

ABOUT ME

- BSc & MSc in Economics Linköping University, Sweden
- PhD candidate Vrije Universiteit
 - > Supervisor: Prof. Dr. Philipp Koellinger
 - > Expect to defend thesis early 2019
- Postdoctoral researcher Vrije Universiteit
- My research interests include the genetic and environmental basis of human behavior and (economic) decision-making
- Junior researcher in the Social Science Genetic Association Consortium (SSGAC)
 - PIs: Dan Benjamin (USC), David Cesarini (NYU), and Philipp Koellinger (VU)

AGENDA

- 1. Introduction to expected longevity
- Health information and retirement decisions
- The ongoing revolution in the molecular-genetic study of common medical conditions
- 4. Overview of our Netspar project

INTRODUCTION

- Life-cycle decisions are partly based on how long people expect to live—their personal expected longevity (EL)¹
- Importantly, EL has been shown to be a good predictor of actualized longevity
 - > People do have an understanding of their lifestyle and health status
 - > Not entirely driven by optimism/pessimism/irrationality
- Overall, genetic factors explain 25–30% of the population variation in longevity, and increasingly so with age²
- Thus, information about genetic health risks should be important for the formation of EL, and in turn life-cycle decisions

¹ Benítez-Silva & Huan. (2008). Journal of Health Economics.

² Brooks-Wilson. (2013). *Human Genetics*; Ganna et al. (2013). *Human Genetics*; Pilling et al. (2016). *Ageing*.

ACCESS TO GENETIC HEALTH INFORMATION

 Genomic medicine and direct-to-consumer genetic testing will drastically increase the amount of genetic health information available to patients and consumers

INTEGRATION OF HEALTH INFORMATION

- Individuals have been shown to integrate newly acquired health information, accurate or not, in the formation of their expectations¹
- Thus, it is likely that the increased access to genetic health information will lead to changes in economic and financial behavior with respect to old age and retirement
- Examples include:
 - > Insurance coverage and annuities
 - > Preferred risk in portfolio and investment horizon
 - > Labor supply, (pension) savings rate, and age at retirement
 - > Allocation of consumption and withdrawal of pension funds

GENETIC HEALTH RISKS

- Today, genetic health risks are typically latent and unobserved by most asymptomatic individuals
 - > Can be inferred from family history, however with considerable noise
 - > Currently, the predictive accuracy of direct-to-consumer testing is questionable
 - > Varies strongly across conditions
- In the future, the *true* individual genetic risk will be known if:
 - > All health and longevity related genetic risk factors have been discovered
 - > Individuals undergo "comprehensive" genotyping/sequencing
- Thousands of rare monogenic disorders already mapped to genes¹
 - Although such disorders have detrimental consequences for the affected individuals, because of their low prevalence in the population they jointly explain little of the overall variation in health and longevity

COMMON DISORDERS AND POLYGENIC RISK

- Instead, common non-communicable medical conditions account for more than 60% of total deaths worldwide¹
 - > The largest contributors are cardiovascular diseases and cancer, which account for 30% and 13% of total deaths, respectively
 - Common mental and neuropsychiatric disorders, and SUDs are associated with drastically decreased longevity²; some conditions reduce life expectancy with 10–20 years
- Additive genetic factors account for roughly 30–60% of the variation in such common medical conditions³
 - > Common traits are typically *polygenic*—influenced by many genetic variants
 - However, risky lifestyle factors are important, such as smoking, BMI, physical inactivity, and alcohol consumption; which are also heritable
 - > Such observable factors can already be taken into account in the formation of EL

GENETIC EFFECTS VERSUS ALLELE FREQUENCY

- Today, there is a rapid, ongoing scientific revolution in the molecular-genetic study of common medical conditions
 - > Aim is to discover the particular genetic variants responsible for the heritability
- The genetic effects on most common behaviors and medical conditions have been found to be smaller, and distributed across a much larger set of variants than previously thought¹

THE BIG PROBLEM OF SMALL EFFECTS

 R^2 vs. sample size (50% power for $p = 5 \times 10^{-8}$)*

School of Business and Economics

MODERN GENETIC DISCOVERY

- Genome-wide association studies (GWAS) are the modern workhorse to identify genetic associations
- The most common form of genetic variation is the singlenucleotide polymorphism (SNP; pronounced as "snip)
 - > A SNP is a single DNA base pair that differs across individuals in a population
- GWAS "naïvely scan" the genome, variant by variant (g_j) , for association with an outcome, modeled similar to:

(Eq 1)
$$\mathbf{y} = \alpha + \beta_j g_j + \mathbf{X} \mathbf{\gamma} + \varepsilon$$
,

where y is an outcome of interest, α is an intercept, $X\gamma$ contains demographic variables and genetic PCs to control for population structure, and ε is an error term. Model estimated separately for each variant j.

GWAS FINDINGS

■ Landmark GWAS of schizophrenia ($h^2 \sim 0.8^1$) in 34,241 cases and 45,604 controls identifies 108 associated genetic regions

RECENT LARGE-SCALE GWAS

- Recent large-scale GWAS on traits related to health and longevity:
 - > Atrial fibrillation¹
 - > Major risk factor for stroke, heart failure, and other CVD-related conditions
 - > 142 independent hits, *n* ~ 1 million
 - > Insomnia²
 - > Related to various mental illness and neuropsychiatric disorders
 - > 202 independent hits, $n \sim 1.3$ million
 - > Educational attainment³
 - > Strongly related to economic behavior, lifestyle risk, longevity, and overall health
 - > 1,271 independent hits, n ~ 1.1 million
 - > Risk preferences and risky lifestyle behaviors⁴
 - > 99 independent hits with general risk tolerance, $n \sim 940,000$
 - > 604 hits across six risky behaviors, $n \sim 315,000-579,000$.
- Sample sizes expected to increase further, many new biobank initiatives

¹ Nielsen et al. (2018). Nature Genetics.

² Jansen et al. (2018). Forthcoming Nature Genetics.

³ Lee et al. (2018) Nature Genetics.

⁴ Karlsson Linnér et al. (2018). Forthcoming Nature Genetics.

PREDICTIVE POWER OF POLYGENIC SCORES

- The predictive power (R^2) of a single variant is small (<0.05%)
 - > Yet, the predictive power of many variants (> 500k–1m) can be substantial
 - > Narrow-sense heritability estimates suggest an approximate upper limit
 - $> R^2$ increases as a function of GWAS sample size; less noise due to estimation error
- Polygenic scores (PGS) are predictors that summarize genetic liability across many variants into an index:

(Eq 2)
$$\hat{S}_i = \sum_{j=1}^J \hat{\beta}_j g_{ij}$$

- PGS can be constructed with GWAS summary statistics and individual-level genetic data, with some caveats*
 - > Not only genome-wide significant hits are predictive
 - > Suggests there are thousands or hundreds of thousands left to identify

^{*} In short, the correlation among variants must be accounted for, among other complicating factors

EMPIRICAL PREDICTION

- PGS of schizophrenia explains about 7% of the variation in liability
- PGS of educational attainment (EA) explains about 11–13%
 - > EA predicts longevity, risky lifestyle behaviors, and a multitude of health conditions¹
- Preferences more heritable than specific economic decisions
 - > Decisions are more noisy and biologically distal; many complex pathways and culture
 - Nonetheless, PGS of risk preferences predict about 1% of the variation in occupational choice, and health and life insurance coverage²
- Importantly, a wide range of health conditions may jointly explain a non-negligible proportion of the variation in economic decisions

OTHER IMPORTANT ADVANCES

- Costs of genotyping and low-depth sequencing continue to decrease
 - > Soon, less than €20 per study participant
 - > Coverage not perfect, but comprehensive enough for accurate prediction
- Increasing number of large biobank initiatives (n > 500k)
 - > Substantial challenges to scale and complexity
- Phenome-wide analysis
 - Increasing number of explored genetic health risks
- Efficient solutions like Hail¹
 - > A scalable parallel computing framework for efficient analysis
- Thus, these developments will contribute to the affordability and predictive accuracy of direct-to-consumer genetic testing

OVERVIEW OF NETSPAR PROJECT

- Netspar awarded a topicality grant for a pilot project
- Initiated September 1st, 2018
- Expected timeline about 1 year
- Industry report and scientific publication

POTENTIAL IMPLICATIONS

- Many big questions without clear answers
 - > Multitude of economic and moral aspects
- Consumer protection versus insurability and solvency
 - > Family health history, the case of Huntington's disease
 - > Question about penetrance/accuracy of genetic testing
 - > What risks should be priced?
 - > The influences of lifestyle factors that are modified by genes, such as diabetes/cancer?
- Asymmetric information and equality
 - > Particular strata may be more prone to genetic testing (and to use such information)
 - > Adverse selection, direction unknown
 - > Stranger-originated life insurance and annuities could threaten long-term solvency
- Appropriate savings rate, consumption, and pension behavior
 - > Poverty at old age
 - > Effects of misinterpreted information/speculation

