The Effect of Partial Retirement on the Labor Supply of Elderly Employees in Germany

Songül Tolan
Outline

1. Introduction
2. Institutional Background
3. Model
4. Data
5. Results
6. Policy Simulation
7. Summary
Motivation I

Population aging puts pressure on pay-as-you-go funded public pension systems
Motivation II

Demographic development of working population 2000-2015

- aged 55-64 of all working
- aged 25-54 of all working
- working 55-64 of population 55-64
- working 25-54 of population 25-54

Source: Own calculations based on German Statistical Office
Motivation I

- Population aging puts pressure on pay-as-you-go funded public pension systems
- Policy strategy that aims at encouraging later transitions into retirement: Allowing for partial retirement
Motivation I

- Population aging puts pressure on pay-as-you-go funded public pension systems
- Policy strategy that aims at encouraging later transitions into retirement: Allowing for partial retirement
- Effects are ambiguous
Motivation I

- Population aging puts pressure on pay-as-you-go funded public pension systems
- Policy strategy that aims at encouraging later transitions into retirement: Allowing for partial retirement
- Effects are ambiguous
 - Positive if partial retirement substitutes early retirement or unemployment
Motivation I

► Population aging puts pressure on pay-as-you-go funded public pension systems
► Policy strategy that aims at encouraging later transitions into retirement: Allowing for partial retirement
► Effects are ambiguous
 ► Positive if partial retirement substitutes early retirement or unemployment
 ► Negative if it crowds out full-time employment
Motivation III

Table: Quasi-experimental empirical literature on labour supply effects of partial retirement

<table>
<thead>
<tr>
<th>Author</th>
<th>Country</th>
<th>Effect</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ghent et al. (2001)</td>
<td>University of North Carolina</td>
<td>−</td>
</tr>
<tr>
<td>Wadensjö (2006)</td>
<td>Sweden</td>
<td>+</td>
</tr>
<tr>
<td>Graf et al. (2011)</td>
<td>Austria</td>
<td>−</td>
</tr>
<tr>
<td>Berg et al. (2015)</td>
<td>Germany</td>
<td>+</td>
</tr>
<tr>
<td>Huber et al. (2016)</td>
<td>Germany (east)</td>
<td>+</td>
</tr>
<tr>
<td>Huber et al. (2016)</td>
<td>Germany (west)</td>
<td>0</td>
</tr>
</tbody>
</table>
Research Approach
Research Approach

- Labor supply effects depend on the **structure** of the partial retirement program
Research Approach

- Labor supply effects depend on the **structure** of the partial retirement program
- Retirement decisions contain a **dynamic** perspective
Research Approach

- Labor supply effects depend on the **structure** of the partial retirement program
- Retirement decisions contain a **dynamic** perspective
 → Dynamic structural retirement model with partial retirement
Research Approach

- Labor supply effects depend on the **structure** of the partial retirement program
- Retirement decisions contain a **dynamic** perspective

→ **Dynamic structural retirement model with partial retirement**
- Structure of the particular partial retirement program can be explicitly modeled
- Decisions are considered in a dynamic framework
- Allows for **ex ante** policy simulation
Research Question

What is the effect of partial retirement on retirement age / average age at labor market exit?

How do effects of different retirement policies differ with partial retirement?

Adjust early retirement age for unemployed / partial retirees to regular early retirement age

Increase normal retirement age from 65 to 67
Research Question

▶ What is the effect of partial retirement on retirement age / average age at labor market exit?
Research Question

▶ What is the effect of partial retirement on retirement age / average age at labor market exit?
▶ How do effects of different retirement policies differ with partial retirement?
Research Question

- What is the effect of partial retirement on retirement age / average age at labor market exit?
- How do effects of different retirement policies differ with partial retirement?
 - Adjust early retirement age for unemployed / partial retirees to regular early retirement age
 - Increase normal retirement age from 65 to 67
Literature
Literature

- Dynamic structural retirement models
 - (Rust, 1989; Stock and Wise, 1990; Rust and Phelan, 1997; Benitez-Silva, 2000; Heyma, 2004; Karlstrom et al., 2004; French, 2005; Blau, 2008)
Literature

- Dynamic structural retirement models
 - (Rust, 1989; Stock and Wise, 1990; Rust and Phelan, 1997; Benitez-Silva, 2000; Heyma, 2004; Karlstrom et al., 2004; French, 2005; Blau, 2008)

- Structural model with partial retirement
 - (Gustman and Steinmeier, 2014)
Literature

- Dynamic structural retirement models
 - (Rust, 1989; Stock and Wise, 1990; Rust and Phelan, 1997; Benitez-Silva, 2000; Heyma, 2004; Karlstrom et al., 2004; French, 2005; Blau, 2008)
- Structural model with partial retirement
 - (Gustman and Steinmeier, 2014)
- Alternative paths into retirement
 - (Staubli, 2011; Inderbitzin et al., 2016)
Literature

➤ Dynamic structural retirement models
 ➤ (Rust, 1989; Stock and Wise, 1990; Rust and Phelan, 1997; Benitez-Silva, 2000; Heyma, 2004; Karlstrom et al., 2004; French, 2005; Blau, 2008)

➤ Structural model with partial retirement
 ➤ (Gustman and Steinmeier, 2014)

➤ Alternative paths into retirement
 ➤ (Staubli, 2011; Inderbitzin et al., 2016)

➤ Effects of an increase in early or normal retirement age
 ➤ (Duggan et al., 2007; Li and Maestas, 2008; Staubli and Zweimüller, 2013; Atalay and Barrett, 2015)
Institutional Background

- Pay-as-you-go funded pension system
- Pension level is determined by employment history and lifetime income
- Normal retirement age is 65
- Early retirement age after full-time employment is 63
- Studied cohorts can opt for early retirement at 60 after unemployment or partial retirement
- Deductions of 0.3% for each month of retirement prior normal retirement age
Partial Retirement

- Altersteilzeit (ATZ) policy introduced in 1996
- Reduction of work hours by 50% for every employee aged 55 and older
- Not legally binding, option for ATZ depends on employer-employee agreements
- Subsidies for ATZ
 - Minimum compensation of 20% for wage loss
 - Minimum compensation of 40% for pension contributions
Retirement after Unemployment

- Workers are eligible to 18-32 months of unemployment insurance (UI) receipt, depending on employment history.
- Studied cohorts can enter retirement after unemployment at age 60.
- Allows factual labor market exit at age 58.
- About 60% replacement rate of previous net earnings.
- 80% of previous pension contributions during UI receipt.
Basic Settings

- Forward-looking individual maximizes present discounted utility
Basic Settings

- Forward-looking individual maximizes present discounted utility
- Utility depends on consumption (C_{it}) and different preferences for employment states (Γ_{it}^k)
Basic Settings

- Forward-looking individual maximizes present discounted utility
- Utility depends on consumption (C_{it}) and different preferences for employment states (Γ_{it}^k)
- Individual’s horizon $= [55,100]$; decision horizon $[55,65]$
Basic Settings

- Forward-looking individual maximizes present discounted utility.
- Utility depends on consumption (C_{it}) and different preferences for employment states (Γ_{it}^k).
- Individual’s horizon $= [55,100]$; decision horizon $[55,65]$.
- Everyone is retired at age 65.
Basic Settings

- Forward-looking individual maximizes present discounted utility
- Utility depends on consumption \((C_{it}) \) and different preferences for employment states \((\Gamma_{it}^k) \)
- Individual’s horizon = [55,100]; decision horizon [55,65]
- Everyone is retired at age 65
- Annual decision between continue working and labor market exit through different retirement paths
Structure of the decision problem

unemployment
before 58

Φ^u_{it}

work
from 54

Φ^p

partial retirement
for 1-6 years

unemployment
from 58
for 0-3 years

Φ^u_{it}

retirement
from 60

retirement
from 63

Source: Own illustration
Utility Function

\[U_{it}^k = \frac{(C_{it}^k)^{(1-\rho)} - 1}{1 - \rho} + \Gamma_{it}^k(X_{it}^k) + \epsilon_{it}(d_{it}) \]

\(\rho \) is CRRA parameter
\(\epsilon_{it} \) is a TIEV error
\(\Gamma_{it}^k \) is preference of different employment states \(k \)
\(X_{it}^k \) are personal characteristics for different employment states \(k \)
State-specific preferences

\[\Gamma_{it}(X_{it}^k) = \begin{cases}
0 & \text{if } k = f \\
\Lambda_{it} & \text{if } k = r \\
\Theta_{it} & \text{if } k = p \\
\Upsilon_{it} & \text{if } k = u
\end{cases} \]

and

\[\Lambda_{it} = \lambda_0 + \lambda_1 \cdot (age_{it} - 54) \]
\[\Theta_{it} = \theta_0 + \theta_1 \cdot educ_i \]
\[\Upsilon_{it} = \nu_0 + \nu_1 \cdot 1[age \geq 60] \cdot (age_{it} - 59) \]
Budget Constraint I

- Full-time employment

\[y_{it+1}^f = G^1((1 + g)w_{it}^f) \] (6)
Budget Constraint I

- **Full-time employment**

 \[y_{it+1}^f = G^1((1 + g)w_{it}^f) \]

- **Partial Retirement**

 \[y_{it+1}^p = G^1((\frac{1}{2} + sub_j^w)w_{it}^f) \]
Budget Constraint II

- **Unemployment**

\[y_{it+1}^U = 0.6 \cdot (G^1((1 + g)w_{it}^f)) \]

(8)
Budget Constraint II

- **Unemployment**

\[y_{it+1}^u = 0.6 \cdot (G^1((1 + g)w_{it})) \]

- **Retirement**

\[
pp_{it} = \begin{cases}
pp_{it-1} + G^2(y_{it}^f) & \text{if } k_t = f \\
p_{it-1} + ((\frac{1}{2} + sub_j^r))G^2(y_{it}^p) & \text{if } k_t = p \\
G^2(y_{it}^u) & \text{if } k_t = u
\end{cases}
\]
Data

- Biographical Data of Social Insurance Agencies in Germany (BASiD, version 1951-2009)
- Combines data from Statutory Pension Insurance and Federal Employment Agency
- Sample:
 - Not eligible for disability insurance, no registered health shocks
 - At least five contribution years to statutory pension fund
 - Full-time employed at age 54
 - At least two years tenure
- 5012 individuals with 2832 observed retirement entries
Descriptive Statistics I

Table: Summary statistics by retirement path

<table>
<thead>
<tr>
<th></th>
<th>Regular</th>
<th>Unemployment</th>
<th>ATZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mean</td>
<td>St. Dev</td>
<td>Mean</td>
<td>St. Dev</td>
</tr>
<tr>
<td>Ret. age</td>
<td>64.189</td>
<td>0.865</td>
<td>61.360</td>
</tr>
<tr>
<td>Pension (mon)</td>
<td>1362.783</td>
<td>360.125</td>
<td>1161.962</td>
</tr>
<tr>
<td>Pension points</td>
<td>54.154</td>
<td>14.298</td>
<td>52.597</td>
</tr>
<tr>
<td>German</td>
<td>0.815</td>
<td>0.388</td>
<td>0.855</td>
</tr>
<tr>
<td>Education</td>
<td>2.701</td>
<td>1.533</td>
<td>2.457</td>
</tr>
<tr>
<td>Contrib. years</td>
<td>44.985</td>
<td>6.511</td>
<td>43.921</td>
</tr>
<tr>
<td>U_{pr}</td>
<td>0.015</td>
<td>0.023</td>
<td>0.030</td>
</tr>
<tr>
<td>N</td>
<td>1253</td>
<td>763</td>
<td>816</td>
</tr>
</tbody>
</table>

Source: Own calculations based on BASID
Descriptive Statistics II

Retirement entry by age

Source: Own calculations based on BASID sample with monthly observations
Descriptive Statistics III

Relative shares in employment by age and retirement path

Source: Own calculations based on BASID, Shares are relative to the retirement path group size
Model Estimates

Table: Structural parameters

<table>
<thead>
<tr>
<th></th>
<th>Value</th>
<th>Std.Err</th>
</tr>
</thead>
<tbody>
<tr>
<td>Utility function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>β</td>
<td>0.95</td>
<td>-</td>
</tr>
<tr>
<td>ρ</td>
<td>2.6659***</td>
<td>0.0071</td>
</tr>
<tr>
<td>Retirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>λ_0</td>
<td>0.5517***</td>
<td>0.0148</td>
</tr>
<tr>
<td>λ_1</td>
<td>0.0016</td>
<td>0.0230</td>
</tr>
<tr>
<td>Partial retirement</td>
<td></td>
<td></td>
</tr>
<tr>
<td>θ_0</td>
<td>0.4918***</td>
<td>0.0102</td>
</tr>
<tr>
<td>θ_1</td>
<td>0.0325***</td>
<td>0.0096</td>
</tr>
<tr>
<td>Unemployment</td>
<td></td>
<td></td>
</tr>
<tr>
<td>υ_0</td>
<td>1.5539***</td>
<td>0.0045</td>
</tr>
<tr>
<td>υ_1</td>
<td>-0.6227***</td>
<td>0.0056</td>
</tr>
<tr>
<td>$|l|$</td>
<td>-13545</td>
<td></td>
</tr>
</tbody>
</table>

*, ** and *** denote significance level of 10%, 5% and 1%, respectively.
Model Fit

(a) Full-time

(b) Retirement

(c) Partial Retirement

(d) Unemployment
Policy Simulation: 100% access to partial retirement

(a) Full-time

(b) Retirement

(c) Partial retirement

(d) Unemployment
Policy Simulation: No early retirement for retirement after unemployment/ATZ

(a) Full-time

(b) Retirement

(c) Partial retirement

(d) Unemployment
Policy Simulation: 100% access to partial retirement and no early retirement for retirement after unemployment/ATZ

(a) Full-time

(b) Retirement

(c) Partial retirement

(d) Unemployment
Table: Summary: retirement and employment exit ages

<table>
<thead>
<tr>
<th>ATZ access: 35%</th>
<th>ATZ access: 100%</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Ret. age</td>
</tr>
<tr>
<td>Basic</td>
<td>62.77</td>
</tr>
<tr>
<td>No early ret.</td>
<td>63.81</td>
</tr>
<tr>
<td>NRA 67</td>
<td>63.34</td>
</tr>
<tr>
<td>NRA 67, No early ret.</td>
<td>65.63</td>
</tr>
</tbody>
</table>

percentage point path changes

<table>
<thead>
<tr>
<th></th>
<th>Regular</th>
<th>Unemp</th>
<th>Partial</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic</td>
<td>-30.89</td>
<td>-24.15</td>
<td>55.04</td>
</tr>
<tr>
<td>No early ret.</td>
<td>-39.29</td>
<td>-13.62</td>
<td>52.51</td>
</tr>
<tr>
<td>NRA 67</td>
<td>-26.03</td>
<td>-25.72</td>
<td>51.75</td>
</tr>
<tr>
<td>NRA 67, No early ret.</td>
<td>-34.86</td>
<td>-14.69</td>
<td>49.55</td>
</tr>
</tbody>
</table>
Summary

- Increasing access to partial retirement leads to an increase in partial retirement takeup and a reduction in full-time employment as well as retirement via unemployment.
- A reduction in regular retirement leads to a decrease in average retirement age.
- This reduction becomes smaller when removing the earlier retirement option after unemployment/ATZ but does not diminish.
- Increasing partial retirement leads to an overall increase in the average employment exit age.
- Partial retirement yields positive employment effects by substituting retirement via unemployment with partial retirement.
Thank you!

DIW Berlin – Deutsches Institut für Wirtschaftsforschung e.V.
Mohrenstraße 58, 10117 Berlin
www.diw.de
References I

Benitez-Silva, H. (2000). A dynamic model of labor supply, consumption/saving, and annuity decisions under uncertainty. Department of economics working papers, Stony Brook University, Department of Economics.

References II

References III

References IV

References V

References VI
