The optimal mix of the first and second pension pillar

Marcel Lever
Thomas Michielsen
Sander Muns

19th January 2017
Introduction

- Public debate in many Western countries about ‘best’ structure of old-age pensions

- Population ageing makes 1st pillar pensions more expensive
 - Strikes in Belgium, France and Greece against retirement age increases
 - Bundesbank: raise retirement age to age 69 in 2060
 - OECD Pensions Outlook: more pre-funding old-age provisions

- Low interest rate makes 2nd pillar pensions more expensive
 - lower expected returns in 2nd pillar
 - decreases funding ratios of 2nd pillar pensions immediately

- Larger 1st pillar may compensate current retirees for low interest rate
Introduction

NL pillars in an international context (left) and over time (right)
Introduction

Returns (Aaron-Samuelson rule)

1st pillar: growth wage sum

2nd pillar: return on assets

\textbf{con 1: age decomposition}

\textbf{con 2: low interest rate}

After the financial crisis, asset returns have been (temporarily?) higher by increasing bond prices and increasing stock prices due to lower interest rates and lower discount rates
Introduction

Returns (Aaron-Samuelson rule)

1st pillar: growth wage sum
2nd pillar: return on assets

• In general: growth in wage sum < return on assets
 – potential Pareto improvement from larger 2nd pillar (Miles and Černý, 2006)
 – zero-sum in present value of public tax income (Sinn, 2000)

• General equilibrium effect with larger 1st pillar (closed economy):
 less savings → lower capital stock → lower wages (Kitao, 2014)

• This is about expected returns, our paper takes uncertainty into account
This paper

• Simulation study of pension outcomes with different mixes of 1st and 2nd pillar

• 2000 simulations using an Asset Liability Management model

• Scenarios vary in demographic as well as financial variables

• Evaluation based on CRRA utility and distribution of replacement rates

• Impulse response analysis evaluates impact of shocks in mortality and equity premium
Main results

• Compared to 1st pillar, 2nd pillar has a higher but less certain return

• Young and future generations prefer a mix of both pillars

• Preferences of cohorts born before 1970s depend on initialization:
 – first pillar-only if initial rights are always based on 50-50 mix
 – second pillar-only if initial rights are adjusted to each mix

• Different shocks have a different speed of impact:

<table>
<thead>
<tr>
<th>Type of shock</th>
<th>1st pillar</th>
<th>2nd pillar</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mortality</td>
<td>Slow</td>
<td>Immediate</td>
</tr>
<tr>
<td>Equity premium</td>
<td>No</td>
<td>Slow</td>
</tr>
</tbody>
</table>
Literature: Risk sharing in the two pillars

- 1st pillar and DB 2nd pillar (Beetsma and Bovenberg, 2009; Beetsma, Romp and Vos, 2013)
 - old share in wage risk of the young
 - insulates the old from volatile financial markets

- Diversification benefits between 1st (demographic) and 2nd pillar (financial) risks (Matsen and Thøgersen, 2004)
Literature: Welfare gains from intergenerational risk sharing in second pillar

- In 2nd pillar, individuals can be exposed to financial market risk before they are ‘born’/enter the labor market (Teulings and de Vries, 2006; Bovenberg et al, 2007; Gollier, 2008; Cui, de Jong and Ponds, 2011; Mehlkopf, 2011)

- The longer investment horizon enables a better risk/return tradeoff

- Welfare benefits range from zero to 25%, depends on labour market response, equity premium, risk aversion, etc.
Assumptions

• Regardless of mix, same total contribution rate (17¼% of wage)

• Representative individual per birth cohort:
 starts to work full-time at age 25, maximum age 120

• Retirement age fixed at 70, independent of life expectancy

• No cross-sectional difference in wages:
 – in each year, all workers earn same wage, regardless of age
 – real wages do grow over time

• CRRA utility function ($\beta = 0.98, r_t =$ replacement rate periode t)

$$U(r; \beta, \gamma) = \sum_{t=0}^{\infty} P[\text{alive and pensioned in year } t] \beta^t \frac{r_t^{1-\gamma} - 1}{1-\gamma}$$
Assumptions 1st pillar

• No contribution from public finances

• Fixed contribution rate for working individuals
 → benefit per retiree inversely proportional to old-age dependency ratio
Assumptions 2nd pillar

\begin{itemize}
 \item Collective defined contribution (CDC)
 \item Yearly rights adjustment 1/10th of [nominal funding ratio \textendash{} 100%]
 \item Asset mix: 50\% equities and 50\% matching bonds
 \item Risk sharing with future generations
 \item Actuarially fair rights accrual (cohort life expectancy)
 \item Asset management costs 0.5\%/yr
\end{itemize}
Limitations

- **No analysis of intragenerational redistributions**
 Larger 1st pillar makes a flexible pension age more attractive for low incomes (*flexibilisering AOW-leeftijd*).

- **Limited analysis transition effects**
 In practice, more straightforward from 2nd to 1st pillar than vice versa

- **No long-term correlation demography and financial markets**
 May weaken diversification benefits if aging → low interest rate

- **No migration**

- **No general equilibrium effects**

- **To do**
 - coupling pension age on life expectancy
 - impact of a fertility shock
Scenario set demography

Scenario set (left) and forecast Statistics Netherlands (right)

period life expectancy (yrs)

old-age dependency ratio
Scenario set financial descriptives – base set

<table>
<thead>
<tr>
<th>Correlation table arithmetic returns</th>
<th>1 year riskfree rate</th>
<th>5 year riskfree rate</th>
<th>5 year bond return</th>
<th>Stock return</th>
<th>Inflation</th>
<th>Wage inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year riskfree rate</td>
<td>1</td>
<td>0.98</td>
<td>0.26</td>
<td>0.21</td>
<td>0.89</td>
<td>0.76</td>
</tr>
<tr>
<td>5 year riskfree rate</td>
<td>0.98</td>
<td>1</td>
<td>0.32</td>
<td>0.21</td>
<td>0.87</td>
<td>0.75</td>
</tr>
<tr>
<td>5 year bond return</td>
<td>0.26</td>
<td>0.32</td>
<td>1</td>
<td>0.08</td>
<td>0.35</td>
<td>0.37</td>
</tr>
<tr>
<td>Stock return</td>
<td>0.21</td>
<td>0.21</td>
<td>0.08</td>
<td>1</td>
<td>0.19</td>
<td>0.15</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.89</td>
<td>0.87</td>
<td>0.35</td>
<td>0.19</td>
<td>1</td>
<td>0.84</td>
</tr>
<tr>
<td>Wage inflation</td>
<td>0.76</td>
<td>0.75</td>
<td>0.37</td>
<td>0.15</td>
<td>0.84</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean return (%)</th>
<th>Standard deviation (%)</th>
<th>min (%)</th>
<th>max (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year riskfree rate</td>
<td>2.74</td>
<td>3.15</td>
<td>-7.81</td>
<td>13.29</td>
</tr>
<tr>
<td>5 year riskfree rate</td>
<td>3.21</td>
<td>2.92</td>
<td>-6.18</td>
<td>12.60</td>
</tr>
<tr>
<td>5 year bond return</td>
<td>3.85</td>
<td>5.82</td>
<td>-15.48</td>
<td>27.21</td>
</tr>
<tr>
<td>Stock return</td>
<td>7.17</td>
<td>17.94</td>
<td>-35.98</td>
<td>74.50</td>
</tr>
<tr>
<td>Inflation</td>
<td>2.03</td>
<td>1.65</td>
<td>-3.09</td>
<td>7.39</td>
</tr>
<tr>
<td>Wage inflation</td>
<td>3.31</td>
<td>2.16</td>
<td>-3.78</td>
<td>11.42</td>
</tr>
</tbody>
</table>

January 19, 2017
Scenario set financial descriptives – base set

<table>
<thead>
<tr>
<th>Correlation table geometric returns</th>
<th>1 year riskfree rate</th>
<th>5 year riskfree rate</th>
<th>5 year bond return</th>
<th>Stock return</th>
<th>Inflation</th>
<th>Wage inflation</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 year riskfree rate</td>
<td>1</td>
<td>0.97</td>
<td>0.22</td>
<td>0.15</td>
<td>0.89</td>
<td>0.76</td>
</tr>
<tr>
<td>5 year riskfree rate</td>
<td>0.97</td>
<td>1</td>
<td>0.29</td>
<td>0.15</td>
<td>0.87</td>
<td>0.75</td>
</tr>
<tr>
<td>5 year bond return</td>
<td>0.22</td>
<td>0.29</td>
<td>1</td>
<td>0.02</td>
<td>0.35</td>
<td>0.39</td>
</tr>
<tr>
<td>Stock return</td>
<td>0.15</td>
<td>0.15</td>
<td>0.02</td>
<td>1</td>
<td>0.11</td>
<td>0.08</td>
</tr>
<tr>
<td>Inflation</td>
<td>0.89</td>
<td>0.87</td>
<td>0.35</td>
<td>0.11</td>
<td>1</td>
<td>0.85</td>
</tr>
<tr>
<td>Wage inflation</td>
<td>0.76</td>
<td>0.75</td>
<td>0.39</td>
<td>0.08</td>
<td>0.85</td>
<td>1</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Mean return (%)</th>
<th>Standard deviation (%)</th>
<th>min (%)</th>
<th>max (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2.5</td>
<td>3.1</td>
<td>-7.3</td>
<td>11.5</td>
</tr>
<tr>
<td></td>
<td>3.0</td>
<td>2.8</td>
<td>-6.0</td>
<td>11.4</td>
</tr>
<tr>
<td></td>
<td>3.6</td>
<td>5.6</td>
<td>-14.8</td>
<td>22.0</td>
</tr>
<tr>
<td></td>
<td>5.5</td>
<td>16.4</td>
<td>-47.1</td>
<td>58.1</td>
</tr>
<tr>
<td></td>
<td>2.0</td>
<td>1.6</td>
<td>-2.7</td>
<td>6.7</td>
</tr>
<tr>
<td></td>
<td>3.3</td>
<td>2.1</td>
<td>-5.2</td>
<td>9.0</td>
</tr>
</tbody>
</table>

January 19, 2017
Aaron-Samuelson rule on replacement rates

• Wage growth **3.3%/yr**
 Dependency ratio 0.4 in 2040 and 0.55 in 2115
 Long-run increase: \(\frac{0.55 - 0.4}{0.4} \)^{\frac{1}{75}} = 0.4%/yr
 \(1st \text{ pillar } \text{‘real’ return: } 3.3\% - 0.4\% - 3.3\% = -0.4\%/yr \)

• Stock return **5.5%/yr**, bond return **3.6%/yr**
 Asset management cost **0.5%/yr**
 Median pension period from 11 yrs in 2015 to 23 yrs in 2115
 Long-run increase payout period: \((23/11)^{0.01} - 1 = 0.74\%/yr \)
 Long-run increase investment period: \((23-11)/100 = 0.12 \text{ yrs/yr} \)
 gives increase on investments:
 \((1 + \frac{1}{2}(5.5\% + 3.6\%) - 0.5\%)^{0.12} - 1 = 0.5\%/yr \)

 \(2nd \text{ pillar } \text{‘real’ return: } \frac{1}{2}(5.5\% + 3.6\%) - 0.5\% - 0.74\% + 0.5\% - 3.3\% = +0.5\%/yr \)
Preferred mix

preferred mix, historic accruals based on specific mix, base set

cohort birth year

0 1 2 3 4 5 6 7 8 9 10

0-100 25-75 50-50 75-25 100-0

Centraal Planbureau

January 19, 2017
Bandwidth replacement rate

![Graph showing bandwidth replacement rate over cohort years of birth.]
Replacement rate

<table>
<thead>
<tr>
<th>Birth cohort 1942</th>
<th>100-0</th>
<th>75-25</th>
<th>50-50</th>
<th>25-75</th>
<th>0-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>61.4%</td>
<td>60.2%</td>
<td>62.4%</td>
<td>65.6%</td>
<td>69.3%</td>
</tr>
<tr>
<td>P5</td>
<td>59.9%</td>
<td>57.5%</td>
<td>56.8%</td>
<td>56.7%</td>
<td>56.9%</td>
</tr>
<tr>
<td>P1</td>
<td>59.4%</td>
<td>56.6%</td>
<td>54.9%</td>
<td>54.1%</td>
<td>53.5%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Birth cohort 1992</th>
<th>100-0</th>
<th>75-25</th>
<th>50-50</th>
<th>25-75</th>
<th>0-100</th>
</tr>
</thead>
<tbody>
<tr>
<td>Median</td>
<td>41.3%</td>
<td>53.1%</td>
<td>65.3%</td>
<td>75.5%</td>
<td>84.7%</td>
</tr>
<tr>
<td>P5</td>
<td>35.4%</td>
<td>38.3%</td>
<td>39.5%</td>
<td>40.0%</td>
<td>39.7%</td>
</tr>
<tr>
<td>P1</td>
<td>33.1%</td>
<td>35.0%</td>
<td>34.5%</td>
<td>32.8%</td>
<td>30.9%</td>
</tr>
</tbody>
</table>
Preferred mix

preferred mix, historic accruals based on 50-50, base set
Impulse response mortality rates

relative change mortality rate

-80% -40% 0% 40% 80% 120%

2015 2020 2025 2030 2035 2040 2045 2050 2055 2060

Lower bound 95% interval
Lower bound 67% interval
Upper bound 67% interval
Upper bound 95% interval
Bandwidth replacement rate mortality shock

![Graph showing bandwidth replacement rate mortality shock](image)

Key:
- **100-0 P50**
- **100-0 P5**
- **100-0 P95**
- **100-0 M shock P50**
- **100-0 M shock P5**
- **100-0 M shock P95**
- **0-100 P50**
- **0-100 P5**
- **0-100 P95**
- **0-100 M shock P50**
- **0-100 M shock P5**
- **0-100 M shock P95**

Cohort year of birth

1950 **1960** **1970** **1980** **1990** **2000** **2010**

25% **50%** **100%** **200%** **400%**
Replacement rates – mortality shock

<table>
<thead>
<tr>
<th>Birth cohort</th>
<th>100-0</th>
<th>50-50</th>
<th>0-100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>base M shock</td>
<td>rel. diff</td>
<td>base M shock</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1942</td>
<td>61.4% 59.0%</td>
<td>-3.9%</td>
<td>62.4% 59.3%</td>
</tr>
<tr>
<td>P5</td>
<td>59.9% 57.7%</td>
<td>-3.7%</td>
<td>56.8% 54.3%</td>
</tr>
<tr>
<td>P1</td>
<td>59.4% 57.2%</td>
<td>-3.7%</td>
<td>54.9% 52.6%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Birth cohort</th>
<th>100-0</th>
<th>50-50</th>
<th>0-100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>base M shock</td>
<td>rel. diff</td>
<td>base M shock</td>
</tr>
<tr>
<td>Median</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1992</td>
<td>41.3% 32.5%</td>
<td>-21%</td>
<td>65.3% 52.0%</td>
</tr>
<tr>
<td>P5</td>
<td>35.4% 28.3%</td>
<td>-20%</td>
<td>39.5% 31.5%</td>
</tr>
<tr>
<td>P1</td>
<td>33.1% 26.6%</td>
<td>-20%</td>
<td>34.5% 27.5%</td>
</tr>
</tbody>
</table>
Bandwidth replacement rate equity premium shock

50-50 P50

50-50 P95

50-50 E shock P50

50-50 E shock P95

0-100 P50

0-100 P95

0-100 E shock P50

0-100 E shock P95
Replacement rates – equity premium shock

<table>
<thead>
<tr>
<th>Birth cohort 1942</th>
<th>100-0</th>
<th>50-50</th>
<th>0-100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>base</td>
<td>E shock</td>
<td>rel. diff</td>
</tr>
<tr>
<td>Median</td>
<td>61.4%</td>
<td>61.4%</td>
<td>0.0%</td>
</tr>
<tr>
<td>P5</td>
<td>59.9%</td>
<td>59.9%</td>
<td>0.0%</td>
</tr>
<tr>
<td>P1</td>
<td>59.4%</td>
<td>59.4%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Birth cohort 1992</th>
<th>100-0</th>
<th>50-50</th>
<th>0-100</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>base</td>
<td>E shock</td>
<td>rel. diff</td>
</tr>
<tr>
<td>Median</td>
<td>41.3%</td>
<td>41.3%</td>
<td>0.0%</td>
</tr>
<tr>
<td>P5</td>
<td>35.4%</td>
<td>35.4%</td>
<td>0.0%</td>
</tr>
<tr>
<td>P1</td>
<td>33.1%</td>
<td>33.1%</td>
<td>0.0%</td>
</tr>
</tbody>
</table>
Robustness scenario set

- **base**
 - Specific mix: preferred mix, historic accruals based on specific mix, base set
 - Historic accruals: preferred mix, historic accruals based on specific mix, base set
 - 50-50 mix: preferred mix, historic accruals based on 50-50, base set

- **ZLB**
 - Specific mix: preferred mix, historic accruals based on specific mix, ZLB set
 - Historic accruals: preferred mix, historic accruals based on specific mix, ZLB set
 - 50-50 mix: preferred mix, historic accruals based on 50-50, ZLB set

- **low interest rate**
 - Specific mix: preferred mix, historic accruals based on specific mix, low interest rates set
 - Historic accruals: preferred mix, historic accruals based on specific mix, low interest rates set
 - 50-50 mix: preferred mix, historic accruals based on 50-50, low interest rates set

Centraal Planbureau

January 19, 2017
Transition towards first pillar

- Assume historic contribution rate to both pillars is 50%

- From the first simulation year onwards, the contribution rate to the 1st pillar is 60% and to the 2nd pillar 40%

- Current pensioners benefit directly

- Future loss of 2nd pillar pension dominates for generations born in 1975 and later
Conclusions

• Generational gap
 – Young generations prefer a mix of both pillars
 – Preferences of older generations depend on initialization

• Permanent mortality shock
 – immediate impact on 2nd pillar benefits through the funding ratio
 – slower impact on 1st pillar benefits

• Permanent equity premium shock
 – small impact on 2nd pillar benefits in the short run
 – stronger impact in the longer run

• Results are qualitatively the same with scenario sets with a zero lower bound or with permanently low interest rates
Policy implications

• Current Dutch policy mix is about 50-50

• A larger 1st pillar at the expense of the 2nd pillar would result in
 – lower median replacement rate: coming increase in the dependency ratio dominates the effect of lower interest rates
 – a redistribution between generations where only older cohorts are still better off in case asset returns are low

• A redistribution within cohorts is not evaluated, 1st pillar guarantees minimum of existence

• Current Dutch policy for 1st pillar pension as a minimum of existence seems very reasonable