The Effect of the Affordable Care Act on the Labor Supply, Savings, and Social Security of Older Americans

Eric French
Hans-Martin von Gaudecker
John Bailey Jones

Preliminary – please do not quote
October 31, 2016

Abstract

This paper assesses the effect of the Affordable Care Act (ACA) on the labor supply of Americans ages 50 and older. Using data from the Health and Retirement Study and the Medical Expenditure Panel Survey, we estimate a dynamic programming model of retirement that accounts for both saving and uncertain medical expenses. Importantly, we model the two key channels by which health insurance rates are predicted to change: the Medicaid expansion and the subsidized private exchanges.
1 Introduction

The Affordable Care Act (ACA) is the most significant reform to the health care sector in
since the 1960s. The ACA’s provisions fall into four main categories: (1) an expansion of Med-
icaid; (2) an overhaul of private non-group insurance, including community rating, coverage
standards, the introduction of exchanges, subsidies, and purchase mandates; (3) a mandate
for large employers to offer health insurance coverage, and subsidies for smaller employers;
(4) miscellaneous provisions including reforms to coverage standards, the tax code, and the
management of Medicare.\footnote{A comprehensive list can be found in The Henry J. Kais
er Family Foundation (2013).} In this paper, we assess the impact of the Medicaid and private
non-group insurance provisions of the ACA on the labor supply and saving of Americans
ages 50 and older. Using an estimated structural model of worker behavior, we focus on key
provisions of the ACA that are likely to affect older workers.

We consider the following two sets of provisions. First, the ACA expands Medicaid eligibility
for low-income households younger than 65. Prior to the ACA, low-income households near-
ing retirement qualified for Medicaid only if they were disabled. Moreover, under the ACA
Medicaid applicants no longer face an asset test, meaning that they can qualify for Medicaid
even if they hold significant wealth. The ability to carry wealth into retirement should make
Medicaid more attractive for older workers. Overall, the Medicaid expansion could either
increase or reduce labor supply by the elderly. Perhaps most likely, fewer people will work, as
they can now qualify for Medicaid if they retire.

The second set of provisions involves non-group insurance. The ACA establishes exchanges
where households without group coverage can purchase insurance. The policies offered on these
exchanges must meet coverage standards, and they must be community-rated, i.e., insurers
cannot price-discriminate by health. The ACA also requires uninsured households ineligible
for Medicaid to purchase insurance, provides tax subsidies for most purchases, and levies
penalties on those not complying. These changes should significantly alter the customer base
and actuarial costs in the non-group market. Although the subsidies will allow most households
to purchase non-group insurance more cheaply, healthy and/or lightly subsidized individuals
may see their premiums rise. Because many workers lose their employer-provided insurance
after they leave their job (and the COBRA buy-in period expires), changes in the price of non-group insurance may change their retirement decisions. Because most people will be able to buy non-group health insurance more cheaply, early retirement will probably increase. Balancing against this, the subsidies provided under the ACA will allow uninsured low-income workers to purchase cheap insurance in the non-group market. Prior to the ACA these people may have used default on medical bills as a substitute for health insurance. However, default is a good substitute for insurance only when income and assets are low. Acquiring health insurance may encourage these workers to work and save more (Hsu, 2013).

Because the subsidies decrease with income, they also generate work disincentives. As Mulligan (2013) points out, like most means-tested transfers, the ACA subsidies effectively impose a tax on income.

Our goal is to assess the quantitative importance of these effects. To do this, we will extend the structural labor supply and retirement model in French and Jones (2011) to account for these reforms. We extend their model by adding in a much more detailed model of medical spending and insurance. We model explicitly how different types of health insurance plans affect the premiums and coinsurance rates that households face. We use data from the Health and Retirement Study (HRS) and the Medical Expenditure Panel Survey (MEPS) to estimate the structural model. We use the MEPS data to measure current medical expenditures, as well as who pays for these expenditures (out of pocket, private insurance, Medicaid, etc.). We use this information to estimate a dynamic programming model of labor supply and retirement behavior where individuals face realistic medical expense risk. Upon estimating the model, we conduct counterfactual experiments, where we modify the premia and co-insurance rates, net of subsidies and penalties, that households face.

2 The Affordable Care Act

The Affordable Care Act has many detailed provisions. Here we describe the key aspects of the law.
2.1 Medicaid

Prior to the ACA, very few men younger than 65 were eligible for Medicaid, unless they were disabled. In 2014, participating states became able to offer Medicaid to all households earning less than 138% of the Federal Poverty Line, about $33,000 for a family of four. Currently 32 states plus the District of Columbia have enacted the expansion.

To qualify for Medicaid, households must pass an income test. The income measure used in the test is Modified Adjusted Gross Income, which is Adjusted Gross Income from tax forms with a few minor modifications. Modified Adjusted Gross Income includes labor income, Social Security (but not SSI) income, as well as interest and other sources of capital income. An important change in the Medicaid eligibility rules is that there is no longer an asset test. As long as their asset income does not violate the income test, wealthy households can retire early and qualify for Medicaid.

2.2 Health insurance exchanges, tax subsidies and penalties

For uninsured households not eligible for Medicaid, the ACA facilitates the purchase of non-group health insurance by establishing exchanges, providing subsidies, and imposing a purchase mandate. These changes should significantly alter participation, actuarial costs, and effective purchase prices in the non-group market.

The ACA establishes exchanges for the private purchase of individual non-group health insurance. Policies offered on these exchanges must belong to one of 4 categories – bronze, silver, gold and platinum – according to their actuarial value, the expected fraction of total medical expenses covered by the insurer. The benchmark category is the silver category, consisting of policies with actuarial values of at least 70%, but actuarial values can range from 60% (bronze) to 90% (platinum). All plans must cap the total amount the individual pays out-of-pocket through deductibles and co-pays. In 2014 the out-of-pocket limit could not exceed $6,350 for individual plans and $12,700 for family plans. Above this level the insurer covers 100% of billable medical expenses. Another important aspect of the ACA is that all plans must be community-rated. Plans cannot differ by health status, although they may to some extent differ by age.
Families with income between 100% and 400% of the Federal Poverty Limit (FPL) qualify for subsidies on their insurance premia. The subsidy formula specifies the fraction of income these households are expected to spend on a “typical” insurance policy. Premium expenditures on the typical plan in excess of this amount are rebated as tax credits. The expenditure cap rises with household income until income exceeds 400% of the FPL. Beyond that threshold there is no subsidy (Fernandez, 2014). In contrast, low income individuals are responsible for almost no costs, and can enjoy a subsidy as high as 100% of the premium. Households with income between 100% and 250% of the FPL are also entitled to “cost-sharing subsidies” that lower the out-of-pocket spending caps and raise the actuarial values of their policies. For families with income below 150% of the FPL, the out-of-pocket limit decreases to 36% of the normal limit, and the actuarial value of the plan increases to 94%. (Fernandez 2014, Center on Budget and Policy Priorities 2015). Because both the premium and cost-sharing subsidies fall with income, they are implicit income taxes: see Mulligan (2013) and Harris and Mok (2015).

Households who do not purchase insurance or receive it through their employers must pay a “shared responsibility” penalty. This penalty, which is the larger of a income-independent charge based on household composition or a fraction of household income, was phased in between 2014 and 2016. For example, the penalty for a family of 4 has risen from the greater of $285 or 1% of income to the greater of $2,085 or 2.5% of income.

2.3 Employer Mandate

The ACA affects the share of individuals who are offered employer provided health insurance, because of penalties that firms must pay. Firms employing fewer than 50 employees must provide health insurance, or pay a penalty of $3,000 for each full time employee, up to a maximum of $2,000 times the number of full- time employees minus 30. The penalty is increased each year by the growth in insurance premiums.

If the employer has 25 or fewer employees and average wage up to $50,000, it may be eligible for a health insurance tax credit.

Individuals working at large firms may see their coverage rise. Small low wage firms will have added incentives to cut their health insurance plans, since their workers can receive free or
low cost health insurance from Medicaid or exchanges. Workers at these firms may be willing
to accept the loss of health insurance for only a small increase in wages. For this reason, the
Congressional Budget Office predicts that employer provided coverage will fall slightly under
the ACA.

Because the predicted effect of the ACA comes mostly through the growth of non-group
insurance on exchanges and through Medicaid, we focus on these margins. We assume no
change in the structure of employer provided insurance: those covered by employer provided
insurance before the reform continue to be covered, those not covered by employer provided
coverage will continue not to be covered.

2.4 Total Cost and Total Projected Increase in Insurance Coverage

The Congressional Budget Office (2015) projects the total net cost of the ACA’s “insurance
components” for 2016 to be $67 billion, or roughly 0.4% of US GDP. Of this amount, $44 billion
is due to increased Medicaid costs, $41 billion is due to the insurance exchange subsidies, and
$1 billion is due to small business subsidies. The government is also projected to collect an
additional $19 billion through taxes and penalties.

In terms of insured individuals, the CBO projects the ACA to reduce the number of uninsured
by 19 million in 2016. 20 million additional people would be covered through insurance ex-
changes, and 8 million additional people would be covered through through Medicaid and the
Children’s Health Insurance Program, while 10 million fewer people would receive employer-
provided coverage or purchase off-exchange non-group coverage (Congressional Budget Office,
2015). According to the Gallup-Healthways poll (Marken, 2016), between the fourth quarter
of 2013 and the third quarter of 2016, the uninsurance rate among people aged 18-64 fell by
7.5 percentage points. The fraction of people insured in the private non-group market rose
by 3.9 percentage points and the fraction insured by Medicaid rose by 2.5 percentage points.
Other types of insurance (e.g., Medicare) rose as well. The fraction of people insured by their
employer fell by 0.8 percentage points. It is difficult to know how many of these workers, if
any, lost their employer-provided health insurance as a result of the ACA.
3 The Model

The model used in this paper expands the framework developed in French and Jones (2011) to capture the detail of the U.S. health insurance system. The resulting model is very complex and has many parameters. Appendix A provides definitions for all the variables used in the main text.

3.1 Preferences and Demographics

Consider a household head with marital status \(SP_t = 1 \) if the head has a spouse or partner and 0 otherwise. This individual seeks to maximize his expected discounted (where the subjective discount factor is \(\beta \)) lifetime utility at age \(t = 51, 60, ..., 95 \). Each period that he lives, the individual derives utility from consumption, \(C_t \), and hours of leisure, \(L_t \). The within-period utility function is of the form

\[
U(C_t, L_t) = \frac{1}{1 - \nu} \left(\frac{C_t}{(1 + SP_t)^{\gamma}} \right)^{\gamma} L_t^{1-\gamma} \nu.
\]

We allow both \(\beta \) and \(\gamma \) to vary across individuals. Individuals with higher values of \(\beta \) are more patient, while individuals with higher values of \(\gamma \) place less weight on leisure. We follow Scholz and Seshadri (2013) and many others by using equivalence scales, so that the consumption needs of a couple are less than twice as great as the consumption needs of two singles. The quantity of leisure is

\[
L_t = L - N_t - \phi_P t P_t - \phi_{RE} RE_t - \phi_H H_t,
\]

where \(L \) is the individual’s total annual time endowment. Participation in the labor force is denoted by \(P_t \), a 0-1 indicator equal to one when hours worked, \(N_t \), are positive. The fixed cost of work, \(\phi_P t \), is treated as a loss of leisure. Including fixed costs helps us capture the empirical regularity that annual hours of work are clustered around 2000 hours and 0 hours (Cogan, 1981). Following a number of studies,\(^2\) we allow preferences for leisure, in our case the value

\(^2\)Examples include Rust and Phelan (1997), Blau and Gilleskie (2006) and Blau and Gilleskie (2008), Gustman and Steinmeier (2005), and van der Klaauw and Wolpin (2008).
of \(\phi_{Pt} \), to increase linearly with age. Workers that leave the labor force can re-enter; re-entry is denoted by the 0-1 indicator \(RE_t = 1\{P_t = 1 & P_{t-1} = 0\} \), and individuals re-entering the labor market incur the cost \(\phi_{RE} \). The quantity of leisure also depends on an individual’s health status, \(H_t \).

Following De Nardi (2004), workers that die value bequests of assets, \(A_t \), according to the function \(b(A_t) \):

\[
b(A_t) = \theta B \frac{(A_t + \kappa)^{(1-\nu)\gamma}}{1 - \nu}.
\]

3.2 Budget Constraints

The individual holds three forms of wealth: assets (including housing); pensions; and Social Security. He has several sources of income: asset income, \(rA_t \), where \(r \) denotes the constant pre-tax interest rate; labor income, \(W_tN_t \), where \(W_t \) denotes wages; spousal income, \(ys_t \); pension benefits, \(pb_t \); the sum of Social Security, Disability Insurance and Supplemental Security Income benefits, \(ss_t \); and government transfers, \(tr_t \). The asset accumulation equation is

\[
A_{t+1} = A_t + Y_t + tr_t - M_t - C_t.
\]

\(M_t \) denotes medical expenses. Post-tax income, \(Y_t = Y(rA_t, W_tN_t, ys_t, ss_t, pb_t, \tau) \), is a function of taxable income and the tax structure \(\tau \). \(\tau \) includes general income taxes, payroll taxes, and taxation of Social Security benefits (Jones and Li, 2016).

Individuals face the borrowing constraint

\[
A_t + Y_t + tr_t - C_t \geq 0.
\]

Because it is illegal to borrow against future Social Security benefits and difficult to borrow against many forms of future pension benefits, individuals with low non-pension, non-Social Security wealth may not be able to finance their retirement before their Social Security benefits become available at age 62 (Kahn 1988; Rust and Phelan 1997; Gustman and Steinmeier...
Following Hubbard, Skinner, and Zeldes (1994, 1995), government transfers provide a consumption floor:

\[tr_t = \max\{0, C_{\min} - (A_t + Y_t)\}. \]

Equation (6) implies that government transfers bridge the gap between an individual’s “liquid resources” (the quantity in the inner parentheses) and the consumption floor. Treating \(C_{\min} \) as a sustenance level, we further require that \(C_t \geq C_{\min} \). Our treatment of government transfers implies that individuals will always consume at least \(C_{\min} \), even if their out-of-pocket medical expenses exceed their financial resources. Equation (6) captures provisions such as the medically needy pathway for Medicaid, debt removal through bankruptcy, or debt forgiveness by hospitals.

3.3 Health, Medical Expenses and Health Insurance

The individual faces both health and mortality risk. His health status, \(H_t \), can take on three values: good, bad, and disabled. The probability of surviving to age \(t + 1 \), conditional on being alive at age \(t \), is given by \(s_t \). As described in appendix B.2, we allow \(s_t \) and the transition probabilities for health to depend on previous health and age.

We define \(Z_t \) as the sum of total medical expenses paid to providers, regardless of who pays for them. In our empirical analysis, the payment side of \(Z_t \) will include payments by all payors, patients, insurers, Medicare, and Medicaid. The process for total expenses depends on health, marital status, age and the person-specific component \(\psi_t \):

\[\ln Z_t = \mu_z(H_t, SP_t, t) + \sigma_z(H_t, SP_t, t) \times \psi_t \]

We assume time-\(t \) medical expenses are realized after time-\(t \) labor decisions have been made. We view this as preferable to the alternative assumption that the time-\(t \) medical expense shocks are fully known when workers decide whether to hold on to their employer-provided health insurance. Given the borrowing constraint and timing of medical expenses, an individual with extremely high medical expenses this year could have negative net worth next year. Because many people in our data have unresolved medical expenses, medical expense debt seems reasonable.
Even after controlling for health status, French and Jones (2004) find that medical expenses are very volatile and persistent. Thus we model the person-specific component of medical expenses, ψ_t, as

\begin{align}
\psi_t &= \zeta_t + \xi_t, \quad \xi_t \sim \mathcal{N}(0, \sigma^2_\xi) \\
\zeta_t &= \rho_m \zeta_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim \mathcal{N}(0, \sigma^2_\varepsilon)
\end{align}

where ξ_t and ε_t are serially and mutually independent. ξ_t is the transitory component, while ζ_t is the persistent component, with autocorrelation ρ_m.

There are several different types of health insurance model. As a first step, it is useful to characterize an individual by his access to employer-provided health insurance (EPHI), which we denote by I_t. At the beginning of a period, the individual finds himself in one of three mutually exclusive states:

1. **retiree** health insurance that he can hold on to until his death.

2. **tied** health insurance that he will lose shortly after his current job terminates. If a worker with tied health insurance leaves his job, he can keep his health insurance coverage for that year. This is meant to proxy for the fact that most firms must provide “COBRA” health insurance to workers after they leave their job. After one year of tied coverage and not working, the individual’s insurance ceases.\(^4\)

3. **non-group** insurance, i.e., an individual is on his own. He has the choice between purchasing insurance on the private non-group market or being uninsured.

Accounting for the choices of those in the non-group category, there are four types of privately-provided health insurance: retiree, tied, private, and uninsured.

Workers move between these insurance categories according to the rules defined in appendix A.1

\(^4\)Although there is some variability across states as to how long individuals are eligible for employer-provided health insurance coverage, by Federal law most individuals are covered for 18 months (Gruber and Madrian, 1996). Given a model period of one year, we approximate the 18-month period as one year. We do not model the option to take up COBRA, assuming that the take-up rate is 100%. The actual take-up rate is around $\frac{2}{3}$ (Gruber and Madrian, 1996). In French and Jones (2011) we conducted a robustness test where we simulated the model assuming that the rate was 0%, so that individuals transitioned from tied to non-group as soon as they stopped working, and found very similar labor supply patterns.
In addition to private coverage, individuals may receive Medicare and/or Medicaid benefits, according to the following rules:

1. Medicare insurance if he is either disabled or has reached the age of 65.\(^5\)

2. An individual will qualify for Medicaid insurance if he is poor enough to receive Supplementary Security Income and he is either disabled or has reached the age of 65.\(^6\)

Both Medicare and Medicaid operate on top of the private coverage, although some combinations are impossible. We model the interaction of public and private health insurance as follows:

1. In actual practice the interaction of employer (retiree or tied) coverage with Medicare is complicated, depending on employment and firm size (Centers for Medicare and Medicaid Services, 2014). We assume instead that all individuals receiving both EPHI and Medicare share a “joint” plan that differs only by demographics (\(t\) and \(SP_t\)).

2. Many households purchase “Medigap” insurance to help pay for expenses not covered by Medicare. Our model abstracts away from this choice, and our empirical estimates will combine the two coverages.

3. Medicaid insurance is intended to be the payer of last resort, which is to say that Medicaid covers only the co-payments and deductibles left behind by other insurers.

4. While Medicaid covers Medicare premia, it does not cover the premia associated with private insurance. As Brown and Finkelstein (2008) show, the latter provision can at times strongly discourage the purchase of private insurance.

5. The eligibility rules of the DI program require that the individual not work during the application period, although he may work later. As a result, an individual with tied

\(^5\)Individuals who have paid into the Medicare system for at least 10 years become eligible at age 65. A more detailed description of the Medicare eligibility rules is available at http://www.medicare.gov/.

\(^6\)Our definition of Medicaid is that of “categorically needy” recipients, who qualify because their income and wealth are low, regardless of their medical conditions. The provision of Medicaid through other mechanisms, the most important of which is the “medically needy” provision, is captured by the consumption floor.
coverage will lose this coverage if he transitions to DI and the associated Medicare and Medicaid coverage.

Let I_t^+ denote the health insurance coverage the household receives after it has (possibly) decided whether to purchase private non-group coverage and after i’s Medicaid eligibility has been determined. The realized value of I_t^+ determines how the total health care cost Z_t translates into out-of-pocket expenditures M_t via the formula

$$M_t = \text{premium}(I_t^+, t, P_t, \hat{Z}_t, SP_t) + \text{copay}(I_t^+, Z_t),$$

$$\hat{Z}_t = \mathbb{E}[Z_t | t, H_t, \zeta_{t-1}].$$

Here $\text{premium}(\cdot)$ is the health insurance premium, which can depend on expected medical expenditures, \hat{Z}_t; the function $\text{copay}(I_t^+, Z_t)$ determines how much of Z_t is assigned to the individual via co-payments and deductibles. We estimate both $\text{premium}(\cdot)$ and $\text{copay}(\cdot)$-function directly from the MEPS data. See the appendix for more details.

3.4 Marital Status and Spousal Income

Because spousal income can serve as insurance against medical shocks, and because marital status affects eligibility for Medicaid and other government programs, we include it in the model. We assume that when a spouse is present, spousal income y_{st} takes on two values: (i) zero; or (ii) a positive value that varies with age. We assume the transition probabilities for marital status, and whether the spouse has positive income depend on its current current marital status and income, current health, and age: see appendix B.5 for details.

3.5 Wages

We assume that the logarithm of wages at time t, $\ln W_t$, is a function of health status (H_t), age (t), hours worked (N_t) and an autoregressive component, ω_t:

$$\ln W_t = W(H_t, t) + \alpha \ln N_t + \omega_t.$$
The inclusion of hours, N_t, in the wage determination equation captures the empirical regularity that, all else equal, part-time workers earn relatively lower wages than full time workers. The autoregressive component ω_t has the correlation coefficient ρ_W and the normally-distributed innovation η_t:

\[\omega_t = \rho_W \omega_{t-1} + \eta_t, \quad \eta_t \sim N(0, \sigma^2_{\eta}) \]

3.6 Social Security, Disability Insurance, and Pensions

Because pensions and Social Security generate potentially important retirement incentives, we model the two programs in detail.

Individuals receive no Social Security benefits until they apply. Individuals can first apply for benefits at age 62. Upon applying the individual receives benefits until death. The individual’s Social Security benefits depend on his Average Indexed Monthly Earnings (AIME), which is roughly his average income during his 35 highest earnings years in the labor market.

The Social Security System provides three major retirement incentives. First, while income earned by workers with less than 35 years of earnings automatically increases their AIME, income earned by workers with more than 35 years of earnings increases their AIME only if it exceeds earnings in some previous year of work. Because Social Security benefits increase in AIME, this causes work incentives to drop after 35 years in the labor market.

Second, the age at which the individual applies for Social Security affects the level of benefits. For every year before age 65 the individual applies for benefits, benefits are reduced by 6.67% of the age-65 level. This is roughly actuarially fair. But for every year after age 65 that benefit application is delayed, benefits rise by 5.5% up until age 70. This is less than actuarially fair, and encourages people to apply for benefits by age 65.

Third, the Social Security Earnings Test taxes labor income of beneficiaries at a high rate. For individuals aged 62-64, each dollar of labor income above the “test” threshold of $9,120...
leads to a 1/2 dollar decrease in Social Security benefits, until all benefits have been taxed away. For individuals aged 65-69 before 2000, each dollar of labor income above a threshold of $14,500 leads to a 1/3 dollar decrease in Social Security benefits, until all benefits have been taxed away. Although benefits taxed away by the earnings test are credited to future benefits, after age 64 the crediting rate is less than actuarially fair, so that the Social Security Earnings Test effectively taxes the labor income of beneficiaries aged 65-69. When combined with the aforementioned incentives to draw Social Security benefits by age 65, the Earnings Test discourages work after age 65. In 2000, the Social Security Earnings Test was abolished for those 65 and older. Because those born in 1933 (the average birth year in our sample) turned 67 in 2000, we assume that the earnings test was repealed at age 67. These incentives are incorporated in the calculation of \(ss_t \), which is defined to be net of the earnings test.

Associated with Social Security program is Disability Insurance (DI). Individuals with \(H_t = \text{disabled} \) receive Disability benefits if their income is below a threshold. The level of the benefits is a function of \(AIME \). Individuals with low \(AIME \) and low assets also receive top-up benefits through the Supplemental Security Income (SSI) program. DI benefits are labor-income tested: individuals who earn more than $12,840 in 2014 do not receive any benefits. We model this period-by-period conditional on \(H_t = \text{disabled} \).

Poor individuals who are elderly or disabled (\(H_t = \text{disabled} \) or \(t \geq 65 \)) can qualify for Supplemental Security Income (SSI). Individuals with income below \(Y^{SSI} \) and assets below \(A^{SSI} \) receive a transfer of \((Y^{SSI} - Y_t) \). As described in Table 10, they also qualify for Medicaid.

Pension benefits, \(pb_t \), are a function of the worker’s age and pension wealth. Pension wealth (the present value of pension benefits) in turn depends on pension accruals. We assume that pension accruals are a function of a worker’s age, labor income, and health insurance type, using a formula estimated from confidential HRS pension data. The data show that pension accrual rates differ greatly across health insurance categories; accounting for these differences is essential in isolating the effects of employer-provided health insurance. When finding an individual’s decision rules, we assume further that the individual’s existing pension wealth is a function of his Social Security wealth, age, and health insurance type. Details of our pension

\[^8 \text{The credit rates are based on the benefit adjustment formula. If a year’s worth of benefits are taxed away between ages 62 and 64, benefits in the future are increased by 6.67%. If a year’s worth of benefits are taxed away between ages 65 and 66, benefits in the future are increased by 5.5%}. \]
model are described in Section 6.6; also see French and Jones (2011).

3.7 Recursive Formulation

In addition to choosing hours, consumption, and potentially private non-group insurance vs. self-insurance, eligible individuals decide whether to apply for Social Security benefits; let the indicator variable $B_t \in \{0, 1\}$ equal one if an individual has applied. In recursive form, the individual’s problem can be written as

$$V_t(X_t) = \max_{C_t, N_t, B_t, I_t^+} \left\{ \frac{1}{1-\nu} \left(\frac{C_t^\gamma}{L - N_t - \phi_P P_t - \phi_RE RE_t - \phi_H(H_t)} \right)^{1-\gamma} + \beta (1-s_{t+1}) b(A_{t+1}) + \beta s_{t+1} \int V_{t+1}(X_{t+1})dF(X_{t+1}|X_t, t, C_t, N_t, B_t) \right\}$$

subject to equations (5) and (6). The vector $X_t = (A_t, B_{t-1}, H_t, AIME_t, I_t, P_{t-1}, \omega_t, \zeta_{t-1}, \Upsilon_t)$ contains the individual’s state variables, while the function $F(\cdot|\cdot)$ gives the conditional distribution of these state variables, using equations (4) and (7)–(12). 9 The solution to the individual’s problem consists of the consumption rules, work rules, insurance choice rules, and benefit application rules that solve equation (13). These decision rules are found numerically using value function iteration.

4 Modeling changes induced by the ACA

4.1 Medicaid expansion

After 2014 low-income people can get Medicaid through the categorically needy channel, regardless of asset levels. In particular the eligibility test changes from

$$I_t^+ = \text{Medicaid} \text{ if } \{Y_t < Y_{\text{cat-needy}}(SP_t) \text{ and } A_t < A_{\text{cat-needy}}(SP_t)\},$$

\footnote{Because we impute pension benefits as a function of the other state variables (as in French and Jones 2011), pension wealth is not a state variable.}
(15) \[I_t^+ = Medicaid \text{ if } \{ Y_t < Y_{\text{cat-needy}}(SP_t) \}. \]

In both cases the eligibility thresholds depend on marital status. As before the reform, individuals who fail the Medicaid eligibility tests but have catastrophic medical spending receive the minimum consumption level given by equation (6).

4.2 Health insurance exchanges, tax subsidies and penalties

The ACA will affect the premium(·) and copay(·)-functions for the non-group market. First, the premium(·) function will no longer depend on expected medical expenses except those related to age, and copay(·) function will have to satisfy the actuarial value and out-of-pocket limits specified by the law. Second, qualifying households will receive premium credits and cost-sharing subsidies. In addition, those who self-insure will have to pay the shared responsibility penalty for not buying insurance.

5 Estimation

To estimate the model, we adopt a two-step strategy, similar to the one used by Gourinchas and Parker (2002) and French (2005). In the first step we estimate or calibrate parameters that can be cleanly identified without explicitly using our model. For example, we estimate mortality rates and health transitions straight from demographic data. In the second step, we estimate the preference parameters of the model, as well as the consumption floor, using the method of simulated moments (MSM).

5.1 Moment Conditions

The objective of MSM estimation is to find the preference vector that yields simulated life-cycle decision profiles that “best match” (as measured by a GMM criterion function) the profiles from the data. The moment conditions that comprise our estimator are:
1. Because an individual’s ability to self-insure against medical expense shocks depends upon his asset level, we match 1/3rd and 2/3rd asset quantiles by age. We match these quantiles in each of T periods (ages), for a total of $2T$ moment conditions.

2. We match job exit rates by age for each health insurance category. With three health insurance categories (non-group, retiree and tied), this generates $3T$ moment conditions.

3. Because the value a worker places on employer-provided health insurance may depend on his wealth, we match labor force participation conditional on the combination of asset quantile and health insurance status. With 2 quantiles (generating 3 quantile-conditional means) and 3 health insurance types, this generates $9T$ moment conditions.

4. To help identify preference heterogeneity, we utilize a series of questions in the HRS that ask workers about their preferences for work. We combine the answers to these questions into a time-invariant index, $pref \in \{\text{high}, \text{low}, \text{out}\}$, which is described in greater detail in Section 6.7. Matching participation conditional on each value of this index generates another $3T$ moment conditions.

5. We match hours of work and participation conditional on our binary health indicator. This generates $4T$ moment conditions.

6. Whether it is more attractive to buy private non-group health insurance or to self-insure against medical expense risk primarily depends on a household’s asset level. Conditional on neither having access to employer-provided health insurance nor being eligible for Medicare or Medicaid, we match the fraction of households purchasing private insurance. Since everybody becomes eligible for Medicare at age 65, this generates $3T_{65}$ moment conditions, where T_{65} denotes all ages included in the model before 65.

Combined, the five preceding items result in $21T + 3T_{65}$ moment conditions.

5.2 Initial Conditions and Preference Heterogeneity

A key part of our estimation strategy is to compare the behavior of individuals with different forms of employer-provided health insurance. If access to health insurance is an important
factor in the retirement decision, we should find that individuals with tied coverage retire later than those with retiree coverage. In making such a comparison, however, we must account for the possibility that individuals with different health insurance options differ systematically along other dimensions as well. For example, individuals with retiree coverage tend to have higher wages and more generous pensions.

We control for this “initial conditions” problem in three ways. First, the initial distribution of simulated individuals is drawn directly from the data. Because households with retiree coverage are more likely to be wealthy in the data, households with retiree coverage are more likely to be wealthy in our initial distribution. Similarly, in our initial distribution households with high levels of education are more likely to have high values of the persistent wage shock ω_t.

Second, we model carefully the way in which pension and Social Security accrual varies across individuals and groups.

Finally, we control for unobservable differences across health insurance groups by introducing permanent preference heterogeneity, using the approach introduced by Heckman and Singer (1984) and adapted by (among others) Keane and Wolpin (1997) and van der Klaauw and Wolpin (2008). Each individual is assumed to belong to one of a finite number of preference “types”, with the probability of belonging to a particular type a logistic function of the individual’s initial state vector: his age, wealth, initial wages, health status, health insurance type, medical expenditures, and preference index.10 We estimate the type probability parameters jointly with the preference parameters and the consumption floor.

In our framework, correlations between preferences and health insurance emerge because people with different preferences systematically select jobs with different types of health insurance coverage. Workers in our data set are first observed in their fifties; by this age, all else equal, jobs that provide generous post-retirement health insurance are more likely to be held by workers that wish to retire early. One way to measure this self-selection is to structurally model the choice of health insurance at younger ages, and use the predictions of that model to infer the correlation between preferences and health insurance in the first wave of the HRS.

10These discrete type-based differences are the only preference heterogeneity in our model. For this reason many individuals in the data make decisions different from what the model would predict. Our MSM procedure circumvents this problem by using moment conditions that average across many individuals.
Because such an approach is computationally expensive, we instead model the correlation between preferences and health insurance in the initial conditions.

5.3 Wage Selection

We estimate a selection-adjusted wage profile using the procedure developed in French (2005). First, we estimate a fixed effects wage profile from HRS data, using the wages observed for individuals who are working. The fixed-effects estimator is identified using wage growth for workers. If wage growth rates for workers and non-workers are the same, composition bias problems—the question of whether high wage individuals drop out of the labor market later than low wage individuals—are not a problem. However, if individuals leave the market because of a wage drop, such as from job loss, then wage growth rates for workers will be greater than wage growth for non-workers. This selection problem will bias estimated wage growth upward.

We control for selection bias by finding the wage profile that, when fed into our model, generates the same fixed effects profile as the HRS data. Because the simulated fixed effect profiles are computed using only the wages of those simulated agents that work, the profiles should be biased upwards for the same reasons they are in the data. We find this bias-adjusted wage profile using the iterative procedure described in French (2005).

6 Data and Calibrations

6.1 HRS Data

We estimate the model using data from the Health and Retirement Survey (HRS) which is nationally representative sample of initially non-institutionalized individuals, and their spouses. We use data from everyone in the HRS who is at least age 51, which is the youngest age that core members of the sample are interviewed. With the exception of assets and medical expenses, which are measured at the household level, our data are for male household heads. The HRS surveys individuals every two years, so that we have 11 waves of data covering the period 1992-2012. The HRS also asks respondents retrospective questions about their work
history that allow us to infer whether the individual worked in non-survey years.

As noted above, the Social Security rules depend on an individual’s year of birth. To ensure that workers in our sample face a similar set of Social Security retirement rules, we fit our model to the data for the cohort of individuals born in the 1940s. However, when estimating the stochastic processes such as marital status, health and spousal income we use the full sample, including older individuals. With the exception of wages and spousal income, we do not adjust the data for cohort effects. Because our subsample of the HRS covers a fairly narrow age range, this omission should not generate much bias.

6.2 Health and mortality

We estimate health transitions and mortality rates simultaneously by fitting the transitions observed in the HRS to a multinomial logit model. We allow the transition probabilities to depend on age and current health status. We estimate annual transition rates: combining annual transition probabilities in consecutive years yields two-year transition rates we can fit to the HRS data. Appendix B.2 describes this process in detail.

We assign individuals to one of three health states: good, bad or disabled. First, we give individuals a health status of “good” if their self-reported health is excellent, very good or good, and a health status of “bad” if their self-reported health is fair or poor. We reclassify individuals as disabled if they are receiving Medicare and/or Medicaid benefits and are younger than 65, regardless of self reported health. We use this measure of disability because we wish to capture both the cash transfers, and even more importantly, the Medicare or Medicaid insurance received by the disabled. Because DI recipients are transferred to Social Security at age 65, and virtually everyone qualifies for Medicare at the same age, we are able to identify disability in our data only up to age 64. From age 65 forward, we collapse the space of health outcomes to back to {bad, good}. This requires us to estimate three health transition specifications: one for the three-state health measure; one for the two-state measure; and one for the transition from three states to two between ages 64 and 65.\footnote{Because we can assign people to good or bad health at any age, the data we use to estimate the two-state models encompass a broader age range than is used in the structural model.} To simplify the structural model, we assume that people in the “disabled” and “bad” health categories share the same
(total) medical expense distributions.

<table>
<thead>
<tr>
<th>Ages 50 → 51: Three states → three states</th>
<th>Next Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>Disabled</td>
</tr>
<tr>
<td>Disabled</td>
<td>95.4</td>
</tr>
<tr>
<td>Bad</td>
<td>10.8</td>
</tr>
<tr>
<td>Good</td>
<td>0.3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ages 60 → 61: Three states → three states</th>
<th>Next Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>Disabled</td>
</tr>
<tr>
<td>Disabled</td>
<td>92.8</td>
</tr>
<tr>
<td>Bad</td>
<td>3.9</td>
</tr>
<tr>
<td>Good</td>
<td>0.5</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ages 64 → 65: Three states → two states</th>
<th>Next Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>Bad</td>
</tr>
<tr>
<td>Disabled</td>
<td>62.8</td>
</tr>
<tr>
<td>Bad</td>
<td>78.7</td>
</tr>
<tr>
<td>Good</td>
<td>5.8</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ages 70 → 71: Two states → two states</th>
<th>Next Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>Bad</td>
</tr>
<tr>
<td>Bad</td>
<td>77.1</td>
</tr>
<tr>
<td>Good</td>
<td>8.6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Ages 80 → 81: Two states → two states</th>
<th>Next Year</th>
</tr>
</thead>
<tbody>
<tr>
<td>Current Year</td>
<td>Bad</td>
</tr>
<tr>
<td>Bad</td>
<td>73.4</td>
</tr>
<tr>
<td>Good</td>
<td>12.5</td>
</tr>
</tbody>
</table>

Table 1: Health Transition Probabilities

Table 1 shows transition probabilities for selected ages. As people age, good health becomes less persistent, and mortality rates rise. Disability is very persistent.

6.3 The MEPS dataset

An important limitation of the HRS data is that it only contains data on out-of-pocket medical spending and lacks information on other payors of medical care, such as Medicaid, Medicare and private health insurance. Although there there are some self-reported survey data on total
billable medical expenditures in the HRS, these data are mostly imputed, and are considered to be of low quality. To circumvent this issue, we use data from the 1996-2012 waves of the Medical Expenditure Panel Survey (MEPS).

The MEPS is a nationally representative survey. Respondents are asked about health status, health insurance, and health care expenditures paid out-of-pocket, by Medicaid, by Medicare, private insurance and by other sources. The MEPS data are matched to information provided by providers. Although it does not capture certain types of medical expenditures, such as nursing home expenditures, it captures most of the sources of medical spending that are faced by individuals in their 50s and 60s. Sing, Banthin, Selden, Cowan, and Keehan (2006) and Pashchenko and Porapakkarm (forthcoming) provide extended comparisons between the MEPS data and the aggregate statistics.

MEPS respondents are interviewed up to 5 times over a 2 year period, forming short panels. We aggregate the data to an annual level. We use the same sample selection rules in the MEPS that we use for the HRS data. Specifically, we keep only men (although we also keep information on spouses of married men) ages 51 and older, drop those who were observed to be married over the sample period, work, or be younger than 72 in 1996, 74 in 1998, etc. As with the HRS data, we assign individuals a health status of “good” if self-reported health is excellent, very good or good, and are assigned a health status of “bad” if self-reported health is fair or poor.

6.4 Total Medical Spending

MEPS has data on total medical spending by all providers. We aggregate medical spending to the household level and model the mean of logged medical expenses modeled as a function of: a quartic in age, current health status, marital status, marital status interacted with age, health interacted with marital status, and health status interacted with age. We estimate these profiles using a fixed-effects estimator.

We use fixed-effects rather than OLS for two reasons. First, differential mortality causes the composition of our sample to vary with age, while we are interested in how medical expenses vary for the same individuals as they grow older. Second, cohort effects are likely
to be important. Failure to account for the secular increase in medical expenses will lead to understate medical expenses growth by age. Cohort effects are captured in a fixed-effect estimator, as they are merely the average fixed effect for all members of a given cohort.

![Mean Medical Expenses, by Health and Marital Status](image)

Figure 1: Total Medical Spending, by Age and Health Status

The combined variance of the medical expense shocks ($\zeta_t + \xi_t$) is modeled with the same variables and functional form as the mean.

Figure 1 presents predicted medical spending, by age, health, and marital status. Average medical expenses for healthy people are about 50% lower than for unhealthy people, conditional on age. Medical spending is relatively constant until age 75, when total medical spending begins to rise rapidly. De Nardi, French, Jones, and McCauley (forthcoming) document similar patterns in the MCBS data.

The model-predicted distribution of medical spending lines up well with the data. For example, in the data mean household medical spending is $10,310 and $13,570 for those older and younger than 65, respectively, of which $1,860 and $2,180 are spent out-of-pocket for those under and over 65, respectively. Table 2 presents further descriptives. It shows that the 95th percentile of total medical spending is $38,470 and $48,860 for those under and over 65, respectively.
Table 2 does not include insurance premia. We describe insurance premia in section 6.5 below.

<table>
<thead>
<tr>
<th></th>
<th>Younger than 65</th>
<th>65 and Older</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Individual</td>
<td>Household</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>Out-of-pocket</td>
</tr>
<tr>
<td>Mean</td>
<td>5,590</td>
<td>990</td>
</tr>
<tr>
<td>Median</td>
<td>1,860</td>
<td>440</td>
</tr>
<tr>
<td>90th percentile</td>
<td>12,670</td>
<td>2,420</td>
</tr>
<tr>
<td>95th percentile</td>
<td>22,450</td>
<td>3,670</td>
</tr>
<tr>
<td>Mean</td>
<td>8,640</td>
<td>1,370</td>
</tr>
<tr>
<td>Median</td>
<td>3,690</td>
<td>720</td>
</tr>
<tr>
<td>90th percentile</td>
<td>21,250</td>
<td>3,190</td>
</tr>
<tr>
<td>95th percentile</td>
<td>34,440</td>
<td>4,620</td>
</tr>
</tbody>
</table>

Table 2: Distribution of Medical Spending, both Total and Out-of-Pocket, by Age, Individual versus Household

6.5 Health Insurance and Medical Expenses

We assign individuals to one of four mutually exclusive health insurance groups: retiree, tied, private and uninsured, as described in Section 3. In addition, they can have Medicaid or Medicare coverage if they are disabled. We allow for the fact that many people have Medicaid or Medicare coverage in addition to other coverage they might have. Both the HRS and MEPS have their own advantages for understanding the effect of health insurance. MEPS has better information on the copays and premia of different types of insurance. HRS has better information to understand the impact of health insurance on savings and labor supply. In both datasets individuals are asked similar questions, and we code the data similarly in both the HRS and MEPS.

Our interest is in understanding how insurance affects the male head of household within a family. However, many of these male heads are married. A head of household may be uninsured although his spouse may receive insurance from her own employer, for example. To address this issue we aggregate medical spending variables to the household level, so that we can focus on household medical expense risk, but use the head’s insurance status. For this
reason, many individuals who are “uninsured” may have positive insurance premia paid for their spouse’s insurance.

Many people receive health insurance through multiple sources. In order to limit the number of possible health insurance states, we code individuals with multiple plans as having the types of plans that usually have smaller premia and contribute a larger share of the coverage. We consider individuals with both private non-group and employer coverage to have employer coverage. Those with both Medicare and Medicaid coverage are coded as having Medicaid coverage.

In the MEPS, individuals are asked about whether their insurance was obtained from an employer or from employer, or whether their insurance was privately purchased. However, we do not know whether an individual with employer-provided coverage could continue the coverage after they left their job. Thus we cannot distinguish between those who have retiree and tied coverage. Fortunately, French and Jones (2011) show that those with tied coverage and retiree coverage have similar medical spending. Thus we assume that those with tied coverage have the same co-insurance rate those with retiree coverage.

The MEPS shows the medical costs covered by each payor. This allows us to better understand the share of spending paid out-of-pocket, versus paid by insurers. In MEPS, medical spending refers to spending over the last year. However, many people are insured for only part of the year. We classify individuals who are insured for part of year as insured. For those individuals, we may be understating the premia and the amount of insurance provided.

Table 3 presents descriptive evidence on household medical spending for those ages 50-64, by health insurance type. The table illuminates a few important facts. First, the uninsured tend to have lower total medical spending than other groups.12 The uninsured have average spending of $7,340 per year, whereas it is $8,420 for those who purchase insurance privately and $10,960 for those with employer provided coverage. Second, for all groups, payments come from multiple sources. Many of those who are uninsured receive a large amount of payments from different payor sources. Of the $7,340 in medical expenses of the uninsured, only $2,080

12Some of these differences reflect differences in payment, since the MEPS medical expenditure data include only bills that were paid. One might be concerned that many medical bills of the uninsured go unpaid. However, MEPS also has data on claims made by providers. Claims made by providers, too, are lower for the uninsured.
Table 3: Household Medical Spending, Ages 50-64, by Insurance Type

<table>
<thead>
<tr>
<th></th>
<th>Uninsured</th>
<th>Medicare</th>
<th>Medicaid</th>
<th>Private non-group</th>
<th>Employer-provided</th>
<th>Combined*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total expenses</td>
<td>7,340</td>
<td>17,020</td>
<td>15,360</td>
<td>8,420</td>
<td>10,960</td>
<td>20,090</td>
</tr>
<tr>
<td>Out-of-pocket</td>
<td>2,080</td>
<td>2,920</td>
<td>1,040</td>
<td>2,620</td>
<td>1,910</td>
<td>2,340</td>
</tr>
<tr>
<td>Pvt insurance</td>
<td>580</td>
<td>850</td>
<td>320</td>
<td>2,730</td>
<td>4,260</td>
<td>8,570</td>
</tr>
<tr>
<td>Medicare</td>
<td>970</td>
<td>9310</td>
<td>4,050</td>
<td>840</td>
<td>490</td>
<td>4,340</td>
</tr>
<tr>
<td>Medicaid</td>
<td>80</td>
<td>100</td>
<td>6,740</td>
<td>20</td>
<td>30</td>
<td>620</td>
</tr>
<tr>
<td>Other govt**</td>
<td>1,110</td>
<td>1,310</td>
<td>470</td>
<td>100</td>
<td>160</td>
<td>350</td>
</tr>
<tr>
<td>Other***</td>
<td>390</td>
<td>160</td>
<td>240</td>
<td>90</td>
<td>80</td>
<td>80</td>
</tr>
<tr>
<td>Out-of-pocket insurance premia</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Private ins.</td>
<td>450</td>
<td>520</td>
<td>110</td>
<td>5,940</td>
<td>2,800</td>
<td>2,220</td>
</tr>
<tr>
<td>Medicare</td>
<td>130</td>
<td>1,160</td>
<td>60</td>
<td>160</td>
<td>100</td>
<td>860</td>
</tr>
<tr>
<td>Employment rate</td>
<td>0.65</td>
<td>0.08</td>
<td>0.20</td>
<td>0.69</td>
<td>0.84</td>
<td>0.27</td>
</tr>
<tr>
<td>Labour income</td>
<td>19,220</td>
<td>2,420</td>
<td>3,900</td>
<td>31,760</td>
<td>43,520</td>
<td>8,260</td>
</tr>
<tr>
<td>Observations</td>
<td>9,391</td>
<td>1,719</td>
<td>5,155</td>
<td>2,371</td>
<td>33,326</td>
<td>1,142</td>
</tr>
</tbody>
</table>

MEPS data. Households with a man aged 50-64, all amounts in 2014 dollars

*Combined=Medicaid OR Medicare AND Private or Employer Provided.
*Other government plans=Tricare, Workers Comp, Other State/Local Plans.
***Other=unclassified sources including automobile, homeowner’s, liability.

is spent out-of-pocket, for example. Likewise, many or those with private insurance pay a large amount out-of-pocket. Those with private non-group and employer-provided insurance spend $2,620 and $1,910 are paid out-of-pocket by those who purchase insurance of the non-group market and group (ie. employer market). For this reason differences in coinsurance rates between the uninsured and insured are smaller than what one might initially guess.

Those with no insurance have their care paid for by multiple sources. After out-of-pocket spending, the largest payor of health care for the uninsured is “other government”, which includes workers compensation and other state and local plans.

Coinsurance rates and Insurance Premia: MEPS data

For any given insurance type, the copay function $\text{copay}(I^+, Z_t)$ is characterized by three parameters: the deductible ι_d, the coinsurance rate ι_c, and the out-of-pocket maximum. ι_{om}.

All costs up to the deductible ι_d are paid by the patient. The patient pays the fraction ι_c of any costs in excess of ι_d, until his total payments reach the limit ι_{om}. Any costs in excess of
t_{om} are borne by the insurer. With this structure, we have

$$
copay(Z_t; t_d, t_c, t_{om}) = \min \left\{ t_{om}, \left[\min\{t_d, Z_t\} + t_c \cdot \max\{Z_t - t_d, 0\} \right]\right\}
$$

$$
= \min \left\{ t_{om}, \left[t_c Z_t + (1 - t_c) \min\{t_d, Z_t\} \right]\right\}.
$$

We estimate separate copay functions for each insurance type, using non-linear least squares. While the estimation procedure is straightforward, the treatment of the data is not: Appendix A.1 provides additional details. Table 4 shows the estimated parameters. Of note is that the copay rate for the uninsured is 0.675, rather than 1. This reflects payments covered by other government insurance.

<table>
<thead>
<tr>
<th>Copayment</th>
<th>Deductible</th>
<th>Out-of-pocket Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>t_d</td>
<td>t_c</td>
</tr>
<tr>
<td>Uninsured</td>
<td>1,340</td>
<td>0.6753</td>
</tr>
<tr>
<td>Medicaid</td>
<td>0</td>
<td>0.0360</td>
</tr>
<tr>
<td>Medicare</td>
<td>2,270</td>
<td>0.1271</td>
</tr>
<tr>
<td>Employer provided-Medicare</td>
<td>580</td>
<td>0.1911</td>
</tr>
<tr>
<td>Employer provided</td>
<td>710</td>
<td>0.1891</td>
</tr>
<tr>
<td>Private Non-Group</td>
<td>2,250</td>
<td>0.2094</td>
</tr>
</tbody>
</table>

Notes: Employer provided includes both Retiree and Tied coverage. NA means no out-of-pocket limit

Table 4: Copayment Parameters

Next we estimate the insurance premia paid by households. Premia depend on marital status and in the non-group market also depend on predicted medical expenses. To do this we regress the total insurance premia paid by by all members of the household on the male head’s insurance type, and predicted medical spending, both before and after age 65. We predict the household’s medical spending using the previous year’s medical spending. Table 5 shows predicted premia for different groups of people.

It also shows how predicted total medical spending (as predicted by last year’s total medical spending, age, and health status) affects current insurance premia. We find that for every $1 increase in predicted total medical spending, insurance premia rises by $0.11, showing that although higher predicted medical spending increases insurance premia, it is much less than dollar for dollar. Part of this is likely due to the fact that many states mandated partial or
<table>
<thead>
<tr>
<th></th>
<th>EPHI - Medicare</th>
<th>EPHI - Medicaid</th>
<th>EPHI - Medicare</th>
<th>Private</th>
<th>Medicare</th>
<th>Medicaid</th>
<th>Medicare</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>EPHI</td>
<td>Under 65</td>
<td>Over 65</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>1,237</td>
<td>2,132</td>
<td>820</td>
<td>986</td>
<td>2,907</td>
<td>1,299</td>
<td>182</td>
</tr>
<tr>
<td>Married</td>
<td>1,210</td>
<td>826</td>
<td>1,109</td>
<td>260</td>
<td>2,069</td>
<td>503</td>
<td>63</td>
</tr>
<tr>
<td>Predicted medical spending</td>
<td>0.11</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes: EPHI includes both Retiree and Tied coverage. For those over age 65, we assume everyone is covered by Medicare, so the EPHI EPHI-Medicaid, Private, and Medicaid entries are empty.

Table 5: Insurance Premia

complete community rating. Furthermore, Buchmueller and DiNardo (2002) and Herring and Pauly (2006) show that even in states that did not mandate community rating, higher expected medical spending only leads to modestly higher insurance premia. Furthermore, Herring and Pauly (2006) show that this is not due to selection issues coming from people being denied coverage when facing high medical expenses. Perhaps unsurprisingly, we found that predicted medical expenses has little impact on insurance premia for those with employer or government provided insurance. For this reason, and for parsimony, we set these coefficients to zero.

To better understand the parameters in Tables 4 and 5, Figure 2 uses the parameters to show predicted out-of-pocket medical spending for married households with different different levels of medical spending, summing over both insurance premia and copays. Of special interest is the difference between the budget line for the uninsured versus the budget line for those with private non-group insurance. The budget line shows that for households with less than $17,000 in total medical spending, choosing to be uninsured is cheaper than choosing to be insured in the private non-group market. However, many households with lower total medical spending will select private insurance, since total medical spending is uncertain at the time of selection of insurance. Many of those whose expect medical spending above $17,000 ex ante will wind up with medical spending below this level ex post. Furthermore, risk aversion implies that those with expected medical spending below $17,000 may still purchase insurance to insure themselves against the risk of higher medical spending. Likewise, many households with total medical spending over $17,000 will select to be uninsured, for two reasons. First, they may
have expected medical spending that is lower than realized. Second, if they have low assets and income, their copays will be covered by the consumption floor. Thus they will use the implicit insurance from the consumption floor as a substitute for private insurance.

![Figure 2: Budget sets by health insurance type, total expenses up to $50,000](image)

Idiosyncratic Shocks

The parameters for the idiosyncratic process ψ_t, $(\sigma_\xi^2, \sigma_\epsilon^2, \rho_m)$, are taken from French and Jones (2004, “fitted” specification). Table 6 presents the parameters, which have been normalized so that the overall variance, σ_ψ^2, is one. Table 6 reveals that at any point in time, the transitory component generates almost 67% of the cross-sectional variance in medical expenses. The results in French and Jones reveal, however, that most of the variance in cumulative lifetime medical expenses is generated by innovations to the persistent component. For this reason,
estimates of the cross sectional distribution of medical expenses understate the lifetime risk of medical expenses. Given the autocorrelation coefficient ρ_m of 0.925, this is not surprising.

6.6 Pension Accrual

Our formula for pension accrual rates comes from French and Jones (2011), who estimate them using confidential HRS pension data. Figure 3, taken from French and Jones (2011), shows the average pension accrual rates generated by this formula when we simulate the model.

![Figure 3: Average Pension Accrual Rates, by Age and Health Insurance Coverage](image)

Figure 3 reveals that workers with retiree coverage face the sharpest drops in pension accrual after age 60.\(^{13}\) While retiree coverage in and of itself provides an incentive for early retirement,

\[^{13}\text{Because Figure 3 is based on our estimation sample, it does not show accrual rates for earlier ages. Estimates that include the validation sample show, however, that those with retiree coverage have the highest pension accrual rates in their early and middle 50s.}\]
the pension plans associated with retiree coverage also provide the strongest incentives for early retirement. Failing to capture this link will lead the econometrician to overstate the effect of retiree coverage on retirement.

6.7 Preference Index

In order to better measure preference heterogeneity in the population (and how it is correlated with health insurance), we estimate a person’s “willingness” to work using three questions from the first (1992) wave of the HRS. The first question asks the respondent the extent to which he agrees with the statement, “Even if I didn’t need the money, I would probably keep on working.” The second question asks the respondent, “When you think about the time when you will retire, are you looking forward to it, are you uneasy about it, or what?” The third question asks, “How much do you enjoy your job?”

To combine these three questions into a single index, we regress wave 5-7 (survey year 2000-2004) participation on the response to the three questions along with polynomials and interactions of all the state variables in the model: age, health status, wages, wealth, and AIME, medical expenses, and health insurance type. Multiplying the numerical responses to the three questions by their respective estimated coefficients and summing yields an index. We then discretize the index into three values: high, for the top 50% of the index for those working in wave 1; low, for the bottom 50% of the index for those working in wave 1; and out for those not working in wave 1.

6.8 Wages

Recall from equation (11) that \(\ln W_t = \alpha \ln(N_t) + W(H_t, t) + \omega_t \). Following Aaronson and French (2004), we set \(\alpha = 0.415 \), which implies that a 50% drop in work hours leads to a 25% drop in the offered hourly wage. This is in the middle of the range of estimates of the effect of hours worked on the offered hourly wage.

We estimate \(W(H_t, t) \) using the methodology described in section 5.3.

The parameters for the idiosyncratic process \(\omega_t, (\sigma^2, \rho_W) \) are estimated by French (2005). The
results indicate that the autocorrelation coefficient ρ_W is 0.977; wages are almost a random walk. The estimate of the innovation variance σ_η^2 is 0.0141; one standard deviation of an innovation in the wage is 12% of wages.

6.9 Remaining Calibrations

We set the interest rate r equal to 0.03. Spousal income depends upon an age polynomial and health status. Health status and mortality both depend on previous health status interacted with an age polynomial.

7 Data Profiles and Initial Conditions

7.1 Data Profiles

Figure 4 puts some of the labor market behavior that we seek to explain in relation to the health insurance status. By correctly estimating the structural parameters linking the two (and the broader environment), we will be able to predict the effects of the ACA on exit rates and participation. The top panel of Figure 4 shows empirical job exit rates conditional on the initially observed health insurance type. Recall that Medicare should provide the largest labor market incentives for workers that have tied health insurance. If these people place a high value on health insurance, they should either work until age 65, when they are eligible for Medicare, or they should work until age 63.5 and use COBRA coverage as a bridge to Medicare. The job exit profiles in the top panel provide some evidence that those with tied coverage do tend to work until age 65. While the age-65 job exit rate is similar for those whose health insurance type is tied (17%), retiree (17%), or non-group (14%), those with retiree coverage have higher exit rates at 62 (20%) than those with tied (15%) or non-group (13%). At all ages other than 65, those with retiree coverage have higher job exit rates than those with tied coverage, often much higher. These values for the 1940s cohort are very similar to those reported by French and Jones (2011) for the 1931-1936 cohort.

The low job exit rates before age 65 and the relatively high job exit rates at age 65 for those with tied coverage suggests that some people with tied coverage are working until age 65,
when they become eligible for Medicare. On the other hand, job exit rates for those with tied coverage are lower than those with retiree coverage for every age other than 65, and are not much higher at age 65. This suggests that differences in health insurance coverage may not be the only reason for the differences in job exit rates.

The bottom panel of Figure 4 presents the employment rates that result from these exit rates and the initial employment rates. It is not surprising that the non-group category has the lowest participation rates already at the beginning since it includes Medicare and Medicaid recipients who are eligible for SSDI because they are unable to work. While the initially high employment rate of those with tied coverage is not surprising (recall that these individuals must have been working in the previous period to have access to their employers group plan, either directly or through COBRA coverage), it stays consistently higher than any of the other two groups. Conversely, the high exit rates of those with retiree coverage lead to similar levels of participation as those without access to group insurance already in individuals' mid-sixties.

Figure 5 shows that the preference index described in Section 6.7 has great predictive power. At age 65, participation rates are 60% for those with an index of high, 45% for those with an index of low, and 9% for those with an index of out.

7.2 Initial Conditions

Each artificial individual in our model begins its simulated life with the state vector of an individual born in the 1940s, aged 51-60 when first observed in the data. Table 7 summarizes this initial distribution.

Table 7 shows that asset levels are highest for individuals with tied health insurance and almost half of that in the non-group category, individuals with retiree coverage being somewhere in the middle. A reason for the difference between the tied and retiree groups may be that the latter tend to have more generous pension plans. Pension wealth in both groups is far higher than in the non-group category – in fact, the median individual without access to employer-provided insurance does not have any pension wealth at all. Individuals in the non-group category are also more likely to be in bad health, and not surprisingly, less likely to be working. In contrast, individuals with tied coverage have high values of the preference index, suggesting that their
delayed retirement reflects differences in preferences as well as in incentives.

Individuals with retiree coverage have the lowest medical expenses, both in terms of total expenditure and in terms of out-of-pocket costs, where those in the non-group category are similar. These latter individuals have much higher total expenditure, which is—at least in part—a reflection of their poor health.

A key step for being able to predict the effects of the ACA and a major innovation relative to French and Jones (2011) is to adequately break up the non-group category according to eligibility for Medicare through SSDI and Medicaid through SSI and the choice between private coverage and staying uninsured for those who are not eligible. Table 8 displays the initial distribution for individuals without employer-provided coverage, i.e., everybody in the respective column of Table 7. Individuals who purchase private insurance are very similar to individuals in the tied and retiree categories along many dimensions – they are quite healthy, often married, likely to be and working and putting in long hours if doing so, and they have high values of the preference index. However, they have more assets, which presumably compensate for their lower pension wealth and higher medical expenses.

Conversely, the uninsured are in worse health, have lower values of the preference index, are less likely to be working and they are more often single. Their health care costs are low and on average, they have less than a fifth of the wealth and less than half of the pension wealth of those who purchase private insurance.

People who are eligible for Medicare through SSDI are in poor health by definition. Only 11% of them are working and those individuals are mostly doing part-time work only, reflecting overall incentives. They are less likely to be married and their wealth variables are comparable to those of the uninsured. The last column shows, not surprisingly, that Medicaid recipients are poorer on average and fare worse on almost all socio-demographic dimensions. Their low out-of-pocket medical expenditures reflect the generosity of Medicaid, the high total costs are an artefact of our imputation procedure that inverts the budget sets using the parameters shown in 4 In sum, it is clear that the uninsured are worse off along many dimensions than those who purchase private insurance and that the Medicare/Medicaid programs might have important incentive effects for this group well before age 65.
Figure 4: **Job Exit and Participation (Employment) Rates, Data**
Figure 5: Participation (Employment) Rates by Preference Index, Data
<table>
<thead>
<tr>
<th>Variable</th>
<th>Statistic</th>
<th>Retiree</th>
<th>Tied</th>
<th>No Employer Coverage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Mean</td>
<td>53.2</td>
<td>53.5</td>
<td>53.5</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>52.0</td>
<td>53.0</td>
<td>53.0</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>2.1</td>
<td>2.1</td>
<td>2.2</td>
</tr>
<tr>
<td>AIME / 1000</td>
<td>Mean</td>
<td>15.8</td>
<td>17.0</td>
<td>11.1</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>16.9</td>
<td>17.4</td>
<td>7.7</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>7.7</td>
<td>8.3</td>
<td>13.4</td>
</tr>
<tr>
<td>Assets / 1000</td>
<td>Mean</td>
<td>317.6</td>
<td>489.4</td>
<td>253.9</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>161</td>
<td>192.7</td>
<td>40.7</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>569.2</td>
<td>990.1</td>
<td>717.6</td>
</tr>
<tr>
<td>Pension Wealth / 1000</td>
<td>Mean</td>
<td>199.0</td>
<td>162.1</td>
<td>25.0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>77.1</td>
<td>57.2</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>293.9</td>
<td>318.3</td>
<td>90.5</td>
</tr>
<tr>
<td>Works</td>
<td>Fraction</td>
<td>0.86</td>
<td>0.95</td>
<td>0.58</td>
</tr>
<tr>
<td>Wage if working</td>
<td>Mean</td>
<td>25.5</td>
<td>29.5</td>
<td>20.1</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>22.9</td>
<td>25.9</td>
<td>15.2</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>13.5</td>
<td>16.6</td>
<td>14.5</td>
</tr>
<tr>
<td>Hours if working</td>
<td>Mean</td>
<td>240.02</td>
<td>2469.7</td>
<td>2283.4</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2200.0</td>
<td>2340.0</td>
<td>2080.0</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>654.5</td>
<td>629.3</td>
<td>942.1</td>
</tr>
<tr>
<td>Total health care costs / 1000</td>
<td>Mean</td>
<td>16.26</td>
<td>22.69</td>
<td>29.33</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>8.39</td>
<td>11.47</td>
<td>2.61</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>21.87</td>
<td>29.00</td>
<td>134.80</td>
</tr>
<tr>
<td>OOP health care costs / 1000</td>
<td>Mean</td>
<td>4.09</td>
<td>5.37</td>
<td>4.03</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2.16</td>
<td>2.73</td>
<td>1.34</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>12.00</td>
<td>7.76</td>
<td>11.30</td>
</tr>
<tr>
<td>Good health</td>
<td>Fraction</td>
<td>0.82</td>
<td>0.88</td>
<td>0.57</td>
</tr>
<tr>
<td>Pref. index = 0</td>
<td>Fraction</td>
<td>0.14</td>
<td>0.05</td>
<td>0.42</td>
</tr>
<tr>
<td>Pref. index = 1</td>
<td>Fraction</td>
<td>0.77</td>
<td>0.88</td>
<td>0.48</td>
</tr>
<tr>
<td>Pref. index = 2</td>
<td>Fraction</td>
<td>0.09</td>
<td>0.07</td>
<td>0.10</td>
</tr>
<tr>
<td>Married</td>
<td>Fraction</td>
<td>0.85</td>
<td>0.8</td>
<td>0.62</td>
</tr>
<tr>
<td>Not married</td>
<td>Fraction</td>
<td>0.15</td>
<td>0.2</td>
<td>0.38</td>
</tr>
<tr>
<td>Observations</td>
<td>Count</td>
<td>1081</td>
<td>561</td>
<td>500</td>
</tr>
</tbody>
</table>

Table 7: Summary Statistics for the Initial Distribution

Note: Source: HRS data. Total health care costs are imputed from out-of-pocket health care costs by inverting the budget sets described in 6.5, estimated off MEPS data. The column “No Employer Coverage” reflects individuals in the non-group category.
<table>
<thead>
<tr>
<th>Variable</th>
<th>Statistic</th>
<th>Private Non-Group</th>
<th>Uninsured</th>
<th>Medicare</th>
<th>Medicare-Medicaid</th>
</tr>
</thead>
<tbody>
<tr>
<td>Age</td>
<td>Mean</td>
<td>53.5</td>
<td>53.3</td>
<td>53.7</td>
<td>54.1</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>53.0</td>
<td>53.0</td>
<td>54.0</td>
<td>54.0</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>2.2</td>
<td>2.1</td>
<td>2.4</td>
<td>2.2</td>
</tr>
<tr>
<td>AIME / 1000</td>
<td>Mean</td>
<td>13.6</td>
<td>9.5</td>
<td>13.4</td>
<td>11.6</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>12.8</td>
<td>7.4</td>
<td>7.8</td>
<td>5.4</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>7.5</td>
<td>7.0</td>
<td>18.3</td>
<td>26.7</td>
</tr>
<tr>
<td>Assets / 1000</td>
<td>Mean</td>
<td>768.7</td>
<td>144.5</td>
<td>136</td>
<td>24.1</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>375.6</td>
<td>35.4</td>
<td>41.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>1341.8</td>
<td>347.5</td>
<td>322.2</td>
<td>170.1</td>
</tr>
<tr>
<td>Pension Wealth / 1000</td>
<td>Mean</td>
<td>50.1</td>
<td>21.9</td>
<td>21.1</td>
<td>4.0</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>0.3</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>130.7</td>
<td>87.8</td>
<td>58.6</td>
<td>15.5</td>
</tr>
<tr>
<td>Works</td>
<td>Fraction</td>
<td>0.87</td>
<td>0.7</td>
<td>0.11</td>
<td>0.09</td>
</tr>
<tr>
<td>Wage if working</td>
<td>Mean</td>
<td>25.8</td>
<td>17.3</td>
<td>18.5</td>
<td>24.8</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>21</td>
<td>13.3</td>
<td>9.9</td>
<td>16.7</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>16.5</td>
<td>12.5</td>
<td>15.9</td>
<td>18.6</td>
</tr>
<tr>
<td>Hours if working</td>
<td>Mean</td>
<td>2507.0</td>
<td>2240.0</td>
<td>1261.1</td>
<td>1505.7</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>2184.0</td>
<td>2080.0</td>
<td>1040.0</td>
<td>1742.0</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>954.9</td>
<td>907.0</td>
<td>799.0</td>
<td>740.1</td>
</tr>
<tr>
<td>Total health care costs / 1000</td>
<td>Mean</td>
<td>24.93</td>
<td>4.93</td>
<td>24.37</td>
<td>132.58</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>10.30</td>
<td>.90</td>
<td>1.97</td>
<td>39.04</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>29.36</td>
<td>21.32</td>
<td>51.94</td>
<td>335.89</td>
</tr>
<tr>
<td>OOP health care costs / 1000</td>
<td>Mean</td>
<td>6.74</td>
<td>3.60</td>
<td>4.41</td>
<td>1.37</td>
</tr>
<tr>
<td></td>
<td>Median</td>
<td>3.94</td>
<td>0.90</td>
<td>1.97</td>
<td>0.25</td>
</tr>
<tr>
<td></td>
<td>Std.Dev.</td>
<td>6.38</td>
<td>14.43</td>
<td>6.95</td>
<td>2.06</td>
</tr>
<tr>
<td>Good health</td>
<td>Fraction</td>
<td>0.87</td>
<td>0.69</td>
<td>0.0</td>
<td>0.17</td>
</tr>
<tr>
<td>Pref. index = 0</td>
<td>Fraction</td>
<td>0.13</td>
<td>0.3</td>
<td>0.89</td>
<td>0.91</td>
</tr>
<tr>
<td>Pref. index = 1</td>
<td>Fraction</td>
<td>0.75</td>
<td>0.57</td>
<td>0.08</td>
<td>0.09</td>
</tr>
<tr>
<td>Pref. index = 2</td>
<td>Fraction</td>
<td>0.13</td>
<td>0.13</td>
<td>0.03</td>
<td>0</td>
</tr>
<tr>
<td>Married</td>
<td>Fraction</td>
<td>0.75</td>
<td>0.65</td>
<td>0.56</td>
<td>0.34</td>
</tr>
<tr>
<td>Not married</td>
<td>Fraction</td>
<td>0.25</td>
<td>0.35</td>
<td>0.44</td>
<td>0.66</td>
</tr>
<tr>
<td>Observations</td>
<td>Count</td>
<td>102</td>
<td>265</td>
<td>63</td>
<td>70</td>
</tr>
</tbody>
</table>

Table 8: Summary Statistics for the Initial Distribution of Individuals without Employer-Provided Health Insurance

Note: Source: HRS data. Individuals included in this table are those in the column called “No Employer Coverage” in Table 7. Total health care costs are imputed from out-of-pocket health care costs by inverting the budget sets described in 6.5, estimated off MEPS data.
8 Conclusion

The Affordable Care Act (ACA) is the most significant reform to the health care sector in since the 1960s. The ACA’s provisions fall into four main categories: (1) an expansion of Medicaid; (2) an overhaul of private non-group insurance, including community rating, coverage standards, the introduction of exchanges, subsidies, and purchase mandates; (3) a mandate for large employers to offer health insurance coverage, and subsidies for smaller employers; (4) miscellaneous provisions including reforms to coverage standards, the tax code, and the management of Medicare.

In this paper, we consider the following two sets of provisions. First, the ACA expands Medicaid eligibility for low-income households younger than 65. Prior to the ACA, low-income households nearing retirement qualified for Medicaid only if they were disabled. Moreover, under the ACA Medicaid applicants no longer face an asset test, meaning that they can qualify for Medicaid even if they hold significant wealth. The ability to carry wealth into retirement should make Medicaid more attractive for older workers. Overall, the Medicaid expansion could either increase or reduce labor supply by the elderly. Perhaps most likely, fewer people will work, as they can now qualify for Medicaid if they retire.

The second set of provisions involves non-group insurance. The ACA establishes exchanges where households without group coverage can purchase insurance. The policies offered on these exchanges must meet coverage standards, and they must be community-rated, i.e., insurers cannot price-discriminate by health. The ACA also requires uninsured households ineligible for Medicaid to purchase insurance, provides tax subsidies for most purchases, and levies penalties on those not complying. These changes should significantly alter the customer base and actuarial costs in the non-group market. Although the subsidies will allow most households to purchase non-group insurance more cheaply, healthy and/or lightly subsidized individuals may see their premiums rise. Because many workers lose their employer-provided insurance after they leave their job (and the COBRA buy-in period expires), changes in the price of non-group insurance may change their retirement decisions. Because most people will be able to buy non-group health insurance more cheaply, early retirement will probably increase. Balancing against this, the subsidies provided under the ACA will allow uninsured low-income
workers to purchase cheap insurance in the non-group market. Prior to the ACA these people may have used default on medical bills as a substitute for health insurance. However, default is a good substitute for insurance only when income and assets are low. Acquiring health insurance may encourage these workers to work and save more (Hsu, 2013).

Our goal is to assess the quantitative importance of these effects. To do this, we extend the structural labor supply and retirement model in French and Jones (2011) to account for these reforms. We extend their model by adding in a much more detailed model of medical spending and insurance. We model explicitly how different types of health insurance plans affect the premiums and coinsurance rates that households face. We use data from the Health and Retirement Study (HRS) and the Medical Expenditure Panel Survey (MEPS) to estimate the structural model. We use the MEPS data to measure current medical expenditures, as well as who pays for these expenditures (out-of-pocket, private insurance, Medicaid, etc.). We use this information to estimate a dynamic programming model of labor supply and retirement behavior where individuals face realistic medical expense risk. Upon estimating the model, we conduct counterfactual experiments, where we modify the premia and co-insurance rates, net of subsidies and penalties, that households face.

We construct a retirement model that includes health insurance, uncertain medical costs, a savings decision, a non-negativity constraint on assets and a government-provided consumption floor.

We present evidence that those who cannot keep their employer-provided health insurance when they leave their job tend to remain on their job until age 65. Those who can maintain their insurance after they leave their job tend to exit the labor market earlier. This provides evidence that access to health insurance reduces labor supply. Interestingly, however, recent evidence on Medicaid expansions suggests small if any disemployment effect of Medicaid (Levy, Buchmueller, and Nikpay, 2015).

We show differences in both total and out-of-pocket medical spending prior to the enactment of the ACA. We show that average total medical spending in MEPS is high for all groups. Perhaps surprisingly, those with no health insurance do not spend much more out-of-pocket than those who private insurance. Those uninsured receive health care through a variety of means.
of sources such as worker’s compensation and default on medical bills, which we refer to as a “consumption floor”, which protects low income individuals against catastrophic medical spending. Those who appear to have the highest resources appear to be those who pay the most for health care, consistent with the view that those with low resources are covered by the consumption floor, whereas those with high resources face the most medical expense risk and might have the largest labor supply responses. We choose the consumption floor to match these, and other facts. Thus we model the ACA as a change in government insurance provisions rather than the provision of insurance where none existed before.
References

43

A Cast of Characters

<table>
<thead>
<tr>
<th>Preference Parameters</th>
<th>Health-related Parameters</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\gamma)</td>
<td>(H_t) health status</td>
</tr>
<tr>
<td>(\beta)</td>
<td>(Z_t) total medical expenses</td>
</tr>
<tr>
<td>(\nu)</td>
<td>(I_t) employer-provided HI type</td>
</tr>
<tr>
<td>(\theta_B)</td>
<td>(z(\cdot)) mean shifter, logged medical expenses</td>
</tr>
<tr>
<td>(\kappa)</td>
<td>(\sigma(\cdot)) volatility shifter, logged medical expenses</td>
</tr>
<tr>
<td>(C_{min})</td>
<td>(\psi_t) idiosyncratic medical expense shock</td>
</tr>
<tr>
<td>(L)</td>
<td>(\zeta_t) persistent medical expense shock</td>
</tr>
<tr>
<td>(\phi_H)</td>
<td>(\epsilon_t) innovation, persistent shock</td>
</tr>
<tr>
<td>(\phi_{Pt})</td>
<td>(\rho_m) autocorrelation, persistent shock</td>
</tr>
<tr>
<td>(\phi_{P0})</td>
<td>(\sigma^2_\epsilon) innovation variance, persistent shock</td>
</tr>
<tr>
<td>(\phi_{P1})</td>
<td>(\xi_t) transitory medical expense shock</td>
</tr>
<tr>
<td>(\phi_{RE})</td>
<td>(\sigma^2_\xi) variance, transitory shock</td>
</tr>
<tr>
<td></td>
<td>(M_t) out-of-pocket medical expenses</td>
</tr>
<tr>
<td></td>
<td>(W_t) hourly wage</td>
</tr>
<tr>
<td></td>
<td>(W(\cdot)) mean shifter, logged wages</td>
</tr>
<tr>
<td></td>
<td>(\alpha) coefficient on hours, logged wages</td>
</tr>
<tr>
<td></td>
<td>(\omega_t) idiosyncratic wage shock</td>
</tr>
<tr>
<td></td>
<td>(\rho_W) autocorrelation, wage shock</td>
</tr>
<tr>
<td></td>
<td>(\eta_t) innovation, wage shock</td>
</tr>
<tr>
<td></td>
<td>(\sigma^2_\eta) innovation variance, wage shock</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Decision Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_t) consumption</td>
</tr>
<tr>
<td>(N_t) hours of work</td>
</tr>
<tr>
<td>(L_t) leisure</td>
</tr>
<tr>
<td>(P_t) participation</td>
</tr>
<tr>
<td>(A_t) assets</td>
</tr>
<tr>
<td>(B_t) Social Security application</td>
</tr>
<tr>
<td>(I_t^+) health insurance type</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Financial Variables</th>
</tr>
</thead>
<tbody>
<tr>
<td>(Y(\cdot)) after-tax income</td>
</tr>
<tr>
<td>(\tau) tax parameter vector</td>
</tr>
<tr>
<td>(r) real interest rate</td>
</tr>
<tr>
<td>(y_{s_t}) spousal income</td>
</tr>
<tr>
<td>(T) spousal income indicator</td>
</tr>
<tr>
<td>(ss_t) Social Security income</td>
</tr>
<tr>
<td>(AIME_t) Social Security wealth</td>
</tr>
<tr>
<td>(pb_t) pension benefits</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Miscellaneous</th>
</tr>
</thead>
<tbody>
<tr>
<td>(s_t) survival probability</td>
</tr>
<tr>
<td>(pref) discrete preference index</td>
</tr>
<tr>
<td>(X_t) state vector, worker’s problem</td>
</tr>
<tr>
<td>(\lambda(\cdot)) compensating variation</td>
</tr>
<tr>
<td>(SP) spouse indicator</td>
</tr>
<tr>
<td>(T) number of years in GMM criterion</td>
</tr>
</tbody>
</table>

Table 9: Variable Definitions, Main Text

A.1 Health Insurance

Table 10 thus also contains the payment source depending on eligibility for any of the government programs.
Table 10: Health Insurance State Transitions

<table>
<thead>
<tr>
<th>I_{t-1}</th>
<th>$P_{t-1} = 1$</th>
<th>I_t</th>
<th>t</th>
<th>H_t</th>
<th>cat. needy = disabled</th>
<th>Y_t, A_t</th>
<th>Payment sources</th>
</tr>
</thead>
<tbody>
<tr>
<td>retiree</td>
<td>.</td>
<td>retiree</td>
<td>< 65</td>
<td>no</td>
<td>.</td>
<td>R</td>
<td>R</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>≥ 65</td>
<td>no</td>
<td>yes</td>
<td>R + MC</td>
<td>R + MC</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>yes</td>
<td>≥ 65</td>
<td>yes</td>
<td>yes</td>
<td>R + MC + MA</td>
<td>R + MC + MA</td>
</tr>
<tr>
<td>tied</td>
<td>yes</td>
<td>tied</td>
<td>< 65</td>
<td>no</td>
<td>.</td>
<td>T</td>
<td>T</td>
</tr>
<tr>
<td></td>
<td>≥ 65</td>
<td>no</td>
<td>T + MC</td>
<td>yes</td>
<td>no</td>
<td>MC</td>
<td>MC</td>
</tr>
<tr>
<td></td>
<td>no</td>
<td>no-group</td>
<td>< 65</td>
<td>no</td>
<td>yes</td>
<td>MA</td>
<td>MA</td>
</tr>
<tr>
<td></td>
<td>≥ 65</td>
<td>no</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
<td>MA</td>
<td>MA</td>
</tr>
<tr>
<td>no-group</td>
<td>.</td>
<td>no-group</td>
<td>< 65</td>
<td>no</td>
<td>.</td>
<td>{SI, P}</td>
<td>{SI, P}</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>MC</td>
<td>MC</td>
</tr>
<tr>
<td></td>
<td>yes</td>
<td>yes</td>
<td>MA</td>
<td>yes</td>
<td>yes</td>
<td>MA</td>
<td>MA</td>
</tr>
<tr>
<td></td>
<td>≥ 65</td>
<td>no</td>
<td>yes</td>
<td>no</td>
<td>yes</td>
<td>MA</td>
<td>MA</td>
</tr>
</tbody>
</table>

Legend for payment sources:

R Employer’s retiree plan
T Employer’s tied plan
U Uninsured
P Privately purchased insurance plan
MC Medicare
MA Medicaid

Note that MC + T can never happen before age 65 if people have to stop working for at least one period when becoming disabled.
Individuals’ insurance status determines how total health care cost Z_t translate into out-of-pocket expenditures M_t. These expenditures include insurance premia and expenses covered by the consumption floor, they are given by:

$$M_t = \text{premium}(I_t^+, t, P_t, \hat{Z}_t, SP_t) + \text{copay}(I_t^+, Z_t),$$

$$\hat{Z}_t = \mathbb{E}[Z_t \mid t, H_t, \zeta_{t-1}] .$$

where $\text{premium}(I_t^+, t, P_t, \hat{Z}_t, SP_t)$ is the health insurance premium; the function $\text{copay}(I_t^+, Z_t)$ determines how much of Z_t is assigned to the individual via co-payments and deductibles. We estimate the $\text{copay}(\cdot)$-function directly from the MEPS data. The premium-function differs across insurance types as follows:

$$\text{premium} = \begin{cases}
\text{premium}(t, P_t) & \text{if } I_t^+ = \text{retiree} \\
\text{premium}(t, P_t) & \text{if } I_t^+ = \text{tied} \\
\text{premium}(\hat{Z}_t) & \text{if } I_t^+ = \text{no-group} \cap \text{priv. plan} \\
0 & \text{if } I_t^+ = \text{no-group} \cap \text{self-insure}
\end{cases}$$

Note the premium depends on labor force participation P_t in the retiree and tied categories because employer subsidies are typically reduced upon termination of a job. We estimate those values directly from the data. We assume that insurers in private plans use a pricing rule that is increasing more in expected costs:

$$\text{premium}(I_t^+ = \text{no-group} \& \text{ priv. plan}, t, \hat{Z}_t, SP_t) = \alpha_0 + \alpha_1 \cdot 1\{SP_t = 1\} + \alpha_2 \hat{Z}_t,$$

where all coefficients are positive.

After the introduction of the ACA, the premium function (18) becomes:

$$\text{premium} = \begin{cases}
\text{premium}(t, P_t) & \text{if } I_t^+ = \text{retiree} \\
\text{premium}(t, P_t) & \text{if } I_t^+ = \text{tied} \\
\text{premium}(t, I_{t \text{subsidy}}) & \text{if } I_t^+ = \text{no-group} \& \text{priv. plan} \& t < 65 \\
-I_t^{\text{penalty}} & \text{if } I_t^+ = \text{no-group} \& \text{self-insure} \& t < 65
\end{cases}$$

The $\text{copay}(I_t, Z_t)$ is age-invariant and translates total expenses (Z_t) into out-of-pocket expenses (47).
using three insurance type-specific parameters: the deductible ι_d, the coinsurance rate ι_c, and the out-of-pocket limit ι_{om}:

$$
copay(Z_t; \iota_d, \iota_c, \iota_{om}) = \min \left\{ \iota_{om}, \left[\min\{\iota_d, Z_t\} + \iota_c \cdot \max\{Z_t - \iota_d, 0\} \right] \right\}
= \min \left\{ \iota_{om}, \left[\iota_c Z_t + (1 - \iota_c) \min\{\iota_d, Z_t\} \right] \right\}.
$$

The estimates are shown in Table 4 in the main text. While the estimation of these parameters using non-linear least squares is standard, constructing the proper subsamples for each estimation type is not. Many households in the MEPS receive insurance from multiple payers, in a way that does not correspond directly to the insurance categories in the model, and the assignment of households to insurance categories is plagued by selection dynamics. This leads us to make several sample construction decisions:

- Because a number of Medicaid recipients over the age of 64 qualify for Medicaid through the Medically Needy provision, which requires them to spend down their income and assets on medical services, we estimate the parameters for Medicaid using data for households with heads younger than 65.

- The Medicaid coinsurance rates are estimated using the expenditures that remain after Medicare, other government, and private insurer contributions.

- For households where Medicaid is not the primary insurance, Medicaid payments are treated as out-of-pocket costs borne by the households. This is because Medicaid is the residual payer, and in the model is applied to the costs that remain after other types of insurance have been applied.

- Many households that list Medicare or EPHI as their (sole) primary insurer receive assistance from multiple sources. We treat these payments (excluding Medicaid) as part of the coverage provided by the principal insurer.

- Because many of the self-insured have access to other government coverage, their payment histories are not representative of people without EPHI or Medicare as a whole. People without other government coverage are more likely to purchase non-group insurance. We thus expand the estimation sample for the “uninsured” to include any household younger than 65 that lacks EPHI or Medicare, and we treat costs covered by
private non-group insurance as out-of-pocket expenditures. We view these costs as the
costs households would face if they chose to self-insure.

Implicit in our approach above is the assumption that medical expenditures are exogenous. It
is not clear ex ante whether this causes us to understate or overstate the importance of health
insurance. On the one hand, individuals with health insurance receive better care. Our model
does not capture this benefit, and in this respect understates the value of health insurance.
Conversely, treating medical expenses as exogenous ignores the ability of workers to offset
medical shocks by adjusting their expenditures on medical care. This leads us to overstate the
consumption risk facing uninsured workers, and thus the value of health insurance. Evidence
from other structural analyses suggests that our assumption of exogeneity leads us to overstate
the effect of health insurance on retirement.14

A.2 Timing of model decisions

\[I_t = \{ A_t, B_{t-1}, AIME_t, I_t, H_t, \omega_t, y_{st}, \zeta_{t-1}, \varepsilon_{t-1}, \] \[F \left(X_{t+1} \mid X_t, t, C_t, N_t, B_t \right) \}\]

\[\xi_{t-1}, \varepsilon_{t-1} \] \hspace{1cm} \[\eta, H_t, \omega_t \] \hspace{1cm} \[C_t, N_t, B_t, I_t \] \hspace{1cm} \[\xi_t, \varepsilon_t \]

realised \hspace{1cm} realised \hspace{1cm} decided upon / realised

Eligibility for Medi-caid-care

determined \hspace{1cm} checked

14To our knowledge, Blau and Gilleskie (2008) is the only estimated, structural retirement study to have
endogenous medical expenditures. Although Blau and Gilleskie (2008) do not discuss how their results would
change if medical expenses were treated as exogenous, they find that even with several mechanisms (such as
prescription drug benefits) omitted, health insurance has “a modest impact on employment behavior among
older males”. De Nardi, French, and Jones (2010) study the saving behavior of retirees. They find that the
effects of reducing means-tested social insurance are smaller when medical care is endogenous, rather than
exogenous. They also find, however, that even when medical expenditures are a choice variable, they are a
major reason why the elderly save.
B Key Changes to the Model for the Situation pre-ACA (relative to French and Jones, 2011)

B.1 Better Modeling of Medical Spending

We change from:

\[\ln M_t = m(H_t, I_t, t, P_t) + \sigma(H_t, I_t, t, P_t) \cdot \psi_t \]

to

\[\ln Z_t = \mu_z(H_t, SP_t, t) + \sigma_z(H_t, SP_t, t) \times \psi_t \]
\[M_t = \text{premium}(I_t^+, t, P_t, \tilde{Z}_t, SP_t) + \text{copay}(I_t^+, Z_t), \]
\[\tilde{Z}_t = \mathbb{E}[Z_t \mid t, H_t, \zeta_{t-1}] . \]

where \(Z_t \) denotes total medical expenses, \(\text{premium}(\cdot) \) is the health insurance premium, and the function \(\text{copay}(\cdot) \) determines how much of \(Z_t \) is assigned to the individual via co-payments and deductibles.

We will estimate the parameters of these functions using MEPS.

B.2 Health States and their Transitions

Health can take on the following possible values: good, bad or disabled. Because we use both the HRS and MEPS, we exploit measures that exit in both datasets. We assign individuals a health status of “good” if self-reported health is excellent, very good or good; and we assign a health status of “bad” if self-reported health is fair or poor. “Disabled” is identified by an indicator equal to 1 if the individual is receiving Medicare and/or Medicaid benefits and is younger than 65, regardless of self reported health. We use this measure of disability because we wish to capture both the cash transfers, and even more importantly, the Medicare or Medicaid insurance received by the disabled. Unfortunately, however, this measure of disability status is missing for ages 65 and older since virtually everyone becomes Medicare eligible at age 65, and at the same age disability benefits are rolled into Social Security benefits. For this reason we assume that, conditional on age, those who are disabled or in bad health have the same distributions of medical spending, spousal income, and wages.
Let $H_t \in \{0, 1, 2, 3\}$ denote death ($H_t = 0$) and the 3 mutually exclusive health states of the living (disabled = 1, bad = 2, good = 3, respectively). Let x be a vector that includes a constant, a quadratic in age, and indicators for previous health and previous health interacted with age. Our goal is to construct the likelihood function for the transition probabilities.

Prior to age 65, we allow the disabled to have different health transition probabilities than those in bad or good health. Because we lack data on disability after age 65, we assume that at age 65 all disabled people become either dead, in bad or good health (with transition probabilities taken from the data), then after 65 nobody becomes disabled: the health states after 65 are dead, bad health and good health. Thus we must estimate three separate health transition probability models, for before 65, at age 65, and after 65. Although this causes jumps in the probability of being in either good and bad health at age 65, our estimates suggest there is no predicted jump in mortality rates around age 65.

Using a logit specification, we have, for $i \in \{1 \text{ or } 3\}, j \in \{0, 1 \text{ or } 2, 3\}$,

$$
\pi_{ij,t} = \Pr(h_{t+1} = j | h_t = i) = \gamma_{ij} / \sum_{k \in \{0,1,2,3\}} \gamma_{ik},
$$

$$
\gamma_{i0} \equiv 1, \quad \forall i,
$$

$$
\gamma_{1k} = \exp(x\beta_k), \quad k \in \{1, 2, 3\},
$$

$$
\gamma_{2k} = \exp(x\beta_k), \quad k \in \{1, 2, 3\},
$$

$$
\gamma_{3k} = \exp(x\beta_k), \quad k \in \{1, 2, 3\},
$$

Using a nested logit specification, we have, for $i \in \{1 \text{ or } 2, 3\}, j \in \{0, 1 \text{ or } 2, 3\}$,

$$
\pi_{ij,t} = \Pr(h_{t+1} = j | h_t = i) = \gamma_{ij} / \sum_{k \in \{0,1,2,3\}} \gamma_{ik},
$$

$$
\gamma_{i0} \equiv 1, \quad \forall i,
$$

$$
\gamma_{1k} = \exp(x\beta_k), \quad k \in \{1, 2, 3\},
$$

$$
\gamma_{2k} = \exp(x\beta_k), \quad k \in \{1, 2, 3\},
$$

$$
\gamma_{3k} = \exp(x\beta_k), \quad k \in \{1, 2, 3\},
$$
where \(\{\beta_k\}_{k=0}^3 \) are sets of coefficient vectors and of course Pr\((h_{t+1} = 0 \mid h_t = 0) = 1. \)

The formulae above give 1-period-ahead transition probabilities, Pr\((h_{t+1} = j \mid h_t = i) \). What we observe in the HRS dataset, however, are 2-period ahead probabilities, Pr\((h_{t+2} = j \mid h_t = i) \). The two sets of probabilities are linked, however, by

\[
\Pr(h_{t+2} = j \mid h_t = i) = \sum_k \Pr(h_{t+2} = j \mid h_{t+1} = k) \Pr(h_{t+1} = k \mid h_t = i) \\
= \sum_k \pi_{kj,t+1} \pi_{ik,t}.
\]

This allows us to estimate \(\{\beta_k\} \) directly from the data using maximum likelihood.

B.3 Health Insurance Types

For health insurance type, we will have retiree/tied/private/self-insure/Medicaid/Medicare. We assume Medicaid+Medicare is available to everyone who is disabled. The vast majority of individuals in the 50-64 age range who are drawing Medicaid or Medicare benefits do so because of DI/SSI recipiency. We assume that all disabled people can draw DI benefits, and SSI benefits if they earn below a threshold level and their DI benefit would have been low in the absence of the benefit. Consistent with the facts (describe here), many people lose cash benefits because of work status, but do not lose their health insurance benefits.

B.4 Discrete Hours Choices

We assume that individuals can choose hours on a discrete grid. To be precise, \(N_t \in \{500, 1000, 1500, 2000, 2500, 3000, 3500\} \). The main reason is that it is much easier to handle Medicaid/Medicare eligibility cutoffs in terms of earned income this way, compared to the alternative of interpolating between these values as in French and Jones (2011).

B.5 Spousal Income

Because spousal income can serve as insurance against medical shocks, and because marital status affects eligibility for Medicaid, we include it in the model. We denote the presence of a spouse with the indicator \(SP_t \), which equals 1 if the head is married and is 0 if he is single. For married \(\rightarrow \) unmarried transitions, we do not distinguish between divorce and spousal death.
We assume that when a spouse is present, spousal income y_{st} takes on two values: (i) zero; or (ii) a positive value that varies with age. With this assumption, we can collapse marital status and spousal earnings into a single variable, $\Upsilon_t \in \{\text{single, spouse with no income, spouse with positive income}\}$. We assume the transition probabilities for Υ_t are logistic functions of its current value, the health of the household head, and age. We estimate the probabilities form the HRS, using the same approach to reconcile 1-year and 2-year transition probabilities that we used when estimating the health transition probabilities.

Table 11: Spousal Transition Probabilities: Household Head in Good Health

Table 11 shows transition probabilities for selected years when the household head is in good health. (The patterns are similar for all health states.) As households age, they are more
likely to become single. In addition, as households age spouses without income are more likely
to transition to having income. This likely reflects the initiation of Social Security or SSI
benefits.

Next, we estimate mean spousal income, conditional on positive income, as a function of health
status and age.