Residual-based rank specification tests for AR–GARCH type models

This paper derives the asymptotic distribution for a number of rank-based and classical residual specification tests in AR–GARCH type models. We consider tests for the null hypotheses of no linear and quadratic serial residual autocorrelation, residual symmetry, and no structural breaks. We also apply our method to backtesting Value-at-Risk. For these tests we show that, generally, no size correction is needed in the asymptotic test distribution when applied to AR–GARCH residuals obtained through Gaussian quasi maximum likelihood estimation. To be precise, we give exact expressions for the limiting null distribution of the test statistics applied to (standardized) residuals, and find that standard critical values often, though not always, lead to conservative tests. For this result, we give simple necessary and sufficient conditions. Simulations show that our asymptotic approximations work well for a large number of AR–GARCH models and parameter values. We also show that the rank-based tests often, though not always, have superior power properties over the classical tests, even if they are conservative. An empirical application illustrates the relevance of these tests to the AR–GARCH models for weekly stock market return indices of some major and emerging countries.

Netspar, Network for Studies on Pensions, Aging and Retirement, is a thinktank and knowledge network. Netspar is dedicated to promoting a wider understanding of the economic and social implications of pensions, aging and retirement in the Netherlands and Europe.

MORE ABOUT NETSPAR


Mission en strategy           •           Network           •           Organisation           •          Magazine
Board Brief            •            Actionplan 2023-2027           •           Researchagenda

ABOUT NETSPAR

Our partners

vu
NN_logo_gray
B20190901_nidi-logo_greyscale
B20160708_apg
B20160708_ministeries
View all partners