Robust solutions of optimization problems affected by uncertain probabilities

In this paper we focus on robust linear optimization problems with uncertainty regions defined by ϕ-divergences (for example, chi-squared, Hellinger, Kullback–Leibler). We show how uncertainty regions based on ϕ-divergences arise in a natural way as confidence sets if the uncertain parameters contain elements of a probability vector. Such problems frequently occur in, for example, optimization problems in inventory control or finance that involve terms containing moments of random variables, expected utility, etc. We show that the robust counterpart of a linear optimization problem with ϕ-divergence uncertainty is tractable for most of the choices of ϕ typically considered in the literature. We extend the results to problems that are nonlinear in the optimization variables. Several applications, including an asset pricing example and a numerical multi-item newsvendor example, illustrate the relevance of the proposed approach.

Netspar, Network for Studies on Pensions, Aging and Retirement, is a thinktank and knowledge network. Netspar is dedicated to promoting a wider understanding of the economic and social implications of pensions, aging and retirement in the Netherlands and Europe.

MORE ABOUT NETSPAR


Mission en strategy           •           Network           •           Organisation           •          Magazine
Board Brief            •            Actionplan 2023-2027           •           Researchagenda

ABOUT NETSPAR

Our partners

B20160708_university of groningen
B20160615_pggmgroengrijs_grijswaarden_small
B20211201_Cardano_Logo 2021_website
AFM logo 2023 zwart wit
View all partners