company. The data available consists of the 
exposure per month from January 2000 till August 2009, as well as a claim file that provides a 
record of each claim filed with the insurer from January 1997 till August 2009. Note that we are 
missing exposure information for the period January 1997 till December 1999, but the impact of 
this lack on our reserve calculations will be very small.     
 
Exposure   The exposure is not the number of policies, but the “earned” exposure. That implies 
that 2 policies which are both only insured for half of the period are counted as 1. Figure 7.2 
shows the exposure per month. Note that the downward spikes correspond to the month February. 
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Figure 7.2: exposure per month from January 2009 till August 2009    

 
 
Random development processes   The claim file consists of 1.525.376 records corresponding 
with 491.912 claims. Figure 7.3 shows the development of 3 claims, taken at random from our 
data set. It shows the timing of events as well as the cost of the corresponding payments (if any). 
These are indicated as jumps in the figure. Starting point of the development process is the 
accident date. This is indicated with a sub–title in each of the plots and corresponds with the 
point x = 0. The x–axis is in months since the accident date. The y–axis represents the cumulative 
amount paid for the claim.  
 
Figure 7.3: development of 3 claims from the data set 
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Type and number of claims   In this general liability portfolio, there are 2 types of claims: 
material damage (‘material’) and bodily injury (‘injury’). Figure 7.4 shows the number of open 
and closed claims per arrival year, and whether they are closed or still open.  
 



 111 

Figure 7.4: number of open and closed claims, material and injury 
 
 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
  
 
The development pattern and loss distributions of those claim types are usually very different. In 
practice they are therefore treated separately in separate run-off triangles. Following this 
approach we will treat them separately too. 
 
Reporting and Settlement delay   Important drivers of the IBNR and RBNS reserves are the 
reporting delays and settlement delays. Figure 7.5 and 7.6 show the reporting delays and 
settlement delays separately for material and injury losses. The reporting delay is the time that 
passes between the occurrence date of the accident and the date it was reported to the insurance 
company. It is measured in month since the occurrence of the claim. The settlement delay is the 
time elapsed between the reporting data of the claim and the date of final settlement by the 
company. It is measured in months and only available for closed claims. 
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Figure 7.5: histogram of reporting delay for material claims and injury claims 
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Figure 7.6: histogram of settlement delay for material claims and injury claims 
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The figures above show that the observed reporting delays are of similar length for material and 
injury losses. However, the settlement delay is very different. The settlement delay is far more 
skewed to the right for the injury claims than for the material claims.  
  
Events in the development   The settlement delay is the result of the development process of the 
claim. During the development process, different types of events are possible. In this chapter we 
will distinguish three types of events that can occur during the development of a claim. “Type 1” 
events imply settlement of the claim without payment. With a “type 2” event we will refer to a 
payment with settlement at the same time. Intermediate payments (without settlement) are “type 
3” events. 
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Figure 7.7 gives the relative frequency of the different types of events over development quarters. 
With micro-level data the first development quarter is the period of 3 months following the 
reporting of the claim, the second quarter the period of 3 months following the first development 
quarter, et cetera.  
 
Figure 7.7: number of  each event type as percentage of total number of  events 
 
 
 
 
 

 
 
The figure shows that the proportions of each event type are stable over the development 
quarters for injury claims. For material claims, the proportion of event type 2 decreases for later 
development quarters, while the proportion of event type 3 increases.     
 
Payments   Events of type 2 and type 3 come with a payment. The distribution of these 
payments differs materially for the different type of claims. Figure 7.8 shows the distribution of 
the log payments, separate for material and injury claims. The payments are discounted to 1-1-
1997 with the Dutch consumer price inflation, to exclude the impact of inflation on the 
distribution of the payments. 
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Figure 7.8: distribution of payments for material claims and injury claims 
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The figures above suggest that a lognormal distribution would probably be reasonable for 
describing the distribution of the payments. This will be discussed further in section 7.4. 
Table 7.1 gives characteristics of the observed (discounted) payments for both material and 
injury losses. 
 
Table 7.1: characteristics observed payments 
Measure Material Injury
Mean 277 1.395
Median 129 361
Minimum 0,0008 0,4875
Maximum 198.931 779.398
1% perc. 12 16
5% perc. 25 25
25% perc. 69 89
75% perc. 334 967
95% perc. 890 4.927
99% perc. 1.768 16.664  
 
Initial case estimates   As noted in section 7.1, often the problem arises that the projection based 
on paid losses is far different than the projection based on incurred losses. This problem is 
addressed recently by Quarg and Mack (2008), Posthuma et al (2008) and Halliwell (2009), who 
simultaneously model paid and incurred losses. Disadvantage of those methods is that models 
based on incurred losses can be instable because the methods for setting the case reserves are 
sometimes changed (for example, as a result of adequacy test results or profit policy of the 
company). Reserving models that are directly based on these case reserves (as part of the 
incurred losses) can therefore be instable. However, the case reserves can have added value as an 
explaining variable when projecting future payments. We have defined different categories of 
initial case reserves (separately for material claims and injury claims) that can be used as 
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explaining variables. Table 7.2 and 7.3 shows the number of claims, the average settlement delay 
(in months) and the average cumulative payment for these categories. 
 
Table 7.2: output for initial reserve categories, material claims 
Initial case average average cum.
reserve # claims settl. delay payments
= 10.000 465.015 1,87 252
> 10.000 385 10,88 7.950    
 
Table 7.3: output for initial reserve categories, injury claims 
Initial case average average cum.
reserve # claims settl. delay payments
= 1.000 3.709 9,87 2.570
(1.000 - 15.000] 5.165 15,17 3.872
> 15.000 360 35,20 33.840  
 
The tables clearly show the differences in settlement delay and cumulative payments for the 
different initial reserve categories. Therefore, it might be worthwhile to include these categories 
as explaining variables into the projection routine. 
 

7.3 The statistical model 
 
By a claim i is understood a combination of an occurrence time Ti, a reporting delay Ui and a 
development process Xi. Hereby Xi is short for (Ei(v), Pi(v))v∈[0,Vi]. Ei(vij) := Eij is the type of the 
jth event in the development of claim i. This event occurs at time vij, expressed in months after 
notification of the claim. Vi is the total waiting time from notification to settlement for claim i. If 
the event includes a payment, the corresponding severity is given by Pi(vij) :=Pij. The different 
types of events are specified in section 7.2. The development process Xi is a jump process. It is 
modeled here with two separate building blocks: the timing and type of events and their 
corresponding severities. The complete description of a claim is given by: 
 
(7.1) (Ti, Ui, Xi) with Xi = (Ei(v), Pi(v))v∈[0,Vi] 
 
Assume that outstanding liabilities are to be predicted at calendar time τ. We distinguish IBNR, 
RBNS and settled claims. 
 

• For an IBNR claim: Ti + Ui > τ  and Ti < τ 
• For an RBNS claim: Ti + Ui ≤ τ and the development of the claim is censored at (τ - Ti – 

Ui), i.e. only (Ei(v), Pi(v))v∈[0,τ - Ti - Ui] is observed. 
• For a settled claim: Ti + Ui ≤ τ and (Ei(v), Pi(v))v∈[0,Vi] is observed. 

7.3.1 Position Dependent Marked Poisson Process 
Following the approach in Haastrup and Arjas (1996) and Norberg (1993) we treat the claims 
process as a Position Dependent Marked Poisson Process (PDMPP), see Karr (1991). In this 
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application, a point is an occurrence time and the associated mark is the combined reporting 
delay and development of the claim. We denote the intensity measure of this Poisson Process 
with λ and the associated mark distribution with (PZ|t)t≥0. In the claims development framework 
the distribution PZ|t is given by the distribution PU|t of the reporting delay, given occurrence time 
t, and the distribution PX|t,u of the development, given occurrence time t and reporting delay u. 
The complete development process then is a Poisson Process on claim space 
 ?  = [0,∞) x [0,∞) x χ  with intensity measure: 
 
(7.2) | | ,( ) ( ) ( )U t X t udt P du P dxλ × ×  with (t,u,x) ∈ ?  
 
The reported claims (which are not necessarily settled) belong to the set: 
 
 ? r = { (t,u,x) ∈ ?  |  t+u ≤ τ } 
 
whereas the IBNR claims belong to: 
 
 ? i = { (t,u,x) ∈ ?  |  t ≤ τ , t + u > τ } 
 
Since both sets are disjoint, both processes are independent (see Karr (1991)). The process of 
reported claims is a Poisson Process with measure 
 

| | , [( , , ) ]
( ) ( ) ( ) 1 rU t X t u t u x C
dt P du P dxλ

∈
× × ×      

 
which equals 
 

(7.3) | ( )
| ( [0, ] ) | ,

|
( )( )

( )

( )1
( ) ( )1 ( )

( )
U t u t

U t t X t u
U t

ca
b

P du
dt P t P dx

P t
τ

τλ τ
τ

≤ −
∈− × ×

− 14243144424443
1442443

 

 
Part (a) is the occurrence measure. The mark of this claim is composed by a reporting delay, 
given the occurrence time (its conditional distribution is given by (b)) and the conditional 
distribution (c) of the development, given the occurrence time and reporting delay. 
 
Similarly, the process of IBNR claims is a Poisson process with measure: 
 

(7.4) ( ) | ( )
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|
( )( )

( )

( )1
( ) 1 ( )1 ( )

1 ( )
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P t
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τ

> −
∈− − × ×

− − 1424314444244443
1442443

 

 
where similar components can be indentified as in (7.3). 

7.3.2 The Likelihood 
The approach followed in this chapter is parametric. Therefore, we will optimize the likelihood 
expression for observed data over the unknown parameters used in this expression. 
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The observed part of the claims process consists of the development up to time τ of claims 
reported before τ. We denote these observed claims as follows: 
 
   ( )0 0 0

1
, ,i i i i

T U X
≥

 

 
where the development of claim i is censored 0 0

i iT Uτ − −  time units after notification. 
The likelihood of the observed claim development process can be written as (see Cook and 
Lawless (2007)): 
 
(7.5)   
 
  
 
 
 
The superscript 0 0

i iT Uτ − −  in the last term of this likelihood indicates the censoring of the 

development of this claim 0 0
i iT Uτ − −  time units after notification. The function w(t) gives the 

exposure at time t. 
 
For the reporting delay and the development process we will use techniques from survival 
analysis. The reporting delay is a one-time single type event that can be modeled using standard 
distributions from survival analysis. For the development process the statistical framework of 
recurrent events will be used. Cook and Lawless (2007) provide a recent overview of statistical 
techniques for the analysis of recurrent events. These techniques primarily address the modeling 
of an event intensity (or hazard rate). 
 
As mentioned in (7.1) for each claim i its development process consists of Xi = (Ei(v), 
Pi(v))v∈[0,Vi]. Hereby Ei(vij) := Eij is the type of the jth event in development of claim i, occurring 
at time vij. Vi is the total waiting time from notification to settlement for claim i. If the event 
includes a payment, the corresponding severity is given by Pi(vij) := Pij. To model the occurrence 
of the different events a hazard rate is specified for each type. The hazard rates hse, hsep and hp 
correspond to respectively type 1 (settlement without payment), type 2 (settlement with a 
payment at the same time) and type 3 (payment without settlement) events. 
 
Events of type 2 and 3 come with a payment. We denote the density of a severity payment with 
Pp. Using this notation the likelihood of the development process of claim i is given by: 
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Here δijk is an indicator variable that is 1 if the jth event in the development of claim i is of type k. 
Ni is the total number of events, registered in the observation period for claim i. This observation 
period is [0,τi] with τi = min(τ - Ti – Ui, Vi).  
 
Combining (7.5) and (7.6) gives the likelihood for the observed data: 
 
(7.7) 
 
    
 
 
 
 
 

7.3.3 Distributional assumptions 
In this paragraph we discuss the likelihood (7.7) in more detail. Distribution assumptions for the 
various building blocks, being the reporting delay, the occurrence times – given the reporting 
delay – and the development process, are presented. At each stage it is possible to include 
covariate information such as the initial case reserve categories. Our final choices and estimation 
results will be covered in section 7.4.   
 
Reporting delay   The notification of a claim is a one-time single type event that can be modeled 
using standard distributions from survival analysis (such as the Exponential, Weibull or 
Gompertz distribution). Figure 7.5 indicates that for a large part of the claims the claim will be 
reported in the first few days after the occurrence. Therefore we will use a mixture of one of the 
above mentioned distributions with one or more degenerate distributions for notification during 
the first few days. For example, for a mixture of a survival distribution fU with n degenerate 
components the density is given by: 
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where I{k} = 1 for the kth day after occurrence time t and I{k} = 0 otherwise. 
 
Occurrence process   When optimizing the likelihood for the occurrence process the reporting 
delay distribution and its parameters (as obtained in the previous step) are used. The likelihood 
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needs to be optimized over λ(t). A piecewise constant specification is used for this occurrence 
rate: 
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where the intervals are chosen in such a way that τ ∈ [dm-1,dm) and the exposure w(t) := wl for dl-1 

≤ t < dl.  
 
Let the indicator variable δ1(l,ti) be 1 if dl-1 ≤ ti < dl, with ti the occurrence time of claim i. The 
number of claims in interval  [dl-1,dl) can be expressed as: 
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The likelihood corresponding to the occurrence times is given by: 
 
(7.12)  
 
 
 
 
 
 
 
 
Optimizing this expression over λl (with l = 1,…,m) leads to: 
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Development process   Similar distributions as given for the reporting delay can be used for 
each type of event in the development process. Another alternative is a piecewise constant 
specification of the hazard rates. This implies: 
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where δ1(l,t) is 1 if al-1≤ t < al and 0 otherwise. This piecewise specification can be integrated in 
a straightforward way in likelihood specification (7.6) and (7.7), although the resulting 
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expression is complex in notation. The optimization of the likelihood expression can be done 
analytically or numerically. It might be worthwhile to fit the distribution separately for ‘first 
events’ and ‘later events’. This will be investigated in section 7.4.  
 
Payments   Event type 2 and type 3 come with a payment. Section 7.2 showed that the observed 
distribution of the payments has similarities with a lognormal distribution, but there might be 
more flexible distributions that fit the historical payment data better. Therefore, next to the 
lognormal distribution, we experimented as well with a generalized beta of the second kind 
(GB2), Burr and Gamma distribution. Also covariate information such as the initial reserve 
category and the development year can be taken into account. 
 

7.4 Estimation results 
 
In this paragraph the results of the calibration of the model to the historical data are given. 
Given the very different characteristics of material claims and injury claims, the processes 
described in section 7.3 are fitted (and projected) separately for those types of claims. This is in 
line with actuarial practice, where usually separate run-off triangles are constructed for material 
and injury claims. Optimization of all likelihood specifications was done with the Proc NLMixed 
routine in SAS.  
 
Reporting delay   In paragraph 7.3.3 we specified the possible models for the reporting delay. In 
this chapter we will use a mixture of a Weibull distribution and 9 degenerate distributions. Figure 
7.9 shows the fit of this mixture with the observed reporting delays. 
 
Figure 7.9: estimate of reporting delay 
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Occurrence process   Given the above specified distribution for the reporting delay, the 
likelihood (7.12) for the occurrence times can be optimized31. Monthly intervals are used for this, 

                                                 
31 This is done numerically with Proc NLMixed instead of using (3.13), in order to obtain the standard errors of the 
parameter estimates. These standard errors will also be used in the prediction process. 
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ranging from January 2000 till August 2009. The estimated λl’s (black line) and their 95% 
confidence intervals (grey area) are given in figure 7.10. 
 
Figure 7.10: estimate lambda’s and their uncertainty  

  
 
Development process   For the different event types in the development process delay the use of 
constant, Weibull and piecewise constant hazard rates are investigated. In the piecewise constant 
hazard rate specification for the development of the material claims, the hazard rate is assumed 
to be continuous on four month intervals: [0 – 4) months, [4 – 8) months, [8 – 12) months and ≥ 
12 months. For injury claims, the hazard rate is assumed continuous on intervals of six months: 
[0 – 6) months, [6 – 12) months, …, [36 – 42) months and ≥ 42 months. 
 
Figure 7.11 shows the estimates for the Weibull and piecewise constant hazard rates. All models 
are estimated separately for ‘first events’ and ‘later events’. 
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Figure 7.11: estimates for Weibull and piecewise constant hazard rates 

 
 
The piecewise constant specification reflects the actual data. The figure shows that the Weibull 
distribution is reasonably close to the piecewise constant specification. In the rest of this chapter 
we will use the piecewise constant specification. Because the Weibull distribution is a good 
alternative, we explain how to use both specifications in the prediction routine (see section 7.5). 
 
Payments   Several distributions have been fitted to the historical payments (that are discounted 
to 1-1-1997 with Dutch price inflation). We examined the fit of the Burr, Gamma and Lognormal 
distribution, combined with covariate information. Distributions for the payments are truncated 
at the coverage limit of € 2,5 million per claim. A comparison based on Bayes Information 
Criterium (BIC) showed that the lognormal distribution achieves a better fit than the Burr and 
Gamma distributions. When including the initial reserve category as covariate or both the initial 
reserve category and the development year, the fit further improves. Given these results, the 
lognormal distribution with the initial reserve category and the development year as covariates 
will be used in the prediction. The covariate information is included in both the mean µi and 
standard deviation σi of the lognormal distribution for observation i as follows: 
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where r is the initial reserve category and DYi is the development year. IDYi=s and Ii∈r are 
indicator variables denoting whether observation i corresponds with development year s and 
reserve category r.   
 
Figure 7.12 shows the corresponding qq-plots. 
 
Figure 7.12: normal qq-plots for fit of log(payments) 

  
 
The figures show that the fit to the data is good. Note that the fit in the left tail seems to be less 
good, but this is corresponding to payments of about 0 (so not important in this case). 
 

7.5 Predicting future cash flows 
 
To predict the outstanding liabilities with respect to this portfolio of liability claims, we 
distinguish between IBNR and RBNS claims. The following step by step approach allows to 
obtain random draws from the distribution of both IBNR and RBNS claims.  

7.5.1 Predicting IBNR claims 
As noted in section 7.3, an IBNR claim occurred already but is not reported to the insurer. 
Therefore, Ti + Ui > τ where Ti is the occurrence time of the claim and Ui is its reporting delay. 
The Ti’s are missing data: they are determined in the development process but unknown to the 
actuary at time τ. 
 
The prediction process for the IBNR claims requires the following steps: 
 
a) Simulate the number of IBNR claims in [0,τ] and their occurrence times 
According to the discussion in section 7.3 the IBNR claims are governed by a Poisson process 
with non-homogeneous intensity or occurrence rate: 
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(7.17) |( ) ( )(1 ( ))U tw t t P tλ τ− −    
 
were λ(t) is piecewise constant according to specification (7.10). The following property follows 
from the definition of non-homogeneous Poisson processes: 
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were NIBNR(l) is the number of IBNR claims in time interval [dl-1,dl). Note that the integral 
expression has already been evaluated (numerically) in the fitting procedure. 
 
Given the simulated number of IBNR claims nIBNR(l) for each interval [dl-1,dl), the occurrence 
times of the claims are uniformly distributed in [dl-1,dl). 
 
b) Simulate the reporting delay for each IBNR claim 
Given the simulated occurrence time ti of an IBRN claim, its reporting delay is simulated by 
inverting the distribution: 
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In case of our assumed mixture of a Weibull distribution and 9 degenerate distributions this 
expression has to be evaluated numerically. 
 
c) Simulate the initial reserve category 
For each IBNR claim an initial reserve category has to be simulated for use in the development 
and payment process. Given m initial reserve categories, the probability density for initial reserve 
category c is: 
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The probabilities used in (7.20) are the empirically observed percentages of policies in a 
particular initial reserve category. 
 
d) Simulate the payment process for each IBNR claim 
This step is common with the procedure for RBNS claims and will be explained in the next 
paragraph. 

7.5.2 Predicting RBNS claims 
Given the RBNS claims and the simulated IBNR claims, the process proceeds as below. Note 
that we use the piecewise hazard specification for the development process. As an alternative for 



 125 

the analytical specifications given below, numerical routines could be used. Using the alternative 
Weibull specification would require numerical operations as well.  
 
e) Simulate the next event’s exact time  
In case of RBNS claims, the time of censoring ci of claim i is known. For IBNR claims this 
censoring time ci = 0. The next event at time vi,next can take place at any time vi,next > ci. To 
simulate its exact time we need to invert (with p randomly drawn from a Uniform(0,1) 
distribution): 
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From the relation between a hazard rate and the cdf, we know: 
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with e ∈ {se, sep, p}. For instance with a Weibull specification for the hazard rates this equation 
will be inverted numerically. With a piecewise constant specification for the hazard rates 
numerical routines can be used. Alternatively analytical expressions can be derived. In that case, 
step (e) should then be replaced by (e1) – (e2): 
 
 e1) Simulate the next event’s time interval 

In case of RBNS claims, the time of censoring ci of claim i belongs to a certain interval 
[al-1, al). The next event – at time vi,next > ci – can take place in any interval from [al-1, al) 
on. The probability that vi,next belongs to a certain interval [al-1, al) is given by:  

 

(7.23) ( )
1

1
1

1

( )
[ , )

1 ( )

( )
[ , )

1 ( )

i k
i k k

i
k k

k k
i k k

i

P c V a
if c a a

P V c
P a V a

P a V a
if c a a

P V c

−

−
−

−

< < ∈ − ≤≤ < =  < < ∉
 − ≤

 

 
Using the notation introduced above the involved probabilities can be expressed as (for 
instance): 
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with e ∈ {se,sep,p} and f ∈ {‘first event’, ‘later events’}.  

 
In case of IBNR claims, there is no censoring so the probability that vi,next belongs to a 
certain interval [al-1, al) simplifies to: 

 

(7.25) 
1

1
0 0

( ) exp ( ) exp ( )
k ka a

f f
k k e e

e e

P a V a h t dt h t dt
−

−

      ≤ < = − − −   
      

∑ ∑∫ ∫   

 
e2) Simulate the exact time of the next event 
Given the time interval of the next event, [al-1, al), its exact time is simulated by inverting 
the following equation for vi,next: 
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where p is randomly drawn from a Uniform(0,1) distribution. For example, for P(V< 
vi,next|ak-1≤V<ak) this inverting operation goes as follows:  

 
 
 
 
  
 
 
 
 
 
 

(7.27) 
 
 
f) Simulate the event type 
Given the exact time of the next event, its type is simulated using the following argument: 
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where e ∈ {se, sep, p}. 
 
g) Simulate the corresponding payment 
Given the covariate information for claim i, the payment can be drawn from the appropriate 
lognormal distribution. Note that the cumulative payment cannot exceed the coverage limit of € 
2,5 million per claim. 
 
h) Stop or continue 
Depending on the simulated event type in step f), the prediction stops (in case of settlement) or 
continues. 
 
In the next section, this prediction process will be applied separately for the material claims and 
the injury claims.  
 
7.5.3 Comment on estimation uncertainty 
With regards of the uncertainty of predictions a distinction can be made between process 
uncertainty and estimation uncertainty (see England and Verrall (2002)). The process uncertainty 
wil be taken care of by sampling from the distributions proposed in section 7.3. To include 
parameter uncertainty the bootstrap technique or concepts from Bayesian statistics can be used. 
While a formal Bayesian approach is very elegant, it generally leads to significantly more 
complexity, which is not contributing to the accessibility and transparency of the techniques 
towards practicing actuaries. Applying a bootstrap procedure would be possible, but is very 
computer intensive, since our sample size is very large and several stochastic processes are used. 
To avoid computational problems when dealing with parameter uncertainty, we will use the 
asymptotic normal distribution of our maximum likelihood estimators. At each iteration of the 
prediction routine we sample each parameter from its corresponding asymptotic normal 
distribution. Note that – due to our large sample size – confidence intervals are narrow. This is in 
contrast with run-off triangles where sample sizes are typically very small and estimation 
uncertainty is an important point of concern.      
 

7.6 Numerical results 
 
The prediction process described in Section 7.5 is applied separately for the material and injury 
claims. In this section results obtained with the micro–level reserving model are shown. Our 
results are compared with those from traditional techniques based on aggregate data. We show 
results for an out–of–sample exercise, so that the estimated reserves can be compared with actual 
payments. This out–of–sample test is done by estimating the reserves per 1-1-2005. The data set 
that is available at 1-1-2005 can be summarized using run-off triangles, displaying data from 
arrival years 1999 –2004. Table 7.4 (material) and 7.5 (injury) show the run–off triangles that are 
the basis for this out–of–sample exercise. The lower triangle is known up to 3 cells. The actual 
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observations are given in bold. Of course, these were not known at 1-1-2005 so cannot be used 
as input for calibration of the models.  
 
Table 7.4: run-off triangle ‘Material’ claims, arrival year 1997-2004 

arrival
year 1 2 3 4 5 6 7 8
1997 4.379.653 971.591 81.875 9.264 35.942 26.720 34.277 10.750
1998 4.333.968 975.501 55.978 35.004 75.768 23.769 572 16.481
1999 5.225.441 1.218.325 58.894 107.716 107.832 11.751 390 0
2000 5.365.758 1.119.476 161.148 14.451 5.927 4.253 36 10.014
2001 5.535.075 1.619.956 118.336 119.202 12.711 2.988 350 2.184
2002 6.538.549 1.547.253 67.331 65.414 16.509 5.256 9.120 8.847
2003 6.535.125 1.601.255 90.721 20.505 30.838 7.424 1.685
2004 7.109.492 1.347.123 98.695 76.384 19.926 12.896

development year

 
 
Table 7.5: run-off triangle ‘Injury’ claims, arrival year 1997-2004 

arrival
year 1 2 3 4 5 6 7 8
1997 307.166 635.084 366.324 530.201 548.906 137.401 132.076 338.865
1998 256.758 481.893 311.525 336.221 268.519 56.043 178.618 78.124
1999 291.719 589.928 410.442 272.972 254.240 285.602 132.109 96.813
2000 315.509 601.364 439.408 498.131 406.642 371.131 247.141 275.271
2001 464.813 846.150 566.122 566.855 445.835 375.499 146.507 239.922
2002 314.422 614.945 540.023 449.435 132.515 131.172 332.044 1.081.869
2003 302.699 801.452 617.225 268.342 222.621 215.501 172.566
2004 333.075 864.120 411.705 245.176 272.621 100.128

                                                    development year

 
 
 
Output from the micro–level model   The distribution of the reserve per 1-1-2005 is 
determined for the individual (micro–level) model proposed in this chapter. We will first look at 
the output that becomes available when using the micro–level model. Figure 7.13 shows results 
for injury payments done in calendar year 2006, based on 10.000 simulations. In table 7.5 this is 
the diagonal going from 412, 268, ..., up to 97. The first row in figure 7.13 shows (from left to 
right): the number of IBNR claims reported in 2006, the total amount of payments done in this 
calendar year and the total number of events occurring in 2006. The IBNR claims are claims that 
occurred before 1-1-2005, but were reported to the insurer during calendar year 2006. The total 
amount paid in 2006 is the sum of payment for RBNS and IBNR claims, which are separately 
available from the micro-model. In the second row of plots we take a closer look at the events 
registered in 2006 by splitting into type 1 – type 3 events. In each of the plots the black solid line 
indicates what was actually observed.  
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Figure 7.13: results for injury payments, calendar year 2006 
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The figure shows that the resulting distributions of the micro-level model are realistic, given the 
actual observations. Only the actual number of IBNR claims is far in the tail of the distribution. 
However, note that this relates to a relatively low number of IBNR claims. 
 
Comparing reserves   The results from the micro-level model are now compared with results 
from two standard actuarial models developed for aggregate data. To the data in tables 7.4 and 
7.5, a stochastic Chain-Ladder model is applied which is based on the Overdispersed Poisson 
distribution and the Lognormal distribution, respectively. With Yij denoting cell (i,j) from a run-
off triangle, corresponding with arrival year i and development year j, the model specifications 
are: 
 
(7.29) ( ): ~ /ij ij ij ij ij i jOverdispersed Poisson Y M M Poiφ µ φ µ α β= = +   

 
(7.30) ( )2: log( ) ~ ~ 0,ij ij ij ij i j ijLognormal Y Nµ ε µ α β ε σ+ = +  

 
Both aggregate models are implemented in a Bayesian framework32. 
 

                                                 
32 The implementation of the Overdispersed Poisson is in fact empirically Bayesian. φ is estimated on beforehand 
and held fixed. We use vague normal priors for the regression parameters in both models and a gamma prior for σ-1 
in the Lognormal model. 
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Figure 7.14 shows the distributions of the total payments (in thousands Euro) for material claims, 
as obtained with the different methods. The results are shown for calendar years 2005 – 2009 
separately and for the total. The total reserve predicts the complete lower triangle (all bold 
numbers + three missing cells in tables 7.4 and 7.5). The solid black line in each plot indicates 
what has really been observed. In the plot of the total reserve the dashed line is the sum of all 
observed payments in the lower triangle. This is – up to three unknown cells – the total reserve. 
Corresponding numerical results are in table 7.6. 
 
Figure 7.14: out-of-sample results – Material claims 
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Micro-level Model
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Table 7.6: out-of-sample exercise per 1-1-2005: numerical results for material claims (in thousands Euro) 
Method Observation Cal. Year Mean Median Min. Max. 5% 25% 75% 90% 95% 99.5%
Micro--level 1.537 2005 1.404 1.342 1.093 5.574 1.204 1.272 1.449 1.627 1.783 3.143

139 2006 307 248 76 2.738 138 191 346 498 630 1.779
123 2007 246 183 30 2.74 72 123 286 444 618 1.688
39 2008 146 98 7 2.426 30 61 164 283 402 1.225
23 2009 52 26 0 2.216 4 12 53 104 167 639

> 1861 Total 2.208 2.054 1.374 7.875 1.622 1.831 2.401 2.871 3.305 5.074
Aggregate ODP 1.537 2005 2 1.989 1.194 3.028 1.591 1.834 2.166 2.321 2.431 2.674

139 2006 324 309 44 774 177 265 376 442 486 597
123 2007 214 199 0 619 88 155 265 332 354 464
39 2008 144 133 0 553 44 88 177 243 265 354
23 2009 66 66 0 376 0 22 88 133 155 243

> 1861 Total 2.803 2.785 1.613 4.354 2.232 2.564 3.028 3.271 3.426 3.846
Aggregate LogN. 1.537 2005 5.340 2.253 70 587.5 497 1.146 4.896 10.79 17.985 77.671

139 2006 699 410 32 164.2 135 254 710 1.231 1.818 6.522
123 2007 380 228 8 23.72 67 137 403 734 1.11 3.731
39 2008 326 167 2 48.85 41 93 317 627 998 4.053
23 2009 163 71 1 33.66 14 36 146 304 499 2.051

> 1861 Total 7.071 3.645 201 645.5 1.11 2.135 6.936 13.692 21.931 84.712  
 
In figure 7.14 we use the same scale for plots showing reserves obtained with the micro–level 
and the Overdispersed Poisson model. However, for the Lognormal model a different scale on 
the x–axis is necessary because of the long right tail of the frequency histogram obtained for this 
model. These unrealistically high reserves (see also table 7.6) are a disadvantage of the 
lognormal model for the portfolio of material claims. Concerning the Poisson model for 
aggregate data, we conclude from figure 7.14 that the overdispersed Poisson model overstates 
the reserve: the actually observed amount is always in the left tail of the histogram. For instance, 
in the plots with the total reserve, the median of the simulations from overdispersed Poisson is at 
2,785,000 euro, the median of the simulations from the micro–level model is 2,054,430 euro, 
whereas the total amount registered for the lower triangle is 1,861,000 euro. Recall that the latter 
is the total reserve up to the three unknown cells in table 7.4. 
 
The best estimates (see the ‘Mean’ and ‘Median’ columns) obtained with the micro-level model 
are realistic and closer to the true realizations than the best estimates from aggregate techniques.  
 
Figure 7.15 shows the total payments (in thousands Euro) for the different methods for injury 
claims. Once again the actual payments are indicated with a solid black line. The results of the 
log-linear model are now presented on a similar scale as the other two models. Corresponding 
numerical results are in table 7.7. 
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Figure 7.15: out-of-sample results – Injury claims 
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Micro-level Model
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Table 7.7: out-of-sample exercise per 1-1-2005: numerical results for injury claims (in thousands Euro) 
Method Outcome Cal. Year Mean Median Min. Max. 5% 25% 75% 90% 95% 99.5%
Micro--level 2.957 2005 2.548 2.453 1.569 6.587 1.951 2.212 2.764 3.154 3.499 4.567

1532 2006 1798 1699 909 6.79 1246 1477 2001 2393 2703 3.752
1.02 2007 1254 1159 453 4945 774 968 1.42 1778 2088 3.125
1.06 2008 884 776 267 4.381 458 613 1024 1393 1694 2.743
1354 2009 390 313 63 3.745 149 226 448 678 908 1875

> 7923 Total 7.386 7.209 4.209 14.85 5.666 6.489 8.092 9.035 9.721 11.725
Aggregate ODP 2.957 2005 2798 2.774 1.727 8.247 2.259 2.553 2.994 3.233 3.38 4.298

1532 2006 2134 2112 1065 6723 1.67 1929 2314 2498 2627 3472
1.02 2007 1721 1708 845 6172 1286 1525 1892 2076 2186 3049
1.06 2008 1286 1249 551 5933 882 1102 1433 1616 1727 2627
1354 2009 759 735 220 4114 478 625 863 992 1084 1543

> 7.923 Total 9.639 9.478 5.474 40.67 7.66 8.688 10.36 11.2 11.77 17.36
Aggregate LogN. 2.957 2005 2.948 2.882 1175 6729 2181 2.57 3.254 3648 3.944 4.944

1532 2006 2251 2196 957 6898 1623 1.94 2.5 2.825 3.05 3.934
1.02 2007 1817 1759 567 5313 1244 1526 2.04 2355 2583 3.426
1.06 2008 1377 1315 374 5768 864 1.11 1571 1861 2087 2.944
1354 2009 815 768 195 4054 472 632 941 1151 1313 1.867

> 7.923 Total 10.277 10.04 4459 26.01 7661 8.954 11.31 12.68 13.73 17.59  
 
The figure shows that for the total reserve, the distribution obtained with micro-level model seem 
to be more realistic than the other two models, given the actual observed realisations. All models 
do well for calendar year 2005, while the individual model does the best job for calendar years 
2006 and 2007. For these calendar years the actual amount paid is – again – in the very left tail 
of the distribution obtained with aggregate techniques. The overdispersed Poisson and the 
Lognormal distribution perform better in calendar years 2008 and 2009. Note however that the 
year 2008 and 2009 were extraordinary years, when looking at injury payments. In 2009 the two 
highest claims of the whole data set settled with a payment in 2009. The highest (the € 779.383 
payment shown in table 7.1) is extremely far from all other payments in the data set. The 
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observed outcome from calendar year 2009 should be considered as a very pessimistic scenario. 
Indeed, this realized outcome is in the very right tail of the distribution obtained with the micro-
level model. The year 2008 was less extreme, but had an unusual number of very large claims (of 
the 15 highest claims in the data set, 4 of them occurred in 2008). 
 
Conclusion of the out-of-sample test is that for these case studies the reserve calculations based 
on the micro-level model are preferable above the traditional methods applied to aggregate data.  
 
Note that although we only present the results obtained for the out-of-sample test that calculates 
the reserve per 1-1-2005, we also calculated reserves per 1-1-2006/2007/2008/2009. Our 
conclusions for these tests were similar to those reported above. Full details are available on the 
home page of the first author. 
 

7.7 Conclusions 
 
The measurement of future cash flows and its uncertainty becomes more and more important, 
also for general insurance portfolios. Currently, reserving for general insurance is based on 
aggregated data in run-off triangles. A vast literature about techniques for claims reserving exists, 
largely designed for application to run-off triangles. The most popular approach is the Chain 
Ladder approach, largely because of is practicality. However, the use of aggregated data in 
combination with the Chain Ladder approach gives rise to several issues, implying that the use of 
aggregate data in combination with the Chain Ladder technique (or similar techniques) is not 
fully adequate for capturing the complexities of stochastic reserving for general insurance. 
 
In this chapter micro-level stochastic modeling is used to quantify the reserve and its uncertainty 
for a realistic general liability insurance portfolio. Stochastic processes for the occurrence times, 
the reporting delay, the development process and the payments are fit to the historical individual 
data of the portfolio and used for projection of future claims and its (estimation and process) 
uncertainty. A micro-level approach allows much closer modeling of the claims process. Lots of 
issues mentioned in our discussion of the Chain Ladder approach will not exist when using a 
micro-level approach, because of the availability of lots of data and the potential flexibility in 
modeling the future claims process.  
 
The chapter shows that micro-level stochastic modeling is feasible for real life portfolios with 
over a million data records, and that it gives the flexibility to model the future payments 
realistically, not restricted by limitations that exist when using aggregated data. The prediction 
results of the micro-level model are compared with models applied to aggregate data, being an 
Overdispersed Poisson and a Lognormal model. We present our results through an out-of-sample, 
so that the estimated reserves can also be compared with actual payments. Conclusion of the out-
of-sample test is that – for the case-study under consideration – traditional techniques tend to 
overestimate the real payments. Predictive distributions obtained with the micro-level model 
reflect reality in a more realistic way: ‘regular’ outcomes are close to the median of the 
predictive distribution whereas pessimistic outcomes are in the very right tail. As such, reserve 
calculations based on the micro-level are preferable: they reflect real outcomes in a more realistic 
way. 



 136 

 
The results obtained in this chapter make it worthwhile to further investigate the use of micro– 
level data for reserving purposes. Several directions for future research can be mentioned. One 
could try to refine the performance of the individual model with respect to very pessimistic 
scenarios by using a combination of a lognormal distribution for losses below and a generalized 
Pareto distribution for losses above a certain threshold. Analyzing the performance of both the 
micro–level model and techniques for aggregate data on simulated data sets will bring more 
insight in their performance. In that respect it is our intention to collect and study new case–
studies. 
 
 
 



 137 

 
 
 

References 
 
 
 
ALAI, D.H. AND M.V. WÜTHRICH (2009): Modelling small and large claims in a chain ladder 
framework, Working paper 
ANDERSEN, L. AND J. ANDREASEN (1998): Volatility Skews and Extensions of the LIBOR Market 
Model, Applied Mathematical Finance 7, 1-32 
ANDERSEN, L. AND R. BROTHERTON-RATCLIFFE (2001): Extended libor market models with 
stochastic volatility, Working paper, Gen Re Securities  
ANDREASEN, J. (2006) Closed form pricing of FX options under stochastic rates and volatility, 
Global Derivatives Conference, Paris 
ARJAS, E. (1989): The claims reserving problem in non-life insurance: some structural ideas, 
ASTIN Bulletin 19, 139-152 
BAKSHI, S., C. CAO, AND Z. CHEN (1997): Empirical performance of alternative option pricing 
models, Journal of Finance 52, 2003–2049 
BAKSHI, S., C. CAO, AND Z. CHEN (2000): Pricing and hedging long-term options, Journal of 
Econometrics 94, 277–318  
BALLOTTA L. AND S. HABERMAN (2003): Valuation of guaranteed annuity conversion options, 
Insurance: Mathematics and Economics 33, 87–108  
BATES,  D.S. (1996): Jumps and stochastic volatility: exchange rate processes implicit in deutsche 
mark options, The Review of Financial Studies 9, 69-107 
BAUER, D., A. KLING AND J. RUSS (2008): A universal pricing framework for guaranteed 
minimum benefits in variable annuities, paper presented at AFIR Colloquium in Stockholm  
BAUER, D., M. BÖRGER, J. RUSS AND H. ZWIESLER (2008): The volatility of mortality, Asia-
Pacific Journal of Risk and Insurance 3 
BAUR, D.G (2009): Stock-bond co-movements and cross-country linkages, Working paper 
BIFFIS, E. AND P. MILLOSSOVICH (2006): The fair value of guaranteed annuity options, 
Scandinavian Actuarial Journal 1, 23–41 
BIFFIS, E., M. DENUIT, AND P. DEVOLDER (2006): Stochastic mortality under measure changes, 
Pensions Institute Discussion Paper PI-0512 
BLACK, F. AND M. SCHOLES (1973): The pricing of options and corporate liabilities, Journal of 
Political Economy 81(3)  
BOLTON, M.J. AND D.H. CARR, P.A. COLLIS, C.M. GEORGE, V.P. KNOWLES, AND A.J. 
WHITEHOUSE (1997): Reserving for annuity guarantees, The Report of the Annuity Guarantees 
Working Party  
BOOTH, H., J. MAINDONALD AND L. SMITH (2002): Applying Lee-Carter under conditions of 
variable mortality decline, Population Studies 56, 325-336  
BORNHUETTER, R.L. AND R.E. FERGUSON (1972): The actuary and IBNR, Proc. CAS LIX, 181-
195 
BOX, G.E.P. AND G.M. JENKINS (1976): Time series analysis: forecasting and control, revised 



 138 

edition, Holden-Day San Fransico 
BOYLE, P.P. AND M. HARDY (2001): Mortality derivatives and the option to annuitize, Insurance: 
Mathematics and Economics 29(3)  
BOYLE, P.P. AND M. HARDY (2003): Guaranteed annuity options, Astin Bulletin 33(2), 125–152  
BRIGO, D. AND F. MERCURIO (2006): Interest Rate Models – Theory and Practice, 2nd edition, 
Springer-Verlag 
BROUHNS, N., M. DENUIT AND J.K. VERMUNT (2002): Measuring the longevity risk in mortality 
projections, Bulletin of the Swiss Association of Actuaries 2, 105-130 
BROUHNS, N., M. DENUIT, AND I. VAN KEILEGOM (2005): Bootstrapping the Poisson log-bilinear 
model for mortality forecasting, Scandinavian Actuarial Journal 3, 212-224 
BROUHNS, N., M. DENUIT, AND J.K. VERMUNT (2002): A Poisson log-bilinear regression 
approach to the construction of projected life tables, Insurance: Mathematics and Economics 31, 
373-393 
CAIRNS, A.J.G. (2000): A discussion of parameter and model uncertainty in insurance, 
Insurance: Mathematics and Economics 27, 313-330 
CAIRNS, A.J.G., D. BLAKE, AND K. DOWD (2006a): A two-factor model for stochastic mortality 
with parameter uncertainty: Theory and Calibration, Journal of Risk and Insurance 73, 687-718 
CAIRNS, A.J.G., D. BLAKE, AND K. DOWD (2006b): Pricing death: Frameworks for the valuation 
and securitization of mortality risk, ASTIN Bulletin 36, 79-120 
CAIRNS, A.J.G., D. BLAKE, AND K. DOWD (2008a): Modelling and Management of Mortality 
Risk: A Review, Working paper, Heriot-Watt University, and Pensions Institute Discussion 
Paper PI-0814 
CAIRNS, A.J.G., D. BLAKE, K. DOWD, G. D. COUGHLAN, D. EPSTEIN AND M. KHALLAF-ALLAH 
(2008b): The plausibility of mortality density forecasts: an analysis of six stochastic mortality 
models, Working paper, Heriot-Watt University, and Pensions Institute Discussion Paper PI-
0801 
CAIRNS, A.J.G., D. BLAKE, K. DOWD, G. D. COUGHLAN, D. EPSTEIN, A. ONG AND I. BALEVICH 
(2007): A quantitative comparison of stochastic mortality models using data from England & 
Wales and the United States, Working paper, Heriot-Watt University, and Pensions Institute 
Discussion Paper PI-0701 
CARR, P. AND D. B. MADAN (1999): Option Valuation Using the Fast Fourier Transform, Journal 
of Computational Finance 2, 61-73 
CASTELLANI, G ET AL (2007): Pricing Formulae for Financial Options and Guarantees Embedded 
in Profit Sharing Life Insurance Policies, Working Paper 
CEIOPS (2007): QIS 4 Technical Specifications 
CEIOPS (2010): QIS 5 Technical Specifications 
CHU, C.C. AND Y. K. KWOK (2007): Valuation of guaranteed annuity options in affine term 
structure models, International Journal of Theoretical and Applied Finance, 10(2), 363–387  
COLLIN-DUFRESNE, P. AND R.S. GOLDSTEIN (2002): Pricing swaptions within an affine 
framework, Journal of Derivatives, Fall issue, 1–18  
CONTINUOUS MORTALITY INVESTIGATION (1962): Continuous investigation into the mortality of 
pensioners under life office pension schemes, available at: 
http://www.actuaries.org.uk/knowledge/cmi 
CONTINUOUS MORTALITY INVESTIGATION (2004): Working paper 9, available at: 
http://www.actuaries.org.uk/knowledge/cmi 
CONTINUOUS MORTALITY INVESTIGATION (2007): Stochastic projection methodologies: Lee-



 139 

Carter model features, example results and implications, Working paper 25 
CONTINUOUS MORTALITY INVESTIGATION (2008): Working paper 31, available at: 
http://www.actuaries.org.uk/knowledge/cmi 
COOK, R. AND J. LAWLESS (2007): The statistical analyses of recurrent events, Springer New York 
COUGHLAN, G., D. EPSTEIN, A. ONG, A. SINHA, I. BALEVICH, J. HEVIA-PORTOCARRERO, E. 
GINGRICH, M. KHALAF-ALLAH AND  P. JOSEPH (2007): Lifemetrics Technical Document, 
available at: http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics 
COX, D.R. (1972): Regression models and life tables (with discussion), Journal of the Royal 
Statistical Society 34, 187-220 
COX, J.C., J.E. INGERSOLL AND S.A. ROSS (1985): A theory of the term structure of interest rates, 
Econometrica 53, 385-407 
CURRAN, M (1994): Valuing Asian and Portfolio Options by Conditioning on the Geometric 
Mean Price, Management Science 40, 1705-1711 
CURRIE, I.D. (2006): Smoothing and forecasting mortality rates with P-splines, Talk given at the 
Institute of Actuaries, June 2006, available at: http:www.ma.hw.ac.uk/~iain/research/talks.html 
CURRIE, I.D., M. DURBAN, AND P.H.C. EILERS (2004): Smoothing and forecasting mortality rates, 
Statistical Modelling 4, 279-298 
DAHL, M. (2004): Stochastic mortality in life insurance: Market reserves and mortality-linked 
insurance contracts, Insurance: Mathematics and Economics 35, 113-136 
DAHL, M., AND T. MØLLER (2006): Valuation and hedging of life insurance liabilities with 
systematic mortality risk, Insurance: Mathematics and Economics 39, 193-217 
DASSIOS, A. AND J. NAGARADJASARMA (2006): The square-root process and Asian options, 
Quantitative Finance 6, 337-347 
DE JONG, P., AND L. TICKLE (2006): Extending the Lee-Carter model of mortality projection, 
Mathematical Population Studies 13, 1-18 
DELWARDE, A., M. DENUIT AND P. EILERS (2007): Smoothing the Lee-Carter and Poisson log-
bilinear models for mortality forecasting: A penalized log-likelihood approach, Statistical 
Modelling 7, 29-48 
DIEBOLD, F.X., AND C. LI (2006): Forecasting the term structure of government bond yields, 
Journal of Economics 130, 337-364 
DUFFIE, D. AND R. KAN (1996): A Yield-Factor Model of Interest Rates, Mathematical Finance 
6, 379-406 
DUFFIE, D., D. FILIPOVIC, AND W. SCHACHERMAYER (2003): Affine processes and applications in 
finance, Annals of Applied Probability 13  
DUFFIE, D., J. PAN, AND K. SINGLETON (2000): Transform analysis for affine jump diffusions, 
Econometrica 68, 1343-1376  
DUNBAR, N.(1999):  Sterling swaptions under new scrutiny, Risk (12) 
ENDERS, W. (2004): Applied econometric time series, 2nd edition, John Wiley and Sons 
ENGLAND, P.D. AND R.J. VERRALL (1999): Analytic and bootstrap estimates of prediction errors 
in claims reserving, Insurance: Mathematics and Economics 25, 281-293 
ENGLAND, P.D. AND R.J. VERRALL (2002): Stochastic claims reserving in general insurance, 
Britisch Actuarial Journal 8, 443-518 
GATAREK, D (2003).: Constant maturity swaps, forward measure and LIBOR market model, 
Available at SSRN: http://ssrn.com/abstract=394201  
GEMAN, H., E. KAROUI, AND J.C. ROCHET (1995): Changes of numéraire, changes of probability 
measures and pricing of options, Journal of Applied Probability 32, 443–548  



 140 

GLASSERMAN, P. (2004): Monte Carlo Methods in Financial Engineering, Springer-Verlag 
GROSEN, A. AND P. JORGENSEN (2000), Fair Valuation of Life Insurance Liabilities: The Impact 
of Guarantees, Surrender Options and Bonus Policies, Insurance, Mathematics and Economics 
26, 37-57 
HAASTRUP, S. AND E. ARJAS (1996): Claims reserving in continuous time: a nonparametric 
Bayesian approach, ASTIN Bulletin 26, 139-164 
HALLIWELL, L.J. (2007): Chain-ladder bias: its reason and meaning, Variance 1, 214-247 
HALLIWELL, L.J. (2009): Modeling paid and incurred losses together, Casualty Actuarial Society 
E-forum spring 2009 
HAMILTON, J.D. (1994): time series analysis, Princeton University Press 
HANDEL, R. (2007): Stochastic Calculus, Filtering, and Stochastic Control, Lecture Notes 
HARDY, M.R. (2001): A regime-switching model of long-term stock returns, North American 
Actuarial Journal  
HARDY, M.R.(2004): Ratchet Equity Indexed Annuities, AFIR Colloquium, Boston 
HARRISON, J.M. AND D. KREPS (1979):  Martingale and arbitrage in multiperiod securities 
markets, Journal of Economic Theory 20, 381-408 
HARRISON, J.M. AND S. PLISKA (1981): Martingales and stochastic integrals in the theory of 
continuous trading, Stochastic processes and their applications 11, 215-260 
HESTON, S.L. (1993): A closed-form solution for options with stochastic volatility with 
applications to bond and currency options, Review of Financial Studies 6, 327–343  
HULL, J. AND A. WHITE (1993): One factor interest rate models and the valuation of interest rate 
derivative securities, Journal of Financial and Quantitative Analysis 28(2)  
HULL, J.C. (2006): Options, Futures, and Other Derivatives, 6th edition, Prentice Hall 
JAMSHIDIAN, F. (1989): An exact bond option pricing formula, Journal of Finance 44, 205-209  
JAMSHIDIAN, F. (1998): LIBOR and Swap Market Models and Measures, Finance and 
Stochastics 1, 293-330  
JOLLIFFE, I.T. (2002): Principal Component Analysis, Springer-Verlag New York, Inc. 
KAAS, R., M. GOOVAERTS, J. DHAENE AND M. DENUIT (2008): Modern actuarial risk theory, 
Springer-Verlag 
KARR, A.F. (1991): Point processes and their statistical inference, 2nd edition, Marcel Dekker 
INC 
KLEIBERGEN, F., AND H. HOEK (1996): Bayesian Analysis of ARMA Models using 
Noninformative Priors, Tinbergen Institute discussion paper 
KUNKLER, M. (2004): Modelling zeros in stochastic reserving models, Insurance: Mathematics 
and Economics 34, 23-35 
LARSEN, C.R. (2007): An individual claims reserving model, ASTIN Bulletin 37, 113-132 
LEE, R., AND T. MILLER (2001): Evaluating the performance of the Lee-Carter model for 
forecasting mortality, Demography 38, 537-549 
LEE, R.D., AND L.R. CARTER (1992): Modelling and forecasting U.S. mortality, Journal of the 
American Statistical Association 87, 659-675  
LEVIN, A. (2004): Interest Rate Model Selection, The Journal of Portfolio Management, 74-86 
LEVY, E. (1992): Pricing European average rate currency options, Journal of International 
Money and Finance 11, 474-491 
LIU, H. AND R. VERRALL (2009): Predictive distributions for reserves which separate true IBNR 
and IBNER claims, Working paper 
LOEYS, J., N. PANIGIRTZOGLOU AND R.M. RIBEIRO (2007): Longevity: a market in the making, 



 141 

available at: http://www.jpmorgan.com/pages/jpmorgan/investbk/solutions/lifemetrics 
LONGSTAFF, F.A. AND E.S. SCHWARTZ (1992): Interest rate volatility and the term structure: a 
two-factor general equilibrium model, Journal of finance XLVII (4), 1259-1282 
LORD, R (2006): Partially exact and bounded approximations for arithmetic Asian options, 
Journal of Computational Finance 10, 1-52 
MACK, T. (1999): The standard error of chain ladder reserve estimates: recursive calculation and 
the inclusion of a tail factor, ASTIN Bulletin 29, 361-366 
MARSHALL, C., M.R. HARDY, AND D. SAUNDERS (2009): Static hedging strategies for guaranteed 
minimum income benefits, North American Actuarial Journal 14, 38-58  
MILEVSKY, M.A., AND S.D. PROMISLOW (2001): Mortality derivatives and the option to annuitize, 
Insurance: Mathematics and Economics 29, 299-318 
MILLS, T.C. (1990): Time series techniques for economists, Cambridge University Press 
MOORE, K.S. AND V.R. YOUNG (2003): Pricing equity-linked pure endowments via the principle 
of equivalent utility, Insurance: Mathematics and Economics 33, 497-516 
NAMBOODIRI, K. AND C.M. SUCHINDRAN (1987): Life Table Techniques and Their Applications, 
Academic Press, Inc. 
NELSON, C.R., AND A.F. SIEGEL (1987): Parsimonious modeling of yield curve, Journal of 
Business 60, 473-489  
NIELSEN, J.A. AND K. SANDMANN (2002): The fair premium of an equity-linked life and pension 
insurance, In: Schönbucher, P. and K. Sandmann (Eds.). Advances in Finance and Stochastics: 
essays in Honor of Dieter Sondermann, Springer-Verlag 
NORBERG, R. (1993): Prediction of outstanding liabilities in non-life insurance, ASTIN Bulletin 
23, 95-115 
NORBERG, R. (1999): Prediction of outstanding liabilities ii. Model variations and extensions, 
ASTIN Bulletin 29, 5-25 
OKSENDAL, B. (2005): Differential Equations: An Introduction with Applications. Springer-
Verlag 
PELSSER, A.A.J. (2003): Pricing and hedging guaranteed annuity options via static option 
replication, Insurance, Mathematics and Economics 33, 283-296  
PELSSER, A.A.J. (2004): Efficient Methods for Valuing Interest Rate Derivatives, 2nd printing, 
Springer-Verlag 
PIETERSZ, R. AND M. VAN REGENMORTEL (2006): Generic market models, Finance and 
Stochastics 10, 507-528 
POSTHUMA, B., E.A. CATOR, W. VEERKAMP AND E.W. VAN ZWET (2008): Combined analysis of 
paid and incurred losses, Casualty Actuarial Society E-forum fall 2008 
PRIEUL, D., ET AL (2001): On pricing and reserving with-profits life insurance contracts, Applied 
Mathematical Finance 8, 145-166 
QUARG, G. AND T. MACK (2008): Munich Chain Ladder: a reserving method that reduces the gap 
between IBNR projections based on paid losses and IBNR projections based on incurred losses, 
Variance 2, 266-299 
RENSHAW, A.E. (1994): Claims reserving by joint modelling, Actuarial Research Paper 72, 
Department of Actuarial Sciences and Statistics, City University, London 
RENSHAW, A.E., AND S. HABERMAN (2003): Lee-Carter mortality forecasting with age-specific 
enhancement, Insurance: Mathematics and Economics 33, 255-272 
RENSHAW, A.E., AND S. HABERMAN (2006): A cohort-based extension to the Lee-Carter model 
for mortality reduction factors, Insurance: Mathematics and Economics 38, 556-570 



 142 

RENSHAW, A.E., AND S. HABERMAN (2008): On simulation-based approaches to risk 
measurement in mortality with specific reference to Poisson Lee-Carter modelling, Insurance: 
Mathematics and Economics 42, 797-816 
ROGERS, L.C.G. AND Z. SHI (1995): The value of an Asian option, Journal of Applied Probability 
32, 1077-1088 
SCHNIEPER, R. (1991): Separating true IBNR and IBNER claims, ASTIN Bulletin 21, 111-127 
SCHÖBEL AND J. ZHU (1999): Stochastic volatility with an Ornstein-Uhlenbeck process: An 
extension, European Finance Review 4, 23–46  
SCHRAGER D.F. AND A.A.J. PELSSER (2004): Pricing Rate of Return Guarantees in Regular 
Premium Unit Linked Insurance, Insurance: Mathematics and Economics 35, 369-398 
SCHRAGER D.F. AND A.A.J. PELSSER (2006): Pricing swaptions and coupon bond options in 
affine term structure models, Mathematical Finance 16, 673-694 
SCHRAGER, D.F. (2006): Affine stochastic mortality, Insurance: Mathematics and Economics 38, 
81-97 
SHELDON, T.J. AND A.D. SMITH (2004): Market consistent valuation of life assurance business, 
Britisch Actuarial Journal 10, 543-605 
STEIN, E.M. AND J.C. STEIN (1991): Stock-price distributions with stochastic volatility: an 
analytic approach, Review of Financial Studies 4, 727–752  
TAYLOR, G. (2003): Chain ladder bias, ASTIN Bulletin 33, 313-330 
TAYLOR, G. AND M. CAMPBELL (2002): Statistical case estimation, Research paper 104, The 
University of Melbourne, Australia 1 
VAN BEZOOYEN, J.T.S., C.J.E. EXLEY, AND S.J.B. MEHTA (1998): Valuing and hedging 
guaranteed annuity options 
VAN BROEKHOVEN, H. (2002): Market Value of Liabilities Mortality Risk: A Practical Model, 
North American Actuarial Journal 6,  95-106 
VAN DER PLOEG, A.P.C. (2006): Stochastic Volatility and the Pricing of Financial Derivatives, 
PhD thesis, Tinbergen institute/ University of Amsterdam  
VAN HAASTRECHT, A., R. LORD, A.A.J. PELSSER, AND D. SCHRAGER (2009): Pricing long-dated 
insurance contracts with stochastic volatility and stochastic interest rates, Insurance: 
Mathematics and Economics  
VERBEEK, H.G. (1972): An approach to the analysis of claims experience in motor liability 
excess of loss reinsurance, ASTIN Bulletin 6, 195-202 
VERBEEK, M. (2008): Modern Econometrics, 3th edition, John Wiley & Sons, Ltd 
VERBOND VAN VERZEKERAARS (2008): Generatietafels Pensioenen 2008, publication in dutch 
VERDONCK, T., M. VAN WOUWE AND J. DHAENE (2009): A robustification of the chain-ladder 
method, North American Actuarial Journal 13, 280-298 
WILKIE, A.D., H.R, WATERS AND S. YANG (2003): Reserving, pricing and hedging for policies 
with guaranteed annuity options, Britisch Actuarial Journal 9, 263-391 
WILLETS, R.C. (2004): The cohort effect: Insights and explanations, British Actuarial Journal 10, 
833-877   
WRIGHT, T.S. (1990): A stochastic method for claims reserving in general insurance, J. Institute 
Actuaries 117, 677-731 
WÜTHRICH, M.V. AND M. MERZ (2008): Stochastic claims reserving methods in insurance, Wiley 
Finance 
WYMAN, O. (2007): Va va voom, http://www.mmc.com/knowledgecenter/ 
OliverWymanVariableAnnuities.pdf  



 143 

YANG, S. (2001): Reserving, Pricing and Hedging for Guaranteed Annuity Options, PhD thesis, 
Department of Actuarial Mathematics and Statistics, Heriot Watt University 
YOUNG, V.R. (2004): Pricing in an incomple market with an affine term structure, Mathematical 
Finance 14 (3), 359-381 
YOUNG, V.R. AND T. ZARIPHOPOULOU (2002): Pricing dynamic insurance risks using the 
principle of equivalent utility, Scandinavian Actuarial Journal 4, 246-279 
ZEHNWIRTH, B. (1994): Probabilistic development factor models with application to loss reserve 
variability, prediction intervals, and risk based capital, Casualty Actuarial Society 
ZELLNER, A. (1963): Estimators of Seemingly Unrelated Regressions: Some Exact Finite Sample 
Results, Journal of the American Statistical Association 58, 977-992 
ZHAO, X.B. AND X. ZHOU (2010): Applying copula models to individual claim loss reserving 
methods, Insurance: Mathematics and Economics 46(2), 290-299  
ZHAO, X.B., X. ZHOU AND J.L. WANG (2009): Semiparametric model for prediction of individual 
claim loss reserving, Insurance: Mathematics and Economics 45(1), 1-8 
 
 
 
 
 
 
 



 144 

 
 
 

Samenvatting (Summary in Dutch) 
 
 
 
Individuen, bedrijven en andere entiteiten staan bloot aan verschillende soorten risico’s die 
kunnen leiden tot ongewenste financiële consequenties. Een individu kan bijvoorbeeld schade 
hebben aan zijn of haar auto, huis of inboedel, kan langer of korter leven dan verwacht, of 
onverwacht hoge kosten maken in verband met de gezondheid. Bedrijven kunnen blootstaan aan 
schades veroorzaakt door bijvoorbeeld een schadeclaim, verbranding van een bedrijfsgebouw, 
schade aan goederen en arbeidsongeschikte werknemers. Deze risico’s kunnen worden 
overgedragen door het aangaan van een verzekeringscontract bij een verzekeringsmaatschappij. 
In ruil hiervoor vraagt de verzekeringsmaatschappij een premie van de ‘polishouder’. De 
verzekeringsmaatschappij brengt alle individuele risico’s samen waardoor de resultaten op 
individuele polissen elkaar compenseren. 
 
Het resultaat van het vele jaren verkopen van verzekeringen is dat verzekeraars in de toekomst 
nog aanzienlijke bedragen moeten betalen aan hun polishouders (bijvoorbeeld hun pensioen). 
Verzekeraars houden hiervoor een reserve aan, welke is gebaseerd op de waardering van deze 
toekomstige verzekeringsverplichtingen. Daarnaast staat de verzekeraar bloot aan verschillende 
risico’s, waarvoor het additioneel kapitaal aanhoudt. Derhalve zijn correcte waardering van 
verzekeringsverplichtingen en het meten en managen van risico’s twee belangrijke voorwaarden 
voor het succesvol runnen van een verzekeringsbedrijf. Dit proefschrift is een bundeling van 
artikelen over verschillende kwesties gerelateerd aan waardering en risicomanagement voor 
verzekeraars.  
 
In het vervolg van deze samenvatting wordt meer context gegeven over waardering en 
risicomanagement voor verzekeraars, gevolgd door een korte behandeling van de verschillende 
artikelen. 
 
 
Context 
 
Momenteel stellen verzekeraars de waarde van hun verplichtingen vast op basis van 
‘boekwaarde’, wat inhoudt dat de economische aannames meestal niet direct afgeleid zijn uit de 
financiële markten. Daarnaast verplicht de toezichthouder verzekeraars additioneel 
(solvabiliteits)kapitaal aan te houden. Dit kapitaal wordt bepaald als vast percentage van de 
reserve, premies of schades en is dus niet direct gebaseerd op het risicoprofiel van de verzekeraar. 
Echter, de laatste jaren is er een toenemende aandacht van de verzekeringsindustrie voor 
marktwaardering van de verzekeringsverplichtingen en het kwantificeren van 
verzekeringsrisico’s. Belangrijke redenen hiervoor zijn de komende introducties van IFRS 4 Fase 
2 en Solvency 2.  
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De introductie van Solvency 2 en IFRS 4 Fase 2 (beiden in 2013) stelt verzekeraars voor een 
grote uitdaging. IFRS 4 fase 2 zal een nieuw accounting model voor verzekeringscontracten 
definiëren, gebaseerd op marktwaardering van de verplichtingen. In het document ‘Preliminary 
Views on Insurance Contracts’ (Mei 2007) stelt de ‘International Accounting Standards Board’ 
(IASB) dat verzekeraars de waardering van hun verplichtingen moeten baseren op zo actueel en 
juist mogelijke inschattingen van toekomstige kasstromen, gedisconteerd met de actuele rentes 
uit de markt. Verder wordt verwacht dat verzekeraars additioneel een risicomarge opnemen. De 
IASB is de principes momenteel verder aan het uitwerken. 
 
Solvency 2 zal leiden tot een verandering in de eisen van de toezichthouder wat betreft het 
additioneel aan te houden solvabiliteitskapitaal. Onder Solvency 2 zal de kapitaalseis risico-
gebaseerd zijn, en marktwaardering van beleggingen en verplichtingen vormt de basis hiervoor. 
De kapitaalseis zal alle risico’s moeten dekken waaraan een verzekeraar blootstaat: marktrisico, 
operationeel risico, risico’s van leven- en pensioen producten, risico’s van schade en zorg 
producten, tegenpartij risico en het risico van overige bezittingen. Binnen Solvency 2 is een 
standaard formule ontwikkeld die leidt tot een kapitaalseis die erop gericht is om de risico’s voor 
1 jaar te dekken met een 99,5% betrouwbaarheid. Echter, verzekeraars worden gestimuleerd om 
hun eigen interne modellen te ontwikkelen om zodoende de specifieke risico’s van de 
verzekeraar beter in te kunnen schatten. 
 
Gegeven bovenstaande is de conclusie dat het meten van toekomstige kasstromen en de 
onzekerheid hiervan steeds belangrijker wordt voor de verzekeringsindustrie.  
 
 
Indeling proefschrift 
 
In dit proefschrift zijn enkele artikelen gebundeld op het gebied van waardering van 
verzekeringsverplichtingen en risicomanagement voor verzekeraars. Eerst worden in hoofdstuk 2 
de algemene concepten toegelicht die gebruikt worden in dit proefschrift, met name gerelateerd 
aan stochastische processen. 
 
Leven- en pensioen producten bevatten vaak een vorm van winstdeling in combinatie met een 
garantie. Waardering van deze zogenoemde ‘embedded opties’ is een van de grootste 
uitdagingen bij marktwaardering voor verzekeraars. Hoofdstuk 3 en 4 behandelen beiden de 
waardering van specifieke embedded opties.  
 
Belangrijke risico’s bij leven- en pensioenverzekeraars zijn het ‘langlevenrisico’ (het risico dat 
mensen langer leven dan verwacht) en het ‘kortlevenrisico’ (het risico dat mensen korter leven 
dan verwacht). Hoofdstuk 5 en 6 behandelen verschillende aspecten in het kwantificeren van 
deze risico’s. 
 
Hoofdstuk 7 behandelt de risico’s van schadeproducten. In dit hoofdstuk wordt een nieuwe 
techniek gepresenteerd om de waarde van de verplichtingen (en de onzekerheid daarvan) te 
kwantificeren.  
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In de volgende secties worden de hoofdstukken afzonderlijk toegelicht. 
 
 
Hoofdstuk 3: Waardering van swap-afhankelijke embedded opties 
 
Veel verzekeringsproducten kennen een vorm van winstdeling in combinatie met een garantie. 
Deze zogenoemde embedded opties zijn vaak afhankelijk van of worden geschat middels 
(forward) swaprentes. De swaprente is het tarief waartegen op de geld- en kapitaalmarkt leningen 
met verschillende looptijden worden geruild. Normaal gesproken worden deze opties berekend 
door middel van Monte Carlo simulatie, een computerintensieve berekeningstechniek. Echter, 
voor risicomanagement en rapportage processen zijn vele waarderingen benodigd. Daarom zou 
een meer efficiënte berekeningstechniek welkom zijn. 
 
In dit hoofdstuk worden (benaderende) analytische formules ontwikkeld voor deze klasse van 
embedded opties. De analytische formule voor directe betaling van winstdeling is vrijwel exact 
en de benadering voor cumulatieve winstdelingsbetalingen is ook voldoende. Daarnaast kunnen 
de formules gebruikt worden als ‘control variate’ bij Monte Carlo simulatie, wat de 
berekeningstijden van Monte Carlo simulatie significant verlaagd. Dit kan van pas komen bij 
meer complexe embedded opties waarvoor geen analytische formules bestaan. Tot slot kan de 
formule ook uitgebreid worden voor het geval waar de winstdeling mede afhankelijk is van het 
rendement op aandelen. 
 
 
Hoofdstuk 4: Waardering van Gegarandeerde Annuïteit Opties gebruik 
makend van een model met stochastische volatiliteit voor 
aandelenprijzen  
 
Een Gegarandeerde Annuiteit Optie (GAO) is een optie die een polishouder het recht biedt om 
het op de pensioendatum opgebouwde kapitaal om te zetten naar een levenslange lijfrente tegen 
een vaste rente. Deze embedded optie was een standaard onderdeel van pensioencontracten in het 
Verenigd Koninkrijk in de jaren ’70 en ’80 toen het renteniveau hoog lag. Echter, deze opties 
zorgden voor problemen toen de rente begon te dalen in de jaren ’90. Momenteel worden deze 
opties nog veelvuldig verkocht in de Verenigde Staten en Japan. 
 
Het laatste decennium is de literatuur over waardering en risicomanagement voor deze opties 
sterk uitgebreid. Tot op dit moment is er bij de waardering vooral uitgegaan van een proces voor 
aandelenprijzen waarbij de volatiliteit constant is. Echter, gegeven de lange looptijd van deze 
contracten en de observatie uit het verleden dat de volatiliteit niet constant is, is een model met 
stochastische volatiliteit te prefereren. In dit hoofdstuk zijn expliciete formules bepaald voor 
prijzen van GAO’s, gebruik makend van een model met stochastische volatiliteit voor 
aandelenprijzen en een stochastisch model voor rentes. De resultaten wijzen uit het meenemen 
van stochastische volatiliteit een grote impact heeft op de prijsstelling en het risicomanagement 
van deze opties. 
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Hoofdstuk 5: Over stochastische modellering van sterftekansen  
 
Het laatste decennium heeft er een grote toename van de literatuur over stochastische modellen 
voor sterftekansen plaatsgevonden, met name voor gebruik in risico management. Alle bekende 
modellen hebben voordelen en nadelen. In dit hoofdstuk wordt een nieuw stochastisch 
sterftemodel voorgesteld die de goede eigenschappen van bestaande modellen combineert, en 
waarbij de nadelen van bestaande modellen niet meer voorkomen. Meer concreet, het model sluit 
goed aan bij de historische waarnemingen van sterftekansen, is bruikbaar voor alle leeftijden, 
adresseert ook effecten die specifiek voor geboortejaren gelden, modelleert de samenhang tussen 
leeftijden adequaat en heeft geen robuustheid problemen. Ook is beschreven hoe 
parameteronzekerheid kan worden meegenomen. Tot slot is ook een versie van het model 
gegeven die gebruikt kan worden voor waardering. 
 
 
Hoofdstuk 6: Stochastische portefeuille specifieke sterfte en het 
kwantificeren van sterfte basis risico  
 
In hoofdstuk 5 zijn een aantal stochastische sterftemodellen beschreven, veelal toegepast op 
bevolkingssterfte. Echter, deze modellen zijn meestal niet direct toe te passen op 
verzekeringsportefeuilles, omdat: 

a) het voor verzekeraars en pensioenfondsen relevanter is om sterftekansen te meten in 
bedragen in plaats van aantallen. 

b) er vaak niet voldoende data beschikbaar is van de historische sterftekansen van de 
specifieke portefeuille van verzekeraars. 

Om deze reden wordt in dit hoofdstuk een stochastisch model voorgesteld voor portefeuille 
specifieke ervaringssterfte. Combinatie van dit stochastische proces met een stochastisch model 
voor bevolkingsterfte resulteert in stochastische portefeuillespecifieke sterftekansen, gemeten in 
bedragen. Het stochastische proces is getest op twee voorbeeld portefeuilles, en de impact op de 
hoogte van het langlevenrisico is gekwantificeerd. Daarnaast kan het model ook gebruikt worden 
voor het kwantificeren van sterfte basis risico. Dit is het risico dat overblijft als portefeuille 
specifieke sterfte door een verzekeraar afgedekt wordt met instrumenten waarvan de betalingen 
afhangen van bevolkingssterfte. 
 
 
Hoofdstuk 7: Stochastische schadereservering op micro-niveau  
 
Er heeft zich een substantiële literatuur ontwikkeld over stochastische schadereservering. Echter, 
vrijwel alle literatuur is gebaseerd op technieken die toegepast worden op een zogenaamde 
‘schadedriehoek’ met geaggregeerde data. Echter, deze geaggregeerde data is een samenvatting 
van een onderliggende, veel gedetailleerdere database die beschikbaar is binnen verzekeraars. 
Deze data op het niveau van individuele schades wordt micro-niveau data genoemd. In dit 
hoofdstuk is onderzocht of het gebruik van data op micro-niveau de kwaliteit van 
schadereservering kan verbeteren. Een realistische dataset op micro-niveau van een 
aansprakelijkheidsportefeuille van een Europese verzekeraar is daarvoor gebruikt. Stochastische 
processen zijn gespecificeerd voor de verschillende onderdelen in de ontwikkeling van een 
schade: de tijd van plaatsvinden van de schade, de vertraging tussen het plaatsvinden van de 
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schade en het op de hoogte stellen van de verzekeraar, eventuele betalingen en de hoogte ervan 
en de afsluiting van de schade. De parameters behorende bij deze processen worden geschat op 
basis van de historische data van de portefeuille en worden gebruikt voor de projectie van 
toekomstige betalingen. Een ‘out-of-sample’ exercitie toont aan dat de voorgestelde aanpak de 
actuaris voorziet van gedetailleerde en waardevolle berekeningen van de reserve. Een 
vergelijking met traditionele reservering technieken is ook gemaakt. Voor het voorbeeld gebruikt 
in dit hoofdstuk is het voorgestelde model te prefereren: de resultaten zijn realistischer en sluiten 
beter aan bij de historische observaties. 
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