### Single Mothers and the Welfare State

Max Groneck (RUG) and Johanna Wallenius (SSE)

Netspar Pension Day, Oct 13 2017

2017-10-13

Groneck and Wallenius

Single Mothers and Welfare

2017-10-13 1 / 26

- Becoming a single mothers is a risk associated with huge financial consequences in the US
- An increasingly large fraction of mothers raise their children without a father: 30 percent of all mothers in 2015
- Child care costs are substantial in the US with \$9,589 (\$28,354) in center care (at home); Further, even full-time working mothers spend up to 20hrs/week caring for their young children
- High poverty rates among single mothers: 77(55) percent of all single mothers with 3+(2) children live in poverty

Single Mothers and Welfare

2017-10-13 2 / 26

## **Research Questions**

- Why are so many single mothers living in poverty?
- How can the current welfare system be improved for single mothers and what are its labor supply effects?
- 3 Who would be in favor of such a reform?

- Life-cycle model of couples featuring marital transitions, the 'risk' to become a mother, and a detailed modeling of the US welfare state
- Calibrate model to 1965-69 cohort in U.S.
- Counterfactuals: Increase child care support (here: 100% reimbursement of child care costs)

## Outline

- 1 Stylized Facts
- 2 The Model
- 3 Calibrated Economy
- **4** Policy Analysis
- **5** Conclusions

# Stylized Facts

# Prevalence of Being a Single Mother

#### $\Rightarrow$ 15.7% of all mothers are single in 1965-69 sample

| c c         | ,     |       | (    |
|-------------|-------|-------|------|
| Nr.Children | 1     | 2     | 3+   |
| Dropout     | 4.9   | 6.2   | 7.5  |
| High school | 27.8  | 24.8  | 15.4 |
| College     | 6.7   | 5.0   | 1.7  |
| Total       | 39.45 | 35.99 | 24.6 |

Fraction of Single Mothers over Nr. of Kids (in %)

### Poverty Rates

|                            | Married            | Divorced         | Single |
|----------------------------|--------------------|------------------|--------|
| No children                | 0.04               | 0.19             | 0.15   |
| One child                  | 0.05               | 0.25             | 0.41   |
| Two children               | 0.06               | 0.30             | 0.55   |
| Three+ children            | 0.14               | 0.52             | 0.77   |
| Nata, Davanty, according t | a the official new | untu lina Cabaut |        |

*Note:* Poverty according to the official poverty line. Cohort born 1965-69. CPS data.

▶ Poverty Rates cond. on education

Stylized Facts

### Female Life-cycle poverty and employment



### Model Overview

- Life cycle model of singles and couples between ages 23 and at most 83; Model period is 3 years
- Heterogeneity
  - ► Marital status: single, married, divorced, widowed
  - ► Children: No. and age of (young) children
  - ► Education (own and spousal): college, high school, dropout
  - Assets
  - Income states and female human capital

Groneck and Wallenius

Single Mothers and Welfare

2017-10-13 11 / 26

### Choices and Uncertainties

Choices

- Consumption-savings decision every period
- Female labor supply: full-time, part-time or not at all Working accumulates human capital
- Exogenous retirement at age 65; Men always work full-time

Uncertainties

- Marital transitions
- Childbirth
- Survival
- Labor income

Period utility function married couple

$$\begin{aligned} U(\hat{c}_t, L_t) &= \chi \left[ \ln \left( \frac{\hat{c}_t}{eq(n)} \right) - \Phi_{v,e} \frac{(L_{1,t} + \xi(n,k))^{\gamma}}{\gamma} \right] \\ &+ (1 - \chi) \left[ \ln \left( \frac{\hat{c}_t}{eq(n)} \right) - \Phi_{v,e} \frac{L_{2,t}^{\gamma}}{\gamma} \right] \end{aligned}$$

- $\hat{c}_t$  hh consumption, equivalence scaled eq(n)
- *L<sub>g,t</sub>* Labor supply (in time units)
- $\Phi_{v,e}$  Disutility of work, 2 types (v = 1, 2) dep. on education e
- $\xi(n, k)$  Time costs dep. on no. (n) and age (k) of children

s.t. budget constraint (here: married household)

$$\begin{aligned} (1+\tau_c)\hat{c}_t + a_{t+1}^s &= (1-\tau_y^s) \cdot \left(Ra_t^m + \mathbf{I}_{L_{1,t}}y_{1,t} + y_{2,t}\right) \\ &- \tau_{ss}(\hat{y}_{1,t} + \hat{y}_{2,t}) \\ &+ 2T - (1-\nu_{\bar{y}})w_{n,k}\mathbf{I}_{L_{1,t}}. \end{aligned}$$

- $(1-\nu_{\bar{y}})w_{n,k}$  childcare costs
- $\hat{y}_{g,t} = \min\{\mathbf{I}_{L_{g,t}}y_{g,t}, y_{max}\}$
- $a_{t+1}^s$  depends on marital status s:  $a_{t+1}^m = 2a_{t+1}^{u,d}$  and  $a_{t+1}^d = 0.5a_{t+1}^m$

 $\Rightarrow$  Recursive Optimization: Max. Value function, current utility and all discounted possible future value functions, s.t. budget constraint.

Groneck and Wallenius

Single Mothers and Welfare

# 1st Stage Estimation

- Children
  - ► Birthrate differ by ages (between 23-38), marital status, and education (SIPP); Track no (0,1,2,3+) and age (0 to 12 years)
  - Child care costs for institutionalized care (SIPP)
  - ► Total hrs spent on childcare for full-time working female (ATUS)
- Marital transition probabilities
  Differ by education, gender and age (SIPP and CPS)
- Survival rates
  Logit estimation by gender and education (HRS) <a href="https://www.education.education">https://www.education.education</a>

Groneck and Wallenius

Single Mothers and Welfare

2017-10-13 15 / 26

### 1st Stage Estimation: Earnings

Labor income for women depends on human capital, h

$$y_{1,t,e} = (1 - \zeta_e) \cdot \left\{ \gamma_e + \alpha_e \cdot h_{t,e} + \bar{\alpha}_e \cdot h_{t,e}^2 \right\} + w_{t,e}$$

$$\Rightarrow h_{t+1} = h_t + (1 - (1 - \iota)\mathbf{I}_{L_t=0.5}) \cdot \mathbf{I}_{L_t=1} - \delta h_t \cdot (1 - \mathbf{I}_{L_t=1})$$
  
  $\iota$  captures part-time penalty (Blundell et al. 2015)

- $\Rightarrow$  PSID data, males' coefficients  $\gamma_{t,e}$ ,  $\alpha_e$ ,  $\bar{\alpha}_e$  used for females
- $\Rightarrow$  Exogenous gender wage gap,  $\zeta_{t,e}$ , education-specific
- ⇒ Idiosyncratic component,  $w_{t,e}$  standard estimation (Storesletten et al. (2004))

### Government

#### Follow Guner, Kaygusuz and Ventura (2017)

- Childcare Support
  - Childcare subsidy program (CCDF)
  - ► Tax credits for children (CTC) and childcare expenditures (CD-CTC)
- Earned Income Tax Credit (EITC)
- Means-tested welfare payments: estimate effective transfer function using SSSI, TANF, SNAP, WIC, and housing assistance
- Social Security: Own benefits based on progressive pay-out schedule and Auxiliary benefit system
- **5** Taxes: progressive income-, flat payroll- and consumption taxes

# Calibration Strategy

#### Calibrated parameters to match data moments

Employment

Targets

- Employment of females over age and education
- Part-time employment of females over age and education

#### Parameters

- $\blacktriangleright \ \Phi_e^v:$  two types v of female disutility from working depending on education
- $\alpha_e$ : fraction of high-disutility types, v

#### Assets

 $\blacktriangleright\,$  Calibrate  $\rho=$  0.03 to match asset-to-income ratio of 2.6 in economy

# Calibrated Economy

# Targeted Moments I: Female Employment

|             | Total Employment |      | Part Time |      |
|-------------|------------------|------|-----------|------|
|             | Model            | Data | Model     | Data |
| Dropout     | 0.59             | 0.47 | 0.11      | 0.15 |
| High school | 0.75             | 0.73 | 0.20      | 0.19 |
| College     | 0.79             | 0.79 | 0.19      | 0.19 |
| Total       | 0.75             | 0.72 | 0.19      | 0.19 |

*Note:* CPS data, cohort 1965-69. Target: Average female employment, age 23-46.

## Non-Targeted: Employment over Kids



Groneck and Wallenius

Single Mothers and Welfare

|                  | Never Married |      | Marrie | ed   |
|------------------|---------------|------|--------|------|
|                  | Model         | Data | Model  | Data |
| Dropout-0Kid     | 0.40          | 0.55 | 0.16   | 0.28 |
| Dropout-1Kid     | 0.81          | 0.73 | 0.29   | 0.29 |
| Dropout-2Kids    | 0.93          | 0.84 | 0.43   | 0.43 |
| Dropout-3Kids    | 0.97          | 0.92 | 0.51   | 0.62 |
| Highschool-0Kid  | 0.40          | 0.16 | 0.03   | 0.07 |
| Highschool-1Kid  | 0.58          | 0.39 | 0.07   | 0.09 |
| Highschool-2Kids | 0.81          | 0.61 | 0.08   | 0.12 |
| Highschool-3Kids | 0.89          | 0.82 | 0.09   | 0.25 |
| College-0Kid     | 0.05          | 0.06 | 0.0    | 0.03 |
| College1Kid      | 0.35          | 0.11 | 0.01   | 0.03 |
| College2Kids     | 0.39          | 0.29 | 0.02   | 0.03 |
| College3Kids     | 0.40          | 0.34 | 0.02   | 0.08 |

|                  | Never Married |      | Marrie | ed   |
|------------------|---------------|------|--------|------|
|                  | Model         | Data | Model  | Data |
| Dropout-0Kid     | 0.40          | 0.55 | 0.16   | 0.28 |
| Dropout-1Kid     | 0.81          | 0.73 | 0.29   | 0.29 |
| Dropout-2Kids    | 0.93          | 0.84 | 0.43   | 0.43 |
| Dropout-3Kids    | 0.97          | 0.92 | 0.51   | 0.62 |
| Highschool-0Kid  | 0.40          | 0.16 | 0.03   | 0.07 |
| Highschool-1Kid  | 0.58          | 0.39 | 0.07   | 0.09 |
| Highschool-2Kids | 0.81          | 0.61 | 0.08   | 0.12 |
| Highschool-3Kids | 0.89          | 0.82 | 0.09   | 0.25 |
| College-0Kid     | 0.05          | 0.06 | 0.0    | 0.03 |
| College1Kid      | 0.35          | 0.11 | 0.01   | 0.03 |
| College2Kids     | 0.39          | 0.29 | 0.02   | 0.03 |
| College3Kids     | 0.40          | 0.34 | 0.02   | 0.08 |

|                  | Never Married |      | Marrie | ed   |
|------------------|---------------|------|--------|------|
|                  | Model         | Data | Model  | Data |
| Dropout-0Kid     | 0.40          | 0.55 | 0.16   | 0.28 |
| Dropout-1Kid     | 0.81          | 0.73 | 0.29   | 0.29 |
| Dropout-2Kids    | 0.93          | 0.84 | 0.43   | 0.43 |
| Dropout-3Kids    | 0.97          | 0.92 | 0.51   | 0.62 |
| Highschool-0Kid  | 0.40          | 0.16 | 0.03   | 0.07 |
| Highschool-1Kid  | 0.58          | 0.39 | 0.07   | 0.09 |
| Highschool-2Kids | 0.81          | 0.61 | 0.08   | 0.12 |
| Highschool-3Kids | 0.89          | 0.82 | 0.09   | 0.25 |
| College-0Kid     | 0.05          | 0.06 | 0.0    | 0.03 |
| College1Kid      | 0.35          | 0.11 | 0.01   | 0.03 |
| College2Kids     | 0.39          | 0.29 | 0.02   | 0.03 |
| College3Kids     | 0.40          | 0.34 | 0.02   | 0.08 |

# Introduce 100% Childcare Subsidy

# Changes in Female Employment

|                          | Baseline      | Reform      |
|--------------------------|---------------|-------------|
| Dropout                  | 0.59          | 0.65        |
| High school              | 0.75          | 0.76        |
| College                  | 0.79          | 0.79        |
| Total                    | 0.75          | 0.76        |
| Note: CPS data, cohort   | 1965-69. Targ | et: Average |
| female employment, age 2 | 23-46.        |             |

# Changes in Poverty Rates

|                 | Never N  | Never Married |          | ied    |
|-----------------|----------|---------------|----------|--------|
|                 | Baseline | Reform        | Baseline | Reform |
| Dropout-0Kid    | 0.40     | 0.50          | 0.16     | 0.26   |
| Dropout-1Kid    | 0.81     | 0.54          | 0.29     | 0.31   |
| Dropout-2Kids   | 0.93     | 0.74          | 0.43     | 0.32   |
| Dropout-3Kids   | 0.97     | 0.82          | 0.51     | 0.33   |
| Highschool-0Kid | 0.40     | 0.40          | 0.03     | 0.05   |
| Highschool-1Kid | 0.58     | 0.40          | 0.07     | 0.15   |
| Highschool-2Kid | 0.81     | 0.48          | 0.08     | 0.17   |
| Highschool-3Kid | 0.89     | 0.48          | 0.09     | 0.17   |
| College-0Kid    | 0.05     | 0.07          | 0.00     | 0.00   |
| College-1Kid    | 0.35     | 0.36          | 0.01     | 0.04   |
| College-2Kid    | 0.39     | 0.39          | 0.02     | 0.05   |
| College-3Kid    | 0.40     | 0.40          | 0.02     | 0.05   |

# Changes in Poverty Rates

|                 | Never Married |        | Marr     | ied    |
|-----------------|---------------|--------|----------|--------|
|                 | Baseline      | Reform | Baseline | Reform |
| Dropout-0Kid    | 0.40          | 0.50   | 0.16     | 0.26   |
| Dropout-1Kid    | 0.81          | 0.54   | 0.29     | 0.31   |
| Dropout-2Kids   | 0.93          | 0.74   | 0.43     | 0.32   |
| Dropout-3Kids   | 0.97          | 0.82   | 0.51     | 0.33   |
| Highschool-0Kid | 0.40          | 0.40   | 0.03     | 0.05   |
| Highschool-1Kid | 0.58          | 0.40   | 0.07     | 0.15   |
| Highschool-2Kid | 0.81          | 0.48   | 0.08     | 0.17   |
| Highschool-3Kid | 0.89          | 0.48   | 0.09     | 0.17   |
| College-0Kid    | 0.05          | 0.07   | 0.00     | 0.00   |
| College-1Kid    | 0.35          | 0.36   | 0.01     | 0.04   |
| College-2Kid    | 0.39          | 0.39   | 0.02     | 0.05   |
| College-3Kid    | 0.40          | 0.40   | 0.02     | 0.05   |

- Young females face a substantial risk to end up in poverty if they become single mothers
- The current welfare measures are insufficient to prevent these high poverty rates  $\Rightarrow$  Next: analyze more closely
- Extending child care subsidies already goes a long way in reducing poverty ⇒ Next: analyze welfare

# Poverty and Nr. of Children

|                      | Married | Divorced | Single |
|----------------------|---------|----------|--------|
| Dropout - No kid     | 0.15    | 0.57     | 0.51   |
| Dropout - 1 kid      | 0.20    | 0.57     | 0.71   |
| Dropout - 2 kid      | 0.26    | 0.61     | 0.78   |
| Dropout - 3+ kid     | 0.39    | 0.77     | 0.89   |
| High school - No kid | 0.04    | 0.19     | 0.19   |
| High school - 1 kid  | 0.05    | 0.25     | 0.38   |
| High school - 2 kid  | 0.06    | 0.30     | 0.49   |
| High school - 3+ kid | 0.12    | 0.48     | 0.70   |
| College - No kid     | 0.02    | 0.05     | 0.05   |
| College - 1 kid      | 0.01    | 0.07     | 0.09   |
| College - 2 kid      | 0.02    | 0.10     | 0.15   |
| College - 3+ kid     | 0.03    | 0.15     | 0.23   |

▲ Back

## Marital Transition Probabilities - Data

- Survey of Income and Program Participation (SIPP), wave 2008, marital history variable, 5,722 observations for 1950-54 cohort ⇒ remarriage and divorce probabilities
- Current Population Survey (CPS), synthetic-panel using 1976-2015 waves

 $\Rightarrow$  Marriage probabilities and initials

### Survival Probabilities - Data

- Survival rate:  $\psi_{t,g,e}$  depends on age, gender, and education
- Not possible to use life-tables
- Estimate Logit Model using Health- and Retirement Study (HRS), waves 1992-2010

$$Logit(death) = \alpha + \beta_1 age + \beta_2 edu + \beta_3 sex + \beta_4 age \times edu + \beta_5 age \times sex$$

### Deterministic Income - Estimation

- Male SRC household heads aged 26-60 in PSID, waves 1969-2013
- Variable: household head's wages and salaries, CPI adjusted
- Eliminate outliers: drop top and bottom 1% of income distribution and all working less than 1,000 hours per year

### Idiosyncratic Income - Estimation

• Time-invariant wage specification

$$w_{i,t,e} = z_{i,t,e} + \eta_{i,t,e}$$
$$z_{i,t,e} = \rho z_{i,t-1,e} + \varepsilon_{i,t,e}$$

with  $\eta_e \sim \mathcal{N}(0, \sigma_{\eta_e})$  and  $\varepsilon_e \sim \mathcal{N}(0, \sigma_{\varepsilon_e})$ .

- The parameter  $\rho$ ,  $\sigma_{\eta}^2$ , and  $\sigma_{\epsilon}^2$  are estimated via GMM following Storesletten et al. (2004).
- Persistent income component of spouses, z<sub>i,t,e</sub> and z<sup>s</sup><sub>i,t,e<sup>s</sup></sub> are correlated, where ε is assumed to be jointly normal distributed with

$$\Sigma_{\varepsilon} = \begin{bmatrix} \sigma_{\varepsilon_{e}} & \sigma_{\varepsilon_{e},\varepsilon_{e}^{s}} \\ \sigma_{\varepsilon_{e}^{s},\varepsilon_{e}}^{s} & \sigma_{\varepsilon_{e}^{s}} \end{bmatrix}$$
(1)

■ Back

Groneck and Wallenius

Single Mothers and Welfare

### Tax Parameters

| Tax Paramete     | rs                                         |              |
|------------------|--------------------------------------------|--------------|
| $\tau_c$         | Consumption tax                            | 7.5%         |
| $	au_{ss}$       | Payroll tax                                | 15.3%        |
| У <sub>тах</sub> | Earnings cap for payroll tax in 2010       | \$106,800    |
| α <sub>s</sub>   | Coefficient in $\tau_v^s$ (married/single) | 0.105/0.085  |
| $\beta_s$        | Coefficient in $\tau_v^s$ (married/single) | 0.034/0.0058 |
| $\bar{y}$        | Average earnings in 2010                   | \$53,063     |
|                  | Government Consumption Ratio               | 24%          |

# Calibrated 1st Stage Parameters

| Exogenous Pa   | rameters                            |       |
|----------------|-------------------------------------|-------|
| $1/(\gamma-1)$ | Frisch-Elasticity                   | 0.7   |
| ρ              | Discount rate (yearly)              | 0.01  |
| χ              | Pareto-Weight                       | 0.5   |
| eq             | Consumption equivalence scaling     | 1/1.5 |
| L              | Return of experience from part-time | 0.1   |
| r              | Interest rate (yearly)              | 0.045 |