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Chapter 1

Introduction and Outline

Individual persons, companies and other entities are exposed to several risks that potentially can
lead to undesirable financial consequences. For example, for an individual person it could be
damage to a car, property damage, living longer or shorter than expected, expenses related to
health and several other risks. Companies could be exposed to, amongst others, aliability claim,
a company building on fire, damage to the products and disabled employees. These risks can be
transferred by buying an insurance policy at an insurance company. In exchange for this the
insurance company receives a premium from the policyholder. The insurance company pools the
risks so that the results on the individual policies compensate each other.

As a result of writing insurance business for decennia, most insurers have to pay considerable
amounts in the future to their policyholders. The company holds a reserve to cover for this,
which is based on a valuation of these future insurance liabilities. Besides this, the insurance
company is exposed to severa risks, for which it holds additional capital. As such, valuation of
insurance liabilities and measuring and managing the risks are two major building blocks for
running an insurance company successfully. This thesis is a combination of papers on severa
issues related to valuation and risk management for insurers.

In the remainder of this chapter some more background is given on vauation and risk
management for insurers, followed by an outline and discussion of the research presented in this
thesis.

1.1 Valuation and Risk Management for Insurers

At this moment, most insurers are reporting their liabilities on a ‘book value' basis, where the
economic assumptions are often not directly linked to the financial market. Furthermore,
regulators require additional (solvency) capital to be held by insurers which is a fixed percentage
of the reserve, premiums or claims and thus not based on the actual risks of the insurer. However,
in recent years there has been an increasing amount of attention of the insurance industry for
market valuation of insurance liabilities and the quantification of insurance risks. Important
drivers of this development are the introduction of IFRS 4 Phase 2 and Solvency 2.

With the introduction of Solvency 2 and IFRS 4 Phase 2 (both expected in 2013) insurers face
major challenges. IFRS 4 Phase 2 will define a new accounting model for insurance contracts,
based on market values of liabilities. In the document ‘Preliminary Views on Insurance



Contracts (May 2007, discussion paper) the International Accounting Standards Board (1ASB)
states that an insurer should base the measurement of all its insurance liabilities (for reserving)
on best estimates of the contractual cash flows, discounted with current market discount rates.
On top of this, margins that market participants are expected to require for bearing risk should be
added to this. The IASB is currently further developing the standards, of which a consultation
paper will appear in 2010.

Solvency 2 will lead to a change in the regulatory required solvency capital for insurers. Under
Solvency 2 the so-called Solvency Capital Requirement (SCR) will be risk-based, and market
values of assets and liabilities will be the basis for these calculations. The directive® of Solvency
2 prescribes that the reserve “... shall be equal to the sum of the best estimate and a risk
margin...” and that “the best estimate will correspond to the probability-weighted average of
future cash-flows, taking account of the time value of money, using the relevant risk-free interest
rate term structure”. Furthermore, it states that “the calculation of the best estimate shall be
based upon up-to-date and credible information and realistic assumptions, and be performed
using adequate, applicable and relevant actuarial and statistical methods’.

The SCR aims to reflect all of the risks an insurance company is exposed to: market risk,
operational risk, life underwriting risk, health underwriting risk, non-life underwriting risk,
counterparty default risk and intangible asset risk. CEIOPS?, the advising committee of the
European Commission on Solvency 2, has developed a standard formula that leads to a required
solvency margin that is aimed at covering all risks over a one-year horizon with a probability of
99,5%. However, insurance companies are encouraged to develop their own internal models to
reflect the specific risks of the company more accurately.

Given the above, it is clear that the measurement of future cash flows and its uncertainty thus
becomes more and more important.

1.2 Outline

This thesis consists of a collection of papers that each tackle a specific issue in valuation or risk
management for insurers. First chapter 2 will cover some general concepts that are used
throughout the thesis, mainly relating to stochastic processes of some kind.

Life insurance products often have profit sharing features in combination with guarantees.
Valuation of these so-called embedded options is one of the key challenges in market valuation
of the insurance liabilities. Chapter 3 and 4 are both covering the valuation of specific embedded
options. In chapter 3 analytical approximations for prices of swap rate dependent embedded
options are developed. These options are very common in products of European insurers.
Chapter 4 covers the valuation of Guaranteed Annuity Options, which have been written by U.K.
insurance companies for many years. The valuation of embedded options is not only a valuation
issue, it is also an important aspect in risk management. After al, the risk of variations in the

! See *Directive of the European parliament and of the council on the taking-up and pursuit of the business of
insurance and re-insurance (Solvency 2)’ of the European parliament.
2 Committee of European Insurance and Occupational Pensions Supervisors



prices of embedded options is arisk element that has to be managed by the insurance company,
for example by hedging this risk exposure.

Important risks to be quantified for Life insurers (and pension funds) are mortality and longevity
risk. Chapter 5 and 6 will both cover different aspect in quantifying these risks. Chapter 5 will
introduce a new stochastic mortality model for the population of a country. Chapter 6 will focus
on another stochastic model that is the missing link to come to a full stochastic mortality model
for specific insurance portfolios. The latter also gives the opportunity to quantify the basis risk
that is involved when insurance portfolios are hedged with instruments of which the payoff
depends on country population mortality rates.

The other underwriting risks, related to the health and non-life business, are treated in chapter 7.
Usualy, reserving and risk management for this business is based on actuarial techniques that
are applied to aggregated data. This chapter describes a new stochastic reserving technique on
the level of individual claims (micro-level).

The remainder of this chapter contains a short introduction on the subjects covered in the
different chapters.

1.2.1 Chapter 3: Valuation of Swap Rate Dependent Embedded Options

Many life insurance products have profit sharing features in combination with guarantees. These
so-called embedded options are often dependent on or approximated by forward swap rates. In
practice, these kinds of options are mostly valued by Monte Carlo ssimulation, a computer
intensive calculation technique. However, for risk management calculations and reporting
processes, lots of valuations are needed. Therefore a more efficient method to value these
options would be helpful.

In this chapter analytical approximations are derived for these kinds of options. The analytical
approximation for options where profit sharing is paid directly is amost exact while the
approximation for compounding profit sharing options is aso satisfactory. In addition, the
proposed analytical approximation can be used as a control variate in Monte Carlo valuation of
options for which no analytica approximation is available, such as similar options with
management actions. This considerately speeds up the calculation process for these options.
Furthermore, it’s also possible to construct analytical approximations when returns on additional
assets (such as equities) are part of the profit sharing rate.

1.2.2 Chapter 4. Valuation of Guaranteed Annuity Options using a Stochastic Volatility
Model for Equity Prices

Guaranteed Annuity Options are options providing the right to convert a policyholder’s
accumulated funds to alife annuity at afixed rate when the policy matures. These options were a
common feature in UK retirement savings contracts issued in the 1970's and 1980's when
interest rates were high, but caused problems for insurers as the interest rates began to fall in the
1990's. Currently, these options are frequently sold in the U.S. and Japan as part of variable
annuity products.



The last decade the literature on pricing and risk management of these options evolved. Until
now, for pricing these options generally a process for equity prices is assumed where volatility is
constant. However, given the long maturities of the insurance contracts a stochastic volatility
model for equity prices would be more suitable. In this chapter explicit expressions are derived
for prices of guaranteed annuity options assuming stochastic volatility for equity prices and
either a 1-factor or 2-factor Gaussian interest rate model. The results indicate that the impact of
ignoring stochastic volatility can be significant.

1.2.3 Chapter 5: On stochastic mortality modeling

The last decennium a vast literature on stochastic mortality models has been developed, mainly
for use in risk management. All well known models have nice features but also disadvantages. In
this chapter a stochastic mortality model is proposed that aims at combining the nice features
from existing models, while eliminating the disadvantages. More specifically, the model fits
historical data very well, is applicable to a full age range, captures the cohort effect, has a non-
trivial (but not too complex) correlation structure and has no robustness problems, while the
structure of the model remains relatively simple. Also, the chapter describes how to incorporate
parameter uncertainty in the model. Furthermore, a version of the model is given that can be used
for pricing.

1.2.4 Chapter 6: Stochastic portfolio specific mortality and the quantification of mortality
basisrisk

Chapter 5 will describe several stochastic mortality models that have been developed over time,

usually applied to mortality rates of a country population. However, these models are often not

directly applicable to insurance portfolios because:

a) For insurers and pension funds it is more relevant to model mortality rates measured in
insured amounts instead of measured in number of policies.

b) Often there is not enough insurance portfolio specific mortality data available to fit such
stochastic mortality models reliably.

Therefore, in this chapter a stochastic model is proposed for portfolio specific mortality

experience. Combining this stochastic process with a stochastic country population mortality

process leads to stochastic portfolio specific mortality rates, measured in insured amounts. The

proposed stochastic process is applied to two insurance portfolios, and the impact on the height

of the longevity risk is quantified. Furthermore, the model can be used to quantify the basis risk

that remains when hedging portfolio specific mortality risk with instruments of which the payoff

depends on population mortality rates.

1.2.5 Chapter 7. Micro-level stochastic loss reserving

The last decennium also a substantial literature about stochastic loss reserving for the non-life
insurance business has been developed. Apart from few exceptions, all of these papers are based
on data aggregated in run-off triangles. However, such an aggregate data set is a summary of an
underlying, much more detailed data based that is available to the insurance company. This data
set at individual claim level as will be referred to as ‘micro-level data’. In this chapter it is
investigated whether the use of such micro-level claim data can improve the reserving process. A
realistic micro-level data set on general liability claims (material and injury) from a European
insurance company is modeled. Stochastic processes are specified for the various aspects
involved in the development of a claim: the time of occurrence, the delay between occurrence



and the time of reporting to the company, the occurrence of payments and their size and the final
settlement of the claim. These processes are calibrated to the historical individual data of the
portfolio and used for the projection of future claims. Through an out-of-sample prediction
exercise it is shown that the micro-level approach provides the actuary with detailed and valuable
reserve calculations. A comparison with results from traditional actuarial reserving techniques is
included. For our case-study reserve calculations based on the micro-level model are preferable:
compared to traditional methods, they reflect real outcomes in a more realistic way.



Chapter 2

Stochastic processes

At the heart of most valuation and all risk management calculations are assumptions about the
stochastic processes of the relevant variables. Stochastic processes required for valuation are
often of a different nature than the stochastic processes required for risk management.

For the valuation of embedded options it is important that the underlying stochastic model is
arbitrage free. Arbitrage free means that it is not possible to generate a non-zero payoff without
any initial investment. A convenient way to accomplish this is the use of a so-called ‘risk-
neutral’ model. The risk-neutral stochastic processes used in this thesis are described in section
2.1

For risk management it is more important that the stochastic processes are as realistic as possible
reflecting the dynamics of the underlying stochastic variable. This means that a ‘real-world’
model is required. The real-world stochastic processes used in this thesis are described in section
2.2.

2.1 Risk Neutral Stochastic Processes for Valuation

In this thesis the topics regarding valuation of embedded options require arbitrage free stochastic
processes for interest rates and equity prices. The stochastic processes used are members of a
more general class of models, the affine jump-diffusions. This section describes this genera
class of models and the specific interest rate and equity model used in this thesis. This will be
preceded by a short introduction in the notion of martingales and measures. The section ends
with a short discussion about stochastic processes for valuation of unhedgeable insurance risks.

2.1.1 Martingales and Measures

The foundation of option pricing theory is the assumption that arbitrage opportunities do not
exist. Another important underlying concept is completeness of the economy. If in an economy
the payoffs of all derivative securities can be replicated by a self-financing trading strategy, the
economy is called complete. If no arbitrage opportunities and no transaction costs exist in an
economy, the value of a self-financing trading strategy should be equal to the value of the
corresponding derivative. If thiswould not be the case, arbitrage opportunities exist.

Harrison and Kreps (1979) and Harrison and Pliska (1981) brought the concepts of arbitrage free
and compl eteness together in what is called ‘ The Fundamental Theorem of Asset Pricing’. Any



asset which has strictly positive prices for al future timesis called a numéraire. Numéraires can
be used to denominate all pricesin an economy (instead of Euro’s or Dollars). A martingale is a
stochastic process with a zero drift. Harrison and Kreps (1979) and Harrison and Pliska (1981)
proved that a continuous economy is complete and arbitrage free if for every choice of numéraire
there exists a unique equivalent martingale measure. In other words, given a choice of numéraire,
there is a unique probability measure such that the relative price processes are martingales. This
important result is very useful for option valuation.

For example, say that price at time t of an option H maturing at time T relative to the price of
security M is defined as V. Then under the relevant measure Q¥ the process V is a martingale.
This means that:

M H(t) M eH(T)u v EH(MU
21) V@) =EYIV(T)|bP =E DHt—MtEA—'
21) V() V(™) MO & ) () =M (t) oL

where EM[% is the expectation under the relevant measure. By choosing a convenient numéraire
the option price calculation can be simplified considerably in some cases.

Usually as a starting point the riskless money-market account is used as the numéraire. Under the
unique probability measure corresponding to this numéraire the expected return on all assets is
equal to the risk-free rate. Therefore, this measure is called the risk-neutral measure, usually
denoted as Q. Often stochastic processes intended to be used for valuation are defined in the risk-
neutral measure. However, sometimes it is more convenient to change to another measure.

Consider two numéraires N and M with the martingale measures Q" and Q". Geman et al (1995)
proved that the Radon-Nikodym derivative that changes the equivalent martingale measure Q¥
into Q" is given by:

dQ™ _ N(T)/N()
dQ"  M(T)/M(t)

(2.2) =1 (t)

Girsanov’s Theorem states that if this Radon-Nikodym derivative can be written as:
_ é M ) N 2 4.l

(23) r(t)=exp @Qk (s)dW™ (s)- 0.5 Qk (s) ds(]

where WM is a Brownian motion under the measure Q. This|eads to:

(24) wWV@t)=w"(t)- ék(s)ds or dw" =dw" +k(t)dt

So in order to use Girsanov’'s Theorem the process k(t) has to be found that yields (2.3). An
application of 1to’'s Lemma shows that dr (t) = r ()k(t)dWM , showing that r (t) is a martingale
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Lemmato theratio (2.2) will give k(t).

2.1.2 Affine Jump-Diffusions

The stochastic processes used in this thesis for interest rates and equity prices are part of a
broader class of models, caled the affine jump-diffusions. A class of affine models was
introduced first in the context of interest rates by Duffie and Kan (1996). Later thisis generalized
by Duffie et a (2000) and Duffie et a (2003). The class of affine jump-diffusions provides a
flexible and general model structure combined with analytical tractability. The latter feature
facilitates the calibration and simulation of such models. Well known term structure models that
are members of this class are, amongst others, the models of Hull and White (1993), Cox et a
(1985) and Longstaff and Schwartz (1992). Next to the equity price model of Black and Scholes
(1973) aso the stochastic volatility models of Heston (1993), Schébel and Zhu (1999) and the
stochastic volatility with jumps model of Bates (1996) are members of this class.

The class of affine jump-diffusions can be defined as follows. Let X be a rea-valued n-
dimensional Markov process satisfying:

(25) dX(t) = m(X())dt+s (X(t))dw(t) +dZ(t)

Where W(t) is astandard Brownian motion in A", m(3 1 A", s(31 A™*", and Z isapurejump
process whose jumps have afixed probability distribution v and arrive with intensity | (X(t)). The
jump times of Z are the jump times of a Poisson process with time-inhomogeneous intensity.
Poisson processes are further highlighted in section 2.2. The process X is affine if and only if the
diffusion coefficients are of the following form:

(26) mx) = K;+Kx for K=(Ko,Ky) T AM" Anxn
27) (s(s (x)T)ij = (Ho), +(H,), x for H=(Ho,H,) T AMXn - Anxnxn
28 1(x) = I, +Ix for I=(lo,]) T A~ A"

(29) () = ro+rx forr=(rory)T A"" A™"

where r(x) is the short term interest rate. Now it can be proved that the characteristic function of
X(t), including the effects of any discounting, is known in closed form up to the solution of a
system of Ordinary Differential Equations. Duffie et al (2000) show that for uT C" the Fourier
transform f (u,X(t),t,T) of X(t), conditional on filtration F;, is given by:
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where A(% and B(» satisfy the following system of Ricatti equations:

(2.11) % - v - Kos(t)-%s(t)THOB(t)- @ (B(V)- 1§
(2.12) % = r,- KJB(t)-%B(t)THls(t)- L €1 (B()) - 1

with boundary conditions A(T) = 0 and B(T) = u. The ‘jump transform’ q (¥ isgiven by:
(213) q(c) = Q. €”av(2

In general the solutions of A(®and B(® have to be computed numerically, although the well
known models mentioned above result in explicit expressions for A(% and B(3.

2.1.3 Gaussian interest rate models

In this thesis the underlying interest rate model for the valuation is the class of multi-factor
Gaussian models. Special cases of this class of models are the 1-factor and 2-factor Hull-White
model, which are often used in practice. These models are appealing because of their analytical
tractability.

The Gaussian interest rate models are also a special case of the affine term structure models

introduced by Duffie and Kan (1996). The m-factor Gaussian model describes the stochastic
process for the instantaneous short rate as follows™:

(2.14) r(t) =1Y(t) +a(t)
(2.15) dY(t) =- CY(t)dt + & dWO(t)

where WR(t) is a m-dimensional Brownian motion under the risk-neutral measure and C and S
aremx mmatrices. C isadiagonal matrix.

The function a(t) is chosen in such away that the fit of the model to the initial term structure is
perfect. The covariance matrix of the Y-variablesisequal to SS'.

The analytical tractability of this model makes it possible to obtain bond prices analytically, from
which swap and zero rates can be derived. The price at timet of a zero bond maturing at time T
isgiven by:

% See Brigo & Mercurio (2006) for an extensive explanation of and pricing formulas for the 2-factor Gaussian model.



(2.16) D(t,T) = A, T)expge 2 BO(t, T)Y")(t)_

where BO(t,T) =1/ A, [1- exp(- A, (T - 1))
The expression for A(t,T) is further specified for the 1-factor and 2-factor case in chapter 4.

2.1.4 Stochastic volatility model for equity prices

In a seminal paper Black & Scholes (1973) made a major breakthrough in the pricing of equity
options. The underlying stochastic model for equity prices has become known as the Black-
Scholes model. The Black-Scholes model assumes the volatility to be constant. However, in
practice the volatility varies through time. For this reason a significant literature has evolved on
alternative models that incorporate stochastic volatility. Next to leading to more redlistic
dynamics of the stochastic process for equity prices, these models have the advantage that they
provide a better fit of the model to actual market (option) data. This is an important feature for
being able to adequately price more exotic options such as embedded options in insurance
products. Well known stochastic volatility models are the models of Hull and White (1987),
Stein and Stein (1991), Heston (1993) and Schébel and Zhu (1999).

The am in chapter 4 is to combine a stochastic volatility model for equity prices with a
stochastic interest rate model. Van Haastrecht et a (2009) show that it is possible to obtain an
explicit expression for the price of European equity options when the Schdbel and Zhu (1999)
model is combined with a stochastic Gaussian model for interest rates, explicitly taking into
account the correlation between those processes. That makes this combined model suitable for
valuation of the Guaranteed Annuity Options in chapter 4.

In the Schobel and Zhu (1999) model, the process for equity price S(t) under the risk-neutral
measure Q is:

ds(t)
S(t)
(218) dv(t) = k(y - v(t))dt +t dWC(t) v(0) =V,

(2.17) = r(t)dt + v(t)dW2 (t) S(0)=S§

Here v(t), which follows an Ornstein-Uhlenbeck process, is the (instantaneous) stochastic
volatility of the equity S(t). The parameters of the volatility process are the positive constants ?
(mean reversion), Vo (short-term mean), ? (long-term mean) and t (volatility of the volatility).

2.1.5 Stochastic processes for valuation of unhedgeable insurance risks

The valuation of insurance liabilities also requires the valuation of (unhedgeable) insurance risks.
For example, mortality models for the valuation of mortality or longevity liabilities (or
derivatives) are given by Dahl (2004), Schrager (2006), Cairns et a (2006b) and Bauer et a
(2008). The models of Dahl (2004) and Schrager (2006) belong to the genera class of affine
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jump-diffusions defined in paragraph 2.1.2 and as a result allow for closed form expressions of
the survival rate.

Usually insurance risk models are calibrated to historical data and are therefore defined in the
real world measure, denoted by P. Given the techniques mentioned in paragraph 2.1.1, one could
apply a change of measure to risk neutral measure Q, under which the insurance liability can be
valued. However, in this case one crucial condition is not satisfied, being the completeness of the
economy. As explained in paragraph 2.1.1, the completeness of the economy forces the risk
neutral measure Q to be unique. The market for insurance risks is far from complete, meaning
that the insurance risks are unhedgeable and therefore a range of possibilities for Q exist. As
mentioned by Cairns et al (2006a) the choice of Q needs to be consistent with the limited market
information, but beyond this restriction the choice of Q becomes a modeling assumption.

An alternative method for valuation in incomplete markets is the use of utility functions and the
principle of equivalent utility, see Young and Zariphopoulou (2002), Y oung and Moore (2003)
and Young (2004). This principle implies that the maximal expected utility with and without the
specific insurance risk are examined. The compensation at which the insurer is indifferent
between the two aternative alternatives yields the value of the unhedgeable insurance risk.
However, this approach is currently only feasible for relatively simple products.

2.2 Real World Stochastic Processes for Risk Management

As mention above, for risk management it is particularly important that the stochastic processes
used redlistically reflect the observed characteristics of the underlying stochastic variable. In
chapter 5 and 6 parametric models are fit to yearly observations, leading to time series of fitted
variables. Stochastic processes have to be fit to these time series, for which the Autoregressive
Integrated Moving Average (ARIMA) models can be used. These are described in paragraph
2.2.1. The stochastic processes needed in chapter 7 are of a different nature and are described in
paragraph 2.2.2.

2.2.1 ARIMA Time Series Models

A seminal work on the estimation and identification of ARIMA models is the monograph by Box
and Jenkins (1976). Additional details and discussion of more recent topics can be found in for
example Mills (1990), Enders (2004) and Hamilton (1994). An important issue is whether atime
series process is stationary, meaning that the distribution of the variable of interest does not
depend on time. If this is not case, the first step would be to difference the time series until the
differenced time series is stationary. Box and Jenkins found that usualy only one or two
differencing operations are required.

The general ARIMA(p, d, q) model for atime series of avariabley; can be written as:
(210) Vy, =y;
. d . J
yt :aO + a a'iyt-i +et +a biet-i

i=1 j=1
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where the a‘'s and b‘s are the unknown parameters, the €'s are independent and identically
distributed normal errors and D" represents the differencing, meaning D%: = v, D'Vt = Yt — Vi1,
DV = (Yt — Vi1) - (Vo1 — Vi2), €tc. The parameter p is the number of lagged values of i,
representing the order of the autoregressive (AR) dimension of the model, and q is the number of
lagged values of the error term, representing the order of the moving average (MA) dimension of
the model.

Box and Jenkins define three steps for the development of an ARIMA mode!:

1) Model identification and model selection: determining the values for p, d, g.

2) Parameter estimation: either by using Maximum Likelihood or (non-linear) Least
Squares estimation.

3) Diagnostic checking: testing whether the estimated model meets the specifications of a
stationary univariate process.

Often an extension is needed to allow the modeling of multivariate time series. This requires a
multivariate generalization of the ARIMA process, see for example Verbeek (2008).

2.2.2 Poisson processes and renewal processes

The required stochastic processes in chapter 7 are of a different nature than those described
above. Poisson processes and the related renewal processes are convenient concepts for
modeling the development process of individual claims. For an extensive overview of these
techniques, see Cook and Lawless (2007).

Poisson Processes A Poisson process describes situations where events occur randomly in such
a way that the numbers of events in non-overlapping time intervals are independent. Poisson
processes are therefore Markov, with an intensity function:

@) | (tIHE) = IDitU3Pr(N(t+DtD)t- N(t) =1) .

Where N(t) is the cumulative number of events occurring over the time interval [0,t] and H(t) is

the process history. In the case where r(t) is constant, r(t) = r, the process is caled
homogeneous. Otherwisg, it isinhomogeneous. The above specification implies:

. &, 0

(212) N(t)- N(s) ~ P0|ssongd (u)du =

es a

Position Dependent Marked Poisson Process (PDMPP) In chapter 7 the individual clams

process is modeled as a PDMPP. A marked Poisson process with intensity r (t) and position-
dependent marks is a process

(213) ((T,2)).
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where the claims counting process N(t) is an inhomogeneous Poisson point process with intensity
r (t), points T; and marks Z;. The (Z)wo are mutually independent, are independent of the Poisson
point process N(¥ and have time-dependent probability assumptions.

Renewal processes Related to the Poisson process is the renewal process, in which the waiting
(gap) times between successive events are statistically independent: that is, an individual is
‘renewed’ after each event occurrence. Renewal models for waiting times are defined as
processes for which

(214) 1 (t[H() = h(t'T )

N(t)
where h(3 isthe hazard rate and t- T ©) is the time since the most recent event beforett.

Often used models for the time to an event, say T, are the Exponential, Weibull and the
Gompertz distribution. These distributions have the convenient property that the hazard function
has a ssimple form. The following hazard functions g(u) are implied by these distributions:

- T~Exponentia(l ) b h(u) =1 (constant hazard)

- T~Webull(a,g P h(u) = age’

- T~ Gompertz(a,g) P h(u) = g™

Other possibilities are a piecewise constant specification for the hazard rate or the Cox
proportional hazard model (see Cox (1972)).
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Chapter 3

Valuation of swap rate dependent
embedded options*

* This chapter has appeared as:

PLAT, R. AND A.A.J. PELSSER (2008): Analytical approximation for prices of swap rate
dependent embedded options in insurance products, Insurance: Mathematics and Economics 44,
pp. 124-134

3.1 Introduction

An important part of the market valuation of liabilities is the valuation of embedded options.
Embedded options are options that have been sold to the policyholders and are often the more
complex features in insurance products. An embedded option that is very common in insurance
products in Europe, is a profit sharing rule based on a (moving average) fixed income rate, in
combination with a minimum guarantee. This fixed income rate is either from an external source
or could be the book value return on a fixed income portfolio. For example, in the Netherlands
the profit sharing is often based on the so-called u-yield, which is more or less an average return
of several treasury rates. In other parts of Europe, the book value return on the fixed income
portfolio is often the basis for the profit sharing. In practice the exact rates are difficult to
determine and to project forward, and implied volatilities from the market are not available.
Therefore, often the euro swap rate is used as a proxy. So what remains is the valuation of an
option on amoving or weighted average of forward and historic swap rates.

Most insurers use Monte Carlo simulations for the valuation of their embedded options. The
advantage of this is that many kinds of options can be valued with it (including the more
complex ones) and that it gives one uniform simulation framework that is applicable for various
embedded options. However, an important disadvantage is the computational time it requires.
Embedded option calculations are required for Fair Value reporting, Market Consistent
Embedded Value, Asset Liability Management, product development and pricing, Economic
Capital calculations and Mergers & Acquisitions. For most of these purposes several calculations
are required. For the calculation of Economic Capital for example 20.000 or more simulations
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are used and in each of these scenario's the market value of liabilities (and thus the value of
embedded options) has to be calculated. Also for other purposes, often sensitivities and analysis
of changes are necessary. If an insurer then also exists of several business units or legal entities,
the total computational time can be significant. Therefore, analytical solutions for the valuation
of embedded options would be very helpful.

In this chapter analytical approximations are derived for the above mentioned swap rate
dependent embedded options. The underlying interest rate model is a multi-factor Gaussian
model. This model is very appealing because of its analytical tractability. Also, the model
implicitly accounts for the volatility skew to some extent, what is important for these kind of
options because those are in most cases not at-the-money. Because of this the model is often
used in practice (in most cases the 1-factor or 2-factor Hull-White variant). Analytical
approximations are derived for the case of direct payment of profit sharing, as well as for the
case of compounding profit sharing. In case of (very) complex options with management actions,
the analytical approximation for the direct payment case can be used as a control variate in
combination with Monte Carlo simulation, reducing the computational time to a great extent.

It could well be that an insurance company has other kinds of embedded options for which no
analytical approximations are available. These embedded options probably have to be valued
using Monte Carlo simulation. Since the multi-factor Gaussian models are often used in practice,
the analytical approximation for the swap rate dependent options can in that case be used in
conjunction with the simulation model that may be required for the valuation of other embedded
options. This results in a consistent underlying interest rate model for the valuation of embedded
options, despite the fact that perhaps some of the options are valued with Monte Carlo
simulations and others with analytical formulas.

The basis for the analytical approximation is the result of Schrager and Pelsser (2006), who have
developed an approximation for swaption prices for affine term structure models (of which the
multi-factor Gaussian models are a subset). They determine the dynamics of the swap rate under
the relevant swap measure and these dynamics are approximated by replacing some low-variance
martingales by their time zero values. Thistechniqueis already used extensively in the context of
Libor Market Models and given the results of Schrager and Pelsser, it also proves to work well in
an affine setting. By use of the Change of Numéraire techniques developed by Geman et a
(1995), the result of Schrager and Pelsser can be used to derive analytical approximations for
swap rate dependent options.

Most of the existing literature on valuation of embedded options in insurance products focuses
on Unit Linked products, with-profits products or Guaranteed Annuity Options. For example,
Grosen and Jorgensen (2000), Schrager and Pelsser (2004) and Castellani et al (2007) devel oped
analytical approximations for Unit Linked type products with guarantees. Wilkie et al (2003) use
numerical techniques to value Guaranteed Annuity Options, while Sheldon and Smith (2004)
developed analytical formulas for these products. Nielsen and Sandmann (2002) and Prieul et a
(2001) use numerical techniques for valuation of With-Profits contracts.

However, to our knowledge there has been little focus on profit sharing based on (moving
average) fixed income rates, despite this being one of the most common types of profit sharing in
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Europe. Our contribution to the existing literature is that we provide analytical approximations
for these kinds of profit sharing. Analytical approximations for direct payment of profit sharing
and for compounding profit sharing are given, while a combination with returns on other assets
(such as equities) is aso possible. In addition, the proposed analytical approximation can be used
as a control variate in Monte Carlo valuation of options for which no analytical approximation is
available, such as similar options with management actions. This potentially reduces the number
of simulations required to a great extent.

Some of the techniques proposed in this chapter can aso be used for financial products, such as
options on an average of Constant Maturity Swap (CMYS) rates, (callable) CMS accrual swaps
and (callable) CM S range notes.

The remainder of the chapter is organized as follows. First, in section 3.2 the characteristics of
the swap rate dependent embedded options are described. In section 3.3 the underlying Gaussian
interest model is given. In section 3.4 the Schrager-Pelsser result for swaptions is repeated and
this is applied to the direct payment case in section 3.5. In section 3.6 possibilities are given for
more complex embedded options. Then numerical examples are worked out in section 3.7 and
conclusions are given in section 3.8.

3.2 Swap rate dependent embedded options

Traditional non-linked life insurance products often guarantee a certain insured amount.
Common practice was (and often still is) to calculate the price of this insurance by discounting
the expected cash flows with arelatively low interest rate, called the technical interest rate. Often
this is combined with profit sharing, where some reference return is paid out to the policyholder
if this exceeds the technical interest rate, possibly under subtraction of a margin. There exist
various types of profit sharing, such as:

- Profit sharing based on an external reference index

- Profit sharing based on the (book or market value) return on the underlying investment
portfolio

- Profit sharing based on the performance and profits of the insurance company

- Profit sharing of the so-called with-profits products, where regular and terminal bonuses
are given though the life of the product, based on the return of the underlying investment
portfolios. The terms of these policies often contain management actions that allow the
insurance companies to reduce the risks of these products.

In most cases where the profit sharing rate depends on a certain fixed income rate, the exact
profit sharing rate is either very complex or not fully known, or implied volatilities from the
market are not available. In practice, these kinds of options are often valued using an (average)
forward swap rate as an approximation for the profit sharing rate. The profit sharing payoff PS(t)
inyear tisin that case:

(31) PS(t) = L(t) Max{c(R(t)- K(t)),0}
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where L(t) is the profit sharing basis, ¢ is the percentage that is distributed to the policyholder
and K(t) is the strike of the option. The strike equals the sum of the technical interest rate TR(t)
and amargin. In most cases, either the margin or the c is used for the benefits of the insurer. R(t)
isthe profit sharing rate and is a (weighted) average of historic and forward swap rates.

The profit sharing as described in (3.1) is a call option on arate R(t) and has to be valued using
option valuation techniques. The profit sharing is either paid directly or is being compounded
and paid at the end of the contract.

Note that it depends on the specific profit sharing rules whether the swap rate is a good
approximation for the profit sharing rate. This has to be verified for each specific profit sharing
arrangement. Below two examples are given of profit sharing arrangements where the swap rate
is often used as approximation in practice.

Example 1 — book value return on underlying portfolio
One of the most common forms of profit sharing across the European life insurance business is
the one where the profit sharing rate is based on the book value return of the underlying fixed
income portfolio®. To be able to value this option, assumptions have to be made about the
reinvestment strategy. An example of how this problem is often tackled in practice is to assume:

- acertain average turnover rate d

- areinvestment strategy favoring mryear maturity assets.

- the m-year swap rate being an approximation for the yield on the m-year maturity assets

Given these assumptions the book value return of the portfolio can be modeled as follows:

(32) R®)=(- d)RE- D +d V()

where yi.m(t) is the mryear swap rate at time t. The book value return on time t can also be
expressed in terms of the current book value return R(0), leading to an exponentially weighted
moving average:

t
(33 R(t)=(-d)' RO +Q ¥i.n()@-d)"'d
i=0
being a weighted combination of forward swap rates and the current book value return.

Another approach that is often used is approximating the book value return by a moving average
of swap rates:

t
]

(34 R)=1 & y.nl)

i=t- n+l

where n (= 1/d) isthe number of fixings of the moving average.

* This is common practice in for example France, Germany, Italy, Czech Republic, Switzerland and Norway.
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Example 2 —* u-rate” profit sharing in the Netherlands

In the Netherlands the most common form of profit sharing is based on a moving average of the
so-called u-rate. The u-rate is the 3-months average of u-rate-parts, where the subsequent u-rate-
parts are weighted averages of an effective return on a basket of government bonds. This leads to
a complicated expression, and no implied volatilities are available for government bonds.
Therefore, it is common practice in the Netherlands to approximate the u-rate or the u-yield parts
by a swap-rate’. That means that the profit sharing rate is approximated by a moving average of
swap rates, asin (3.4). O

Besides the direct payment and compounding versions of (3.1), other variants of this profit
sharing exist, such as:

1) Profit sharing including the return on an additional asset
2) (Compounding) profit sharing with additional management actions or other complex
features.

In case of 1), the underlying investment portfolio also contains additional non-fixed income
assets. This means that the profit sharing rate is a combination of a (weighted) moving average
of swap rates and the return on additional assets. The profit sharing rate could then be expressed
as.

3 o
(35) R(M)=a W'y +a W'
i

k=Ti.s
wherew? isthe weight in additional asset S, rs, isthe return on that asset and
2\ F! 2 WS —
aw, +aw =1

In case of 2), the insurer has added management actions or other complexities to the profit
sharing rules, mainly to lower the risk exposure for the insurer.

In the following sections analytical approximations are developed for prices of embedded
options where the profit sharing rate depends on or is approximated by forward swap rates. Note
that the developed formulas are approximating swap rate dependent embedded options. When
considering the results or using the formulas one always has to be aware of the fact that the first
error isintroduced when the swap rate is being used as a proxy for the profit sharing rate.

3.3 The underlying interest rate model

The analytical approximations in this chapter are based on an underlying multi-factor Gaussian
interest rate model. This model is described in paragraph 3.3.1. Paragraph 3.3.2 gives a

® Historical data that show that u-rate parts have behaved similarly as swap ratesin the past, is available upon
request.
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discussion whether similar techniques as developed in this chapter can be used for analytical
valuation of the options described in section 3.2 given other underlying interest rate models.

3.3.1 Multi-factor Gaussian models

As mentioned in paragraph 2.1.3, the underlying interest rate model for the valuation is the class
of multi-factor Gaussian models. These models are very appealing because of their analytical
tractability. This makes the model easy to implement, while there are also more possibilities for
analytical approximations (or solutions) for embedded options

In the swaption market, the observed implied Black volatility is varying for different strike levels,
leading to the so-called volatility skew. Thisvolatility skew exists because the market apparently
does not believe in lognormally distributed swap rates. Instead, the volatility skew seems to
indicate a distribution that is closer to the normal distribution®. Therefore, the Gaussian models
implicitly account for the volatility skew to a certain extent. Thisis also an appealing property of
these models in the context of embedded options in insurance products, since these options are in
most cases not at-the-money.

3.3.2 Valuation for other interest rate models

This paragraph gives a discussion whether similar techniques as developed in this chapter can be
used for analytical valuation of the options described in section 3.2 given other underlying
interest rate models.

General affine models

Schrager and Pelsser (2006) developed approximations for swaption prices for genera affine
interest rate models. For non-Gaussian affine models they come to an approximate solution for
swaption prices for which only a numerical integration is necessary. An approximation for the
characteristic function of the swap rate under the swap measure and the method of Carr and
Madan (1999) is used for this. As afirst step in this process they derive approximate dynamics
for the swap rate in similar fashion as described in section 3.4. With an additional approximation
asquare-root process for the swap rate results.

Dassios and Nagaradjasarma (2006) develop explicit prices for Asian options, given an
underlying square root process. They aso obtain distributional results concerning the square-root
process and its average over time, including analytic formulae for their joint density and
moments.

For the embedded options discussed in this chapter a suggested approach would be to use the
approximate dynamics for the swap rate from Schrager and Pelsser (2006) and combine this with
the techniques in Dassios and Nagaradjasarma (2006).

Libor Market Model (LMM)
As mentioned in section 3.4, the approximation technique used in this chapter is already used
extensively in the context of Libor Market Models. For example, Brigo and Mercurio (2006) use

® See Levin (2004) for adiscussion on thisissue.
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the technique for approximation of swaption pricesin the LMM model. Gatarek (2003) uses it to
approximate prices of Constant Maturity Swaps.

Now when using this technique, the resulting distribution of the approximate swap rate in the
LMM model islognormal. However, for the valuation of the embedded options in this chapter
the distribution of the average swap rate is needed. In case the swap rate islognormally
distributed, the distribution of the average swap rate is unknown. Thisisawell known problem
in the context of valuation of Asian options. Methods for approximate analytical valuation of
options on the average of lognormally distributed variables are proposed in, amongst others,
Levy (1992), Curran (1994) and Rogers and Shi (1995). Lord (2006) gives an overview of
existing methods, compares the quality of those numerically and devel ops approximations that
outperform the other methods.

Swap Market Model (SMIM)

In astandard SMM as proposed by Jamshidian (1997) each swap rate is modeled in its own swap
measure, making it hard to apply for pricing of most exotic interest rate products. This could be
one of the reasons that the SMM has not been discussed extensively in financia literature. The
co-sliding SMM proposed by, amongst others, Pietersz and Van Regenmortel (2006) seems
promising though and is applicable especially for Constant Maturity Swap (CMS) and swap rate
products.

In the SMM the swap rate is modeled directly in alognormal setting, so no approximation of the
distribution of the swap rate in the swap measure is necessary. A price for the profit sharing
options discussed in this chapter can be obtained by applying the relevant convexity and timing
adjustments and using one of the above mentioned techniques for approximate analytical
valuation of Asian options.

3.4 The Schrager-Pelsser result for swaptions

Schrager and Pelsser (2006) developed an approximation for swaption prices for affine interest
rate models. In this section their main result for the Gaussian models is repeated.

The swap rate y,n IS the par swap rate at which a person would like to enter into a swap contract
with avalue of 0, starting at time T, (first payout at time Ty.1) and lasting until Ty. The swap rate
at timetisgiven by:

(36) y, ()= D(tN’Tn)- D(t,T,) _ D(t.T,)- D(t.T,)

é DT(—lD(t'Tk) Pn+l'N ®

k=n+1

where D] _, is the market convention for the calculation of the daycount fraction for the swap

payment at Ty. When using Pn.1n (f) as a numéraire, all Pq.in (t) rebased values must be
martingales under the measure Q™™ | associated with this numéraire. That means that y, is a
martingale under this so-called swap measure, which is introduced by Jamshidian (1998). When
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applying Ito's Lemma to the model defined in (2.14) and (2.15) the following dynamics for the
swap rate ynn(t) under the swap measure result:

MWan (1)

S dW n+1,N (t)
Y (t)

B7) dy,n(®)=

Where dW"™™ is a mdimensiona Brownian motion under the swap measure Q™M

corresponding to the numéraire P,.1n (t). Schrager and Pelsser (2006) determine the partial
derivatives in (3.7), which are stochastic, and approximate these by replacing low-variance
martingales by their time zero values. Thistechnique is already used extensively in the context of
Libor Market Models’” and given the results of Schrager and Pelsser, it also proves to work well
in an affine setting. This approximation makes the swap rate volatility deterministic and thus
leads to a normally distributed forward swap rate. The approach described leads to an analytical
approximation for the integrated variance of y,n (associated with a T, x Ty swaption) over the
interval [O,T,] (for the proof, see appendix 3a):

2 a3 s <0) A(D) éegA(ii)+A(Jj)Hrn ) 1[]
2 i A -

(38) s.vn»aa agChaCh & ———
= g Aot A §

where S, isthe element (i,j) of & & and

(ij
~ . N )
39 C9 -1 [e‘ Al DPO,T,) - €™ D”(0,T,) - y.n(0) & DL, e ™" DP(O,TK)H

i) k=n+1
where DP(t,T,) = D(t,Ty) / Pns1n(t), the bond price normalized by the numéraire.
The result is an easy to implement analytical approach to calibrate Gaussian models to the
swaption market. A nice by-product of the approach (as opposed to other approaches for
approximating swaption prices) is that the dynamics of the swap rates are approximated. These

approximate dynamics can be used for approximating prices of other swap-rate dependent
options.

3.5 Analytical approximation — direct payment

Assume that the profit sharing rate at time T; is a weighted average of t-year maturity swap rates
with weights wy and the averaging period isfrom time T, _stotime T; :

T;
(310) R(T)= & Wy Yiww (K)
k=T s

where S wy =1.

" See Andersen and Andreasen (1998), Gatarek (2003) and Brigo and Mercurio (2006).
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In case of direct payment of profit sharing, the embedded option isin fact a strip of options that
mature at time T; (i=1,2,...) and lead to a direct payment of an option payoff on R(T;) on these
dates. Since the individual ykk+t (K)'s are approximately normally distributed (see section 3.4),
R(T;) is also approximately normally distributed. So to value the option the expectation and the
variance of R(T;) have to be approximated under the T;-forward measure and feed into a Gaussian
option formula for each time T;. For determining the variance of R(T;) the covariance's of the
Yik+t (K)'swith they; .+t (K)'s have to be specified.

3.5.1 Determining the expectation of R(T;)

The above means that each individual option has to be priced in the Ti-forward measure. To
come to the expectations of R(Ti) under the right measure the following steps are necessary:

a) For each (forward) swap rate y,n a change of measure has to be done from the swap
measure Q™ N to the T,-forward measure Q™.

b) If the payoff of the option on the average of the swap ratesis at time T;, for each of the
individual swap rates observed at time (T;.s), a change of measure has to be done from the
(Ti-s)-forward measure to the T;-forward measure.

The corrections mentioned above can be interpreted as convexity corrections (a) and timing
corrections (b). The formulas for these corrections are given in (3.11) and (3.12), of which the
proofs are given in appendix 3b. Note that due to the changes of measure it’s not guaranteed that
the quality of the approximation will remain. Therefore, thiswill be tested in section 3.7.

The convexity correction CCn(Tn) for time T, > O for the swap rate yn\ is:

g & 3 ~ o~ éegA(ii)+'A(ii)HTn _ 1[}|
311) CCy(T)»a a &g CunGin A +A_ o
= g AntAn g

c/

~ A N
where G ==& """ - 3 D¢ " D*(OT,)y
e

i k=n+1

cC

The timing correction TC,,n(Tn, Tr+u) representing a change of measure from time T, > 0 t0 Tp+yiS:

g & 2 20 G) éegA(ii)+A(jj)Hrn _ 1[]

2 i A p

(312) TC,y(M. o) »@ @ A ConHr iy, 6 — u
o g At An B

where |:|"|('J)T = _1 [e'ﬁn’)(an) - e"“men]
nsin+u ”)
For T,, < 0O, the convexity corrections and the timing corrections are 0. Note that in the derivation

of (3.11) also stochastic terms are replaced by their time zero values, leading to a deterministic
convexity correction.
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The expectation my, of R(Ti) becomes:

T
(3.13) My » A Wi [yk,k+t (O)+Cck,k+t (k)+TCk,k+t (k,T,)]

k=Ti.s

The convexity correction is positive and the timing correction is negative, so they are partly
offsetting each other. The formulas (3.11) and (3.12) have the same structure as in case of the
swaptions in section 3.4, so the implementation is not much more complicated than that.

3.5.2 Determining the variance of R(T;)
Given that the drift term is deterministic, the change of measure has no impact on the volatility,
so expression (3.8) can be used to determine the variance of R(T;). The variance s ,im of R(Ty) is:

T T;
(314) sir = a aWwW CoMY, . (K), Vi ()]
k:Ti—slzTi—s

where Cov(.) is the covariance between the swap rates. From stochastic calculus we know (for s
£1):

é t S l‘J S
(3.15) Cov gf (WdW,, cp(u)dW, ;= of (U)g(u)du
€o 0 0 o
Using this and expression (3.8) the covariance between swap ratesis

kUi

COM Yy i (K), Vi 0] > 9 %diag(C, .. )& & tdiag(C, . ) e* ds
0

3.16 o ‘ ‘
N Do s o .. EgfntAntEkD _qu
-3 8 a C(') C(J) a i

a a (i) Kkt M+ 2 + |

e g A tAn 8

where k Ul = min(k,|).

3.5.3 Pricing formulas

The total value of the embedded option is the sum of the values of the strip of options that
mature at time T; (i=1,2,...). The profit sharing specified in (3.1) isin fact a call option on the
normally distributed rate R(T;) with expectation (3.13) and variance (3.14) under the T;-forward
measure.

Let ] ms(® be the density of a Gaussian random variable with mean mand standard deviation s
F ms the corresponding distribution functionand F = F q;.
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The value at time O of the profit sharing payoff PY(T;) at time Ti is™:

VIPS(T,)] = D(0.T,) L(T,) cEY' [Max{R(T,) - K(T}),0}]

¥

(317) =DOTILMIC (- KMNfy o, (YK
K(T)
e - K(T) 6 K (T)) - 5U
=D(0,T) L(T)) c &y, - K(T))F a&%)—(')gJ,S - (1) - M) gu
g R(T) 2 S R(T) ]2}

Thetotal value of the profit sharing at time 0 is then:
(3.18) V[PS]=g V[PS(T)]

When the profit sharing payoff at atime > 0 is dependent on observations at atime < 0, a dlight
adjustment has to be done. In that case the expectation to be valued is:
V[PS(T)]=D(0,T,) L(T) E*' [Max{R(T,) - K(t),0}]
(3.19) =D(O,T,)L(T) E¥' [Max{R(T) o + R(T o - K(1),0}]
=D(0,T)L(T)E®" gMax{R(T).., - K'(),01 §

T.=0 T
b OI *
where R(T;) o = @ Wi Yiekst (K)s R(T )50 = @ Wi Vit (K) @nd K- (t) = K(t) - R(T)) 0
k=Ti_s k=T;

So these profit sharing options can be priced with a relatively ssmple and relatively easy to
implement Gaussian option formula.

3.6 Valuation for more complex profit sharing rules

In section 3.5 an analytical approximation is derived for the case of direct payment of the profit
sharing payoff specified in (3.1). However, in practice other variants of this profit sharing exist,
such as:

1) Compounding variant of the profit sharingin (3.1)

2) Profit sharing including the return on an additional asset

3) (Compounding) profit sharing with additional management actions or other complex
features

8 These results can be derived in asimilar fashion in case of a put-option on rate R(T;).
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For 1) and 2), an analytica approximation can be derived in line with the approximation
developed in section 3.5. For 3), either volatility scaling or Monte Carlo simulation will be
necessary. In case of Monte Carlo simulation, the approximation in (3.17) can be used as a
control variate, potentially reducing the amount of simulations necessary to agreat extent.

3.6.1 Compounding profit sharing

It is also common that profit sharing is not paid directly, but is compounded and paid out at the
end of the contract term. Valuation of this option with Monte Carlo simulation often takes a
significant amount of time. The reason for this is the dependency of the profit sharing rates on
the future cash flows, resulting in the need to use the original liability cash flow model in a
stochastic way. An analytical approximation would significantly (even more than in the direct
payment case) reduce computational time, since these formulas can be used as input for the
liability cash flow model without the need to run these stochastically.

Let the maturity of the product be T,, and total payoff L(T,) be of the form:

(320) L(T,)=L(0) O S(T)[1+TR(T,)+Max{c(R(T,)- K(T,)),0}]

i=0

where the definition of the variablesisasin (3.1) and S(T;) is the probability that the policyholder
staysin the portfolio.

The distribution of the right term of (3.20) is unknown so there is no analytical expression for
this payoff. However, if we assume that the R(T;)’s are independent (which is obviously a crude
assumption in this case), the expectation of L(T,) under the T,-forward measureis:

£ [L(T)] = E" &0 O s(T)[L+TR®)+Max{c(R(T)- K(T)),3] §
(3.21) eﬂ =0 u
> L(0) O ST) @+ TRT)+E™ (Max{c(R(T)- K(T))),0)§

i=0

where the latter expectations can be calculated with (3.17), excluding the term D(O, T;) L(T)).
Note that this expectation has to be determined under the T,-forward measure by making a
timing correction to time T, using formula (3.12).

The value of the compounding profit sharing option would then be:

v[ps]=D@.T,)[E" [L(T,)] - K]

(3.22) 2
whereK = Q [L+ TR(T)]

i=1
Despite the crude assumption on independence, the analytical approximation could still work

well. When the expected R(T;)’s are low, the impact of the compounding effect is relatively low,
resulting in arelatively good approximation of the time value of the option. When the expected

25



R(Ti)’s are high, the impact of the compounding effect is relatively high and the quality of the
approximation will be less (in terms of time value). However, in this case the total value of the
option will also be high and the impact of approximation errors in the time value on the total
value will beless. Thisreasoning is being tested in section 3.7.

Instead of using this analytical approximation, it is also possible to use Monte Carlo simulation
with the analytical approximation of (3.17) as a control variate, reducing the amount of
simulations needed significantly. Thistechnique is further described in paragraph 3.6.3.

3.6.2 Profit sharing including the return on an additional asset

In some cases the underlying investment portfolio also contains additional non-fixed income
assets. The profit sharing rate could then be expressed asin (3.5).

Assume that the additional asset class § follows a standard geometric Brownian motion under
the risk neutral measure Q:

(323) dS,()=S,®)|r(M)dt +s s AW (1)]

In this case there is an analytical expression for the distribution of return rg and the covariances
with Yk+m, under normally distributed stochastic interest rates in a T-forward measure. The
analytical expression for the distribution of rg is worked out in Brigo and Mercurio (2006) for
the 1-factor model and the result is similar for multi-factor models. The covariance’ s with i i+t
can be determined using (3.15) and the formulas in Brigo and Mercurio (2006).

In practice, often rg is a book value return. The specification of this book value return can be
complex and possibly differs for every insurance company. Often, Monte Carlo simulations are
necessary. However, an aternative is the approach described above, where the volatility
parameters sg can be calibrated to results of Monte Carlo simulation or derived from historical
patterns of book value returns relative to total returns.

3.6.3 Additional management actions or other complex features

In some cases the insurer has added management actions or other complexities to the profit
sharing rules, mainly to lower the risk exposure for the insurer. In most cases, it’s not possible to
properly value these options analytically. Other possibilities would then be:

a) Use a volatility scaling factor that is calibrated to results obtained with Monte Carlo
simulation and use this as input for the analytical approximation in (3.17) and (3.22).

b) Value the option with Monte Carlo simulation, using the analytical approximation in
(3.17) asacontrol variate.

Both possibilities are described below.
a) Volatility scaling factor
When the impact of the management actions or complexities is expected to be low or in cases

where it is sufficient to use an approximation, one could use a volatility scaling factor f(T;), such
that:
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(324) s/ =[1+ £(T)]s ue

The factor f(T;) can be calibrated for each time T; to output from Monte Carlo simulation.
This approach can be useful when lots of valuations are needed, for example for Economic
Capital or Asset Liability Management calculations.

b) Control Variate technique

When the impact of the management actions or complexities is significant and exact valuation is
necessary, Monte Carlo simulation can be used in conjunction with a control variate algorithm.
For athorough description of the control variate technique, see for example Glasserman (2004).
When using the control variate algorithm, the value of the profit sharing is.

(3.25) V[PS|=V[PS]*" - b(x " - E[X])

where V[P ®™ is the simulated value of the profit sharing option, X°™ is the simulated value of
another asset X and E[X] is the expected value of X, which is assumed to be known. When
choosing the proper control variate, the standard error of the Monte Carlo estimate can be
reduced significantly. This means that significantly less simulations are needed to come to an
estimate with the same quality as an ordinary Monte Carlo estimation.

The deterministic coefficient b that minimizes the standard error of the Monte Carlo estimation is
given by:

(3.26) b= Cov(PS, X)

Var (X)
The control variate algorithm is most effective when the correlation between PSand X is high.
Therefore a suitable choice for the control variate would be a carefully selected combination of
payer swaptions or CMS caplets’.

An aternative can be the use of the direct payment option of section 3.5 as control variate. Since
the management actions or complexities are added to a profit sharing as in (3.1), the correlation
between this profit sharing and the direct payment variant of (3.1) is probably very high.
Therefore, using the direct payment option of section 3.5 as a control variate would significantly
reduce the number of simulations necessary. This can be implemented by adding the
approximate dynamics (A.4) to the simulations to determine X*™ and using (3.17) to determine

E[X].

An example of the benefits of this technique is the following. In section 3.7 the quality of the
approximation (3.17) is assessed. For testing this quality, the option values coming from (3.17)
were in first instance compared with the result of 1.000.000 Monte Carlo simulations. The result
from the simulations is seen as the “true” value, since the standard error of the estimation is

® The authors thank the anonymous referee for this suggestion.
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sufficiently low for this number of simulations. Now when we use the same option (valued under
the approximate dynamics) as a control variate and (3.17) as its expected value, only 1.000
simulations are needed to come to the same standard error. Of course in this case the correlation
between the option to be valued and the control variate is almost maximal, but one could imagine
that in case of more complex options the reduction of the number of simulations needed would
still be substantial.

Whether the carefully selected combination of payer swaption / CMS caplets or the direct
payment option of section 3.5 performs better as a control variate, will be subject for future
research. An advantage of the selection of simpler instruments is that the market price of these
instruments is usually available, so no model assumption has to be used for the valuation of this
part.

3.7 Numerical examples

In this section the results of the approximation formulas will be shown for 2 example products
and compared with the “true’ values resulting from Monte Carlo ssimulation. When considering
the results one has to be aware of the fact that before using the approximation already “errors’
are introduced in the valuation, for example in the calibration of the interest rate model to market
prices and by using the swap rate as a proxy for the profit sharing rate.

7.1 Example 1: 10-year average of 7-year swap rate, direct payment

This example is a specification of (3.1) and (3.4) with direct payment. This specification is for
example commonly applied in pricing the u-rate profit sharing in the Netherlands, where the 7-
year swap rate is often used as a proxy for the u-rate. Also, asin (3.4) it can be interpreted as a
proxy for profit sharing based on the book value return on a underlying fixed income portfolio
with an assumed turnover rate of 10% and a reinvestment strategy favoring 7-year maturity
assets (on average). The underlying interest rate model used is a 2-factor Gaussian interest rate
model.

The data used for the profit sharing basis and the technical interest rates are based on an example
portfolio of along term pension insurance portfolio, with cash flows up to 50 years ahead. This
datais given in appendix 3c, along with the yield curve, implied volatility matrix and the specific
parameter setting of the 2-factor Gaussian interest rate model. A margin of 0.5% is applied and ¢
isassumed to be 1.

The analytical approximation described in section 3.5 is tested with Monte Carlo simulation,
where 5000 (antithetic) ssimulations are used in combination with the control variate technique
described in paragraph 3.6.3". The results are given in table 3.1, where the total value of the
option is given for both approaches and for different yield curve, volatility, mean reversion and
strike sengitivities.

19 Note, as described in paragraph 6.3, that 1.000 simulations in combination with the described control variate
technique leads to a similar standard error as 1.000.000 simulation without the control variate technique. For this
exampleb =1 isused.
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Table 3.1: comparison analytical / Monte Carlo approach, example 1

Total option value Analytical Monte Carlo error %

Base scenario 103.32 103.19 0.12 0.12%
Interest rates: + 1.5% 207.41 207.20 0.21 0.10%
Interest rates: - 1.5% 37.10 36.88 0.22 0.59%
Volatilities: + 0.15% 131.36 130.96 0.40 0.31%
Volatilities: - 0.15% 76.08 75.99 0.08 0.11%
Mean reversion: + 1.5% 93.16 93.03 0.13 0.14%
Mean reversion: -1.5% 116.26 116.00 0.26 0.22%
Strike: +1% 35.82 36.00 -0.18 -0.49%
Strike: -1% 238.18 237.73 0.46 0.19%

The table shows that the quality of the analytical approximation is excellent for al calculated
scenarios. Note that the error as a percentage of the total value of the insurance liabilities would
be around 0.01% in most cases.

The analytical approximation is potentially more exact than Monte Carlo simulation (without
using a control variate algorithm), since the number of ssimulations used in practiceis usually less
than 1.000.000.

In table 3.2 a comparison between the analytical approximation and Monte Carlo simulation is
given for different swap rate maturities and averaging periods. The table shows that the quality
of the analytical approximation is also excellent for these product variants.

Table 3.2: comparison analytical / Monte Carlo — sensitivities*

Error of approximation Averaging period
Swap rate maturity 5 10 15
5 112,48 112,33 102,50 102,39 86,26 86,14
-0,13% -0,11% -0,14%
10 114,22 113,99 104,65 104,38 92,10 91,89
-0,20% -0,27% -0,23%
15 117,81 117,35 106,89 106,52 95,18 94,83
-0,39% -0,35% -0,38%

* In each cell, top left: analytical price, top right: Monte Carlo, bottom: percentage error

3.7.2 Example 2: 10-year average of 7-year swap rate, compounding option

In this example the value of compounded profit sharing is calculated for a savings product with
maturity 20. The compounding profit sharing is of form (3.20), where again the 10-year average
of 7-year swap rates is used as the profit sharing rate. The assumed technical interest rate is 3.5%,
S(T;) is assumed to be 1 and a margin of 0.5% is applied. The fund value at the start of the
projection is 1.000.

The analytical approximation described in paragraph 3.6.1 is tested with Monte Carlo simulation,
where 100.000 (antithetic) simulations are used. The results are given in table 3.3, where again
the total value of the option is given for both approaches and for different yield curve, volatility,
mean reversion and strike sensitivities. Also results are included for different maturities of the
insurance product.
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Table 3.3: comparison analytical / Monte Carlo approach, example 2

Total option value Analytical Monte Carlo error %

Base scenario 115,37 117,47 -2,10 -1,78%
Interest rates: + 1.5% 228,08 234,12 -6,05 -2,58%
Interest rates: - 1.5% 38,95 39,57 -0,62 -1,56%
Volatilities: + 0.15% 136,24 140,19 -3,96 -2,82%
Volatilities: - 0.15% 94,83 96,19 -1,36 -1,41%
Mean reversion: + 1.5% 109,01 110,83 -1,82 -1,65%
Mean reversion: -1.5% 122,81 125,80 -2,99 -2,38%
Strike: +1% 32,03 32,21 -0,17 -0,54%
Strike: -1% 276,14 282,00 -5,86 -2,08%
Maturity product: 15 80,69 80,78 -0,09 -0,11%
Maturity product: 25 147,38 154,10 -6,73 -4,37%

The table shows that the quality of the analytical approximation is reasonable for all calculated
scenarios. Note that the error as a percentage of the initial fund value is less than 0.5% in most
cases. The assumption of independent profit sharing rates over time introduces an additional
error. However, considering the “errors’ made earlier in the process (calibration of interest rate
model, approximation with swap rate) and the quality of the assumptions usually made for non-
economic parameters (mortality, lapses), the error could still be considered as being acceptable.
The results for different maturities indicate that the quality of the approximation decreases when
the maturity of the product exceeds 20 years.

In table 3.4 a comparison for different swap rate maturities and averaging periods is given. The
table shows that the quality of the analytical approximation is increasing (decreasing) when the
averaging period islonger (shorter).

Table 3.4. comparison analytical / Monte Carlo — sensitivities*

Error of approximation Averaging period
Swap rate maturity 5 10 15
5 123,80 128,20 113,52 115,91 126,43 126,12
-3,43% -2,06% 0,25%
10 125,88 129,88 117,31 119,86 131,15 130,42
-3,08% -2,13% 0,56%
15 124,55 127,68 117,59 119,50 132,52 131,98
-2,45% -1,60% 0,41%

* In each cell, top left: analytical price, top right: Monte Carlo, bottom: percentage error

As mentioned in 3.6.1 the quality of the approximation (in terms of time value of the option) is
less when the impact of the compounding is relatively high. However, since the total value of the
option is higher in this case, the error will still be reasonable in terms of the total value of the
option (as shown in the table above). This effect is also shown in figure 3.1, where the results of
the analytical and the Monte Carlo approach are given for different yield curve sensitivities for
example 2.
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Figure 3.1: comparison analytical / Monte Carlo approach, example 2
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3.8 Conclusions

In this chapter analytical approximations are derived for prices of swap rate dependent embedded
options in insurance products. In practice these options are often valued using Monte Carlo
simulations. However, for risk management calculations and reporting processes, lots of
valuations are needed and therefore a more efficient method to value these options would be
helpful. The basis for the approximations is the result of Schrager and Pelsser (2006), who
derived an approximate distribution for the forward swap rates under the relevant swap measure.
After some changes of measure, this result is used to derive analytical approximations for swap
rate dependent embedded options, given an underlying multi-factor Gaussian interest rate model.

The analytical approximation for options with direct payment is almost exact while the
approximation for compounding options is also satisfactory. For similar options with additional
management actions that significantly impact the option value, no analytical approximation is
possible. However, using the analytical approximation for an option with direct payment as a
control variate, the number of Monte Carlo simulations can be reduced significantly for these
kinds of options. Furthermore, it's also possible to construct analytical approximations when
returns on additional assets (such as equities) are part of the profit sharing rate.
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Appendix 3a: proof of (3.8)

Each element of the vector of derivatives of (3.7) can be written as:

MYan ® _

wom B (t,T,) D (t,T,) + BY (1, T ) D" (t,Ty)

(3.27) N
2 [
+y,.n ) a Dy, BVt T)D"(t,T,)
k=n+1

where DP(t,T,) = D(t,T) / Pps 1n(t), the bond price normalized by the numéraire.

Note that since bond prices in this model are stochastic, the volatility of the swap rate is
stochastic as well. The approximation of Schrager and Pelsser consists of replacing the stochastic
terms D"(t,T;) by their time zero values DP(0,T;). Thisresultsin:

11]1)?(:\; 2)) » - B(i)(t'Tn) DP(O,Tn) + B(i)(t,TN) DP(O,TN)
(3.28) —
3 i Ty
* Yo (0) k:an.+1DT(_l B()(t’Tk) DP(O’Tk) = ﬂYT'\)‘(t)

This approximation makes the swap rate volatility deterministic and thus leads to a normally
distributed forward swap rate. Furthermore, we can rewrite

_ AT
(329) BOET) =2 - & gt

A(ii) A(ii)

Using this, (3.28) can be split in atime dependent part and a constant part:

ﬂynN(t): 1 eﬁw)t
@ag) MO A
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So in the approximate model, the swap rate at time T, is given by:

" " Yo (0) " W (©)
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By using Ito’'s Isometry, this leads to an analytical expression for the integrated variance of y,n
(associated with a T, x Ty swaption) over theinterval [0, T,]:

Tn
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Appendix 3b: proofs of (3.11) and (3.12)
Proof of (3.11)

A change of measure has to be done from the swap measure Q™*Nto the T,-forward measure
Q™. In this case the Radon-Nikodym derivative s:

_dQ"
3.33 =r(t)=
(333) Goran ~r="5

N
a D..D(T,)/ a D.,DO.T,)

k=n+1 k=n+1

D(.T,)/D(O.T,)

Then using I1to’s Lemma |eads to:
(3.34) dr(t)=k(t)r (t)dw™

where k(t) isan 1 x m vector with for each element k®(t):

(3.35) kO(t)=- BO(t, T, )+ 5 D! ,BY(t,T)D"(t,T,)

k=n+1

Now like in appendix 3a replacing the stochastic terms D™(t,T;) by their time zero values DP(0,T;)
and using (3.29) resultsin:

(336) k() »——e' E AT~ § DL DPOT); —e*\wte(i’N
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Using (3.30) and integrating dy,n leads to the following formula for the convexity correction
CCin(Ty) for time Ty, > O for the swap rate yn ::

Tl'l
CC, n(T,) » &g"Ydiag(C, ) & & Wiag(G, ;) &’ ds
0

(3.37) oo o eeSﬁii)‘”A(ii)HTﬂ - 1@
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where é‘él& :ige'A(mT a DY e AT pP (OT )¢
e

i) k=n+1

[ ey end

Proof of (3.12)
In this case the Radon-Nikodym derivativeis:

dQ n ()_ D(t’Tn+u)/D(O'Tn+u)
(3:38) dQ" D(t,T,)/D(O,T,)
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Then using the same procedure as above:

(3 39) Kk (I)(t) — (I)(t T ) B(I)(t Tn+u) — eA(”)t [ Aty Tn+u -e AiiyTn eA(”)tH 0]

n,n+u
i)

Using (3.30) and integrating dy,n leads the following formula for the timing correction
TCn,N(Tn, Theu) representing a change of measure fromtime T,, > 0 t0 Ty
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Appendix 3c: input example 1

In this appendix the data and assumptions are given that are used for example 1. The data used
for the profit sharing basis L(t) and the technical interest rates TR(t) are based on an example
portfolio of along term pension insurance portfolio and are given in table 3.5.

Table 3.5: used data for profit sharing basis and technical interest rate

Time TR(t) L(t) Time TR(t) L(t)
0 3.8% 1,000 25 36% 655
1 3.7% 1,043 26 3.6% 625
2 3.7% 1,066 27 35% 594
3 3.7% 1,060 28 35% 563
4 3.7% 1,054 29 35% 532
5 3.7% 1,046 30 35% 501
6 3.7% 1,038 31 35% 470
7 3.7% 1,028 32 35% 440
8 3.7% 1,016 33 35% 410
9 3.7% 1,004 34 35% 381
10  37% 991 35 35% 353
11 3.7% 976 36 35% 326
12 3.7% 961 37 35% 300
13 37% 944 38 35% 275
14  36% 926 39 35% 251
15 36% 907 40 34% 228
16 3.6% 887 41 34% 206
17 3.6% 865 42 34% 186
18 36% 842 43 34% 167
19 36% 819 4  34% 149

20 36% 794 45 34% 132
21 3.6% 768 46 34% 116
22 36% 741 47 34% 102
23  36% 713 48 34% 89
24 36% 684 49 34% 77

The swap curve used is from ultimo 2006 and the parameters of the 2 factor Gaussian interest
rate model are calibrated to the swaption implied volatility surface at the same date. This
information is given in table 3.6 (where s and a belong to factor 1 and h and b to factor 2).
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Table 3.6: swap curve, implied volatility surface and parameters 2F Gaussian model

36

Swaption ATMF Volatility Surface
Expiry/Tenor 1Y 2y 3Y 4Y 5Y Y 10y 15Y 20Y 25Y 30Y
1y 14,3% 14,0% 14,4% 14,5% 14,5% 14,3% 14,0% 13,5% 13,0% 13,0% 12,9%
2Y 14,6% 14,9% 15,0% 14,9% 14,8% 14,6% 14,2% 13,6% 13,2% 13,0% 12,9%
3Y 15,1% 15,0% 15,1% 15,0% 14,8% 14,5% 14,1% 13,6% 13,2% 13,1% 12,9%
4y 15,1% 15,0% 15,0% 14,8% 14,6% 14,2% 13,9% 13,4% 13,1% 13,0% 12,8%
5Y 14,8% 14,8% 14,7% 14,5% 14,3% 14,0% 13,6% 13,2% 12,9% 12,8% 12,6%
Y 14,0% 14,0% 14,0% 13,9% 13,6% 13,4% 13,1% 12,9% 12,4% 12,4% 12,2%
10Y 13,0% 13,1% 13,1% 13,0% 12,8% 12,7% 12,5% 12,1% 11,8% 11,6% 11,4%
15Y 12,0% 12,0% 12,0% 12,0% 12,0% 12,0% 12,0% 11,6% 11,2% 11,0% 10,9%
20Y 11,6% 11,6% 11,6% 11,7% 11,8% 11,8% 11,8% 11,2% 10,8% 10,5% 10,5%
30Y 11,1% 11,1% 11,2% 11,3% 11,3% 11,3% 11,3% 10,7% 10,6% 10,7% 10,7%
Time Swap Rate Parameters

1 4,08% S 0,51%

2 4,14% a 2,75%

3 4,12% h 0,28%

4 4,12% b 2,75%

5 4,13% rho | 0,497

6 4,14%

7 4,15%

8 4,16%

9 4,18%

10 4,20%

15 4,28%

20 4,31%

30 4,29%

40 4,25%

50 4,20%




Chapter 4

Valuation of Guaranteed Annuity
Options using a Stochastic
Volatility Model for Equity Prices*

* This chapter is based on:

HAASTRECHT, A., R. PLAT AND A.A.J. PELSSER (2009): Valuation of Guaranteed Annuity
Options using a Stochastic Volatility Model for Equity Prices, Accepted for publication in
Insurance: Mathematics and Economics

4.1 Introduction

As mentioned in chapter 3, life insurers often include embedded options in the terms of their
products. One of the most familiar embedded options is the Guaranteed Annuity Option (GAO).
A GAO provides the right to convert a policyholder’s accumulated funds to a life annuity at a
fixed rate when the policy matures. These options were a common feature in retirement savings
contracts issued in the 1970's and 1980's in the United Kingdom (UK). According to Bolton et
a. (1997) the most popular guaranteed conversion rate was about 11%. Due to the high interest
rates at that time, the GAOs were far out of the money. However, as the interest rate levels
decreased in the 1990's and the (expected) mortality rates improved, the value of the GAOs
increased rapidly and amongst others led to the downfall of Equitable Life in 2000. Currently,
similar options are frequently sold under the name Guaranteed Minimum Income Benefit (GMIB)
in the U.S. and Japan as part of variable annuity products. The markets for variable annuities in
the U.S. and Japan have grown explosively over the past years, and a growth in Europe is also
expected, see Wyman (2007).

The last decade the literature on pricing and risk management of these options evolved.
Approaches for risk management and hedging of GAOs were described in Dunbar (1999), Y ang
(2001), Wilkie et a. (2003) and Pelsser (2003). The pricing of GAOs and GMIBs has been
described by several authors, for example van Bezooyen et a. (1998), Boyle and Hardy (2001),
Ballotta and Haberman (2003), Boyle and Hardy (2003), Biffis and Millossovich (2006), Chu
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and Kwok (2007), Bauer et a. (2008) and Marshall et a. (2009). In most of these papers, the
focus is on unit linked deferred annuity contracts purchased originally by a single premium.
Generdlly a standard geometric Brownian motion is assumed for equity prices. However,
Ballotta and Haberman (2003) and Chu and Kwok (2007) noted that, given the long maturities of
the insurance contracts, a stochastic volatility model for equity prices would be more suitable.

In this chapter explicit expressions are derived for prices of GAOs, assuming stochastic volatility
for equity prices and (of course) stochastic interest rates. The model used for thisis the Schébel-
Zhu Hull-White (SZHW) model, introduced in van Haastrecht et al. (2009). The model combines
the stochastic volatility model of Schobel and Zhu (1999) with the 1-factor Gaussian interest rate
model of Hull and White (1993), taking the correlation structure between those processes
explicitly into account. Furthermore, this is extended to the case of a 2-factor Gaussian interest
rate model.

The remainder of the chapter is organized as follows. First, in Section 4.2 the characteristics of
the GAO are given. Section 4.3 describes the SZHW model to be used for the pricing of the
GAO and section 4.4 discusses its calibration. In Section 4.5 explicit pricing formulas are
derived for the GAOs given an underlying SZHW model. These results are extended to a 2-factor
Hull-White model in Section 4.6. In Section 4.7 two numerical examples are worked out: the
first shows the impact of stochastic volatility on the pricing of the GAO, whilst the second
example deals with a comparison of the efficiency of our explicit formulafor the 2-factor model
with existing methods in the literature. Conclusions are given in Section 4.8.

4.2 Guaranteed Annuity Contract

A GAO gives the holder the right to receive at the retirement date T either a cash payment equal
to the investment in the equity fund T) or a life annuity of this investment against the
guaranteed rate g. A rational policy holder would choose the greater of the two assets. In other
words, if at inception, the policy holder is aged x and the normal retirement date is at time T ,
then the annuity value at maturity is ST ) + H(T ) with GAO payoff H(T) equal to

@1 HT = BSMA A1) M2

provided that the policy holder is still alive at that time. Here (X)* = max(x,0), g is the guaranteed
rate, P(T, t;) the zero-coupon bond at time T maturing at t; and ¢; the insurance amounts for time i
multiplied by the probability of survival from time T until time t; for the policyholder. Without
loss of generality, we will use unit insured amounts in the remainder of this chapter. Furthermore,
we assume that the survival probabilities are independent of the equity prices and interest rates.
Note that

+

42) H(T) = gS(T)g%ji GP(T.t)- Kg |
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where K = 1/g. This last equality shows that one can interpret the GAO as a quanto call option

with strike K on the zero-coupon bond portfolio é ¢ P(T,t) which is paid out using the
i=0

exchange rate/currency S(T), see Boyle and Hardy (2003). Under the risk-neutral measure Q,

which uses the money market account B(T ),

4.3) B(T) = expgé(‘j(u)dug
€o (4]

as numeraire, the price of this option can be expressed as

+\

44 C@T = . XpXEQ eeng d(u)du gS(T)ga cP(T,t)- K_ u
e 24

where («px denotes the probability that the policy holder aged x survivesr - x years, i.e. until the
retirement age r at time T. To derive an explicit expression for the GAO of (4.4), it is more
convenient to measure payments in terms of units of stock instead of money market values.
Mathematically, we can establish this by using the equity price T ) as numéraire and changing
from the risk-neutral measure to the equity-price measure Q>, see Geman et al. (1995). Under the
equity-price measure Q°, the GAO priceis then given by

@5 cm = poSOE &8 oPry)- kS0
i=0 4] g

To evaluate this expectation we need to take into account the dynamics of the zero-coupon bonds
prices P(T, t;) under the equity price measure.

Apart from the guaranteed rate, the drivers of the GAO price are the interest rates, the equity
prices, the correlation between those, and the survival probabilities. The combined model for
interest rates and equity prices is explained in Section 4.3. This model needs an assumption for
the correlation, which could be derived from historical data. Note that if it is assumed that equity
prices and interest rates are independent, it does not matter which model is assumed for equity
prices. Both from historical data as well from market quotes, one however rarely finds that the
equity prices and interest rates behave in an independent fashion. As this dependency structureis
one of the main driver for the GAO price and its sensitivities, a non-trivial structure therefore has
to be taken into account for a proper pricing and risk management of these derivatives, see Boyle
and Hardy (2003), Ballotta and Haberman (2003) or Bauer (2009).

4.3 The Schdbel-Zhu-Hull-White model

The model used in this chapter is the Schobel-Zhu Hull-White (SZHW) model, introduced in van
Haastrecht et al. (2009). The model combines the stochastic volatility model of Schobel and Zhu
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(1999) with the 1-factor Gaussian interest rate model of Hull and White (1993), taking explicitly
into account the correlation between these processes. In the SZHW model, the process for equity
price St) under the risk-neutral measure is the Schobel and Zhu (1999) model described in
paragraph 2.1.4.:

ds(t)

47) dv(t) = k(y - v(t))dt +t dWC(t) v(0) =V,

= r(t)dt + v(t)dW2(t) S(0) =S

Here v(t), which follows an Ornstein-Uhlenbeck process, is the (instantaneous) stochastic
volatility of the equity S(t). The parameters of the volatility process are the positive constants ?
(mean reversion), Vo (short-term mean), ? (long-term mean) and t (volatility of the volatility).
We assume the interest rates are given by a one-factor Hull and White (1993) process, whose
dynamics under Q can be parameterized by

(4.8) r() = af(t)+x() r0) =r,
(49) dx(t) = - ax(t)dt+s dW (t) x(0)=0

Here a (mean reversion) and s (volatility) are the positive parameters of the model. The function
a(t) can be used to fit the current term structure of interest rates exactly, see Pelsser (2000) or
Brigo and Mercurio (2006). Under the above dynamics for the equity, volatility and interest rates
explicit expressions for the prices of European equity options exist, see van Haastrecht et al.
(2009). Moreover the model allows for ageneral correlation structure, i.e.

(4.10) dWR(H)AWR(t) =1 dt, dWR(H)AWR() = dt, dWR(E)dWR() =r  dt

where rys, rys and ry, are the instantaneous correlation parameters between the Brownian
motions of the equity price, the stochastic volatility and the interest rate. Having the flexibility to
correlate the equity price with both stochastic volatility and stochastic interest rates yields a
realistic model, which is of practical importance for the pricing and hedging of options with
long-term exposures such as guaranteed annuities, see Boyle and Hardy (2003).

It is hardly necessary to motivate the inclusion of stochastic volatility in a long-term derivative
pricing model. First, compared to constant volatility models, stochastic volatility models are
significantly better able to fit the market’s option data, see Andreasen (2006) or Andersen and
Brotherton-Ratcliffe (2001). Second, as stochastic interest rates and stochastic volatility are
empirical phenomena, the addition of these factors yields a more realistic model, which becomes
important for the pricing and especially the hedging of long-term derivatives. The addition of
stochastic volatility and stochastic interest rates as stochastic factors is important when
considering long-maturity equity derivatives and has been the subject of empirical investigations
most notably by Bakshi et al. (2000). These authors show that the hedging performance of delta
hedging strategies of long-maturity options improves when stochastic volatility and stochastic
interest rates are taken into account.
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Stochastic volatility models have been described by several others, for example Stein and Stein
(1991), Heston (1993), Schobel and Zhu (1999), Duffie et a. (2000), Duffie et a. (2003), van
der Ploeg (2006) and van Haastrecht et a. (2009). Also regime-switching models are suggested
in the literature for the pricing of equity-linked insurance policies, see Hardy (2001) and Brigo
and Mercurio (2006). In the limit of an infinite number of regimes these models again converge
to a continuous-time stochastic volatility model, however in discrete time they can benefit from a
greater analytical tractability. A proper model assessment greatly depends on the properties of
the embedded options in the insurance contract.

To investigate the impact of using a stochastic volatility model on the pricing of GAOs, note that
the GAO directly depends on the stochastic interest rates, the underlying equity fund and the
correlation between the rates and the equity. For the pricing of GAOs we therefore choose to use
the SZHW model over other stochastic volatility models, as this model distinguishes itself
models by an explicit incorporation of the correlation between the underlying equity fund and the
term structure of interest rates, whilst maintaining a high degree of analytical tractability.

In Section 4.7 the impact of stochastic volatility on the pricing of GAOs is investigated. That is,
we compare the pricing of GAOs in the SZHW stochastic volatility model with the Black-
Scholes Hull-White (BSHW) constant volatility model. The BSHW process for equity prices St)
under the risk neutral measure Q is:

as® Q -
(4.11) =0 r(t)dt +s (AW2(t) S0)=S,

where the interest rate process r(t) follows Hull and White (1993) dynamics as in (4.8) and with
the instantaneous correlation between Brownian motions of the interest rate and the equity price
equal to

(4.12) dW2(t)dWS(t) =1 dt

In the following section both the SZHW and BSHW model are calibrated to market data.

4.4 Calibration of the SZHW and BSHW model

To come up with afair analysis of the impact of stochastic volatility on the pricing of GAOs, we
first calibrate the BSHW and SZHW model to the same market’s option data per end July 2007.
This is done by first calibrating the interest rate parameters, than estimating the effective
correlation between the interest rates and equity, and finally we specify the equity components of
the BSHW/SZHW model. We detail the calibration approach below.

Interest Rates First we calibrate the Hull and White (1993) interest rate models to EU and U.S.

swaption markets. The option prices and corresponding swap curves are obtained from
Bloomberg. Here a total of 151 swaption prices, which are contributed by various issuers and
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maintained by Bloomberg, can be found for different tenors and maturities ranging from 1 to 30
years. For the calibration of the interest rate model we used close (mid) swaption prices per 31st
of July 2007. We calibrate the Hull and White (1993) models to these prices by minimizing the
sum of the sguared differences between the model’s and the market's swaption implied
volatilities. For the U.S. market, the mean average price error is 1.88% and for the EU market
1.34% which is very good given the large set of option prices that is fitted using only 2 interest
rate parameters.

Terminal Correlation After calibrating the interest rate component, we need to calibrate the
equity and correlation parameters. For the equity component of the GAO we assume a large
stock index, for which the Eurostoxx50 index (EU) and the S&P500 (U.S.) are used. The
Eurostoxx50 consists of 50 large European companies and is traded on the Dow-Jones exchange,
whilst the S&P500 is maintained by Standard & Poors and consists of NASDAQ and NY SE
denoted shares. The effective 10 years correlation between the log equity returns and the interest
rates is determined by time series analysis of the 10-year swap rate and the log returns of the
EuroStoxx50 (EU) and S&P500 (U.S.) index over the period from February 2002 to July 2007.
For the EU and the U.S. this resulted in correlation coefficients of 34.65% and 14.64% between
the interest rates and the log equity returns.

It iswell known that it is hard to calibrate the correlation coefficient. Furthermore large bid-ask
spreads have to be paid to hedge this risk, which shows that the markets for correlation risks are
unfortunately not very liquid. As a result, additional capital needs to be reserved in order to
protect against this unhedgeable risk.

Equity Using the interest rate and correlation parameters determined in the previous steps, the
equity specific parameters are calibrated to option prices on the EuroStoxx50 (EU) and S& P500
(U.S) index. These option prices are obtained from the implied volatility service of MarkIT, a
financial data provider, which provides (mid) implied volatility quotes by averaging quotes from
a large number of issuers. For large indices a total of 94 liquid quotes are available for 10
maturities ranging from 1 month up to 15 years, and 10 strikes ranging from 60% to 200%.

To aid afair comparison between the models, the SZHW model is calibrated in such a way that
the effective correlation between interest rates and equity prices is equal to that of the BSHW
process. Finally, as the considered GAO in Section 4.7 only depends on terminal asset price
distribution after 10 years, we have calibrated the equity model to market option prices maturing
in 10 years time. This estimation is performed by minimizing the sum of absolute differences
between market’s and model’s implied volatilities. The calibration results to the Eurostoxx50
and S& P500 are shown in table 4.1 below.
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Table 4.1: calibration results for the SZHW and BSHW models, for EU and U.S.

EU us
strike Market SZHW BSHW strike Market SZHW BSHW
80 27,8% 27,9% 26,4% 80 27,5% 27,5% 25,8%
90 27,1% 27,1% 26,4% 90 26,6% 26,6% 25,8%
95 26,7% 26,7% 26,4% 95 26,2% 26,2% 25,8%
100 26,4% 26,4% 26,4% 100 25,8% 25,8% 25,8%
105 26,0% 26,0% 26,4% 105 25,4% 25,4% 25,8%
110 25,7% 25,7% 26,4% 110 25,0% 25,0% 25,8%
120 25,1% 25,1% 26,4% 120 24,3% 24,4% 25,8%

The tables show that SZHW is significantly better in capturing the market’s implied volatility
structure and provides an extremely good fit. The fit of the BSHW modé is relatively poor.
Furthermore, a direct consequence of the log-normal distribution of the BSHW moddl, it that the
asset returns have thin tails, which does not correspond to historical data nor to the market’s
view on long-term asset returns. The SZHW model provides a more realistic picture on the
market’ s view on long-term asset returns as it can incorporate heavy-tailed returns. The latter can
be made especially clear by looking at the risk-neutral densities of the log-asset price of the
SZHW and BSHW model. These are plotted in figure 4.1 below for the BSHW and SZHW

model, calibrated to EU option prices.

Figure4.1: risk-neutral density of the log-asset price for the SZHW and BSHW model
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Clearly, the SZHW model incorporates the skewness and heavy-tails seen in option markets (see
Bakshi et al. (1997)) alot more redlistically than the BSHW model. The effects of these |og-asset
price distributions on the pricing of GAOs, combined with correlated interest rates, are analyzed

in Section 4.7.
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4.5 Pricing the Guaranteed Annuity Option under stochastic volatility
and stochastic interest rates

For the pricing of the GAO in the SZHW moddl, i.e. the evaluation of (4.5), we need to consider
the pricing of zero-coupon bonds in the Gaussian interest rate model. In the Hull and White
(1993) model, one has the following expression for the time-T price of a zero-coupon bond P(T,t;)
maturing at time t;:

(4.13) P(T.t)

A(T 't )e- B(T.t)x(T)

where

pM O,t,) g%(V(T,ti)-V(O,ti)+V(0,T))§

(4.14) A(T,t)

PY(0,T)
_ o at-T)
(415) B(T,t) = =&~
a
2 Iy
(4.16) V(T,t) = S_zﬁti_T).Fge-a(trT)_ie-za(ti-T)_ig
a 8 a 2a 2ag

and with PM(0, s) denoting the market’s time zero discount factor maturing at time s. Using
(4.13), we have for the GAO price (4.5) under the equity price measure Q>

+ N

s A n s u
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To further evaluate this expression, we first have to consider the dynamics of x(T ) under the
equity price measure Q° in the SZHW model.

4.5.1 Taking the equity price asnuméraire

To change the money market account numéraire into the equity price numéraire, we need to
calculate the corresponding Radon-Nikodym derivative (see Geman et al. (1995)), which is given

by

dQ® _ SMBO) _ _ € 1%, ! Y
(4.18) a0 = S(0)B(T) = expg- 20O/(u)du+9/(u)dWS (u)g

The multi-dimensional version of Girsanov’s theorem (see Oksendal (2005)) hence implies that

(419) dWZ () — dW2(t)- v(t)dt
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(4.21) dW2 () — dWO(t)- r v(t)dt

are Brownian motions under Q°. Hence under Q° one has the following model dynamics for the
volatility and interest rate process

(4.22) dx(t) = - ax(t)dt+r s v(t)dt +s dWS (1) x(0) =0

k(y - v(t))dt+r & v(t)dt +t dW2 (1)
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whereK =k - r & andy = %’ . After some cal culations one can show that:
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Using Ito’s isometry and Fubini’ s theorem, we have that x(T ) is normally distributed with mean
I and variance s, given by
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4.5.2 Explicit formula for the GAO price

Using the results from the previous paragraph, we can now further evaluate the expression (4.17)
for the GAO price in the SZHW model: as the zero-coupon bond price is a monotone function of
one state variable, x(T ), one can use the Jamshidian (1989) result and write the call option (4.17)
on the sum of zero-coupon bonds as a sum of zero-coupon bond call options: let x* solve

(431) qCAT,t)e™ = K

i=0
and let
(432) K = A(T,t)e’Tx

Using Jamshidian (1989), we have that the price of GAO is equal to the price of a sum of zero-
coupon bond options, i.e.

s 6 . +0
(4.33) C(T) = . ,p,gS(0)E® Sao ¢ (A(T.1)e ™. k) ¥

As x(T) is normally distributed, we have that P(T, t;) = A(T,t)e®™XT) is |og-normally
distributed. Provided that we know the mean M; and variance V; of In P(T, t;) under Q°, one can
directly express the above expectation in terms of the Black and Scholes (1973) formula:

(434 () = ,,p.oSO& ¢ (FN()- KN(d)
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(4.35) F 2

I
(4]

IN(F, /1K) + 2

N
d - W

where N denotes the cumulative standard normal distribution function. To determine M; and V;,
recall from (4.26) and (4.27) that x(T ) is normally distributed with mean py and variance S,
Hence with P(T, t;) = A(T, t)e®™ XD "one can directly obtain that the mean M; and variance V;
of In P(T, t;) are given by

(4.36) d!

(4.37) d,
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Hence under the SZHW dynamics (4.6)-(4.9), we have derived the explicit formula (4.34) for the
price of a GAO under stochastic volatility and correlated stochastic interest rates. With this result,
we are able to investigate the impact of stochastic volatility on the pricing of GAQOs, which will

be the subject of paragraph 4.7.1.

4.6 Extension to two-factor interest rate model

A one-factor assumption for the short interest rate unfortunately means that al future interest
rates are driven by one factor. As reported in Brigo and Mercurio (2006), principal components
analysis shows that the full interest rate curve is (depending on the currency) typically driven by
two or more factors. When calibrating to European swaption prices, it is demonstrated that a
two-factor Gaussian model gives significantly better fits and produces more redlistic future
interest rate curves. Furthermore, as noted in Chu and Kwok (2007), the one-factor assumption
typically leads to a full correlation of all future interest rates. In particular these authors
recommend using a two-factor interest rate model for the pricing of long-term derivatives and
GAO contracts in particular. In this section, we therefore generalize the setting of the previous
section from one to two-factor Gaussian interest rates. That is under the risk-neutral measure Q,
we assume the following dynamics for the short interest rate process:

(440) r(t) = j (O)+x(®)+y() r@0)=r,

(4.41) dx(t)

- ax(t)dt +s dW2 (t) x(0) =0

(4.42) dy(t)

- by(t)dt +hdW2 (1) y(0) =0
(4.43) dWR(t)AWS(t) =r

Here a, b (mean reversion) and s, h (volatility) are the positive parameters of the model and |r |
< 1. The deterministic function j (t) can be used to exactly fit the current term structure of
interest rates, see Brigo and Mercurio (2006) who name this model the ‘ G2++ model. Much of
the analytical structure of the one-factor Gaussian is preserved in this two-factor setting. For
example prices of time T zero-coupon bonds maturing at timet; are given by

(4.44) P(T,t) = AT,t)e Barxm-seTym

where
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Substituting the zero-coupon bond expression (4.44) into the pricing equation (4.5) and
evaluating this expectation, resultsin the following explicit expression for the GAO price:

" %??Z
(4.48) C(T) = rxpng(O)o—@gF(x)N(m(x)) KN (h (X))o
where
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and where y* is the unique solution of
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The proof of (4.48) is given in appendix 4a.

In the pricing formula (4.48) it remains to determine the first two moments of x(T ) and y(T ) and
the (terminal) correlation between x(T) and y(T ), under the equity price measure Q° . These are
given in appendix 4b. Note that in the pricing formula (4.48), one is integrating a Gaussian
probability density function against a bounded function. Because the Gaussian density functions
decays very rapidly**, one can therefore truncate the integration domain in an implementation of
(4.48) to a suitable number of standard deviations sy around the mean .

4.7 Numerical examples

In this section two numerical examples are given. In paragraph 4.7.1 the values of the GAO
using the stochastic volatility model described in Section 4.3 are compared with values that
result when a geometric Brownian motion is assumed for equity prices. Paragraph 4.7.2 deals
with sensitivity analyses of different risk drivers. In paragraph 4.7.3 our approach for two-factor
interest rate models is compared with the methods described in Chu and Kwok (2007).

4.7.1 Comparison results SZHW model and Black-Scholes Hull-White model

In this section the impact of stochastic volatility of equity pricesis shown for an example policy.
The results for the SZHW model given in (4.6)-(4.9) are compared with a model that combines a
Black-Scholes process for equity prices with a one-factor Hull White model for interest rates, the
so-caled Black-Scholes-Hull-White (BSHW) model given in (4.11)-(4.12). The SZHW and
BSHW models are both calibrated to market information (implied volatilities and interest rates)
per end July 2007, see Section 4.4.

In the example, the policyholder is 55 years old, the retirement age is 65, giving the maturity T of
the GAO option of 10 years. Furthermore, SO0) is assumed to be 100. The surviva rates are
based on the PNMAOQOO table of the Continuous Mortality Investigation (CMI) for mae
pensioners™.

In table 4.2 the prices for the GAO are given for different guaranteed rates g for both models.
The results for the SZHW model are obtained using the explicit expressions given in (4.33) -
(4.39). The pricing formula for the BSHW is a specia case of this, and is also derived in Ballotta
and Haberman (2003). The results are determined for EU data and U.S. data with an equity-
interest rate correlation of respectively 0.347 and 0.146 (see Section 4.4). The table presents the
total value of the GAO as well as the time value. The time value is determined as the difference
between the total value and the (forward) intrinsic value. The latter is determined by setting all
volatilities to zero. While the total value gives the impact on the total prices, the time value gives
more insight in the relative impact of the models (since those only have impact on the time
value). Also, the time value of the GAO is often reported separately, for example within
Embedded Value reporting of insurers. The at-the-money guaranteed rate g is 8,44% for the U.S.
and 8,23% for the EU.

! For instance, 99,9999% of the probability mass of a Gaussian density function lies within five standard deviations
around its mean.
2 Thistableis available at: http://www.actuaries.org.uk/knowledge/cmi/cmi_tables/00_ series tables
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Table 4.2: comparison of GAO values for the SZHW and BSHW model

EU, Total Value EU, Time Value
g SZHW  BSHW Rél. Diff g SZHW BSHW Réd. Diff
8,23% 3,82 3,07 + 24,5% 8,23% 3,82 3,07 + 24,5%
7% 0,59 0,39 +50,7% 7% 0,59 0,39 + 50,7%
8% 2,89 2,26 + 28,0% 8% 2,89 2,26 + 28,0%
9% 8,40 7,25 + 15,8% 9% 243 1,29 + 88,9%
10% 17,02 15,53 +9,6% 10% -0,11 -1,60 -93,0%
11% 27,37 25,69 +6,5% 11% -0,93 -2,60 -64,4%
12% 38,30 36,47 +5,0% 12% -1,17 -2,99 -61,0%
13% 49,35 47,37 +4,2% 13% -1,28 -3,26 -60,7%
U.S,, Total Value U.S, Time Value
g SZHW  BSHW Rél. Diff g SZHW  BSHW  Rel. Diff
8,44% 5,43 4,84 +12,0% 8,44% 543 4,84 +12,0%
7% 1,04 0,88 + 18,0% 7% 1,04 0,88 + 18,0%
8% 3,54 3,11 + 13,6% 8% 3,54 311 + 13,6%
9% 8,53 7,74 +10,3% 9% 7,27 6,47 +12,3%
10% 16,06 14,90 +7,8% 10% 4,15 2,99 +39,1%
11% 25,42 23,96 +6,1% 11% 2,86 1,40 + 104,2%
12% 35,73 34,06 +4,9% 12% 2,53 0,86 +195,5%
13% 46,43 44,58 +4,1% 13% 2,58 0,74 + 250,1%

The table shows that the use of a stochastic volatility model such as the SZHW model has a
significant impact on the total value of the GAO. The value increases with 4% -50% for a EU
data and 4% -18% for a U.S. data, depending on the level of the guarantee.

These price differences are not caused by a volatility effect as both models are calibrated to the
same market datain Section 4.4. Figure 4.1 however showed that the distribution of equity prices
under a SZHW process has a heavy left tall, but also relatively more mass on the right of the
distribution compared to the BSHW process. Given a positive correlation between equity prices
and interest rates, and the fact that the GAO pays off when interest rates are low, this means that
for the SZHW model there will be some very low payoffs for equity prices in the left tail, but
relatively higher payoffs for the remaining scenarios. Thisis illustrated in table 4.3. For the EU
data and g = 8,23%, 50.000 Monte Carlo simulations are generated for both models and the
discounted payoffs are segmented in specific intervals.
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Table 4.3: classification in intervals of payoffs of SZHW and BSHW model
Payoff SZHW BSHW Diff

0 58,3%  585%  -0,2%
0,1] 7,5% 5,2% 2,2%
(1,10] 22,0%  263%  -4,3%
(10,20] 7,2% 6,8% 0,4%
(20,30] 2,7% 1,9% 0,8%
(30,40] 1,2% 0,7% 0,4%

(40,50] 0,5% 0,3% 0,2%
(50,60] 0,3% 0,1% 0,1%
(60,70] 0,2% 0,1% 0,1%
(70,80] 0,1% 0,1% 0,0%
(80,90] 0,1% 0,0% 0,0%
(90,100] 0,0% 0,0% 0,0%
(100,110] | 0,0% 0,0% 0,0%
>110 0,1% 0,0% 0,1%

The table shows that indeed:
- SZHW has relatively much payoffsin the interval (0,1) due to the heavy left tail.
- For the remaining intervals, SZHW has more mass to the right, illustrated by the less
frequent payoffs in the interval (1,10) and more frequent payoffs in the intervals greater
than 10.

Since the models only have an impact on the time value, the relative changes in time value for
in-the-money GAOs are higher, which is also illustrated in table 4.2. One might wonder why the
time values for the EU data as negative for high levels of g. The reason for thisis that due to the
positive correlation between interest rates and equity prices, higher equity volatility means that
there is a higher chance of lower payoffs, leading to a lower total option value compared to the
intrinsic value. For the U.S. data no negative time values are reported. Reason for thisis that due
to the lower correlation between interest rates and equity prices, the effect described above isless
significant than the positive impact of interest rates on the time value.

4.7.2 Impact of different risk drivers

As noted in Section 4.2, we assume that the survival probabilities are independent of the equity
prices and interest rates. It is interesting though to see the impact of significant changes in those
survival probabilities on the GAO price and to compare it with the impact of changes in equity
prices and interest rates. To get a feeling about this, we apply shocks for these risk drivers as
defined in the technical specifications of the Quantitative Impact Study 5 (QIS5) of CEIOPS.
QIS5 is the basis for the Solvency 2, a new risk-based framework for regulatory required
solvency capital. The shocks are aimed to represent the 99.5% percentile on a 1 year horizon.

Table 4.4 shows the impact of 2 shifts in survival probabilities. The shifts are based on a 25%
reduction of mortality rates (longevity risk) and a 15% increase in mortality rates (mortality risk).
Table 4.5 shows the impact of 2 shifts in the yield curve. The shifts are given in Appendix 4d.
Table 4.6 shows the impact of shocks of +39% and -/ - 39% on equity prices.
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Table 4.4: impact of survival probabilities on GAO total value

EU, Total value U.S., Total value
g SZHW gx * 75% gx * 115% g SZHW gx * 75% gx * 115%
8,23% 3,82 7,28 2,53 8,23% 5,43 9,08 3,88
7% 0,59 1,61 0,31 7% 1,04 2,88 0,85
8% 2,89 5,82 1,85 8% 3,54 7,61 3,07
9% 8,40 13,63 6,17 9% 8,53 15,22 7,71
10% 17,02 24,01 13,72 10% 16,06 25,05 14,90
11% 27,37 35,49 23,38 11% 25,42 36,13 24,01
12% 38,30 47,25 33,86 12% 35,73 47,76 34,14
13% 49,35 59,05 44 52 13% 46,43 59,56 44 .68

Table 4.5: impact of changesin yield curve on GAO total value

EU, Total value U.S., Total value
g SZHW rates down rates up g SZHW rates down rates up
8,23% 3,82 9,91 1,11 8,23% 5,43 10,48 1,54
7% 0,59 2,49 0,10 7% 1,04 3,42 0,25
8% 2,89 8,10 0,77 8% 3,54 8,83 1,15
9% 8,40 17,38 3,24 9% 8,53 17,20 3,58
10% 17,02 28,80 8,65 10% 16,06 27,69 8,21
11% 27,37 40,94 16,71 11% 25,42 39,27 15,05
12% 38,30 53,23 26,19 12% 35,73 51,26 23,50
13% 49,35 65,54 36,13 13% 46,43 63,37 32,79

Table 4.6: impact of shocks on equity prices on GAO total value

EU, Total value U.S., Total value
g SZHW equity up __equity down g SZHW equity up _ equity down
8,23% 3,82 5,31 2,33 8,23% 5,43 7,55 3,31
7% 0,59 0,81 0,36 7% 1,04 1,45 0,63
8% 2,89 4,01 1,76 8% 3,54 4,92 2,16
9% 8,40 11,67 5,12 9% 8,53 11,86 5,20
10% 17,02 23,66 10,38 10% 16,06 22,32 9,80
11% 27,37 38,04 16,70 11% 25,42 35,33 15,51
12% 38,30 53,24 23,36 12% 35,73 49,66 21,80
13% 49,35 68,60 30,10 13% 46,43 64,54 28,32

Although the impact differs for different strike levels, the tables show that the impact of the
different risk drivers is reasonably similar for this particular example. Table 4.4 shows that
indeed the GAO value increases significantly when a shift down is applied to the mortality rates.
A shift up in mortality rate has the opposite effect on the value of the GAO. Similar effects can
be seen in table 4.5 for the yield curve shifts. Note that the impact of the yield curve shifts is
(coincidently) approximately equal to a 1% shift in the strike level. Of course, higher (lower)
equity prices will lead to higher (lower) payments, as shown in table 4.6. But for low strike
prices, the impact of changes in equity prices is less than the impact of interest rates and
longevity

4.7.3 Comparison results of the two-factor model with Chu and Kwok (2007)

A specia case of our modeling framework is considered in Chu and Kwok (2007), namely an
equity model with constant volatility. Chu and Kwok (2007) argue that for a two-factor Gaussian
interest rate model no analytical pricing formulas exist. Therefore they propose three
approximation methods for the valuation of GAOs:

Method of minimum variance duration: This method approximates the annuity with a single

zero-coupon bond and minimizes the approximation error by choosing the maturity of the zero-
coupon bond to be equal to the stochastic duration.
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Edgeworth expansion: This method makes use of the Edgeworth approximation of the
probability distribution of the value of the annuity (see Collin-Dufresne and Goldstein (2002)).

Affine approximation: This method approximates the conditional distributions of the risk factors
in affine diffusions.

In the paper the runtimes and approximation errors are compared with benchmark results using
Monte Carlo simulations and the method of minimum variance duration comes out most
favorably. The other approximation methods do have very long runtime, the Edgeworth
expansion method requires even more time then a Monte Carlo simulation.

However, as we have shown in section 4.6, it is possible to derive an explicit expression where
only a single numerical integration is needed for the case of a two-factor Gaussian interest rate
model. It takes hardly any runtime (a couple of hundreds of seconds) to do this numerical
integration, whilst it provides exact results. Table 4.7 shows a comparison of the results for the
different methods and a Monte Carlo simulation with 1.000.000 sample paths, which are
compared to the exact GAO prices obtained by the quasi closed-form expression in (4.48). The
parameter setting used is the same as in Chu and Kwok (2007) and is given in Appendix 4e.
Numbers in parentheses are relative differences compared to the exact formula for the GAO
price. Vaues that are within the 95% confidence interval of the Monte Carlo estimates are
starred (*) and made bold.

Table 4.7 comparison GAQO pricesfor different methods
Min. Var. Edgeworth Affine Monte
o Strike Exact Duration Expansion Approximation Carlo
05% 127% 11,800¢ | 11,810¢ (-0,1%) | 11,816 (-0,1%) | 11,791* (-0,1%) 11,792
1,0% 123% 9,756* 9,771* (-02%) | 9,750 (-0,1%) | 9,741*  (-0,1%) 9,749
15% 118% 7,874* 7,896* (-0,3%) | 7,848* (-0,3%) | 7,853  (-0,3%) 7,868
2,0% 114% 6,169* 6,195 (-04%) | 6,129 (-0,6%) | 6,142  (-0,4%) 6,163
25% 110% 4,661* 4686 (-05%) | 4,620 (-09%) | 4,631  (-0,6%) 4,656
3,0% 106% 3,373* 3391 (-05%) | 3,341 (-1,0%) | 3,346  (-0,8%) 3,368
35% 103% 2,322* 2,327 (-02%) [ 2,300 (-0,9%) | 2,304*  (-0,7%) 2,317
40%  99% 1,510* 1,501* (-06%) | 1,490 (-1,3%) | 1,506*  (-0,3%) 1,507

45%  96% | 0921* 0901 (-22%) | 0,894 (29%)| 0931  (-1%) 0,92
50% 93% | 0525 0498 (-51%) | 0492 (-62%) | 0544 (-36%) | 0,524
55% 90% | 0,278 0252  (-9,4%) - - 0,278
60% 88% | 0,136 0,115 (-15,4%) - - 0,135
65%  85% | 0,061 0,047 (-233%) - - 0,061
70% 83% | 0,025 0017 (-32,8%) - - 0,025

The table shows that the approximation methods considered by Chu and Kwok (2007) break
down for higher interest rates, where the guarantee is out-the-money. Note hereby that the first
moment of the underlying distribution is the main driving factor for the option price, while for
the price of out-of-the-money options the higher moments play a more important role, see Brigo
and Mercurio (2006). Taking into account that the mean of the underlying annuity is determined
exactly in the approximations, this implies that these methods have severe difficulties in
estimating the higher moments of the underlying distribution, resulting in poor an approximation
quality of the out-of-money GAQOs, see Table 4.7.
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The explicit (quasi closed-form) exact formula (4.48) does give highly accurate prices for GAOs
across for al strike levels. Both the Monte Carlo method as the explicit formula are unbiased.
Differences between the Monte Carlo method and the exact formula are sampling errors as we
can see that the 95% confidence interval of the Monte Carlo method for al cases is overlapping
with the price of the explicit exact formula. Typically such Monte Carlo noise increases for out-
of-the-money options (see Glasserman (2003)) as can also be seen from table 4.7 for the
considered GAOs. The careful reader may notice that in the above example the sign of the
difference between the Monte Carlo price and the exact formula is always negative, which is due
to the fact that the same set of Monte Carlo pathsis used for al strikes.

Where the Affine approximation method and the Edgeworth expansion method require a very
long runtime (according to Chu and Kwok (2007), the runtime of the Edgeworth expansion is
even larger than of the Monte Carlo method with 100.000 sample paths), the runtime of the
explicit expression derived in this chapter is comparable to the method of minimum variance
duration and takes only a few hundreds of a second. The closed-form exact approach proposed in
Section 4.6 is preferable compared to the approaches described in Chu and Kwok (2007), as it
gives exact GAO prices over al strike levels whilst being computationally very efficient.

4.8 Conclusions

In this chapter explicit expressions are given for the pricing of GAOs using a stochastic volatility
model for equity prices. The considered framework further allows for one-factor and two-factor
Gaussian interest rate models, whilst taking the correlation between the equity, the stochastic
volatility and the stochastic interest rates explicitly into account. The basis for the explicit
formulas for GAOs lies in the fact that under the equity price measure, the GAO can be written
in terms of an option on a sum of coupon bearing bonds: after some calculations the Jamshidian
(1989) result can be used that expresses the latter option on a sum into a sum of options which
can be priced in closed-form. For one-factor interest rate models the price of a GAO can be
expressed as a sum of Black and Scholes (1973) options, whereas an explicit expression using a
singleintegral can be established for the case of atwo-factor Gaussian interest rate model.

The results in this chapter indicate that the impact of using a stochastic volatility model is
significant. In the considered empirical test cases we found that the prices for the GAOs using a
stochastic volatility model for equity prices are considerably higher in comparison to the
constant volatility model, especially for GAOs with out-of-the-money strikes.

A specia case of our modeling framework, that is an equity model with constant volatility, is
considered in Chu and Kwok (2007). These authors argue that for a two-factor Gaussian interest
rate model no analytical pricing formulas exist and propose several approximation methods for
the valuation of GAOs. In this chapter we did derive an explicit expression for the price of a
GAO in terms of a single numerical integral, which called for a comparison between these
valuation methods. The numerical results show that the use of the quasi closed-form exact
approach is preferable compared to the approaches described in Chu and Kwok (2007), as it



gives exact GAO prices over al strike levels whilst being computational very efficient to
compute.

Appendix 4a: Pricing of a coupon bearing option under a two-factor
interest rate model

Let the pair x(T), y(T) follow a bivariate normal distribution with means p, My, variances s\, sy2
and correlation r . The probability density function f(x, y) of (x(T ), y(T )) is hence given by

i

- mo (x- m)(y-m)  a&y-mad
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Furthermore, let the time T price of the zero-coupon bond P(T, t;) maturing at time ti be given by

tsnloN
o =

(456) P(T,t) = A(T,t.)e_B(a’T’ti)X(T)'B(vavti)y(T)

We then come to the following proposition.

Proposition A.1 The expected value of the coupon-bearing option maturing at time T, paying
coupons ¢; at timesi = 0,..., n and with strike K is given by a one-dimensional integral:
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Proof The result is analogous to the derivation of the swaption price under the two-factor
Gaussian interest rate model, we therefore refer to equation (4.31) in Brigo and Mercurio (2006)
on pp. 158-159 and the corresponding proof on pp. 173-175.
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Appendix 4b: Moments and terminal correlation of the two-factor
Gaussian interest rate model

To determine the moments of x(T ) and y(T) under the equity price measure, we need to consider
the dynamics of (4.40), given under the risk-neutral measure Q, under the equity price measure
Q°. To change the underlying numéraire (see Geman et a. (1996)), we calculate the
corresponding Radon-Nikodym derivative which is given by

(4.58) % = :g))s((_:_); = expe- O/(u)du+(j/(u)dWQ(u)u

The multi-dimensional version of Girsanov’stheorem (see Oksendal (2005)) hence implies that
(459) dWS (t) — dW2(t) - v(t)dt

(4.60) dWS (t) — dW2(t) - r v(t)dt

(4.61) W2 (1) > dWO(t)- 1 ev(t)dt

(4.62) dWQ (t) > dWO(t) - r ov(t)dt

are Brownian motions under Q°. Hence under Q° one has the following model dynamics for the
volatility and interest rate process

(4.63) dx(t) - ax(t)dt +r Sv(t)dt +s dWXQS ® x(0)=0

(4.64) dy(t)

- by(®)dt + r hv(t)dt +hdw® (1) y(0) =0

(4.65) dv(t) = K(y - v(t))dt+t dw? (1) v(0) =,

whereK =k - r & andy —kkl Integrating the latter dynamics yields the following explicit
expressions:

.
(4.66) V(T) = y +(v(0)-y )e " +t Oek” DAWS (u)
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(468) ¥(T) = rxshg%gl- e g+ ((b)k% g e—bTHg
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Using Ito’s isometry, we have that (X(T ), y(T)) is normally distributed with means py, Hy,
variances s,%, s,” and correlation r (T) given by
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Appendix 4c: Special case: independent equity price process or pure
interest rate guaranteed annuities

If one does not link the GAO to the performance of the equity (e.g. seen in the Netherlands) the
expression (4.4) for the GAO price can be smplified significantly. One then has that the GAO
priceisgiven by

+\

(4.78) C(T) = ,,p,E° eepr O*(u)du gga GP(T,t)- KS G
B €o 20
(4.79) = pgP(OT)EY e’aaé cP(T,t)- K24

i=0 ﬂg

where the above expectation is taken with respect to the T-forward measure Q', which uses the
zero-coupon bond price maturing at time T as numéraire. Moreover, also in case one assumes the
equity price is independent from the annuity, e.g. according to Boyle and Hardy (2003) and
Pelsser (2003), one ends up with the same expectation as (4.78); one only has to multiply the
currency P(0, T) with the expectation future equity price, i.e. in (4.79) one only has to multiply
this formula with the expected future equity price. In the following paragraphs we will derive
explicit expressions for the GAO price under both one-factor and two-factor Gaussian interest
rates.

C.1 Hull-White model

Under Q', one has the following expression for the stochastic process x(T), driving the short
interest rate (see Brigo and Mercurio (2006), Pelsser (2000)):

§
(480) X(T) = nf +s ¢g 2T dw (u)
0

hence from 1to’s isometry, we have x(T) is normally distributed with mean i, and variance s,
given by
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(481) m = - Sa_z(l' g ) +;_a2 (1_ o 2T )
_ 1_ e 2aT
(482 s, = oa

Just as in Section 4.5, we have that X(T ) is normally distributed with the same variance s,, but
with a different mean ' . Hence completely analogous to Section 4.5, one can use the
Jamshidian (1989) result and write the call option on the sum of zero-coupon bonds as a sum of
zero-coupon bond call options: let x* solve

(4.83)  GA(T,t)e "™ = K

i=0
and let
(484) K = AT,t)eTx

Using Jamshidian (1989), we have that the price of GAO is equal to the price of a sum of zero-
coupon bond options, i.e.

T €9 BT +U
(4.85) C(T) = ,.,pgP(0,T)E® 8a0 ¢ (A(T.1)e 2™ ™. k) ¥

As the bond price again follows a log-normal distribution, one can express the GAO price in
terms of the Black and Scholes (1973) formula:

(486) C(T) = ,.,p,oPOTIA ¢ (FN(A)- KN(d))

(487) F = e

(4.88) d, =

N
(489) d = di-
where
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(490) M, = InA(T,t)- B(T,t)m
(491 V. = BZ(T,ti)(SI)2

and note that the above expression only deviates from (4.33) in the different means and variances
for the x(T) process.

C.2 Gaussian Two-factor model

Under Q', one has the following expression for the stochastic processes x(T ), y(T ) that drive the
short interest rate (see Brigo and Mercurio (2006)):

T T
(492) x(T) = mf+s g TUawWe ()  y(M) = nf +h g T IdwWe (u)
0 0

hence x(T), y(T) are normally distributed with means p,, p,', variances s,’, s,* and correlation
I w(T) given by:

(493) m = - gﬂx«/%g@- g HJ’;_azsz o 24T H+br(;y—il‘:))g_ ooy
(4.94) mj - g])_j”xyz_hggl' e H+2_b2281 e?" E|+ar(;y—irl]))gl' e (a+b)TE|
(495) sT = 1- ZaT
(496) sT = h 1- Ze;bT

Hence analogously to Section 4.6, one has that the GAO priceis given by
(4.97) C(T) = ,_,p,aPOTIG(M.nT.s,.5,.1,(T)

where G is given by an explicit expression, defined by equation (4.57) of appendix 4a.

Appendix 4d: Yield curve shocks

In paragraph 4.7.2 the 2 shocks given in table 4.8 are applied to the yield curves. These shocks
are aimed to represent the 99.5% percentile on a 1 year horizon in the Quantitative Impact Study
5 (QIS5) of CEIOPS.
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Table 4.8: yield curve changes for the up and down shock in QI S5

Maturity up down
1 75% -75%
2 65% -65%
3 56% -56%
4 50% -50%
5 46% -46%
6 42% -42%
7 39% -39%
8 36% -36%
9 33% -33%

10 31% -31%
11 30% -30%
12 29% -29%
13 28% -28%
14 28% -28%
15 27% -27%
16 28% -28%
17 28% -28%
18 28% -28%
19 29% -29%
20 29% -29%
21 29% -29%
22 30% -30%
23 30% -30%
24 30% -30%
25 30% -30%
26 30% -30%
27 30% -30%
28 30% -30%
29 30% -30%
30 30% -30%

Appendix 4e: Model setup of the Chu and Kwok (2007) case

In this appendix we describe the numerical input of the example being used in Chu and Kwok
(2007). We also report the relative differences between the GAO price obtained by their methods
and the explicit expression in (4.48) for that example. Note that as the Black-Scholes-G2++
model, used in Chu and Kwok (2007), is specia case of the Schibel-Zhu-G2++ considered in 4.6,
we can one on one translate their parameters into our modeling framework. As the notation is
dightly different, we explicitly provide this trandation into our modeling framework.

The GAO is specified using the guaranteed rate g = 9%, the current age of the policy holder x =
50 and his retirement age r = 65, with corresponding probability of survival ;.px = 0.9091 and
time to expiry for the GAO equal to T = 15 years. The equity price is modeled by the Black and
Scholes (1973) model with parameters q = 5%, S0) = 100 exp(-q T ) = 47,24 and ss = 10%,
where q denotes the continuous dividend rate and ss the constant volatility of the equity price.
The current (continuous) yield curve is given by (4.98) and for the G2++ interest rate model (e.g.
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see Brigo and Mercurio (2006)) the following parameters are used: a = 0,77, b = 0,08, s = 2%,
h= 1%, r,y, = -0.7, where the correlations between equity and interest rate drivers given by rxs =
0,5 and rys = 0,0071. Finally, the i-year survival probabilities ¢; from policy holder’s retirement
age 65 are provided in the following table:

Table 4.9: i-year survival probabilities from policy holder’s retirement age 65

c0 1,000 c9 0,830 c18 0,489 c27 0,100
cl 0,987 c10 0,802 c19 0,441 c28 0,073
c2 0,973 cll 0,771 c20 0,393 c29 0,050
c3 0,958 cl2 0,737 c21 0,345 c30 0,033
c4 0,941 cl13 0,702 c22 0,298 c3l 0,020
c5 0,923 cl4 0,663 c23 0,252 c32 0,012
c6 0,903 c15 0,623 c24 0,209 c33 0,006
c/ 0,881 cl6 0,580 c25 0,168 c34 0,003
c8 0,857 cl7 0,535 c26 0,132 c35 0,001

In paragraph 4.7.3 we compared the prices of the explicit solution (4.48) and estimates obtained
using 1.000.000 Monte Carlo simulations with the Minimum Variance, the Edgeworth and
Affine Approximation method which are used in Chu and Kwok (2007). These results can be
found in table 7.6, where a comparison is given for different levels ro of the yield curve provided
by the (continuous) yields

(4.98) Y(T)=ro+0,04(1 &%)
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Chapter 5

On Stochastic Mortality Modeling*

* This chapter has appeared as.

PLAT, R. (2009): On Stochastic Mortality Modeling, Insurance: Mathematics and Economics 45
(3), pp. 393-404

5.1 Introduction

As mentioned in chapter 1, important risks to be quantified are mortality and longevity risk. Not
only is this an important risk for most (life) insurers and pension funds, the resulting solvency
margin will also be part of the fair value reserve. Reason for this is that it is becoming best
practice for the quantification of the risk margin to apply a Cost of Capital rate to the solvency
capital necessary to cover for unhedgeable risks, such as mortality and longevity risks.

There is a vast literature on stochastic modeling of mortality rates. Often used models are for
example those of Lee and Carter (1992), Renshaw and Haberman (2006), Cairns et a (2006a),
Currie et al (2004) and Currie (2006). For an extensive review we refer to section 5.2.

All well known models have nice features but also disadvantages. In this chapter a mortality
model is proposed that aims at combining the nice features from existing models, while
eliminating the disadvantages of existing models. More specifically, the model fits historical data
very well, is applicable to a full age range, captures the cohort effect, has a non-trivial (but not
too complex) correlation structure, has no robustness problems and can take into account
parameter risk, while the structure of the model remains relatively simple.

The remainder of the chapter is organized as follows. First, in section 5.2 the existing literature is
extensively reviewed, focusing on stochastic mortality models and the criteria for them. In
section 5.3 a new mortality model is proposed. Section 5.4 describes the fitting procedure of the
model and gives results of the fitting process for mortality of different countries. Section 5.5
shows simulation results of mortality rates and the results of a robustness test. In section 5.6 a
risk neutral version of the model is given, which can be used for pricing. Section 5.7 describes a
possible method to account for parameter risk for the proposed mortality model. Conclusions are
given in section 5.8.
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5.2 Literature review: criteria and models

Due to the increasing focus on risk management and measurement for insurers and pension funds,
the literature on stochastic mortality models has developed rapidly during the last decennium. In
this section an overview of current literature on stochastic mortality models and criteria for them
isgiven.

5.2.1 Criteria for stochastic mortality models

It is important to consider whether a specific stochastic mortality model is a good model or not.
Therefore, Cairns et al (2008a) defined criteria against which amodel can be assessed:

1) Mortality rates should be positive.

2) Themodel should be consistent with historical data.

3) Long-term dynamics under the model should be biologically reasonable.

4) Parameter estimates and model forecasts should be robust relative to the period of data
and range of ages employed.

5) Forecast levels of uncertainty and central trajectories should be plausible and consistent
with historical trends and variability in mortality data.

6) The model should be straightforward to implement using analytical methods or fast
numerical algorithms.

7) The model should be relatively parsimonious.

8) It should be possible to use the model to generate sample paths and calculate prediction
intervals.

9) The structure of the model should make it possible to incorporate parameter uncertainty
in simulations.

10) At least for some countries, the model should incorporate a stochastic cohort effect.

11) The model should have anon-trivial correlation structure.

An important additional criterion is that the model is applicable for a full age range. Some
models are designed for higher ages only (say 60 years or older). However, the portfolios of
insurers and pension funds usually exist of policyholders from age 20 and older. One would want
to model the mortality rates and their dependencies for the whole portfolio consistently, therefore
the model should be applicable for the whole age range.

The existing models meet most of the above criteria. However, as far as we know, none of the
existing models meet al of the above criteria (although some are close), see section 5.8 and
Cairnset a (2007).

5.2.2 Stochastic mortality models

Stochastic mortality models either model the central mortality rate or the initial mortality rate
(see Coughlan et a (2007)). The central mortality rate my; isdefined as:



(5.1) _ D, _ #deathsduring calendar year t aged xlast birthday
' Mt E,. average populationduring calendar year t aged xlast birthday

The initial mortality rate gx is the probability that a person aged x dies within the next year. The
different mortality measures are linked by the following approximation:

(52 g, »1l-e™
One of the most well known stochastic mortality models is the model of Lee and Carter (1992):
(53) In(m)=a +bk,

where a, and by are age effects and k; is a random period effect. Cairns et a (2007, 2008a and
2008b) noted severa disadvantages of the Lee-Carter model:

- Itisal-factor model, resulting in mortality improvements at all ages being perfectly
correlated (trivial correlation structure).

- For countries where a cohort effect is observed in the past, the model gives a poor fit to
historical data.

- Theuncertainty in future death ratesis proportional to the average improvement rate by.
For high ages this can lead to this uncertainty being too low, since historical
improvement rates have often been lower at high ages.

- Thebasic version of the model can result in alack of smoothnessin the estimated age
effect by.

There is whole strand of literature on additions or modifications of the Lee-Carter model, for
example Brouhns et a (2002), Lee and Miller (2001), Booth et al (2002), Giros and King (2005),
De Jong and Tickle (2006), Delwarde et a (2007) and Renshaw and Haberman (2003). Most of
these models tackle one of the problems of the Lee-Carter model, but the other disadvantages
still remain.

The first model that incorporated the cohort effect was proposed in Renshaw and Haberman
(2006):

(54) In(m,)=a +bk, +big,_,

where g.x isarandom cohort effect that is afunction of the year of birth (t-x).

For countries where a cohort effect is observed in the past, this model provides a significant
better fit to the historical data. However, CMI (2007) and Cairns et a (2007, 2008b) find that the
Renshaw-Haberman suffers from a lack of robustness. Furthermore, although the model has an
additional stochastic factor for the cohort effect, for most of the ssmulated mortality rates the
correlation structure is still trivial. Especially when using a wide age range, the smulated cohort
parameters are only relevant for the higher agesin the far end of the projection.
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Currie (2006) introduced a simplification of the Renshaw-Haberman model that removes the
robustness problem:

(65 In(m,)=a, +k, +g,,

However, the fit quality is less good compared to the Renshaw-Haberman model, and the
problem with the trivial correlation structure still remains.

When fitting models (5.4) and (5.5) to an age range of say 20-85, the modeled cohort effect can
result in odd looking humps in the projected mortality rates over time. This problem will be
further highlighted in the next paragraph.

Furthermore, Cairns et al (2008b) observe that for England & Wales and United States data, the
fitted cohort effect appears to have a trend in the year of birth. This suggests that the cohort
effect compensates the lack of a second age-period effect, as well as trying to capture the cohort
effect in the data.

Cairns et a (2006a) introduced the following model:

(56) logit(q,,) = |n§e LY

=k +k? (x- X)
- qx,t ﬂ

where X is the mean age in the sample range and (k;',k?) is assumed to be a bivariate random

walk with drift. Cairns et a (2007) also introduced some additions on model (5.6), amongst
others capturing the cohort effect. The models have multiple factors that result in a (desired) non-
trivial correlation structure, while the structure of the model is relatively simple. However, those
models are all designed for higher ages only. When using these models for full age ranges, the fit
quality will be relatively poor and the projections are likely to be biologically unreasonable.

5.2.3 Problems with modeling cohort effect

Various explanations have been put forward for cohort effects that have been identified in the
past. For example, for the United Kingdom Willets (2004) mentions historical patterns of
smoking behavior and the impact of early life experience on health in later life. He states that
there are a number of reasons to believe that this cohort effect will have an enduring impact on
rates of mortality improvement in future decades.

The investigations on cohort effects often concentrate on birth years until about 1945. This is
natural, since in most cases the cohort effect is an effect on health in later life, so one needs
observations of mortality rates for middle age and higher ages to verify the existence of the
cohort effect. When applying models (5.4) and (5.5) to a full age range, say 20-85, cohort
parameters are aso fitted for birth years 1945-1980. This means that for these birth years,
(cohort) movements for young ages (which can be volatile) are projected into the future. This
affects the mortality rates for higher ages in a similar degree, since the cohort effect is usually
modeled in a multiplicative way. However, given the possible nature of the movements for these
specific birth years (for example AIDS, drug and alcohol abuse and violence) it is unclear
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whether these effects do have a persistent effect on the future mortality rates for these cohorts.
And if so, it is questionable whether a high relative cohort effect for young ages will have a

s milleslr relative effect on mortality of higher ages, given the nature of the cohort effect for young

ages

Figure 5.1 shows a best estimate and percentiles of mortality rates for 75 years old males, using
the Currie (2006) model applied to United States mortality for an age range of 20-84.

Figure5.1: projected mortality rates, 75 years old male — Currie (2006) model
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The figure shows an odd-looking hump around 2020-2040 and flattening of projected mortality
thereafter, corresponding with patterns in the fitted cohort parameters for birth years 1945-1980.

Given the considerations above and the odd-looking results when taking into account cohort
effects of recent birth years, it might be wise to only include the cohort effect for early birth
years (say until year 1945) in the fitting of the model. The cohort effect for later birth years (so >
1945) can be simulated from the fitted distributions. An additional advantage of this is that the
simulation of the cohort effect becomes relevant for higher ages aready in the beginning of the
projection, leading to anon-trivial correlation structure.

5.3 A new stochastic mortality model

The models mentioned in the previous section all have some nice features:

- the ax term of the Lee-Carter model makes it suitable for full age ranges

13 Note that the Renshaw-Haberman tries to capture this in the parameter bf . However, thisis based on the cohort
effects for earlier birth years, which could have a significantly different nature.
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- the Renshaw-Haberman model addresses the cohort effect and fits well to historical data

- the Currie model has a simpler structure then the Renshaw-Haberman model, making it
more robust

- themodels of Cairns et a (2006a, 2007) have multiple factors, resulting in anon-trivial
correlation structure, while the structure of the model isrelatively smple

In this section a mortality model is proposed that combines those nice features, while eliminating
the disadvantages mentioned in the previous section.

5.3.1 The proposed model

Asfor most other stochastic mortality models, the quantity of interest is the central mortality rate
my:. The proposed model for my; is:

5.7)  In(m,)=a, +k +kZ(X- x)+k(X- x)" +g,,

where(X - x)” =max (X - x,0). The model has 4 stochastic factors, but has a similar relatively
simple structure as the Currie (2006) and the Cairns et al (2006a, 2007) models.

The a is similar as in the Lee-Carter model and makes sure that the basic shape of the mortality
curve over agesisin line with historical observations. Next to the ay, the model has 4 stochastic

factors (k;,k? k2,0, ,) . The parameters of the model can be fitted using the methodology

described in section 5.4, after which suitable ARIMA-processes (see paragraph 2.2.1) are
selected for the various factors.

The factor k' represents changesin the level of mortality for all ages. Following the reasoning in
Cairns et a (2006b), the (long-term) stochastic process for this factor should not be mean
reverting. Reason for this is that it is not expected that higher mortality improvements in some
years will surely be compensated by lower mortality improvementsin later years.

The factor k? alows changes in mortality to vary between ages, to reflect the historical
observation that improvement rates can differ for different age classes.

Furthermore, historical data seems to indicate that the dynamics of mortality rates at lower ages
(up to age 40 / 50) can be (significantly) different at some times. For example, think of
developments like AIDS, drugs and alcohol abuse, and violence. The factor k* is added to
capture these dynamics.

The factor g.x is capturing the cohort effect, in the same way as the models of Currie (2006) and
Cairns et a (2007). As mentioned in paragraph 5.2.2, the process for this factor should not have
atrend. Therefore, atrendless mean reverting process will be assumed for g..

Next to g.,, the factors k? and k® alow the model to have a non-trivia correlation structure

between ages. Fitting non-stationary ARIMA-process for factors k? and k* could result (in some
scenarios) in projected scenarios where the shape of the mortality curve over ages is not
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biologically reasonable. Therefore, a stationary (mean reverting) process will be assumed for
these factors.

In most cases mortality projections for a wide age range are needed. However, if one is only
interested in higher ages (say age 60 and older), the factor k* is not needed and can be left out.
This reduces the model to:

(5.8) In(m,)=a, +k +k(X- x)+g,,

This reduced model still has dl the favorable characteristics of model (5.7), but is more suitable
for high ages only.

5.3.2 I dentifiability constraints

Just like most stochastic mortality models, the proposed mortality model has an identifiability
problem, meaning that different parameterizations could lead to identical values for In(my;). Note
that the following parameterization leads to similar values for In(m;):

gt.x:gt.x+y1+y2(t' X)
Ki=k{-y, - dxy,-yt
K2=k2 +dy,

& =a +(1+d)xy,

(5.9)

wherey 1, y 2 and d are constants.

This can be resolved by setting identifiability constraints. We use the approach of Cairns et a
(2007, model M6) for this, leading to the following constraints:

G
a9.=0

c=¢y

(5.10) 5 cg. =0
=

ak’=0
t

where ¢y and c; are the earliest and latest year of birth to which a cohort effect is fitted, and ¢ =
t—x . The rationale behind the choice of first two constraintsis that if the functiony ; + y, (t-X) is
fitted to g.x the constraints ensure that y’, =y, =0. This results in a fitted process for g.x that
will fluctuate around O and there will be no constant trend up or down. This means that the
constraints in (5.10) force the process of g.x only to be used to capture the cohort effect and not
to compensate lack of age-period effects. The third constraint is only used to normalize the
estimates for k°.
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Other approaches for setting the identifiability constraints are also possible, see for example
Cairns et a (2007) and Renshaw and Haberman (2006).

5.4 Fitting the model

An important aspect of stochastic mortality models is the quality of the fit of the model to
historical mortality data. In this section the methodology for fitting the model is described, and a
comparison of fit quality with other models is made for mortality rates of the United States (US),
England & Wales (E&W) and The Netherlands (NL).

5.4.1 Fitting methodology

Brouhns et a (2002) described a fitting methodology for the Lee-Carter model based on a
Poisson model. The main advantage of this is that it accounts for heteroskedasticity of the
mortality data for different ages. This method has been used more commonly after that, also for
other models, see for example Renshaw and Haberman (2003, 2006) and Cairns et al (2007).

This fitting methodology will be applied to the model proposed in section 5.3. Therefore, the
number of deaths is modeled using the Poisson model, implying:

(5.11) Dy~ P0isson(Ex M)

where Dy isthe number of deaths, Ey; isthe exposure (see (5.1)) and my;ismodeled asin (5.7).
The parameter set f is fitted with maximum likelihood estimation, where the log-likelihood
function of model (5.11) isgiven by:

(512) L(f;D,E)=&{D, IngE, m,()§- E,m,(f)- In(D,,!)}

X,t

Because of the specific nature of the problem, there are (as far as we know) no commercial
statistical packages that implement this Poisson regression with constraints. Therefore we have
used the R-code of the (free) software package “Lifemetrics’ as a basis for fitting (5.12).
Another reason for using this is to make an honest comparison of the fit quality of the model
proposed in this chapter and existing models (also modeled in Lifemetrics), which is the topic of
the next paragraph.

Besides estimates for ay, the fitting procedure described above leads to time series of estimations
of k%, k? k®and g., The next step in fitting the model is selecting and fitting a suitable ARIMA-
process to these time series (see paragraph 5.4.3).

14 See www.lifemetrics.com and http://www.r-project.org/. Lifemetricsis an (open source) toolkit for measuring and
managing longevity and mortality risk, designed by J.P. Morgan.
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5.4.2 Comparison of fit quality with existing models

To evaluate whether the proposed model fits historical data well, we have fitted the model to
three different data sets and compared the fitting results with those of models from the
Lifemetrics toolkit. The three used data sets are:

- United States, Males, 1961-2005, ages 20-84

- England & Wales, Males, 1961-2005, ages 20-89

- The Netherlands, Males, 1951-2005, ages 20-90

The data consists of numbers of deaths Dy and the corresponding exposures Ey; and is extracted
from www.mortality.org™.

Asin Cairns et a (2007), the models are compared using the Bayes Information Criterion (BIC).
The measure BIC provides a trade-off between fit quality and parsimony of the model. The BIC
is defined as:

(5.13) BIC = L(fA) - %K InN

where f is the maximum likelihood estimate of the parameter vector, N is the number of
observations and K is the number of parameters being estimated.

Table 5.1 gives a comparison of the fitting results (in terms of BIC) of the model proposed in
section 5.3 and existing models (fitted with the Lifemetrics toolkit).

Table 5.1: comparison BIC for proposed model and existing models

BI C mortality models * u.s E&W NL

Plat -24.506 -18.151 -18.425
Renshaw-Haber man (2006) -25.971 -18.062 -18.632
Currie (2006) -37.489 -19.805 -18.597
Lee-Carter (1992) -47.542 -22.949 -20.353
Cairnset al (2007, model M7) -56.571 -27.730 -21.055
Cairnset al (2006) -294.928 -66.744 -31.511

* higher BIC is more favorable

The table shows that for these specific data sets the proposed model gives the best fitting results,
closely followed by the Renshaw-Haberman model. The BIC for the other models is (sometimes
significantly) less. The models of Cairns et a (2006a, 2007) do not perform very well for this
age range, since they are designed for higher ages only.

In the fitting process of the models above the cohort effect was taken into account for al birth
years of the dataset. However, given the reasons mentioned in paragraph 5.2.3, for the remaining
of this chapter we will exclude the cohort effect for birth years later than 1945 in the fitting of
the model. In general thiswill reduce the quality of the fit somewhat, asis shown in table 5.2.

1> Note that alonger history is available. We used these historic periods (for the U.S. and E& W) to be able to
roughly compare results with Cairns et a (2007) and Cairns et al (2008).
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Table 5.2: results Bl C when excluding cohorts > 1945

Bl C mortality models * u.S. E&W NL
Plat -24.506 -18.151 -18.425
Plat (exluding cohorts > 1945) -32.392 -18.927 -18.378

* higher BIC is more favorable

The fitting results of the model are still good when excluding the cohort effect for birth years >
1945, certainly considering the fact that the BIC of the other models which include a cohort
effect (Renshaw-Haberman (2006), Currie (2006) and Cairns et a (2007)) would also be less
favorable when excluding these birth years'®.

Note that the proposed model nests the model of Currie (2006). For nested models, the use of a
likelihood ratio test is more appropriate than the use of the BIC measure. The likelihood ratio
(LR) test can be used to test the null hypothesis that the nested model (in this case, the Currie
(2006) model) is the correct model against the alternative that the more general model (the model
proposed in this chapter) is correct. The likelihood ratio test statistic is:

(514) xq=28(f)- L(F)2

where L(fA) is the log-likelihood of the general model and L () of the nested model.

Under the null hypothesis, X, r has a Chi-squared distribution with J degrees of freedom, J being
the additional parameters being estimated in the general model compared to the nested model.
Therefore, the null hypothesis can be rejected if:

(5.15) xz>cJ,

where a isthe significance level. Alternatively, the p-value can be determined for thistest:
=1- 2-1 é " - " U

(5.16) p=1- c: (ZéL(f) L(f )u)

The p-value is the probability of obtaining the observed value, assuming that the null hypothesis
istrue. If the p-valueis lower than a, the null hypothesisis rejected. Table 5.3 shows the results
of the likelihood ratio test for the three data sets.

16 An dlternative way of presentation could be to exclude the birth years > 1945 for all models that include the
cohort effect and compare the BIC on that basis. However, the other models are al fitted with the Lifemetrics tool
that includes all birth years.
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Table 5.3: LR test, null hypothesis Currie (2006) model against proposed model

Likelihood Ratio Degr ees of
test statistic freedom p-value
uU.S. 26.677 89 < 0,0001
E&W 4.023 89 < 0,0001
Holland 1.245 109 < 0,0001

The table shows that for each data set the null hypothesis is rejected overwhelmingly. Therefore,
the conclusion above (based on BIC results) that the model proposed in this chapter is preferable
to the nested Currie (2006) model is supported by the results from the likelihood ratio test.

5.4.3 Fitting the ARIMA processes— U.S. Males

In the remainder of this chapter, we will focus on the population of U.S. males'’. The next stepin
the process is selecting and fitting a suitable ARIMA-process to the time series of k*, k?, k® and
g« The fitted parameters k*, k? k* and g.. for U.S. males are given in figure 5.2. The figure
shows that the pattern of the important parameter k* is well-behaved. The patterns of the other
parameters all reveal some autoregressive behavior.

Since the factor k* drives a significant part of the uncertainty in mortality rates, its relatively
regular behavior (for this particular dataset) will also show in the projected uncertainty (in other
words, the confidence intervals will be relatively narrow).

Figure5.2: estimated values of k*, k? k*and g.,
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¥ To be able to compare simulation results with Cairns et al (2007), we can either use US males or E& W males. The
choice for U.S. malesis more or less arbitrary.
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Now for each of these time series all relevant ARIMA(p,d,q) processes for the range p, d, g =0,
1, 2, 3 arefitted and the most favorable process in terms of BIC is selected. The selected ARIMA
processes are:

- k% ARIMA(0,1,0)
- k? k*and g.x. ARIMA(1,0,0), no constant

It is commonly assumed (see Renshaw and Haberman (2006), CMI (2007) and Cairns et a
(2008b), that the process for g« is independent of the other processes, so the parameters of this
process can be fitted independently using Ordinary Least Squares (OLS). The other processes
can be fitted smultaneously using Seemingly Unrelated Regression (SUR, see Zellner (1963)).

Table 5.4 gives the fitted parameters, standard errors, t-ratios and BIC’s and table 5.5 shows the
fitted standard deviations (on the diagonal) and correlations.

Tableb. 4. fitted parameters for the processes Vi1 - Vi = g; and Vi1 = o Vi *

Fit results k! k? k3 Jix
g1 -0,0131
0,0022 -5,925
g» 0,9539 0,8440 0,9366
0,0495 19,280 0,0656 12,871 0,0361 25,941
BIC 120,83 267,65 229,21 163,55

* In each cell for ?, and ?,, top: fitted parameter, bottom left: standard error, bottom right: t-ratio

Table 5.5: fitted standard deviations (on the diagonal) and correlations

k* k2 k3 ex
k! 0,0150 0,2539 0,0274 0
k2 0,2539 0,0005 0,0144 0
k3 0,0274 0,0144 0,0012 0
Jtx 0 0 0 0,0175

5.5 Mortality projections — U.S. Males

Cairns et a (2008b) performed an extensive assessment of the out-of-sample performance of
several stochastic mortality models, focusing on England & Wales and U.S. Males between 60
and 90 years old. The main criteria used in this assessment were biological reasonableness and
robustness of the (stochastic) forecasts. Based on these criteria and specifically for these datasets,
they concluded that the models of Lee and Carter (1992), Renshaw and Haberman (2006) and
Cairns et a (2007, model M8) did not perform in a satisfactory way. Furthermore, they
concluded that the models of Currie (2006) and Cairns et a (2006, 2007 model M7) did produce
plausible results and seem robust.

This section shows the simulation results and results of robustness tests for the proposed
mortality model.
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5.5.1 Simulation results— U.S. Males

Using the fitted ARIMA processes and the fitted values for ax and g.x (see appendix 5a), future
mortality rate scenarios for U.S. males can be constructed using Monte Carlo simulation. Figure
5.3 shows simulation results for ages 25, 45, 65 and 84 for U.S. males'. The best estimate
projection is given and the 5% and 95% percentiles.

The results are biologically plausible. For higher ages, the widths of the confidence intervals are
broadly similar as the models of which Cairns et a (2008b) concluded that they produced
biologically plausible results. The results for younger ages (25 and 45) aso seem plausible,
where the observed historical variability is reflected in the confidence intervals.

Figure5.3: simulation resultsfor U.S. Males
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5.5.2 Robustness of simulation results

Some models suffer from a lack of robustness. For example, Cairns et al (2007, 2008b) find that
the Renshaw-Haberman model is not robust for changes in range of years. They link this to the
shape of the likelihood function. Robust models probably have a unique maximum that remains
broadly unchanged when the range of years or ages is changed. Models that lack robustness
possibly have more than one maximum, so when changing the range of years or ages the
optimizer can jJump from one local maximum to another, yielding different parameter estimates.

18 Simulation results for England & Wales and the Netherlands are given in appendix 5b.
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The model proposed in this chapter is tested for robustness using the same test asin Cairns et al
(2008b). This means that the simulation results above are compared with those of two
sensitivities. These sensitivities are:
1) Themodel isfitted only to historical datafrom 1981-2005 (instead of 1961-2005)
2) Themodel (5.7) isfitted to historical datafrom 1961-2005, but the stochastic models for
k', k% k® and g. are only fitted to arestricted set of parameter estimates (being only the
final 24 k"' sand the final 45 ¢4 5)

Of coursg, if thereis a change in trend or variability in the period 1981-2005 compared to 1961-
2005, it isinevitable, for all models, that the smulation results will be somewhat different.

The results are given in appendix 5¢c and are not significantly different as the results shown in
paragraph 5.5.1. The confidence intervals for age 25 are wider, due to the higher variability for
younger ages in the past 25 years. Conclusion is that the proposed model is robust for the
sensitivities given above.

Furthermore, a backtest is carried out, meaning that the model is fitted to historical data from
1961-1986 and the forecast results are compared with the actual observations for the period
1987-2005. Also for this backtest, the proposed model performs adequately (see the results in
appendix 5¢).

5.5.3 Comparison with other models

Paragraph 5.5.1 and 5.5.2 showed that the proposed model produces plausible results and seems
robust. Cairns et a (2008b) came to the same conclusion for the models of Currie (2006) and
Cairns et a (2006, 2007 model M7).

The models of Cairns et a (2006, 2007 model M7) are designed for higher ages, so will not
produce plausible results for lower ages. Compared to those models the proposed model has the
advantage that it does produce plausible results for afull age range.

Compared to the model of Currie (2006) the proposed model has the advantage that it has a non-
trivial correlation structure. This is important because often insurers and pension funds have
different type of exposures for younger or middle ages (term insurance, pre-retirement spouse
option) than for higher ages (pensions, annuities). Aggregating these different types of exposures
can only be done sufficiently if the model has a non-trivial correlation structure. Assuming an
almost perfect correlation between ages, as in the Currie (2006) model, will possibly lead to an
overstatement of the diversification benefits that arise when aggregating these exposures.

5.6 Risk neutral specification of the model

The model proposed in section 5.3 is set up in the so-called rea-world measure, suitable for
assessing risks for example in the context of Solvency 2. For pricing instruments of which the
payoff depends on future mortality rates, a risk adjusted pricing measure has to be defined. A
common approach is to specify a risk neutral measure Q that is a suitable basis for pricing, see
for example Milevsky and Promislow (2001), Dahl (2004), Schrager (2006), Cairns et a (2006a,
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2006b) and Biffis et a (2006). The risk neutral specification proposed below is in line with the
approach of Cairns et al (2006a).

Note that the market for longevity or mortality instrumentsis currently (very) far from complete.
Consequence of this is that the risk neutral measure Q is not unique. Given the absence of any
market price data, it seems wise to keep the specification of the risk neutral process relatively
simple. For the same reason, it is difficult to judge whether one risk neutral mortality model is
better than another.

5.6.1 Risk neutral dynamics

The stochastic process for the factors k*, k?, k® and g.« in the real world measure P can generally
be specified as:

(5.17) K, =Q(K.,.e.,)+SZ]

Where K; is the vector with factors k*, k?, k® and g., Q(K+.1, &.1) is the drift of the process, SS’
is the covariance matrix and Z© is a 4 x 1 vector with standard normal random variables under
measure P.

Now the proposed dynamics under the risk neutral measure Q are:

Kt :Q(Kt—l’et—l)-l-sgth - H

(5.18)
=Q(K,.,e.,)- SI +SZ2

where the vector | represents the “market price of risk” associated with the process K. Like
Cairns et al (2006a), we assume that the market price of risk is constant over time. When market
prices for longevity or mortality derivatives are available, the vector | should be calibrated in
such a way that the theoretical prices under the measure Q are approximately equal to market
prices.

5.6.2 Calibration of the market price of risk

Currently, there is no developed market for longevity derivatives. However, Loeys et a (2007)
have the opinion that g-forwards are most likely to become the basis of a longevity market.
Therefore, in this paragraph the risk neutral model (5.18) is calibrated to g-forward prices. Of
course, calibration to other instruments such as longevity bonds or survivor swaps, would aso be
possible.

A g-forward is a simple capital market instrument with similar characteristics as an interest rate
swap. The instrument exchanges arealized mortality rate in afuture period for a pre-agreed fixed
mortality rate. This is shown in figure 5.4. The pre-agreed fixed mortality rate is based on a
projection of mortality rates, coming from the Lifemetrics toolKkit.
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Figure5.4: working of a g-forward
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For example, when the realized mortality rate is lower than expected, the pension / annuity
insurer will receive a payment which (partly) compensates the increase of the expected value of
the insurance liabilities (caused by the decreasing mortality rates).

The basis for the instrument is the (projected) mortality of a country population, not the mortality
of a specific company or portfolio. This makes the product and the pricing very transparent
compared to traditional reinsurance.

Although there have been some transactions involving g-forwards, currently no market quotes
for g-forwards are publicly available. However, Loeys et a (2007) give an indication and
examples on how such an instrument would be priced in practice. In absence of real market data,
we calibrate the model to g-forward prices resulting from these examples.

Loeys et a (2007) give the following formula for setting the fixed g-forward rate:

(5.19) Grorward = (L —horizon* Sharperatio * Oyol) * Qexpected

where they have used 10 years for the horizon of the derivative, 25% for the Sharpe ratio and the
volatility gvo based on historical data. Table 5.6 shows the results for g-forwards with a horizon
of 10 and starting ages of 35, 45, 55 and 65, where Qepected IS based on model (5.7). Since in this
chapter the central mortality rate my; is modeled, the results are also trandated into these terms,
which makes the calibration easier.

Table 5.6: indication g-forward rate for horizon 10 and translation to m-forward

Agestart Ageend q vol Oexpected  Oforward  Mexpected M forward h
35 45 231% 0,306% 0,288% 0,307% 0,289% 0,060
45 55 153% 0,709% 0,682% 0,712% 0,685% 0,039
55 65 1,01% 1618% 1578% 1,632% 1,590% 0,026
65 75 1,47%  3542% 3,412% 3,606% 3,471% 0,038

Now interpreting Myrwara as the expectation under the risk neutral measure and Mexpected as the
expectation under real world measure leads to:

(5.20) E° (mw o ) =gE" (”km g )

where Xeng and teng are age and year at the end of the contract and g can be extracted from the
market (or in this case, from table 6). Taking logarithms leads to:
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(5:21) Inge®(m,, . )i=In[g] +IngE”(m,, )8

Because the only difference between the processes under Q and P is in the drift term, we can
assume that:

(522) Inge®(m, . )u- Inge”(m,, .. )u=E°(ingm_  §)- E"(ingm,, .. #)=In[g]

Now since this difference in the drift term is the matrix -Sl , for a horizon k the following holds:

k

(523 E°(Ingm_ . B)- E*(ngm,, .. B =- & ws

t=1

where W, is the matrix of weights that are used to translate the values for k*, k?, k* and g.x into
values for In(my;). Thisleadsto:

k
o)

(5.24) h=3 WSl

t=1

where h = -In[g], of which the values are given in the table above. From (5.24) the market prices
of risk can be solved:

Lk o1
525 =23 wWs2 h
gt:l (%]

Now we use this formula to calibrate the market prices of risk to the g-forwards specified above.
The weights matrices W, vary slightly for each year t depending on the devel opment of the age:

where c; = 0for t <5 and ¢; = 1 otherwise. Reason for this time dependence is that the simulated
cohort effect gradually comes into the projections for age 65. The right bottom item of W, is O
because for age 75 the cohort effect does not play arole within the horizon of 10 year for this age.

Applying formula (5.25) using (5.26), the results in table 5 and the vector h from table 5.6 leads
to the calibrated market prices of risk given in table 5.7.
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Table 5.7: market prices of risk

|
k? 1,2430
k 2 0,9793
k3 -0,5756
Jix -0,7338

When the market develops and a number of g-forward prices are available, the market prices of
risk can be calibrated by minimizing the squared errors between the theoretical prices and the
market prices:

R K ‘ .2
(527) | :Mingaﬁ -qwsl 2

i=1 t=1 (%]

where p isthe number of g-forwards the model is calibrated to.

5.7 Parameter Uncertainty

As mentioned in the criteria for stochastic mortality models in paragraph 5.2.1, the structure of
the model should make it possible to incorporate parameter uncertainty in simulations. There are
three possible approaches for including this parameter uncertainty:

1) Using aformal Bayesian framework, see Cairns (2000) and Cairns et al (2006a)

2) Simulate the parameter values using the estimates and the standard errors obtained in the
estimation process

3) Applying abootstrap procedure such as described in Brouhns et al (2005) and Renshaw
and Haberman (2008)

In a Bayesian framework a prior, possibly non-informative, distribution is assumed for the
parameters. Combining this prior distribution with the sample data and the assumed density
function of a particular stochastic process leads to a posterior distribution. This posterior
distribution can be used to assess the parameter uncertainty.

Approach 2) uses the standard errors of the fitted parameters to incorporate the parameter
uncertainty. When least squares or maximum likelihood estimation is used the estimators are
either normally or asymptotically normally distributed.

Approach 3) uses bootstrapping techniques, either applied to Dy (semi-parametric bootstrap) or
to theresiduals D, - D, (residual bootstrap),

While a formal Bayesian approach is more elegant than approach 2) and 3), it generally leads to
significantly more complexity. Market Chain Monte Carlo (MCMC) methods or importance
sampling might be necessary, because the posterior distribution often does not belong to a known
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class of probability density functions (see for example Kleibergen and Hoek (1996)). Since the
approaches should not lead to significantly different parameter uncertainty, it is questionable
whether it is worth increasing the complexity of the model significantly for dlightly more
elegance. Therefore, approach 1) does not have our preference.

By using approach 2), parameter uncertainty can be incorporated in the model proposed in this
chapter. For the stochastic processes of k*, k?, k® and g., the estimates and standard errors given
in table 4 can be used as the moments of the normal distributions of the parameters. For the
parameter estimates of the g.«'s (until birth year 1945) and the a,’ s the standard errors have to be
calculated separately. Starting point for this (see for example Verbeek (2008)) is the vector of
first derivatives of the log-likelihood function, the so-called score vector (f ):

) L) 3§
(5.28) s(f)=ﬂ;f( )=§“';ﬁ( )=§s1(f)

iy
[y

where f is the parameter set, Li(f) is de log-likelihood function for observation i and N is the
number of observations. Now the covariance matrix Vpar to be used can be estimated with:

N o1

_ o ~ "¢9
(529 V., _ggs(f )s(F) ;

The standard errors for the g.x's (until birth year 1945) and the a,’'s are the square roots of the
relevant diagonal elements.

Approach 2) is the most practical method. However, Renshaw and Haberman (2008) noted that
the confidence intervals for the Lee-Carter and Renshaw-Haberman models vary for different
versions of identifiability constraints when using this method. This phenomenon was not seen
when using approach 3). Although the question remains whether their conclusion still holds for
other models (such as the one proposed in this chapter) and different sort of constraints (such as
the ones used in this chapter and in Cairns et al (2007, model M6), approach 3) seems the most
appropriate method for addressing parameter uncertainty in the model proposed in this chapter.

5.8 Conclusions

All well known stochastic mortality models have nice features but also disadvantages. In this
chapter a stochastic mortality model is proposed that aims at combining the nice features from
existing models, while eliminating the disadvantages.

The chapter shows that the fit of the model to historical datais better than the well-known
mortality models. Also, the model has 4 stochastic factors, leading to a (desired) non-trivial (but
not too complex) correlation structure between ages. Due to a (Lee-Carter type) variable that
describes the shape of the mortality curve over ages and the inclusion of a separate stochastic
factor for young ages, the model is applicable to afull age range. Furthermore, the model
captures the cohort effect and has no robustness problems. The chapter also describes how to
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incorporate parameter uncertainty into the model.

In paragraph 5.2.1, a list of criteria for stochastic mortality models is given. Table 5.8 shows
whether the existing models and the proposed model meet those criteria. A large part of the table
isbased on Cairns et a (2007) and the conclusionsin Cairns et al (2008Db).

Table 5.8: comparison of stochastic mortality models — satisfaction of criteria *

Satisfaction of criteria mortality models Renshaw & Lee& Cairnsetal Cairnset al

Haber man Currie Carter (2006) (2007, M7) Plat
1) Positive mortality rates + + + + + +
2) Consistency historical data + + +/ - + + +
3) Long-term biological reasonableness + + + + + +
4) Robustness - + + + + +
5) Forecasts biological reasonable + + +/- + + +
6) Ease of implementation + + + + + +
7) Parsimony +/- +/- + + +/- +/-
8) Possibility generating sample paths + + + + + +
9) Allowance for parameter uncertainty + + + + + +
10) Incor poration cohort effects + + - + +
11) Non-trivial correlation structure +/- +/- + + +
12) Applicablefor full agerange +/- +/- +/- - - +

* +: meetscriterion, +/-: partly meets criterion, -: does not meet criterion

The table shows that, apart from partly meeting the parsimony criteria, the proposed model meets
all of the criteria. None of the existing models meet al of the criteria. Of the existing models, the
model of Currie (2006) is most close to meeting al criteria. However, the advantages of the
proposed model compared to the model of Currie (2006) are:

- Better fit to historical data

- Non-trivial correlation structure, which isimportant in solvency calculations

- Better applicable to afull age range, amongst others due to the inclusion of a separate

factor for younger ages

So by combining the nice features of the existing models, the proposed model has eliminated the
disadvantages of those models, and as a result the model meets all of the criteria set for
stochastic mortality models.

For pricing purposes, a risk neutral version of the model is given, that can be used for pricing.
Thismodel is calibrated to some indicative prices for longevity derivatives.
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Appendix 5a: U.S. Male - estimates for a, and g.

age ay age ay
20 -6,3983 53 -4,6403
21 -6,3328 54 -4,5587
22 -6,3382 55 -4,4660
23 -6,3483 56 -4,3843
24 -6,3826 57 -4,3008
25 -6,3812 58 -4,1935
26 -6,3777 59 -4,1249
27 -6,3645 60 -4,0197
28 -6,3301 61 -3,9471
29 -6,3426 62 -3,8376
30 -6,3080 63 -3,7746
31 -6,2548 64 -3,7040
32 -6,2078 65 -3,6100
33 -6,1571 66 -3,5483
34 -6,1303 67 -3,4648
35 -6,0643 68 -3,3801
36 -6,0026 69 -3,3068
37 -5,9383 70 -3,2088
38 -5,8493 71 -3,1444
39 -5,8183 72 -3,0406
40 -5,7386 73 -2,9656
41 -5,6532 74 -2,8864
42 -5,5658 75 -2,7994
43 -5,4921 76 -2,7193
44 -5,4221 77 -2,6375
45 -5,3288 78 -2,5568
46 -5,2423 79 -2,4671
47 -5,1539 80 -2,3649
48 -5,0575 81 -2,2824
49 -4,9965 82 -2,1863
50 -4,8950 83 -2,0906
51 -4,8109 84 -1,9992
52 -4,7155
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birth year Cix birth year Cix

1881 -0,1202 1914 0,0773
1882 -0,1103 1915 0,0708
1883 -0,1057 1916 0,0609
1884 -0,0940 1917 0,0544
1885 -0,0839 1918 0,0603
1886 -0,0743 1919 0,0340
1887 -0,0967 1920 0,0554
1888 -0,0553 1921 0,0366
1889 -0,0321 1922 0,0400
1890 -0,0370 1923 0,0313
1891 -0,0574 1924 0,0376
1892 -0,0361 1925 0,0402
1893 -0,0074 1926 0,0361
1894 -0,0067 1927 0,0297
1895 0,0075 1928 0,0203
1896 0,0329 1929 -0,0057
1897 0,0244 1930 -0,0050
1898 0,0321 1931 -0,0184
1899 0,0016 1932 -0,0152
1900 0,0576 1933 -0,0128
1901 0,0834 1934 -0,0360
1902 0,0396 1935 -0,0347
1903 0,0703 1936 -0,0477
1904 0,0711 1937 -0,0651
1905 0,0702 1938 -0,0717
1906 0,0690 1939 -0,0751
1907 0,0705 1940 -0,0709
1908 0,0809 1941 -0,0697
1909 0,0615 1942 -0,0914
1910 0,0749 1943 -0,0632
1911 0,0785 1944 -0,0831
1912 0,0655 1945 -0,0702
1913 0,0765




Appendix 5b: simulation results England & Wales and the
Netherlands

In this appendix the simulation results for England & Wales (E& W) and the Netherlands are
given. The best estimate projection is given and the 5% and 95% percentiles. Information about

the fitted parameters and underlying ARIMA processes is available upon request.

Figure5.5: simulation resultsfor England & Wales males
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Figure5.6: simulation results the Netherlands
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Appendix 5c: simulation results robustness tests

In this appendix the simulation results are given for the sensitivities that have been specified to

test the robustness of the model:
1) The model isfitted only to historical datafrom 1981-2005 (instead of 1961-2005)

2) Themodel (5.7) isfitted to historical datafrom 1961-2005, but the stochastic models for

k', k%, k® and g. are only fitted to arestricted set of parameter estimates (being only the

final 24 k"' sand the final 45 ¢.4'9)

Figure5.7: simulation results sensitivity 1
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Figure 5.8: simulation results sensitivity 2)

U.S. Male - age 25 U.S Male - age 45
0,25% 0.7%
0,20%
] 2
S [
£ 015% <
8 g
[ ()
o ©
S oao% [
|54 =
@ I
o o
0,05% Yvr—— =~ 1% est estimate
— = 5% / 95% percentile ) — =—5%/95% percentile
0,00% 0,0% ——
1961 1971 1981 1991 2001 2011 2021 2031 2041 2051 1961 1971 1981 1991 2001 2011 2021 2031 2041 2051
year year
U.S. Male - age 65 U.S. Male - age 84
45% 18,0%
4,0% 16.0%
3.5% 14,0%
o 8
T 30% S 120%
<
% 2,5% T 100%
O @
o S oaw
5 2% T
S 15% S 6%
3 o
1,0% 4,0%
oSt estimate —~ = Best estimate
0,5% { | = =59/ 959 percentile 2,0% 5% / 95% percentile
0,0% 00%
1961 1971 1981 1991 2001 2011 2021 2031 2041 2051 1961 1971 1981 1981 2001 201 2021 2031 2041 2051
year year
U.S. Male - age 25 U.S Male - age 45
025% 0.7%
0,6%
0.20%
o @
2 2 05%
£ 015% =
= = 04%
@ [
o °
T o10% T 0%
g g
o 8 02%
0,05% Best estimate Best estimate
— = 5%/ 95% percentile 0,1% {| == =5%/ 95% percentile
—*— Observations —#— Observations
0,00% 00%
1961 1971 1981 1901 2001 1961 1971 1981 1991 2001
year year
U.S. Male - age 65 U.S. Male - age 84
45% 18,0%
4,0% 16,0%
% 14,0%
o 3 o
T 0% S 120%
£ =
S 25% _—— e © 100%
g = - - g
° —
= 20% — == s 8,0%
= T 60%
S 1s% S
3 3]
1,0% | [———Best estimate Best estimate
— — 5%/ 95% percentile — —50%/95% percentile
0.5% 7| Observations —#— Observations
00%
1961 1971 1081 1991 2001 1961 1971 1981 1991 2001
year year

86



Chapter 6

Stochastic Portfolio Specific
Mortality and the Quantification of
Mortality Basis Risk*

* This chapter has appeared as:

PLAT, R. (2009): Stochastic Portfolio Specific Mortality and the Quantification of Mortality
Basis Risk, Insurance: Mathematics and Economics 45 (1), pp. 123-132

6.1 Introduction

As noted in chapter 5, there exists a vast literature on stochastic modeling of mortality rates.
Frequently used models are for example those of Lee and Carter (1992), Brouhns et a (2002),
Renshaw and Haberman (2006), Cairns et a (2006a), Currie et a (2004) and Currie (2006).
These models are generaly tested on a long history of mortality rates for large country
populations, such as the United Kingdom or the United States. However, the ultimate application
isto quantify the risks for specific insurance portfolios. And in practice there is often not enough
insurance portfolio specific mortality data to fit such stochastic mortality models reliably, since:
- The historical period for which observed mortality rates for the insurance portfolio are
available isusually limited, often in arange of only 5 to 15 years.
- The number of people in an insurance portfolio is much less than the country's
population.

Also, for insurers it is more relevant to model mortality rates measured in insured amounts
instead of measured by the number of people, because in the end the insured amounts have to be
paid by the insurer. Measuring mortality rates in insured amounts has two effects:
- Policyholders with higher insured amounts tend to have lower mortaity rates’®. So
measuring mortality rates in insured amounts will generally lead to lower mortality rates.

19 See for example CMI (2004).
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- The standard deviation of the observations will increase. For example, the risk of an
insurance portfolio with 100 males with average salaries will be lower then that of a
portfolio with 99 males with average salaries and 1 billionaire.

So fitting the before mentioned stochastic mortality models to the limited mortality data of
insurers, measured in insured amounts, will in many cases not lead to results that are sufficiently
reliable. In practice, this issue is often solved by applying a (deterministic) portfolio experience
factor to projected (stochastic) mortality rates of the whole country population. However, it is
reasonabl e to assume that this portfolio experience factor is a stochastic variable.

In this chapter a stochastic model is proposed for portfolio specific mortality experience. This
stochastic process can be combined with the stochastic country population mortality process,
leading to stochastic portfolio specific mortality rates. The proposed model is, amongst others,
based on historical mortality rates measured in insured amounts, but can also be used when only
historical mortality rates measured in number of policies are available.

The model can be used to quantify portfolio specific mortality or longevity risks for the purpose
of determining the Vaue at Risk (VaR) or SCR, which could also be the basis for the
guantification of the Market Vaue Margin. Also, it gives more insight into the basis risk when
hedging portfolio mortality or longevity risks with hedge instruments of which the payoff
depends on country population mortality. The market for mortality or longevity derivatives is
emerging (see Loeys et a (2007)) and one of the characteristics of these derivatives is that the
payoff depends on country population mortality. While this certainly has advantages regarding
transparency and market efficiency, the impact of the basis risk is unclear. This basis risk is the
result of differences between country population mortality and portfolio specific mortality, which
is exactly what the proposed model is able to quantify.

Measurement of (portfolio specific) mortality rates in insured amounts has already been used for
a long time, starting with CMI (1962) and more recently for example in Verbond van
Verzekeraars™ (2008) and CMI (2008). In these papers portfolio experience factors, measured in
amounts, are determined based on portfolio data that is collected from a representative part of the
insurance market. The results of this are frequently used by the market participants as part of an
estimate of future mortality rates. Furthermore, Brouhns et al (2002) also determine deterministic
portfolio experience factors for the Belgian annuity policyholders, based on 3 years of historical
data.

The literature on stochastic modeling of portfolio specific experience and mortality basis risk is
less devel oped, possibly because of alack of historical insurance portfolio data. Van Broekhoven
(2002) determines a Market Value Margin for portfolio specific mortality risk. However, the
model is not set up to be easily combined with existing country population models and the
structure of the model over agesis very restrictive. Since the pattern of the portfolio experience
factor over ages can vary for different portfolios, there has to be enough flexibility in the
assumed structure over ages.

A related paper is the one of Jarner and Kryger (2009) who set up a model for mortality in small
(country) populations, using the concept of frailty. The model seems to be too complex though to

2 Dutch Association of Insurers
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be calibrated to the limited data of insurance portfolios. Sweeting (2007) focuses in a more
qualitative way on basis risk in survivor swaps. More generally, Dahl and Mgller (2006) look at
hedge strategies for mortality risk in life insurance liabilities.

So the model proposed in this chapter is the first stochastic model for portfolio specific mortality
that:
- can be combined easily with any stochastic country mortality process
- hasenough flexibility in the assumed structure over ages
- has astructure that is simple enough to be able to calibrate it to limited historical data of
life insurance portfolios

The remainder of the chapter is organized as follows. First, in Section 6.2 the general model for
stochastic portfolio specific experience mortality is defined. In Section 6.3 a 1-factor version of
this model is applied to two insurance portfolios. Then in Section 6.4 and 6.5 the impact on the
VaR and on the hedge effectivenessis quantified. Section 6.6 gives conclusions.

6.2 General model for stochastic portfolio specific mortality
experience

The first step in stochastic modeling of portfolio specific mortality rates is determining the
historical portfolio mortality rates, measured by insured amounts. There are different kinds of
definitions for mortality rates which are calculated in a dightly different manner (see Coughlan
et al (2007)), for example the initial mortality rate or the central mortality rate. Regardless which
definition is used, it is important that the same mortality rate definition is used for setting the
country population mortality rates and the portfolio specific mortality rates. In the remaining part
of this chapter, we use the following definition for the initial mortality rate (see for example
Namboodiri and Suchindran (1987):

DX
6.1 aq,,-= 1 L
E(NP +N>L<J,t +Dx,t)

x,t

where Dy is the number of deaths and Nx'f . and Ngt are the primo and ultimo total populations.
The related portfolio mortality rate, measured by insured amounts, is:

62 o=
E(Ait + Atlt + A<D,t)

where A}, and A}, are the insured amounts primo and ultimo for the total portfolio and A, the
insured amount of the deaths, for age x and year t.
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Now the aim is to define a stochastic mortality model for the so-called portfolio experience
mortality factor Py for age x and year t:

A
63 P =

xt = Pop
X,t

where qXFf‘fp is the specific country population mortality rate for age x and year t, determined

using (6.1). So Px; represents the relation between a portfolio specific mortality rate (measured
by insured amounts) and a country population mortality rate. Multiplying stochastic country
mortality rates with stochastic Px:'s will give stochastic portfolio specific mortality rates. In this
context a portfolio is seen as a group of homogenous risks, or a product group. Py is specific for
each product group, it behaves differently for annuities than it does for term insurance. For
reasons of convenience, the product specific nature is left out of the notation in the remaining of
the chapter, but the reader should be aware that all of the following is product (group) specific.

6.2.1 The basic model

Given that the model will often be based on a limited amount of data, it is desirable that the
model for Py is as parsimonious as possible. Furthermore, the conjecture is that the difference
between portfolio mortality and country population mortality is expected to be less at the highest
ages, since the remaining country population at the highest ages is expected to have a relatively
high percentage of people that are insured and have relatively high salaries. This is corroborated
by the results in CMI (2004), where the difference between portfolio mortality and country
population mortality is decreasing with age. Therefore, the proposed model leads to an
expectation of Py; that approaches 1 for the highest ages.

Given the above, we propose to model the mortality experience factor Py as:

(6.4) P, =1+ X' (b} +x,,

i=1

where n is the number of factors of the model, X ' (x) is the element for age x in the i™ column of
design matrix X, b; is the i"" element of a vector with factors for year t and x,, the error term.
Another way to define the model isin matrix notation:

(6.5 P =1+Xb, +Xx,

where P; is the vector of mortality experience factors, b; the vector with factors and x; the vector
of error termsfor time t. Furthermore, to ensure that Py approaches 1, we require:

(66 & X/ =0

where w is the closing age of the mortality table (usually 120).
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Now given a design matrix X, the vector b has to be estimated for each year. The structure of X
(and the corresponding b’s) can be set in different ways, depending on what fits best with the
data and the problem at hand. One could use for example:

a) principal components analysisto derive the preferred shape of the columns X'

b) a similar structure as the multi-factor model proposed by Nelson and Siegel (1987) for
modeling of yield curve dynamics.

c) amore simple structure, for example using 1 factor where the vector X isalinear function

in age.

a) Principal Components Analysis (PCA)

Principal components analysis is a statistical technique that linearly transforms an original set of
variables into a substantially smaller set of uncorrelated variables that represents most of the
information in the original set of variables. Its goal isto reduce the dimensionality of the original
data set.

The (m x k) matrix P contains historical observations of Py; for m years and k ages. Instead of
assessing the Px; process for each age individually, the goal of PCA is to derive r linear
combinations (where r < k) that capture most of the information in the original variables:

Zl :V11P + V21P2 toot Vlef(
V,

1

Z :VlrF;.+V2rP2 +"'+VHR<

where P; is the vector of observations for age classj.
Or, in matrix notation:
(6.8) Z=PV

It can be shown (see for example Jolliffe (1986)) that the difference between the original data set
and the set of linear combinations can be minimized by taking the eigenvectors of the covariance
matrix Sp+ of the de-meaned historical observation matrix P* as the columns of matrix V. The
corresponding eigenvalues | j indicate the proportion of variance that each eigenvector (principal
component) accounts for. By ordering the eigenvaluesin suchaway that | 13 1,3 ... 3 | (3 O,
the dimensionality of the problem can be reduced by selecting the r eigenvalues (and the
corresponding eigenvectors) that explain most of the variance of the origina data set. The
selected eigenvectors can be used as the columns X' in (6.4).

b) Smilar structure as Nelson and Segel (1987)

Nelson and Siegel (1987) developed a parsimonious multi-factor model for yield curves that has
the ability to represent shapes generally associated with yield curves. They model the
instantaneous forward curve as:
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6.9 f(t)=b, +b,e'"t +b,l e

where the parameters by, b, bz and | ; have to be estimated from the observed yield curves. In
practicel ; is often fixed at a pre-specified value, simplifying the estimation procedure.

We are interested in the curve of Py over the ages. As mentioned above, the observed shapes of
this curve are often upward (and sometimes downward) sloping towards 1 for higher ages. So
although much more erratic, these historical shapes roughly resemble possible shapes (not levels)
of yield curves. Therefore a structure similar as (6.9) could be used for modeling the Py¢'s. An
example of apossible 2-factor structureis given in appendix 6a.

c) A more simple structure

An aternative for structure @) and b) is a more simple structure, for example one where it is
assumed that Py is linear in age for each t. It depends on the size of the insurance portfolio and
the historical period whether structure a) leads to usable results and structure b) leads to a better
fit to the data than this simple structure. For very large portfolios, structure @) and b) could be the
most appropriate solutions. However, for the insurance portfolios considered in this chapter, with
14 years of history and respectively about 100.000 policies and about 45.000 policies, principle
components analysis did not lead to usable results, and structure b) did not fit the data better than
asimple linear structure (see section 6.3).

6.2.2 Fitting the basic model

The structure of the model is such that it could be fitted with Ordinary Least Squares (OLS).
However, the observations Py are al based on different exposures to death and observed deaths,
so there is generaly significant heteroscedasticity. Therefore Generalized Least Squares (GLS)
should be used (Verbeek (2008)). When applying GLS in case of heteroscedasticity, each
observation is weighted by (a factor proportional to) the inverse of the error standard deviation.
Fitting this transformed model with OLS gives the GLS estimator, which accounts for the
heteroscedasticity in the data.

When the available data are a cross-section of group averages with different group sizes and the
observations are homoscedastic at individual level, the variance of the error term of the group
averagesisinversely related to the number of observations per group. In that case the square root
of the number of observations in the group can be used as weights (Verbeek (2008)). For the
problem in this chapter this means that the square root of the number of deaths can be used as
weights. So using a diagona weight matrix W; with these weights and applying it to (6.5) leads
to a transformed model:

(6.10) W, (R - 1)=WXb, +Wx, or (P-1) =X'b, +x/

t

Where the vectors or matrices labeled with an * are weighted with W;.. Now applying OLS to
(6.10) givesthe GLS estimator for by:
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This procedure can be repeated for each historical observation year, leading to a time series of
vector Bt.

6.2.3 Adding stochastic behavior

Now using the time series of the fitted bys, a Box-Jenkins analysis can be performed to
determine which stochastic process fits the historical data best®*. However, an important
requirement in this case is biological reasonableness. For example, when assuming a non-
stationary process such as a Random Walk for the by’s, in certain scenarios the Py ‘s could be O
for all ages for some time, which is not biologically reasonable. Since the difference between
country population mortality and portfolio mortality is dependent on factors that in our
experience are normally relatively stable (size, composition and relative welfare of the portfolio),
it does not seem reasonable to assume that this difference can increase without limit. Therefore, a
stationary process seems the most appropriate in this case. Given the often limited historical
period of observations and the requirement of parsimoniousness, in most cases the most
appropriate model will then be a set of correlated first order autoregressive (AR(1)) processes or
equivaently, arestricted first order Vector Autoregressive (VAR) model:

(612) b =d +Qpb,, +e,

where Q; isan x n diagonal matrix, d isan-dimensional vector and & is a n-dimensional vector
of white noise processes with covariance matrix S.

Possible alternatives are an unrestricted VAR(1) model or afirst order (restricted) Vector Moving
Average (VMA) model. In some cases an even simpler process than (6.12) is possible, being the
so-called ARIMA(0,0,0)%* process:

(6.13) b, =d +e,

Model (6.12) and (6.13) can be fitted using OLS equation by equation. From the residuals e of
the n equations the elements (i,j) of S can be estimated as.

(6.14) s =

where K is the maximum number of parameters used in either equationsi or j (that is 2 when
both processes are AR(1) processes).

2 Thisis possible under the assumption that the historical fitted parameters are certain. Another possible approach
would be to fit the parameters and the stochastic process at once, for example using a state space method combined
with the Kalman filtering technique.

% Note that various names are used for this processin literature. Since the name ARIMA(0,0,0) seems to be the
most widely used, we have adopted this name in this chapter.
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An aternative is to estimate this simultaneously with the stochastic processes of the country
population mortality model, which is the subject of the next paragraph.

When the insurance portfolio has developed significantly over the years, the fitted parameters
over time are subject to heteroscedasticity. In this case GLS could be used, using either the
results from table 6.5 in appendix 6b or the square root of the number of deaths (see paragraph
6.2.2) as weights. When the portfolio has grown significantly and the current size of the portfolio
is believed to be more representative for the future, the relative weights can also be applied to the
residuals, weighting the earlier residuals less than the more recent ones.

6.2.4 Combine the process with the stochastic country population model

To end up with a stochastic process for portfolio specific mortality rates, the correlation between
country population mortality rates and the portfolio mortality experience factors has to be taken
into account. Therefore, the processes of the drivers of these have to be estimated simultaneously.
Let us assume that the country population mortality is driven by mfactors of which the processes
a; can be written as:

(6.15) a/=X2h2 +e&  k=1..,m

Now when the historical observation period is equal for the country mortality rates and the
portfolio mortality experience factors, Seemingly Unrelated Regression (SUR, see Zellner (1963))
can be applied to fit all processes simultaneously. The processes do not have to be similar, so
AR(1), Random Walk or other ARIMA models can be combined.

Re-writing (6.12) for each element i in amore general form as b = X”h” +e” and combining
all processes gives:

éb't  éx> 0 OU&’U ée U
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which can be written more compactly as.
(6.17) Y =X*h*® +e*®
Now these processes can be fitted with SUR using the following steps:

1) Fit equation by equation using OLS
2) Usetheresidualsto estimate the total covariance matrix W with (6.14)
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3) Estimate h using GLS

To be more specific, the resulting estimator in step 3) is determined as:
N -1 R
6.18) K = xa'bdwlxa'b) (xa'bﬂwlv)

As mentioned earlier, in most cases the historical data period for portfolio mortality will be
shorter than of country population mortality. In this case an aternative is only to do steps 1) and
2). In step 1) al available historical observations can be used for the different processes. In step
2) for the country population mortality the same historical data period should be used as is
available for the portfolio mortality.

6.3 Application to example insurance portfolios

As mentioned in section 6.2, Px; is specific for each product group or portfolio of homogeneous
risks. In this section the general model described in section 6.2 is applied to two insurance
portfolios?®. The portfolios are respectively large and medium sized, and only data for males
from age 65 on is taken into account. The large portfolio is a collection of collective pension
portfolios of the Dutch insurers and contains about 100.000 male policyholders aged 65 or older.
The medium portfolio is an annuity portfolio with about 45.000 male policyholders aged 65 or
older. Note that this medium portfolio has developed significantly over time, so had fewer
policyholdersin earlier years. For both portfolios 14 years of historical mortality datais available.

Due to the relatively short historical period an the erratic pattern over the ages of the observed
Pxt's, principal components analysis does not give usable or interpretable results for these
portfolios. To be specific, the resulting shapes of the columns X' are very erratic and do not have
aclear interpretation (such as for example level, slope or curvature).

For both portfolios, we examined a collection of 1-, 2-, and 3-factor models and concluded that
the 2- and 3- factor models did not fit the data much better than a 1-factor model®. Since the 1-
factor model uses fewer parameters, the Bayesian Information Criterion (BIC)® is more
favourable for this structure. Therefore, the model we use is model (6.4) withn =1 and:

x-d
w-d

(6.19) X'(x)=1- d£xXEw

where d is the start age (in this case 65) and w is the end age (120). So in this formulation of
model (6.4), the vector X isalinear function in age and, as required, X*(w) = 0.

% The author thanks the Centrum voor Verzekeringsstatistiek (CV'S) and Erik Tornij for the data of the large
portfolio, and Femke Nawijn and Christel Donkers for the data of the medium portfolio.

# The fitting results for the 2-factor and 3-factor models are available upon request.

% B|Cisacriterion that provides a trade-off between goodness-of-fit and the parsimony of the model.
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The reason why the 1-factor model fits the data as well as 2- or 3-factor models is that the data
shows an upward slope for increasing ages, but the pattern along the ages is very volatile. For
example, figure 6.1 shows two fits for the years 2006 and 2000. Fitting a more complex model
through this data will not reduce the residuals significantly. Of course, this observation depends
on the characteristics of the specific portfolio to which the model is fitted. For larger portfolios a
2- or 3-factor could give better results, since such amodel is able to capture more shapes of the
portfolio experience mortality factor curve.

Figure 6.1: example fit of model to actual observations for years 2006 and 2000

150%

125% 4

100%

portfolio experience factor

50%

25%

150%
125%
100%
’_’/ .
75%‘7___________-_-_——-——---—-—-—-—-—-—-—-———-—-—-—- el
50%
25%
—fit actual —fit actual
% +——r—————r—r—"——"—"+—"""—"—T T T % +—————F—+—"—""—+—""—""—"T """
65 70 75 80 85 90 95 65 70 75 80 85 90 95

age

The model is fitted using the procedure described in paragraph 6.2.2, where we have used the
square root of the number of deaths as weights. The fitted b’s are shown in figure 6.2%°. Further
results are given in table 6.5 in appendix 6b.

Figure 6.2: fitted b’sfor historical years 1993-2007
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% Note that although we have 14 years of data for both portfolios, the periods are slightly different, having data from
1993-2006 for the large portfolio and from 1994-2007 for the medium portfolio.
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For both portfolios the results show an autoregressive pattern for the b’s. Now a stochastic
process for the future b’s has to be selected. As mentioned in paragraph 6.2.3, a stationary
process will be most appropriate. Also, since the historical data period is limited, the model
should be as parsimonious as possible. We have fitted an AR(1), AR(2) and ARIMA(0,0,0)
process to the data shown in figure 2. For both portfolios the ARIMA(0,0,0) process led to a more
favorable BIC compared to the other processes.

Because of the significant development of the medium sized portfolio over the historical years,
GLS is used for fitting the ARIMA(0,0,0) process. The square roots of the relative number of
deaths in a year are used as weights. Relative means relative to the average number of deaths.
These weights are also applied to the residuals, giving less weight to years where the portfolio
was relatively small. Since the large portfolio was relatively stable over time, OLS is used for
fitting the ARIMA(0,0,0) process for this portfolio.

The fitted processes for the portfolios are:

(6.20) Large portfolio: b, =- 0,2497 +e,, s =0,0625
(6.21) Medium portfolio: b,=- 03798+¢, s =0,1130

The estimated error standard deviation s is significantly larger for the medium sized portfolio,
which ismainly the result of having fewer policyholders. The result of thisis shown in figure 6.3,
where the best estimates and the 99,5% / 0,5% percentiles are given for the portfolio experience
mortality factors in the year 2016%’. These specific percentiles are shown because the SCR of
Solvency 2 is based on a99,5% percentile.

Figure 6.3: best estimates and 99,5% / 0,5% percentilesfor both portfolios - 2016
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The figure shows that for the large portfolio the difference between the best estimate and the
percentile(s) is in the range 10-15 %-point for ages 65-80. So taking this stochastic behaviour of
the portfolio experience mortality factor into account can have a reasonable impact on for

% Since a stationary process is assumed, the figure will be similar for other projection years.
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example the Value at Risk. As expected, the impact is larger for the medium portfolio, where the
difference between the best estimate and the percentile(s) is almost 30 %-point at its maximum.

6.4 Numerical example 1: Value at Risk

An important application of the presented model is the quantification of the Value at Risk (VaR)
or SCR for longevity or mortality risk. In this paragraph the VaR is determined for the two
portfolios, for different definitions / horizons of the VaR. First the model has to be combined
with amodel for country population mortality risk.

6.4.1 Stochastic country population mortality model
For the stochastic country population model we use the model of Cairns et a (2006a):

(6.22) logit gfy? =k; +kZ(x- X)

Where X is the mean age in the sample range and k" and k? the two (stochastic) factors. We

fitted this model to data of the Dutch population for the years 1950 — 2007. Using the resulting
time series of parameter estimates, a 2-dimensional random walk process is fitted for the factors.
The fitted parameters and the covariance matrices, including the covariances with the portfolio
experience mortality process of both portfolios, are given in appendix 6b.

Now combining the stochastic process above and the process described in section 6.3 leads to
stochastic portfolio specific mortality rates. Figure 6.4 gives the best estimate mortality rates and
percentiles for age 65. The percentiles are based on respectively deterministic and stochastic
let, S.

Figure 6.4: best estimates and percentiles, with stochastic or deterministic Py
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The figure shows that the additional risk of including stochastic Px:’sis highest at the start of the
projection and decreases slowly in time. The reason for this is that the country population
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mortality rate risk is gradually increasing over time, resulting in a higher diversification effect
between country population mortality rates and the Py’ s over time.

The percentiles for the medium portfolio seem quite dramatic. However, note that the shown
percentiles are aresult of picking the particular percentile every year, and not picking 1 scenario
that represents the x%-percentile for the whole projection. Because of the assumed ARIMA(0,0,0)
process the extremely low outliers will normally be (partially) compensated somewhere in time
by high outliers. Thisis shown in figure 6.5, where two random (simulated) scenarios of the b’s
are given as an example.

Figure 6.5: two random (simulated) scenarios for b - medium portfolio
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6.4.2 Impact on Value at Risk

Now using the described stochastic processes the impact on the VaR of stochastic (instead of
deterministic) Px¢'s is determined for both portfolios. The (present) value of liabilities is
caculated for all simulated mortality rate scenarios”®. The VaR is then defined as the difference
between the x%-percentile and the average value of the liabilities. The impact is determined for
three different definitions / horizons, which are al being used in practice:

1) 1-year horizon, 99,5% percentile, including effect on best estimate after 1 year

2) 10-year horizon, 95% percentile, including effect on best estimate after 10 years

3) Run-off of the liabilities, 90% percentile

So for definitions 1) and 2), at the 1-year or 10-year horizon all parameters are re-estimated
using the (ssmulated) observations in the first 1 or 10 years, for each smulated scenario. The
impact of the new parameterization on the best estimate of liabilities (for each scenario) is taken
into account in the VaR. The results for the large and medium portfolio are given in respectively
table 6.1 and table 6.2.

% For convenience we assumed that the portfolios only contain pension or annuity payments, so no spouse pension
or annuities on a second life.
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Table 6.1: impact of stochastic P,; on VaR —large portfolio (in millions of Euros)
VAR definition | Deterministic P Stochastic P % difference

1-year, 99,5% 126,4 138,2 +9,3%
10-year, 95% 182,3 194,3 +6,6%
Run off, 90% 136,5 145,9 + 6,8%

Table 6.2: impact of stochastic P,; on VaR —medium portfolio (in millions of Euros)
VAR definition | Deterministic P Stochastic P % difference

1-year, 99,5% 45,1 73,0 +61,8%
10-year, 95% 69,2 95,1 + 37,4%
Run off, 90% 54,1 75,1 + 38,8%

Table 6.1 shows that for the large portfolio stochastic Px.' s lead to a VaR that is about 7%-9%
higher compared to the VaR calculated with deterministic Py’ s. Table 6.2 shows that the impact
for the medium portfolio is very high. The increase in VaR is between 37% and 68%, depending
on the definition for VaR used. The reason for this is the large increase in volatility due to the
addition of the stochastic Pyx;'s, which is mainly related to the size of the portfolio. Since alarge
part of the insurance portfolios in practice are of this size or smaller, this should be a point of
attention when developing or reviewing internal models for mortality and longevity.

6.5 Numerical example 2: hedge effectiveness / basis risk

Because of the increasing external requirements and focus on risk measurement and risk
management, the interest in hedging mortality or longevity risk isalso increasing. A result of this
isthat a market for mortality and longevity derivativesis emerging (see Loeys et a (2007)). One
of the main characteristics of these derivatives is that the payoff depends on country population
mortality. While this certainly has advantages regarding transparency and market efficiency, the
impact of the basis risk is unclear. Basis risk is the risk arising from a difference between the
underlying of the derivative and the actual risk in the liability portfolio. The model presented in
this chapter can be used to quantify this basis risk. In the example below the basis risk will be
quantified for the two portfolios, where the longevity risk is (partly) hedged with the so-called g-
forwards.

A g-forward is a simple capital market instrument with similar characteristics as an interest rate
swap. The instrument exchanges a realized mortality rate in afuture period for a pre-agreed fixed
mortality rate. This is shown in figure 6.6. The pre-agreed fixed mortality rate is based on a
projection of mortality rates, using a freely available and well documented projection tool .

% For more information, see http://www.jpmorgan.com/pages/jpmorgan/investbk/sol utions/lifemetrics
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Figure 6.6: mechanics of a g-forward
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For example, when the realized mortality rate is lower than expected, the pension / annuity
insurer will receive a payment which (partly) compensates for the increase of the expected value
of the insurance liabilities (caused by the decreasing mortality rates).

The basis for the instrument is the (projected) mortality of a country population, not the mortality
of a specific company or portfolio. This makes the product and the pricing very transparent
compared to traditional reinsurance.

For both insurance portfolios we determined a minimum variance hedge, based on deterministic
Px¢'s. The hedge is determined for a horizon of 10 years, but including the effect on the best
estimate after 10 years (conform definition 2 of VaR in paragraph 6.4.2). The hedge is
determined for age-buckets of 5 years. For every bucket i, the impact of small shocks of the two
factors of the country population model on the value of the liabilities and the value of an

appropriate g-forward contract are calculated. The required nomina a for the g-forward of
bucket i isthen determined as:

*_llh.l+|2hZ
6.23) g =
R T

where |; and h; are the impact of the shock of the i factor on respectively the liabilities (I) and
the hedge instrument (h). This expression is obtained by solving the required nominal from the
equation that results when minimising the variance of the hedge resuilt.

The resulting hedge portfolio consists of 5 g-forwards for age-buckets of 5, from age 65 until age
89. The payoff of such a g-forward depends on the average mortality rate for the 5 ages in the
bucket. The exact composition of both the hedge portfoliosis given in appendix 6c¢.

Tables 6.3 and 6.4 show the impact on the hedge effectiveness when the Py;'s are assumed to
follow the stochastic process described in section 6.3.

Table 6.3: impact of stochastic P,; on hedge effectiveness — large portfolio
VAR unhedged VAR hedged % reduction

Deterministic P 182,3 64,0 64,9%
Stochastic P 194,3 81,9 57,8%
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Table 6.4: impact of stochastic P,; on hedge effectiveness — medium portfolio
VAR unhedged VAR hedged % reduction

Deterministic P, 69,2 23,6 65,8%
Stochastic P 95,1 47,9 49,7%

The tables show that given deterministic Py's, the hedge reduces the VaR with about 65%. The
risk is not fully hedged, because the hedge is based on small shocks of the two country
population factors, while the factors in the tails of the distributions (which are relevant for VaR)
are often more extreme.

For the large portfolio, table 6.3 shows that the hedge quality is decreasing, but is still reasonable.
The basis risk for this portfolio is therefore limited. The reason for this is that on a longer
horizon the impact of stochastic Py’ s levels out because of the assumed autoregressive process.

For the medium portfolio the hedge effectiveness is reduced to a larger extent. The effectiveness
of the hedge can be improved by periodically adjusting the hedge portfolio. For smaller
portfolios than this, it is probably questionable whether it is sensible to set up such hedge
constructions.

6.6 Conclusions

In this chapter a stochastic model is proposed for stochastic portfolio experience. Adding this
stochastic process to a stochastic country population mortality model |eads to stochastic portfolio
specific mortality rates, measured in insured amounts. The proposed stochastic processis applied
to two insurance portfolios. The results show that the uncertainty for the portfolio experience
factor Py; can be significant, mostly depending on the size of the portfolio.

The impact of the VaR for longevity risk is quantified. Depending on the definition used, the
VaR increases by about 7%-9% for the large portfolio. The impact for the medium portfolio is
very high, with an increase in VaR of 37%-68%. The reason for this is the high increase in
volatility due to the addition of the stochastic Py;'s. Since alarge part of the insurance portfolios
in practice are of this size or smaller, this should be a point of attention when developing or
reviewing internal models for mortality and longevity.

Furthermore, the basis risk is quantified when hedging portfolio specific mortality risk with g-
forwards, of which the payoff depends on country population mortality rates. For the large
portfolio the hedge quality is decreasing, but is still reasonable. The reason for this is that on a
longer horizon the impact of stochastic Px¢'s levels out because of the assumed autoregressive
process. For the medium portfolio hedge effectiveness is reduced to a larger extent. For smaller
portfolios than this, it is probably questionable whether it is sensible to set up such hedge
constructions.
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Appendix 6a: example 2-factor model based on Nelson & Siegel

Nelson and Siegel (1987) proposed a parsimonious model for yield curves, which alows for
different shapes of the curve. The Nelson-Siegel forward curve can be viewed as a constant plus
a Laguerre function, which is a polynomia times an exponential decay term. It has three
elements, respectively for the short, medium and long term. The model is very often used for
yield curves and could serve as a basis for thinking for the P; curves that are the subject of this
chapter. However, the Nelson-Siegel curve cannot directly be used for the P; curves because Py
should approach 1 near the closing age. Also, another requirement mentioned in section 6.2 is
that the model is as parsimonious as possible, so a 2-factor model might be more appropriate in
most cases.

Many variations on the Nelson-Siegel curve are possible. An example of such a model is the
following model:

(624) R(t)=1+b,e" +b,w (e -e'*)

. & & -t U0
wherew, =) ca g&—"f
éln Ug

The variable t is 0 for the starting age of the data (in this case 65 years), t , is a strategically set
middle point of the age interval (in this case 20, representing age 85), j is the density of a
standard normal distributed variable, a is avariable that arranges the shape of w; and can be set
at 2 for example, and f isascale variable. The variable | ; can be solved in such away that the
second term of (6.24) approaches O for the closing age. The variable | , can be solved in such a
way that the third term of (6.24) is at its maximum somewhere betweent = 0 and t,, (in this case
75 years). The factors are shown in figure 6.7, where x; represents the second term and x, the
third term of (6.24).

As can be seen from the figure and (6.24), the curve starts at age 65 at 1 + by; (where by will be
negative in general) and ends at 1 at higher ages. With the model (6.24) different shapes of the
curve can be fitted, and the requirements in section 6.2 are met. A disadvantage of the model is
the large number of parameters, of which some are set more or less arbitrarily.
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Figure6.7: factorsfor model (A.1)
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Appendix 6b: further results

Table 6.5: yearly fitting resultsfor b’s

Results large portfolio
Year b S.e. t-ratio
1993 -0,239 0,036 -6,55
1994 -0,149 0,041 -3,67
1995 -0,194 0,030 -6,55
1996 -0,246 0,033 -7,43
1997 -0,228 0,032 -7,20
1998 -0,368 0,023 -16,12
1999 -0,208 0,036 5,77
2000 -0,261 0,029 -8,91
2001 -0,304 0,032 -9,46
2002 -0,226 0,033 -6,88
2003 -0,168 0,046 -3,62
2004 -0,321 0,048 6,71
2005 -0,259 0,042 -6,11
2006 -0,325 0,040 -8,18
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medium sized

Results medium portfolio

Year b S.e. t-ratio
1994 -0,333 0,103 -3,23
1995 0,127 0,201 0,63

1996 -0,243 0,127 -1,92
1997 -0,467 0,091 -5,14
1998 -0,330 0,056 -5,92
1999 -0,143 0,065 2,21
2000 -0,427 0,057 -7,56
2001 -0,349 0,089 -3,94
2002 -0,331 0,052 -6,32
2003 -0,408 0,050 8,11
2004 -0,515 0,035 -14,77
2005 -0,462 0,047 9,81
2006 -0,434 0,046 9,52
2007 -0,355 0,079 -4,52




Table 6.6 shows the fitted parameters for the 2-dimensional random walk model of section 6.4,
and the covariance matrix including the covariances with the process of section 6.3. Note that the
country population parameter estimates dlightly differ for the large and medium portfolio,
because for the medium portfolio the year 2007 is also taken into account.

Table 6.6: fit of country population model and covariance matrices

Fit - large portfolio

Fit - medium portfolio

04 S 04 S
k[ -0,006206  0,0312395 k[ -0,006722  0,022663
k?| 0000182  0,00140485 k?| 0000175  0,001436

Covariance matrix - large portfolio Covariance matrix - large portfolio
b k' k? b k' k?
b| 0,003911 0,000445 0,000041 b| 0,013808 0,002174 0,000053
k? 0,000445 0,000976 0,000022 k! 0,002174 0,000514 0,000020
k? 0,000041 0,000022 0,000002 k? 0,000053 0,000020 0,000002

Appendix 6¢: hedge portfolios

Table 6.7: hedge portfolios for large and medium insurance portfolio

Characteristics hedge portfolio - large portfolio Characteristics hedge portfolio - medium portfolio
g-forward Start age End age Nominal Tick Size g-forward Start age End age Nominal Tick Size
1 65 69 117.865.528 100 1 65 69 74.346.033 100
2 70 74 34.221.141 100 2 70 74 24.226.106 100
3 75 79 10.420.145 100 3 75 79 3.203.979 100
4 80 84 2.213.481 100 4 80 84 143.135 100
5 85 89 315.640 100 5 85 89 8.224 100
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Chapter 7

Micro-Level Stochastic Loss
Reserving*

* This chapter is based on:

ANTONIO, K. AND R. PLAT (2010): Micro-Level Stochastic Loss Reserving, Working Paper

7.1 Introduction

In this chapter a micro-level stochastic model for the run-off of general insurance® claims is
developed. Figure 7.1 illustrates the run-off (or development) process of a general insurance
claim. It shows that a claim occurs at a certain point in time (t;), consequently it is declared to
the insurer (t;) (possibly after a period of delay) and one or several payments follow until the
settlement (or closing) of the claim. Depending on the nature of the business and the claim, the
claim can re-open and payments can follow until the claim finally settles.

Figure 7.1: run-off process of an individual general insurance claim

Occurence L oss payments Re-opening Closure
Notification Closure payment
t, b ta ot s tg t, tg tq
|
IBNR *
RBNS

% General insurance is also often referred to as ‘Non-Life’ or ‘ Property and Casualty’ insurance.
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At the present moment (say t) the insurer needs to put reserves aside to fulfill itsliabilities in the
future. This actuarial exercise will be denoted as ‘loss’ or ‘claims reserving'. Insurers,
shareholders, regulators and tax authorities are interested in a rigorous picture of the distribution
of future payments corresponding with the open (i.e. not settled) claims in a loss reserving
exercise. General insurers distinguish between RBNS and IBNR reserves. ‘RBNS' clams are
claims that are Reported to the insurer But Not Settled, whereas ‘IBNR’ claims Incurred But are
Not Reported to the company. For an RBNS claim occurrence and declaration take place before
the present moment and settlement occurs afterwards (i.e. t 3 t;andt <tg (ort <tg) infigure7.1).
An IBNR claim has occurred before the present moment, but its declaration and settlement
follow afterwards (i.e. t T [ty,ty) in figure 7.1). The interval [t, t;] represents the so-called
reporting delay. The interval [ty, te] (or [t2, tg]) is often referred to as the settlement delay. Data
bases within general insurers typically contain detailed information about the run-off process of
historical and current claims. The structure in figure 7.1 is generic for the kind of information
that is available. In the remaining of this chapter we will use the label ‘micro-level’ data to
denote this sort of data structures.

The measurement of future cash flows and its uncertainty becomes more and more important.
That also gives rise to the question whether the currently used techniques can be improved. In
this chapter we will address that question for general insurance. Currently reserving for general
insurance is based on aggregated data in run-off triangles. In a run-off triangle observable
variables are summarized per arrival year and development year combination. An arrival year is
the year in which the claim occurred, while the development year refers to the delay in payment
relative to the origin year. Examples of run-off triangles are given in section 7.6.

There exists a vast literature about techniques for claims reserving, largely designed for
application to loss triangles. An overview of these techniques is given in England and Verral
(2002), Wiithrich and Merz (2008) or Kaas et a (2008). These techniques can be applied to run-
off triangles containing either paid losses or incurred losses (i.e. the sum of paid losses and case
reserves). The most popular approach is the Chain Ladder approach, largely because of is
practicality. However, the use of aggregated data in combination with (stochastic variants of) the
Chain Ladder approach (or similar techniques) gives rise to several issues. A whole literature on
itself has evolved to solve these issues, which are (in random order):

1) Different results between projections based on paid losses or incurred losses, addressed
by Quarg and Mack (2008), Posthuma et a (2008) and Halliwell (2009).

2) Lack of robustness and the treatment of outliers, see Verdonck et a (2009).

3) The existence of the Chain Ladder bias, see Halliwell (2007) and Taylor (2003).

4) Instability in ultimate claims for recent arrival years, see Bornhuetter and Ferguson
(1972).

5) Modeling negative or zero cells in a stochastic setting, see Kunkler (2004).

6) Theinclusion of calendar year effects, see Verbeek (1972) and Zehnwirth (1994).

7) The possibly different treatment of small and large claims, see Alai and Wthrich (2009).

8) The need for including atail factor, see for example Mack (1999).

9) Over parametrization of the Chain Ladder method, see Wright (1990) and Renshaw
(1994).

107



10) Separate assessment of IBNR and RBNS claims, see Schieper (1991) and Liu and Verrall
(2009).

11) The realism of the Poisson distribution underlying the Chain Ladder method.

12) Not using lots of useful information about the individual claims data, as noted by
England and Verral (2002) and Taylor and Campbell (2002).

Most references above present useful additions to the Chain Ladder method, but these additions
cannot all be applied simultaneously. More importantly, the existence of these issues and the
substantial literature about it indicate that the use of aggregate data in combination with
(stochastic variants of) the Chain Ladder approach (or similar techniques) is not fully adequate
for capturing the complexities of stochastic reserving for general insurance.

England and Verral (2002) and Taylor and Campbell (2002) questioned the use of aggregate
loss data when the underlying extensive micro-level data base is available as well. With
aggregate data, lots of useful information about the claims data remains unused. Covariate
information from policy, policy holder or the past development process cannot be used in the
traditional stochastic model, since each cell of the run-off triangle is an aggregate figure. Quoting
England and Verrall (2002, page 507) “[...] it hasto be borne in mind that traditional techniques
wer e devel oped before the advent of desktop computers, using methods which could be evaluated
using pencil and paper. With the continuing increase in computer power, it has to be questioned
whether it would not be better to examine individual claims rather than use aggregate data”.

As aresult of the observations mentioned above, a small stream of literature has emerged about
stochastic loss reserving on an individual claim level. Arjas (1989), Norberg (1993) and Norberg
(1999) formulated a mathematical framework for the development of individual claims. Using
ideas from martingale theory and point processes, these authors present a probabilistic, rather
than statistical, framework for individual claims reserving. Haastrup and Arjas (1996) continue
the work by Norberg and present a first detailed implementation of a micro-level stochastic
model for loss reserving. They use non-parametric Bayesian statistics which may complicate the
accessibility of the paper. Furthermore, the case study is based on a small data set with fixed
claim amounts. Recently, Larsen (2007) revisited the work of Norberg, Haastrup and Arjas with
asmall case-study. However, detailed information about his modeling choices is not available in
the paper. Zhao et a (2009) and Zhao and Zhou (2009) present a model for individua claims
development using (semi-parametric) techniques from survival analysis and copula methods.
However, a case study is lacking in their work.

In this chapter a micro-level stochastic model is used to quantify the reserve and its uncertainty
for arealistic general liability insurance portfolio. Stochastic processes for the occurrence times,
the reporting delay, the development process and the payments are fitted to the historical
individual data of the portfolio and used for projection of future claims and its (estimation and
process) uncertainty. Both the Incurred But Not Reported (IBNR) reserve as well as the Reported
But Not Settled (RBNS) reserve are quantified and the results are compared with those of
traditional actuarial techniques.

We investigate whether the quality of reserves and their uncertainty can be improved by using
more detailed claims data in this way. A micro-level approach allows much closer modeling of
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the claims process. Lots of issues mentioned above will not exist when using a micro-level
approach, because of the availability of lots of data and the potential flexibility in modeling the
future claims process. For example, covariate information (deductibles, policy limits, calendar
year) can be included in the projection of the cash flows when claims are modeled at an
individual level. The use of lots of (individual) data avoids robustness problems and over
parametrization. Also the problems with negative or zero cells and setting the tail factor are
circumvented, and small and large clams can be handled simultaneously. Furthermore,
individual claim modeling can provide a natural solution for the dilemma within the traditional
literature whether to use triangles with paid claims or incurred claims. This dilemmais important
because practicing actuaries put high value to their companies expert opinion which is
expressed by setting an initial case reserve. Using micro-level datawe use theinitial case reserve
as a covariate in the projection process of future cash flows.

The remainder of the chapter is organized as follows. First, the dataset is introduced in section
7.2. In section 7.3 the statistical model is described. Results from estimating all components of
the model are in section 7.4. Section 7.5 presents the prediction routine and section 7.6 shows
results and a comparison with traditional actuarial technigques. Section 7.7 gives conclusions.

7.2 Data

The data set used in this chapter contains information about a general liability insurance portfolio
(for private individuals) of a European insurance company. The data available consists of the
exposure per month from January 2000 till August 2009, as well as a claim file that provides a
record of each claim filed with the insurer from January 1997 till August 2009. Note that we are
missing exposure information for the period January 1997 till December 1999, but the impact of
this lack on our reserve calculations will be very small.

Exposure The exposure is not the number of policies, but the “earned” exposure. That implies

that 2 policies which are both only insured for half of the period are counted as 1. Figure 7.2
shows the exposure per month. Note that the downward spikes correspond to the month February.
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Figure 7.2: exposure per month from January 2009 till August 2009
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Random development processes The claim file consists of 1.525.376 records corresponding
with 491.912 claims. Figure 7.3 shows the development of 3 claims, taken at random from our
data set. It shows the timing of events as well as the cost of the corresponding payments (if any).
These are indicated as jumps in the figure. Starting point of the development process is the
accident date. This is indicated with a sub-title in each of the plots and corresponds with the
point x = 0. The x—axis is in months since the accident date. The y—axis represents the cumulative
amount paid for the claim.

Figure 7.3: development of 3 claims from the data set

Development of claim 327002 Development of claim 331481 Development of claim 34127

2000
N
1500

2000
!

1500
!

1500
1
1000
!

1000
!
1000
1

500
L
500
L
5
1

0 2 4 6 8 0 2 4 6 8 10 12 0 2 4 6

time since origin of claim (in months) time since origin of claim (in months) time since origin of claim (in months)
Acc. Date 15/03/2006 Acc. Date 24/04/2006 Acc. Date 02104/1998

Type and number of claims In this genera liability portfolio, there are 2 types of claims:
material damage (‘material’) and bodily injury (‘injury’). Figure 7.4 shows the number of open
and closed claims per arrival year, and whether they are closed or still open.
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Figure 7.4: number of open and closed claims, material and injury
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The development pattern and loss distributions of those claim types are usualy very different. In
practice they are therefore treated separately in separate run-off triangles. Following this
approach we will treat them separately too.

Reporting and Settlement delay Important drivers of the IBNR and RBNS reserves are the
reporting delays and settlement delays. Figure 7.5 and 7.6 show the reporting delays and
settlement delays separately for material and injury losses. The reporting delay is the time that
passes between the occurrence date of the accident and the date it was reported to the insurance
company. It is measured in month since the occurrence of the claim. The settlement delay is the
time elapsed between the reporting data of the claim and the date of final settlement by the
company. It is measured in months and only available for closed claims.
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Figure 7.5: histogram of reporting delay for material claims and injury claims
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Figure 7.6: histogram of settlement delay for material claims and injury claims
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The figures above show that the observed reporting delays are of similar length for material and
injury losses. However, the settlement delay is very different. The settlement delay is far more
skewed to the right for the injury claims than for the material claims.

Eventsin the development The settlement delay is the result of the development process of the
claim. During the development process, different types of events are possible. In this chapter we
will distinguish three types of events that can occur during the development of aclaim. “Type 1”
events imply settlement of the claim without payment. With a “type 2" event we will refer to a
payment with settlement at the same time. Intermediate payments (without settlement) are “type
3’ events.
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Figure 7.7 gives the relative frequency of the different types of events over development quarters.
With micro-level data the first development quarter is the period of 3 months following the
reporting of the claim, the second quarter the period of 3 months following the first devel opment
quarter, et cetera

Figure 7.7: number of each event type as percentage of total number of events
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The figure shows that the proportions of each event type are stable over the development
quarters for injury claims. For material claims, the proportion of event type 2 decreases for later
development quarters, while the proportion of event type 3 increases.

Payments Events of type 2 and type 3 come with a payment. The distribution of these
payments differs materially for the different type of claims. Figure 7.8 shows the distribution of
the log payments, separate for material and injury claims. The payments are discounted to 1-1-
1997 with the Dutch consumer price inflation, to exclude the impact of inflation on the
distribution of the payments.
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Figure 7.8: distribution of payments for material claimsand injury claims
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The figures above suggest that a lognormal distribution would probably be reasonable for
describing the distribution of the payments. Thiswill be discussed further in section 7.4.
Table 7.1 gives characteristics of the observed (discounted) payments for both materia and

injury losses.

Table 7.1: characteristics observed payments

Measure Material Injury
Mean 277 1.395
Median 129 361
Minimum 0,0008 0,4875
Maximum 198.931 779.398
1% perc. 12 16
5% perc. 25 25
25% perc. 69 89
75% perc. 334 967
95% perc. 890 4.927
99% perc. 1.768 16.664

Initial case estimates Asnoted in section 7.1, often the problem arises that the projection based
on paid losses is far different than the projection based on incurred losses. This problem is
addressed recently by Quarg and Mack (2008), Posthuma et a (2008) and Halliwell (2009), who
simultaneously model paid and incurred losses. Disadvantage of those methods is that models
based on incurred losses can be instable because the methods for setting the case reserves are
sometimes changed (for example, as a result of adequacy test results or profit policy of the
company). Reserving models that are directly based on these case reserves (as part of the
incurred losses) can therefore be instable. However, the case reserves can have added value as an
explaining variable when projecting future payments. We have defined different categories of
initial case reserves (separately for material claims and injury claims) that can be used as

114



explaining variables. Table 7.2 and 7.3 shows the number of claims, the average settlement delay
(in months) and the average cumulative payment for these categories.

Table 7.2: output for initial reserve categories, material claims

Initial case average average cum.
reserve # claims settl. delay payments
=10.000 465.015 1,87 252

> 10.000 385 10,88 7.950

Table 7.3: output for

initial reserve categories, injury claims

Initial case average average cum.
reserve # claims settl. delay payments
=1.000 3.709 9,87 2.570
(1.000 - 15.000] 5.165 15,17 3.872

> 15.000 360 35,20 33.840

The tables clearly show the differences in settlement delay and cumulative payments for the
different initial reserve categories. Therefore, it might be worthwhile to include these categories
as explaining variables into the projection routine.

7.3 The statistical model

By aclam i is understood a combination of an occurrence time T;, a reporting delay U; and a
development process X;. Hereby X; is short for (Ei(v), Pi(V)li (ovi)- Ei(vi) := Ej is the type of the
jth event in the development of claim i. This event occurs at time v;j, expressed in months after
notification of the claim. V; is the total waiting time from notification to settlement for clam i. If
the event includes a payment, the corresponding severity is given by Pi(v;j) :=Pj. The different
types of events are specified in section 7.2. The development process X; is a jump process. It is
modeled here with two separate building blocks: the timing and type of events and their
corresponding severities. The complete description of aclaimis given by:

(7.1) (Ti, Ui, Xi) with X = (Ei(V), Pi(V))VT [O.Vi]

Assume that outstanding liabilities are to be predicted at calendar time t. We distinguish IBNR,
RBNS and settled claims.

ForanIBNRclam: T+ Ui>t and T <t

For an RBNS claim: T; + U; £ t and the development of the claim is censored at (t - T; —
Ui), i.e onIy (Ei(V), Pi(V))vT [0t - Ti - Ui] IS observed.

For asettled claim: T; + U; £t and (Ei(v), Pi(v))vi [o,vi] IS Observed.

7.3.1 Position Dependent Marked Poisson Process

Following the approach in Haastrup and Arjas (1996) and Norberg (1993) we treat the claims
process as a Position Dependent Marked Poisson Process (PDMPP), see Karr (1991). In this
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application, a point is an occurrence time and the associated mark is the combined reporting
delay and development of the claim. We denote the intensity measure of this Poisson Process
with | and the associated mark distribution with (Pz)z0. In the claims development framework
the distribution Pz is given by the distribution Py of the reporting delay, given occurrence time
t, and the distribution Py, of the development, given occurrence time t and reporting delay u.
The complete development process then is a Poisson Process on claim space

? =[0,¥) x[0,¥) x ¢ with intensity measure:

(7.2) 1 (dt)” R (du)” By, (dx) with (tux)T ?

tu
The reported claims (which are not necessarily settled) belong to the set:
2'={ tux) 1 ?| ttuft}
whereas the IBNR claims belong to:
2'={ (tux)T 2| tEt, t+u>t}

Since both sets are digoint, both processes are independent (see Karr (1991)). The process of
reported claimsis a Poisson Process with measure

I (dt), I:EJ|t (dU)' PXILU (dX)' ]'[(t,u,x)T c']
which equals

. Ry (du)l g ) .
RJ|t (t - t)
(b)

(7.3) 1 (R - Dlory)
(a)

I:)X It,u (dX)
(¢

Part (a) is the occurrence measure. The mark of this claim is composed by a reporting delay,
given the occurrence time (its conditiona distribution is given by (b)) and the conditional
distribution (c) of the development, given the occurrence time and reporting delay.

Similarly, the process of IBNR claims is a Poisson process with measure:

R, (d
(7.4) | (dt)(l- Rt - t)Jmo,t])' % Peeu (AX)
@ N ©

(b)
where similar components can be indentified asin (7.3).

7.3.2 The Likelihood

The approach followed in this chapter is parametric. Therefore, we will optimize the likelihood
expression for observed data over the unknown parameters used in this expression.
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The observed part of the claims process consists of the development up to time t of claims
reported before t. We denote these observed claims as follows:

(.0, x°)

i31

where the development of claim i iscensored t - T.° - U° time units after notification.

The likelihood of the observed claim development process can be written as (see Cook and
Lawless (2007)):

(75) L (obs) u O () Rt - I“)gexp?f t(‘j/\/(t)l OR,( - et
1 e o ]

s I:z”t(duio) 9 A pt-T°-u?
Or, ) Q" (@)

The superscript t - T- U? in the last term of this likelihood indicates the censoring of the

development of this claimt - T.° - U time units after notification. The function w(t) gives the
exposure at timet.

For the reporting delay and the development process we will use techniques from survival
analysis. The reporting delay is a one-time single type event that can be modeled using standard
distributions from survival analysis. For the development process the statistical framework of
recurrent events will be used. Cook and Lawless (2007) provide a recent overview of statistical
techniques for the analysis of recurrent events. These techniques primarily address the modeling
of an event intensity (or hazard rate).

As mentioned in (7.1) for each clam i its development process consists of X = (Ei(v),
Pi(V)vi ovi- Hereby Ei(vij) := Ej isthe type of the jth event in development of claim i, occurring
at time v V; is the total waiting time from notification to settlement for claim i. If the event
includes a payment, the corresponding severity is given by Pi(v;) := P;j. To model the occurrence
of the different events a hazard rate is specified for each type. The hazard rates hs, hsyp and hy
correspond to respectively type 1 (settlement without payment), type 2 (settlement with a
payment at the same time) and type 3 (payment without settlement) events.

Events of type 2 and 3 come with a payment. We denote the density of a severity payment with
Pp. Using this notation the likelihood of the development process of claimi is given by:

(76) O () W) h‘;“(\/u))gexpg () + iy () + W) du20) (V)
a 0 [

ej=t
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Here dijx is an indicator variable that is 1 if the jth event in the development of claim i is of type k.
Ni is the total number of events, registered in the observation period for claim i. This observation
period is[0,tj] witht; = min(t - T, — U;, V).

Combining (7.5) and (7.6) givesthe likelihood for the observed data:

Ry (du?) ©
(7.7)  L(obs) p | (T°)R, (t - T° _exp M (R, (t - t)dt_ o o
8i3l ( ) l( ) QON | ﬂ§'31PLJ|t( T')B
B0 (v’ h )’ h“(v”))-expgdhse(u)+mep(u)+h(u»du—
|3lejl
& O P,(avii)

if1 j=1

7.3.3 Distributional assumptions

In this paragraph we discuss the likelihood (7.7) in more detail. Distribution assumptions for the
various building blocks, being the reporting delay, the occurrence times — given the reporting
delay — and the development process, are presented. At each stage it is possible to include
covariate information such as the initial case reserve categories. Our final choices and estimation
results will be covered in section 7.4.

Reporting delay The notification of a claim is a one-time single type event that can be modeled
using standard distributions from survival analysis (such as the Exponential, Weibull or
Gompertz distribution). Figure 7.5 indicates that for a large part of the claims the claim will be
reported in the first few days after the occurrence. Therefore we will use a mixture of one of the
above mentioned distributions with one or more degenerate distributions for notification during
the first few days. For example, for a mixture of a survival distribution fy with n degenerate
components the density is given by:

'Y & ¥ 0
(7.8) a pkl{k}(u) + 8 a b= U|U>n-1(u)
k=0 k=0 @
where ;4 = 1 for the kth day after occurrence timet and l;iq = O otherwise.

Occurrence process When optimizing the likelihood for the occurrence process the reporting
delay distribution and its parameters (as obtained in the previous step) are used. The likelihood

79 L w O ()R, (1-T7)erg oN(t)l OB, - et
2

i’1

needs to be optimized over | (t). A piecewise constant specification is used for this occurrence
rate:
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il 0£t<d,

i
Tl d £t<d

(7.10) 1 (t) = | 2 LB
i :

. d.,£t<d,

where the intervals are chosen in such away that t T [din1,0m) and the exposure w(t) := w; for di.1

£t<d.

Let the indicator variable dy(I,t;)) be 1 if d.1 £ tj < dj, with t; the occurrence time of claimi. The
number of clamsininterval [d.1,d) can be expressed as:

(7.1) N.()=ad(t)

The likelihood corresponding to the occurrence timesis given by:

(712) | | M=) Joe@ | NP (¢ - 1)

i3l

o2 “ o = R °
expg L OR - t)dtiexpé' LW, QR - Dt
0 [} dy a
® A 0
. expe- I W, QR - t)dt+
g O o

Optimizing this expression over | | (with| = 1,...,m) leads to:

(7.13) I, = No (1)

g
W QR - t)at

dl-l

Development process Similar distributions as given for the reporting delay can be used for
each type of event in the development process. Another aternative is a piecewise constant
specification of the hazard rates. Thisimplies:

for OEt<a

fora £t<a, 3
. =O s,
: = =)

' hse,sep,p},l
i Neosp. 2
(7.14) hespp® =1~
i ; :
ih{se,sep,p},q fOf aq1£t<aq
where dy(I,t) is1if a.1£ t < @ and 0 otherwise. This piecewise specification can be integrated in

a straightforward way in likelihood specification (7.6) and (7.7), athough the resulting
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expression is complex in notation. The optimization of the likelihood expression can be done
analytically or numerically. It might be worthwhile to fit the distribution separately for ‘first
events and ‘later events' . Thiswill be investigated in section 7.4.

Payments Event type 2 and type 3 come with a payment. Section 7.2 showed that the observed
distribution of the payments has similarities with a lognormal distribution, but there might be
more flexible distributions that fit the historical payment data better. Therefore, next to the
lognormal distribution, we experimented as well with a generalized beta of the second kind
(GB2), Burr and Gamma distribution. Also covariate information such as the initial reserve
category and the development year can be taken into account.

7.4 Estimation results

In this paragraph the results of the calibration of the model to the historical data are given.

Given the very different characteristics of material clams and injury clams, the processes
described in section 7.3 are fitted (and projected) separately for those types of claims. Thisisin
line with actuarial practice, where usually separate run-off triangles are constructed for material
and injury claims. Optimization of all likelihood specifications was done with the Proc NLMixed
routinein SAS.

Reporting delay In paragraph 7.3.3 we specified the possible models for the reporting delay. In
this chapter we will use a mixture of a Weibull distribution and 9 degenerate distributions. Figure
7.9 shows the fit of this mixture with the observed reporting delays.

Figure 7.9: estimate of reporting delay
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Occurrence process  Given the above specified distribution for the reporting delay, the
likelihood (7.12) for the occurrence times can be optimized®.. Monthly intervals are used for this,

3 Thisis done numerically with Proc NLMixed instead of using (3.13), in order to obtain the standard errors of the
parameter estimates. These standard errors will also be used in the prediction process.
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ranging from January 2000 till August 2009. The estimated | /'s (black line) and their 95%
confidence intervals (grey area) are given in figure 7.10.

Figure 7.10: estimate lambda’s and their uncertainty
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Development process For the different event types in the devel opment process delay the use of
constant, Weibull and piecewise constant hazard rates are investigated. In the piecewise constant
hazard rate specification for the development of the materia claims, the hazard rate is assumed
to be continuous on four month intervals: [0 — 4) months, [4 — 8) months, [8 — 12) months and 3
12 months. For injury claims, the hazard rate is assumed continuous on intervals of six months:
[0 —6) months, [6 — 12) months, ..., [36 —42) months and 3 42 months.

Figure 7.11 shows the estimates for the Weibull and piecewise constant hazard rates. All models
are estimated separately for ‘first events’ and ‘later events'.
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Figure 7.11: estimates for Weibull and piecewise constant hazard rates
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The piecewise constant specification reflects the actual data. The figure shows that the Weibull
distribution is reasonably close to the piecewise constant specification. In the rest of this chapter
we will use the piecewise constant specification. Because the Weibull distribution is a good
aternative, we explain how to use both specificationsin the prediction routine (see section 7.5).

Payments Several distributions have been fitted to the historical payments (that are discounted
to 1-1-1997 with Dutch price inflation). We examined the fit of the Burr, Gamma and L ognormal
distribution, combined with covariate information. Distributions for the payments are truncated
at the coverage limit of € 2,5 million per clam. A comparison based on Bayes Information
Criterium (BIC) showed that the lognormal distribution achieves a better fit than the Burr and
Gamma distributions. When including the initial reserve category as covariate or both the initia
reserve category and the development year, the fit further improves. Given these results, the
lognormal distribution with the initial reserve category and the development year as covariates
will be used in the prediction. The covariate information is included in both the mean m and
standard deviation s; of the lognormal distribution for observation i as follows:

(715) m = éém,leYi:sliTr
(716) Sy = éésr,leYi:sliTr
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where r is the initia reserve category and DY; is the development year. lpyi=s and ljj . are
indicator variables denoting whether observation i corresponds with development year s and
reserve category r.

Figure 7.12 shows the corresponding qg-plots.

Figure 7.12: normal qg-plotsfor fit of log(payments)
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The figures show that the fit to the data is good. Note that the fit in the left tail seems to be less
good, but thisis corresponding to payments of about O (so not important in this case).

7.5 Predicting future cash flows

To predict the outstanding liabilities with respect to this portfolio of liability claims, we
distinguish between IBNR and RBNS claims. The following step by step approach alows to
obtain random draws from the distribution of both IBNR and RBNS claims.

7.5.1 Predicting IBNR claims

As noted in section 7.3, an IBNR claim occurred aready but is not reported to the insurer.
Therefore, T; + U; > t where T; is the occurrence time of the claim and U; is its reporting delay.
The T;'s are missing data: they are determined in the development process but unknown to the

actuary at timet.
The prediction process for the IBNR claims requires the following steps:
a) Simulatethe number of IBNR claimsin [O,t] and their occurrence times

According to the discussion in section 7.3 the IBNR claims are governed by a Poisson process
with non-homogeneous intensity or occurrence rate:
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(7.17) wO)l ()1~ Ry ( - 1)

were | (t) is piecewise constant according to specification (7.10). The following property follows
from the definition of non-homogeneous Poisson processes:

N 2
(7.18) Nigye(l) ~ Pmssong W QW= Ryt - )dtx
d.q %]

were Nigng(l) is the number of IBNR claims in time interval [d.1,d). Note that the integral
expression has aready been evaluated (numerically) in the fitting procedure.

Given the simulated number of IBNR claims nigng(l) for each interval [di1,d), the occurrence
times of the claims are uniformly distributed in [d.1,d)).

b) Simulate thereporting delay for each IBNR claim
Given the ssimulated occurrence time t; of an IBRN claim, its reporting delay is simulated by
inverting the distribution:

Pt - t <U £u)
1- PU £t - t)

(719) P(U£ulU >t -t)=

In case of our assumed mixture of a Weibull distribution and 9 degenerate distributions this
expression has to be evaluated numerically.

c) Smulate theinitial reserve category

For each IBNR claim an initial reserve category has to be ssmulated for use in the devel opment
and payment process. Given minitial reserve categories, the probability density for initial reserve
category cis:

i P forc=12,.m-1
(7.20) f(c)= 1 'S

R —

Py forc=m

—_—

k=1

The probabilities used in (7.20) are the empirically observed percentages of policies in a
particular initial reserve category.

d) Simulate the payment processfor each IBNR claim
This step is common with the procedure for RBNS claims and will be explained in the next

paragraph.

7.5.2 Predicting RBNS claims

Given the RBNS claims and the simulated IBNR claims, the process proceeds as below. Note
that we use the piecewise hazard specification for the development process. As an alternative for
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the analytical specifications given below, numerical routines could be used. Using the alternative
Weibull specification would require numerical operations as well.

€) Simulate the next event’s exact time

In case of RBNS claims, the time of censoring ¢; of clam i is known. For IBNR claims this
censoring time ¢ = 0. The next event at time Vi nexx Can take place at any time Vipex > Ci. TO
simulate its exact time we need to invert (with p randomly drawn from a Uniform(0,1)
distribution):

(721) PV <V IV >5) = P(ﬁ ;\(/v££vgn§d) =P

From the relation between a hazard rate and the cdf, we know:

(7.22) P(VEV, ) = 1- expgwgé he(t)dtg
o € )

withel {se sep, p}. For instance with a Weibull specification for the hazard rates this equation
will be inverted numerically. With a piecewise constant specification for the hazard rates
numerical routines can be used. Alternatively analytical expressions can be derived. In that case,
step (e) should then be replaced by (el) — (€2):

el) Simulate the next event’stimeinterval

In case of RBNS claims, the time of censoring ¢; of claim i belongs to a certain interval
[a.1, &). The next event — at time V; et > G — can take place in any interval from [a.1, &)
on. The probability that v; e belongsto acertain interval [a,.1, &) is given by:

1 —Fi(_q;(\\,/;jk)) if ¢1[3..a)
(7.23) P(a_,EV<a)={ '

T I:)(akl<v <ak) if C'l' [ )

T 1_ P(V £C|) i ak-l’ak

Using the notation introduced above the involved probabilities can be expressed as (for
instance):
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P(q <V <a,) _ PV <a)- P(V <q)
1- P(V£c) 1- P(V£Ec)

T % n et I n gk
1- exp%-Oahe(t)dti;-1+exp%-cﬁhe(t)dti;

(7.24) =

—
exp} -An (t)dty
T oe b

where 38 h! (Ddt=3 & hi[(a - a.)d,(1,2)+(z- 3.,)d,(1,2)] for z=¢,a,

e I=1

withel {sesep,p} andf1 {‘first event’, ‘later events'}.

In case of IBNR claims, there is no censoring so the probability that v; nex: belongsto a
certaininterval [a.1, &) simplifiesto:

(7.25) P(a,EV <a) =expi - Q&N (t)dtg- expi- oA h (t)dt%
0o € 0o e

€2) Simulate the exact time of the next event
Given the timeinterval of the next event, [a.1, &), its exact timeis simulated by inverting
the following equation for Vi nex:

726 PV <V lG <V<a)=p ifcl [a.,a)

"7 PV <V la., <V <a)=p otherwise
where p is randomly drawn from a Uniform(0,1) distribution. For example, for P(V<
Vi next|ak-1EV<ay) this inverting operation goes as follows:

P(V <V,0) = P P(@,, <V <8) + P(V <3,,) P
1-expl- QA N (Oth = p Pla,, <V <a)+ PV <a, ) b
T o e b

k-1
- Iog[p P(ak_1<V <ak) + P(V <ak-1)] =aa he: (a1 - a|1) ta hefk(vi,naq - akl) P
e I=1 e
k-1

-log[p P(a_,<V<a)+PV<a )]-aah@-a.)
Vinext: —1+ [] =
(7.27) e = & 3h,

f) Smulate the event type
Given the exact time of the next event, itstype is simulated using the following argument:
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P(VEV <v+DvCE=¢)/Dv_ h(v)
P(VEV <v+Dv)/Dv. § h(V)

(7.28) limP(E=e|VEV <v+Dv)=
Dv® 0

whereel {se, sep, p}.

g) Simulate the corresponding payment

Given the covariate information for claim i, the payment can be drawn from the appropriate
lognormal distribution. Note that the cumulative payment cannot exceed the coverage limit of €
2,5 million per claim.

h) Stop or continue
Depending on the simulated event type in step f), the prediction stops (in case of settlement) or
continues.

In the next section, this prediction process will be applied separately for the material claims and
the injury claims.

7.5.3 Comment on estimation uncertainty

With regards of the uncertainty of predictions a distinction can be made between process
uncertainty and estimation uncertainty (see England and Verrall (2002)). The process uncertainty
wil be taken care of by sampling from the distributions proposed in section 7.3. To include
parameter uncertainty the bootstrap technique or concepts from Bayesian statistics can be used.
While a formal Bayesian approach is very elegant, it generally leads to significantly more
complexity, which is not contributing to the accessibility and transparency of the techniques
towards practicing actuaries. Applying a bootstrap procedure would be possible, but is very
computer intensive, since our sample sizeisvery large and several stochastic processes are used.
To avoid computational problems when dealing with parameter uncertainty, we will use the
asymptotic normal distribution of our maximum likelihood estimators. At each iteration of the
prediction routine we sample each parameter from its corresponding asymptotic normal
distribution. Note that — due to our large sample size — confidence intervals are narrow. Thisisin
contrast with run-off triangles where sample sizes are typically very small and estimation
uncertainty is an important point of concern.

7.6 Numerical results

The prediction process described in Section 7.5 is applied separately for the material and injury
clams. In this section results obtained with the micro-evel reserving model are shown. Our
results are compared with those from traditional techniques based on aggregate data. We show
results for an out—of—sample exercise, so that the estimated reserves can be compared with actual
payments. This out—of—sample test is done by estimating the reserves per 1-1-2005. The data set
that is available at 1-1-2005 can be summarized using run-off triangles, displaying data from
arrival years 1999 —2004. Table 7.4 (material) and 7.5 (injury) show the run—off triangles that are
the basis for this out—of—sample exercise. The lower triangle is known up to 3 cells. The actual
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observations are given in bold. Of course, these were not known at 1-1-2005 so cannot be used

asinput for calibration of the models.

Table 7.4: run-off triangle ‘Material’ claims, arrival year 1997-2004

arrival development year
year 1 2 3 4 5 6 7 8
1997 4.379.653 971591 81.875 9264 35942 26720 34277 10.750
1998 4333968 975.501 55.978 35004  75.768
1999 5225441 1218325 58894  107.716 107.832
2000 5.365.758 1119476 161148 14451 5.927 36 10.014
2001 5535.075 161995 118336 119202 | 12.711 2.988 350 2.184
2002 6.538549 1547.253 67.331 65.414 16.509 5.256 9.120 8.847
2003 6.535.125 1.601.255| 90.721 20.505 30.838 7.424 1.685
2004 7100492 [1.347.123 98.695 76.384 19.926 12.896

Table 7.5: run-off triangle ‘Injury’ claims, arrival year 1997-2004
arrival development year
year 1 2 3 4 5 6 7 8
1997 307166 635084 366324 530201 548906 137401 132076 338.865
1998 256.758  481.893 311525 336221 268519 56043 178618 | 78.124
1999 291.719 580.928 410442 272972 254.240 132.109 96.813
2000 315.509 601.364 439408 498131 406.642 | 371.131 247.141 275.271
2001 464813 846150 566.122 566.855 | 445.835 375.499 146.507 239.922
2002 314.422 614945  540.023 |[449.435 132.515 131.172 332.044 1.081.869
2003 302.699 617.225 268.342 222.621 215.501 172.566
2004 333.075 | 864.120 411.705 245.176 272.621 100.128

Output from the micro-Hevel model

The distribution of the reserve per 1-1-2005 is

determined for the individual (micro-evel) model proposed in this chapter. We will first look at
the output that becomes available when using the micro-level model. Figure 7.13 shows results
for injury payments done in calendar year 2006, based on 10.000 simulations. In table 7.5 thisis
the diagonal going from 412, 268, ..., up to 97. The first row in figure 7.13 shows (from left to
right): the number of IBNR claims reported in 2006, the total amount of payments done in this
calendar year and the total number of events occurring in 2006. The IBNR claims are claims that
occurred before 1-1-2005, but were reported to the insurer during calendar year 2006. The total
amount paid in 2006 is the sum of payment for RBNS and IBNR claims, which are separately
available from the micro-model. In the second row of plots we take a closer look at the events
registered in 2006 by splitting into type 1 —type 3 events. In each of the plots the black solid line

indicates what was actually observed.
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Figure 7.13: resultsfor injury payments, calendar year 2006
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The figure shows that the resulting distributions of the micro-level model are readlistic, given the
actual observations. Only the actual number of IBNR claims s far in the tail of the distribution.
However, note that this relates to arelatively low number of IBNR claims.

Comparing reserves The results from the micro-level model are now compared with results
from two standard actuarial models developed for aggregate data. To the data in tables 7.4 and
7.5, a stochastic Chain-Ladder model is applied which is based on the Overdispersed Poisson
distribution and the Lognormal distribution, respectively. With Y;; denoting cell (i,j) from a run-
off triangle, corresponding with arrival year i and development year j, the model specifications
are:

(7.29) Overdispersed Poisson: Y, =fM, M, ~Poi(m/f)  m=a +b,
(7.30) Lognormal : log(Y;) ~m +e, m =a, +b, e, ~N (O,s 2)

Both aggregate models are implemented in a Bayesian framework®.

% The implementation of the Overdispersed Poisson isin fact empirically Bayesian. f is estimated on beforehand
and held fixed. We use vague normal priors for the regression parameters in both models and a gamma prior for s
in the Lognormal model.
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Figure 7.14 shows the distributions of the total payments (in thousands Euro) for material claims,
as obtained with the different methods. The results are shown for calendar years 2005 — 2009
separately and for the total. The total reserve predicts the complete lower triangle (all bold
numbers + three missing cells in tables 7.4 and 7.5). The solid black line in each plot indicates
what has really been observed. In the plot of the total reserve the dashed line is the sum of all
observed payments in the lower triangle. This is — up to three unknown cells — the total reserve.
Corresponding numerical results arein table 7.6.

Figure 7.14: out-of-sample results — Material claims

Micro-level Model

Aggregate Model - Overdispersed Poisson

130

Aggregate Model - Lognormal

3
° S
— Calendar year: 2005 S 4 M A Calendar year: 2005 & Calendar year: 2005
S
° 3
[=2. S 4
2 8 ]
8
S b
3 g 5 87 z =
s S | 2 =
g = El ]
E E E
2 3 2 o
i L g r 8
S Ei
3
g4
®° o
S b
—’_}_’_’ﬁv ] 8
o o 4 o
r T T T 1 r T T T 1 r T T T T T 1
1000 1500 2000 2500 3000 1000 1500 2000 2500 3000 0 5000 10000 15000 20000 25000 30000
Reserve Reserve Reserve
Micro-level Model Aggregated Model - Overdispersed Poisson Aggregate Model - Lognormal
° M Calendar year: 2006 o M Calendar year: 2006 Calendar year: 2006
8. ISp
S Q
— ° L
S
3 — 3
8 K
S
= 3
8
K]
3
g4
3 z ]
2 e s 8-
g s =1
g o S o ]
z 3 z 8] =
3 3 g g o
w [ w
8
g 3 |
s | 3
3
3
g4
&
o ol o
r T T T T T 1 r T T T T T 1 r T T T T T 1
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 500 1000 1500 2000 2500 3000
Reserve Reserve Reserve
Micro-level Model Aggregate Model - Overdispersed Poisson Aggregate Model - Lognormal
3
g -
Calendar year: 2007 ° M Calendar year: 2007 & Calendar year: 2007
o 8 -
8. 8
g o
S - 8
3 &
° 84
S &
= o
8
3
o S “‘
> 87 > S >
3 3 3
g g g g
E] g g S 3
T o T Q4 T -
g 3 s 8 o
w © o w
3 8
84 8 S
g S
)
oA o o
r T T T T T 1 r T T T T T 1 r T T T 1
0 200 400 600 800 1000 1200 0 200 400 600 800 1000 1200 0 500 1000 1500 2000
Reserve Reserve Reserve



Frequency

Frequency

Frequency

2000

1500

1000

500

2
3
&
=

400 600 800 1000

200

200 300 400 500 600 700

100

!

Micro-level Model

M Calendar year: 2008

T T T T

0 200

400 600 800 1000 1200

Reserve

Micro-level Model

M Calendar year: 2009

0 50

T T T T T 1

100 150 200 250 300

Reserve

Micro-level Model

l Total calendar year 2005-2009

r

1500

T T T T T T 1
2000 2500 3000 3500 4000 4500 5000

Reserve

Frequency

Frequency

Frequency

1000 1500 2000 2500 3000

500

1000 1500 2000

500

400 600 800 1000 1200

200

Aggregate Model - Overdispersed Poisson

Aggregate Model - Lognormal

3
M Calendar year: 2008 8 M Calendar year: 2008
3
8
2
&
m 8
<]
&
z
g
: g
g 3
i
3
8
8
S
3
8
8
°
r T T T T T 1 T T T 1
0 200 400 600 800 1000 1200 500 1000 1500 2000
Reserve Reserve
Aggregate Model - Overdispersed Poisson Aggregate Model - Lognormal
M Calendar year: 2009 Calendar year: 2009
— 8
K]
>
8
g S
E
2
i
3
8
)
I e S
°
r T T T T T 1 T T T 1
0 50 100 150 200 250 300 200 400 600 800
Reserve Reserve
Aggregate Model - Overdispersed Poisson Aggregate Model - Lognormal
I M- Total calendar year 2005-2009 - Total calendar year 200!
| g g
g 8
E
| g
i
I .
8
l o
i °
r T T T T T T 1 T T T T T 1
1500 2000 2500 3000 3500 4000 4500 5000 5000 10000 15000 20000 25000 30000
Reserve Reserve

131



Table 7.6 out-of-sample exercise per 1-1-2005: numerical results for material claims (in thousands Euro)

Method Observation Cal.Year Mean Median Min. Max. 5% 25% 75% 90% 95% 99.5%
Micro--level 1.537 2005 1404 1.342 1.093 5574 1.204 1.272 1.449 1.627 1.783 3.143
139 2006 307 248 76 2.738 138 191 346 498 630 1.779
123 2007 246 183 30 2.74 72 123 286 444 618 1.688
39 2008 146 98 7 2.426 30 61 164 283 402 1.225
23 2009 52 26 0 2.216 4 12 53 104 167 639
> 1861 Total 2.208 2.054 1.374 7.875 1.622 1.831 2.401 2.871 3.305 5.074
Aggregate ODP 1.537 2005 2 1.989 1.194 3.028 1.591 1.834 2.166 2321 2431 2.674
139 2006 324 309 44 774 177 265 376 442 486 597
123 2007 214 199 0 619 88 155 265 332 354 464
39 2008 144 133 0 553 44 88 177 243 265 354
23 2009 66 66 0 376 0 22 88 133 155 243
> 1861 Total 2.803 2.785 1.613 4.354 2.232 2.564 3.028 3.271 3.426 3.846
Aggregate LogN. 1.537 2005 5.340 2.253 70 587.5 497 1.146 4.896 10.79 17.985 77.671
139 2006 699 410 32 164.2 135 254 710 1.231 1.818 6.522
123 2007 380 228 8 23.72 67 137 403 734 111 3731
39 2008 326 167 2 48.85 41 93 317 627 998 4.053
23 2009 163 71 1 33.66 14 36 146 304 499 2.051
> 1861 Total 7.071 3.645 201 645.5 111 2.135 6.936 13.692 21931 84.712

In figure 7.14 we use the same scale for plots showing reserves obtained with the micro-evel
and the Overdispersed Poisson model. However, for the Lognormal model a different scale on
the x—axis is necessary because of the long right tail of the frequency histogram obtained for this
model. These unredlistically high reserves (see also table 7.6) are a disadvantage of the
lognormal model for the portfolio of materia clams. Concerning the Poisson model for
aggregate data, we conclude from figure 7.14 that the overdispersed Poisson model overstates
the reserve: the actually observed amount is always in the left tail of the histogram. For instance,
in the plots with the total reserve, the median of the simulations from overdispersed Poisson is at
2,785,000 euro, the median of the simulations from the micro-evel model is 2,054,430 euro,
whereas the total amount registered for the lower triangle is 1,861,000 euro. Recall that the latter
isthe total reserve up to the three unknown cellsin table 7.4.

The best estimates (see the ‘Mean’ and ‘Median’ columns) obtained with the micro-level model
arerealistic and closer to the true realizations than the best estimates from aggregate techniques.

Figure 7.15 shows the total payments (in thousands Euro) for the different methods for injury
claims. Once again the actual payments are indicated with a solid black line. The results of the
log-linear model are now presented on a similar scale as the other two models. Corresponding
numerical resultsareintable 7.7.
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Figure 7.15: out-of-sample results — I njury claims
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Table 7.7: out-of-sample exercise per 1-1-2005: numerical resultsfor injury claims (in thousands Euro)

14000

T 1
16000

Method Outcome Cal.Year Mean Median Min. Max. 5% 25% 75% 90% 95% 99.5%
Micro--level 2.957 2005 2.548 2.453 1.569 6.587 1.951 2212 2.764 3.154 3.499 4.567
1532 2006 1798 1699 909 6.79 1246 1477 2001 2393 2703 3.752

1.02 2007 1254 1159 453 4945 774 968 1.42 1778 2088 3.125

1.06 2008 884 776 267 4.381 458 613 1024 1393 1694 2.743

1354 2009 390 313 63 3.745 149 226 448 678 908 1875

> 7923 Total 7.386 7.209 4.209 14.85 5.666 6.489 8.092 9.035 9.721 11.725

Aggregate ODP 2.957 2005 2798 2.774 1727 8.247 2.259 2.553 2.994 3233 3.38 4.298
1532 2006 2134 2112 1065 6723 1.67 1929 2314 2498 2627 3472

1.02 2007 1721 1708 845 6172 1286 1525 1892 2076 2186 3049

1.06 2008 1286 1249 551 5933 882 1102 1433 1616 1727 2627

1354 2009 759 735 220 4114 478 625 863 992 1084 1543

> 7.923 Total 9.639 9.478 5.474 40.67 7.66 8.688 10.36 11.2 11.77 17.36

Aggregate LogN. 2.957 2005 2.948 2.882 1175 6729 2181 257 3.254 3648 3.944 4.944
1532 2006 2251 2196 957 6898 1623 194 25 2.825 3.05 3.934

1.02 2007 1817 1759 567 5313 1244 1526 2.04 2355 2583 3.426

1.06 2008 1377 1315 374 5768 864 111 1571 1861 2087 2.944

1354 2009 815 768 195 4054 472 632 941 1151 1313 1.867

>7.923 Total 10.277 10.04 4459 26.01 7661 8.954 11.31 12.68 13.73 17.59

The figure shows that for the total reserve, the distribution obtained with micro-level model seem
to be more redlistic than the other two models, given the actual observed realisations. All models
do well for calendar year 2005, while the individual model does the best job for calendar years
2006 and 2007. For these calendar years the actual amount paid is — again — in the very |eft tail
of the distribution obtained with aggregate techniques. The overdispersed Poisson and the
Lognormal distribution perform better in calendar years 2008 and 2009. Note however that the
year 2008 and 2009 were extraordinary years, when looking at injury payments. In 2009 the two
highest claims of the whole data set settled with a payment in 2009. The highest (the € 779.383
payment shown in table 7.1) is extremely far from all other payments in the data set. The
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observed outcome from calendar year 2009 should be considered as a very pessimistic scenario.
Indeed, this realized outcome is in the very right tail of the distribution obtained with the micro-
level model. The year 2008 was less extreme, but had an unusual number of very large claims (of
the 15 highest claims in the data set, 4 of them occurred in 2008).

Conclusion of the out-of-sample test is that for these case studies the reserve calculations based
on the micro-level model are preferable above the traditional methods applied to aggregate data.

Note that although we only present the results obtained for the out-of-sample test that calculates
the reserve per 1-1-2005, we also calculated reserves per 1-1-2006/2007/2008/2009. Our
conclusions for these tests were similar to those reported above. Full details are available on the
home page of the first author.

7.7 Conclusions

The measurement of future cash flows and its uncertainty becomes more and more important,
also for general insurance portfolios. Currently, reserving for general insurance is based on
aggregated data in run-off triangles. A vast literature about techniques for claims reserving exists,
largely designed for application to run-off triangles. The most popular approach is the Chain
Ladder approach, largely because of is practicality. However, the use of aggregated data in
combination with the Chain Ladder approach gives rise to severa issues, implying that the use of
aggregate data in combination with the Chain Ladder technique (or similar techniques) is not
fully adequate for capturing the complexities of stochastic reserving for general insurance.

In this chapter micro-level stochastic modeling is used to quantify the reserve and its uncertainty
for arealistic general liability insurance portfolio. Stochastic processes for the occurrence times,
the reporting delay, the development process and the payments are fit to the historical individual
data of the portfolio and used for projection of future claims and its (estimation and process)
uncertainty. A micro-level approach allows much closer modeling of the claims process. Lots of
issues mentioned in our discussion of the Chain Ladder approach will not exist when using a
micro-level approach, because of the availability of lots of data and the potential flexibility in
modeling the future claims process.

The chapter shows that micro-level stochastic modeling is feasible for real life portfolios with
over a million data records, and that it gives the flexibility to model the future payments
realistically, not restricted by limitations that exist when using aggregated data. The prediction
results of the micro-level model are compared with models applied to aggregate data, being an
Overdispersed Poisson and a Lognorma model. We present our results through an out-of-sample,
so that the estimated reserves can also be compared with actual payments. Conclusion of the out-
of-sample test is that — for the case-study under consideration — traditional techniques tend to
overestimate the real payments. Predictive distributions obtained with the micro-level model
reflect reality in a more realistic way: ‘regular’ outcomes are close to the median of the
predictive distribution whereas pessimistic outcomes are in the very right tail. As such, reserve
calculations based on the micro-level are preferable: they reflect real outcomesin amore realistic

way.
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The results obtained in this chapter make it worthwhile to further investigate the use of micro—
level data for reserving purposes. Severa directions for future research can be mentioned. One
could try to refine the performance of the individual model with respect to very pessimistic
scenarios by using a combination of alognormal distribution for losses below and a generalized
Pareto distribution for losses above a certain threshold. Analyzing the performance of both the
micro-evel model and techniques for aggregate data on simulated data sets will bring more
insight in their performance. In that respect it is our intention to collect and study new case-
studies.
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Samenvatting (Summary in Dutch)

Individuen, bedrijven en andere entiteiten staan bloot aan verschillende soorten risico’s die
kunnen leiden tot ongewenste financiéle consequenties. Een individu kan bijvoorbeeld schade
hebben aan zijn of haar auto, huis of inboedel, kan langer of korter leven dan verwacht, of
onverwacht hoge kosten maken in verband met de gezondheid. Bedrijven kunnen blootstaan aan
schades veroorzaakt door bijvoorbeeld een schadeclaim, verbranding van een bedrijfsgebouw,
schade aan goederen en arbeidsongeschikte werknemers. Deze risico's kunnen worden
overgedragen door het aangaan van een verzekeringscontract bij een verzekeringsmaatschappij.
In ruil hiervoor vraagt de verzekeringsmaatschappij een premie van de ‘polishouder’. De
verzekeringsmaatschappij brengt ale individuele risico's samen waardoor de resultaten op
individuel e polissen elkaar compenseren.

Het resultaat van het vele jaren verkopen van verzekeringen is dat verzekeraars in de toekomst
nog aanzienlijke bedragen moeten betalen aan hun polishouders (bijvoorbeeld hun pensioen).
Verzekeraars houden hiervoor een reserve aan, welke is gebaseerd op de waardering van deze
toekomstige verzekeringsverplichtingen. Daarnaast staat de verzekeraar bloot aan verschillende
risico’s, waarvoor het additioneel kapitaal aanhoudt. Derhalve zijn correcte waardering van
verzekeringsverplichtingen en het meten en managen van risico’s twee belangrijke voorwaarden
voor het succesvol runnen van een verzekeringsbedrijf. Dit proefschrift is een bundeling van
artikelen over verschillende kwesties gerelateerd aan waardering en risicomanagement voor
verzekeraars.

In het vervolg van deze samenvatting wordt meer context gegeven over waardering en
risicomanagement voor verzekeraars, gevolgd door een korte behandeling van de verschillende
artikelen.

Context

Momenteel stellen verzekeraars de waarde van hun verplichtingen vast op basis van
‘boekwaarde’, wat inhoudt dat de economische aannames meestal niet direct afgeleid zijn uit de
financiéle markten. Daarnaast verplicht de toezichthouder verzekeraars additioneel
(solvahiliteits)kapitaal aan te houden. Dit kapitaal wordt bepaald as vast percentage van de
reserve, premies of schades en is dus niet direct gebaseerd op het risicoprofiel van de verzekeraar.
Echter, de laatste jaren is er een toenemende aandacht van de verzekeringsindustrie voor
marktwaardering van de verzekeringsverplichtingen en het kwantificeren van
verzekeringsrisico’s. Belangrijke redenen hiervoor zijn de komende introducties van IFRS 4 Fase
2 en Solvency 2.
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De introductie van Solvency 2 en IFRS 4 Fase 2 (beiden in 2013) stelt verzekeraars voor een
grote uitdaging. IFRS 4 fase 2 zal een nieuw accounting model voor verzekeringscontracten
definiéren, gebaseerd op marktwaardering van de verplichtingen. In het document * Preliminary
Views on Insurance Contracts (Me 2007) stelt de ‘International Accounting Standards Board’
(IASB) dat verzekeraars de waardering van hun verplichtingen moeten baseren op zo actueel en
juist mogelijke inschattingen van toekomstige kasstromen, gedisconteerd met de actuele rentes
uit de markt. Verder wordt verwacht dat verzekeraars additioneel een risicomarge opnemen. De
IASB is de principes momenteel verder aan het uitwerken.

Solvency 2 zal leiden tot een verandering in de eisen van de toezichthouder wat betreft het
additioneel aan te houden solvabiliteitskapitaal. Onder Solvency 2 zal de kapitaalsels risico-
gebaseerd zijn, en marktwaardering van beleggingen en verplichtingen vormt de basis hiervoor.
De kapitaalseis zal alle risico’s moeten dekken waaraan een verzekeraar blootstaat: marktrisico,
operationeel risico, risico’s van leven- en pensioen producten, risico’s van schade en zorg
producten, tegenpartij risico en het risico van overige bezittingen. Binnen Solvency 2 is een
standaard formule ontwikkeld die leidt tot een kapitaalseis die erop gericht is om derisico’s voor
1 jaar te dekken met een 99,5% betrouwbaarheid. Echter, verzekeraars worden gestimuleerd om
hun eigen interne modellen te ontwikkelen om zodoende de specifieke risico's van de
verzekeraar beter in te kunnen schatten.

Gegeven bovenstaande is de conclusie dat het meten van toekomstige kasstromen en de
onzekerheid hiervan steeds belangrijker wordt voor de verzekeringsindustrie.

Indeling proefschrift

In dit proefschrift zijn enkele artikelen gebundeld op het gebied van waardering van
verzekeringsverplichtingen en risicomanagement voor verzekeraars. Eerst worden in hoofdstuk 2
de algemene concepten toegelicht die gebruikt worden in dit proefschrift, met name gerelateerd
aan stochasti sche processen.

Leven- en pensioen producten bevatten vaak een vorm van winstdeling in combinatie met een
garantie. Waardering van deze zogenoemde ‘embedded opties is een van de grootste
uitdagingen bij marktwaardering voor verzekeraars. Hoofdstuk 3 en 4 behandelen beiden de
waardering van specifieke embedded opties.

Belangrijke risico’s bij leven- en pensioenverzekeraars zijn het ‘langlevenrisico’ (het risico dat
mensen langer leven dan verwacht) en het ‘kortlevenrisico’ (het risico dat mensen korter leven
dan verwacht). Hoofdstuk 5 en 6 behandelen verschillende aspecten in het kwantificeren van
dezerisico’s.

Hoofdstuk 7 behandelt de risico’s van schadeproducten. In dit hoofdstuk wordt een nieuwe

techniek gepresenteerd om de waarde van de verplichtingen (en de onzekerheid daarvan) te
kwantificeren.
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In de volgende secties worden de hoofdstukken afzonderlijk toegelicht.

Hoofdstuk 3: Waardering van swap-afhankelijke embedded opties

Veel verzekeringsproducten kennen een vorm van winstdeling in combinatie met een garantie.
Deze zogenoemde embedded opties zijn vaak afhankelijk van of worden geschat middels
(forward) swaprentes. De swaprente is het tarief waartegen op de geld- en kapitaalmarkt leningen
met verschillende looptijden worden geruild. Normaal gesproken worden deze opties berekend
door middel van Monte Carlo simulatie, een computerintensieve berekeningstechniek. Echter,
VOOr risicomanagement en rapportage processen zijn vele waarderingen benodigd. Daarom zou
een meer efficiénte berekeningstechniek welkom zijn.

In dit hoofdstuk worden (benaderende) analytische formules ontwikkeld voor deze klasse van
embedded opties. De analytische formule voor directe betaling van winstdeling is vrijwel exact
en de benadering voor cumulatieve winstdelingsbetalingen is ook voldoende. Daarnaast kunnen
de formules gebruikt worden as ‘control variate' bij Monte Carlo simulatie, wat de
berekeningstijden van Monte Carlo simulatie significant verlaagd. Dit kan van pas komen bij
meer complexe embedded opties waarvoor geen analytische formules bestaan. Tot slot kan de
formule ook uitgebreid worden voor het geval waar de winstdeling mede afhankelijk is van het
rendement op aandelen.

Hoofdstuk 4: Waardering van Gegarandeerde Annuiteit Opties gebruik
makend van een model met stochastische volatiliteit voor
aandelenprijzen

Een Gegarandeerde Annuiteit Optie (GAO) is een optie die een polishouder het recht biedt om
het op de pensioendatum opgebouwde kapitaal om te zetten naar een levenslange lijfrente tegen
een vaste rente. Deze embedded optie was een standaard onderdeel van pensioencontracten in het
Verenigd Koninkrijk in de jaren ' 70 en '80 toen het renteniveau hoog lag. Echter, deze opties
zorgden voor problemen toen de rente begon te dalen in de jaren '90. Momenteel worden deze
opties nog veelvuldig verkocht in de Verenigde Staten en Japan.

Het laatste decennium is de literatuur over waardering en risicomanagement voor deze opties
sterk uitgebreid. Tot op dit moment is er bij de waardering vooral uitgegaan van een proces voor
aandelenprijzen waarbij de volatiliteit constant is. Echter, gegeven de lange looptijd van deze
contracten en de observatie uit het verleden dat de volatiliteit niet constant is, is een model met
stochastische volatiliteit te prefereren. In dit hoofdstuk zijn expliciete formules bepaald voor
prijzen van GAQO's, gebruik makend van een model met stochastische volatiliteit voor
aandelenprijzen en een stochastisch model voor rentes. De resultaten wijzen uit het meenemen
van stochastische volatiliteit een grote impact heeft op de prijsstelling en het risicomanagement
van deze opties.
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Hoofdstuk 5: Over stochastische modellering van sterftekansen

Het laatste decennium heeft er een grote toename van de literatuur over stochastische modellen
voor sterftekansen plaatsgevonden, met name voor gebruik in risico management. Alle bekende
modellen hebben voordelen en nadelen. In dit hoofdstuk wordt een nieuw stochastisch
sterftemodel voorgesteld die de goede eigenschappen van bestaande modellen combineert, en
waarbij de nadelen van bestaande modellen niet meer voorkomen. Meer concreet, het model sluit
goed aan bij de historische waarnemingen van sterftekansen, is bruikbaar voor alle leeftijden,
adresseert ook effecten die specifiek voor geboortejaren gelden, modelleert de samenhang tussen
leeftijden adequaat en heeft geen robuustheid problemen. Ook is beschreven hoe
parameteronzekerheid kan worden meegenomen. Tot dot is ook een versie van het model
gegeven die gebruikt kan worden voor waardering.

Hoofdstuk 6: Stochastische portefeuille specifieke sterfte en het
kwantificeren van sterfte basis risico

In hoofdstuk 5 zijn een aantal stochastische sterftemodellen beschreven, veelal toegepast op
bevolkingssterfte. Echter, deze modellen zijn meestal niet direct toe te passen op
verzekeringsportefeuilles, omdat:
a) het voor verzekeraars en pensioenfondsen relevanter is om sterftekansen te meten in
bedragen in plaats van aantallen.
b) er vaak niet voldoende data beschikbaar is van de historische sterftekansen van de
specifieke portefeuille van verzekeraars.
Om deze reden wordt in dit hoofdstuk een stochastisch model voorgesteld voor portefeuille
specifieke ervaringssterfte. Combinatie van dit stochastische proces met een stochastisch model
voor bevolkingsterfte resulteert in stochastische portefeuillespecifieke sterftekansen, gemeten in
bedragen. Het stochastische proces is getest op twee voorbeeld portefeuilles, en de impact op de
hoogte van het langlevenrisico is gekwantificeerd. Daarnaast kan het model ook gebruikt worden
voor het kwantificeren van sterfte basis risico. Dit is het risico dat overblijft as portefeuille
specifieke sterfte door een verzekeraar afgedekt wordt met instrumenten waarvan de betalingen
afhangen van bevolkingssterfte.

Hoofdstuk 7: Stochastische schadereservering op micro-niveau

Er heeft zich een substantiéle literatuur ontwikkeld over stochastische schadereservering. Echter,
vrijwel ale literatuur is gebaseerd op technieken die toegepast worden op een zogenaamde
‘schadedriehoek’ met geaggregeerde data. Echter, deze geaggregeerde data is een samenvatting
van een onderliggende, veel gedetailleerdere database die beschikbaar is binnen verzekeraars.
Deze data op het niveau van individuele schades wordt micro-niveau data genoemd. In dit
hoofdstuk is onderzocht of het gebruik van data op micro-niveau de kwaliteit van
schadereservering kan verbeteren. Een redlistische dataset op micro-niveau van een
aansprakelijkheidsportefeuille van een Europese verzekeraar is daarvoor gebruikt. Stochastische
processen zijn gespecificeerd voor de verschillende onderdelen in de ontwikkeling van een
schade: de tijd van plaatsvinden van de schade, de vertraging tussen het plaatsvinden van de
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schade en het op de hoogte stellen van de verzekeraar, eventuele betalingen en de hoogte ervan
en de afduiting van de schade. De parameters behorende bij deze processen worden geschat op
basis van de historische data van de portefeuille en worden gebruikt voor de projectie van
toekomstige betalingen. Een ‘out-of-sample’ exercitie toont aan dat de voorgestelde aanpak de
actuaris voorziet van gedetaillleerde en waardevolle berekeningen van de reserve. Een
vergelijking met traditionele reservering technieken is ook gemaakt. Voor het voorbeeld gebruikt
in dit hoofdstuk is het voorgestelde model te prefereren: de resultaten zijn realistischer en sluiten
beter aan bij de historische observaties.
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