Pension Fund Restoration Policy in General Equilibrium

Netspar Pension Day 2016

Pim Kastelein

October 14, 2016

Supervised by R.M.W.J. Beetsma and W.E. Romp
Overview

1 Motivation

2 Model

3 Results

4 Conclusions
Research question

What are the business cycle effects and distributional consequences of pension fund restoration policy after the economy has been hit by a financial shock?
Motivation

Pension funds suffered large financial losses in 2008 ...

<table>
<thead>
<tr>
<th>Country</th>
<th>2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>Turkey</td>
<td>19.00</td>
</tr>
<tr>
<td>Korea</td>
<td>4.09</td>
</tr>
<tr>
<td>Germany</td>
<td>1.60</td>
</tr>
<tr>
<td>Czech Republic</td>
<td>0.32</td>
</tr>
<tr>
<td>Greece</td>
<td>-0.89</td>
</tr>
<tr>
<td>Mexico</td>
<td>-2.03</td>
</tr>
<tr>
<td>Slovak Republic</td>
<td>-2.08</td>
</tr>
<tr>
<td>Italy</td>
<td>-6.30</td>
</tr>
<tr>
<td>Spain</td>
<td>-8.00</td>
</tr>
<tr>
<td>Norway</td>
<td>-8.70</td>
</tr>
<tr>
<td>Simple average</td>
<td>-10.83</td>
</tr>
<tr>
<td>Switzerland</td>
<td>-11.30</td>
</tr>
<tr>
<td>Austria</td>
<td>-12.94</td>
</tr>
<tr>
<td>Poland</td>
<td>-14.28</td>
</tr>
<tr>
<td>Luxembourg</td>
<td>-14.39</td>
</tr>
<tr>
<td>Chile</td>
<td>-14.58</td>
</tr>
<tr>
<td>Portugal</td>
<td>-14.66</td>
</tr>
<tr>
<td>Finland</td>
<td>-15.00</td>
</tr>
<tr>
<td>Netherlands</td>
<td>-15.70</td>
</tr>
<tr>
<td>Hungary</td>
<td>-17.64</td>
</tr>
<tr>
<td>Belgium</td>
<td>-19.89</td>
</tr>
<tr>
<td>Australia</td>
<td>-20.60</td>
</tr>
<tr>
<td>Weighted average</td>
<td>-20.93</td>
</tr>
<tr>
<td>United States</td>
<td>-24.00</td>
</tr>
<tr>
<td>Ireland</td>
<td>-35.00</td>
</tr>
</tbody>
</table>

Source: OECD (2011)

Figure: Pension funds’ real investment rate of return in selected OECD countries in 2008 (Natali, 2011)
Motivation

... and as a result were heavily underfunded

![Estimated median percentage surplus or deficit of 2,100 exchange-listed companies’ aggregate defined benefit obligations](image)

(*) Companies are grouped by country of domicile. Therefore, all data represent pension plans’ administered by headquarteried companies and not the pension plans of the country of domicile.

Source: Thomson Reuters Datastream.

Figure: Median pension fund deficits of 2100 OECD companies in 2007, 2008, and 2009 (Laboul, 2010)
Motivation

How do pension funds typically function?

- Workers pay pension fund contributions (typically as a *share* of labour income)
- In return, workers accumulate pension benefits to be received upon retirement
- Pension fund invests paid contributions by workers

What does underfunded mean?

- Assets: value of managed assets (i.e. holding of capital stock)
- Liabilities: PDV of existing pension promises to fund participants
- No action entails pension fund exhausts assets
Motivation

Pension fund regulations prescribe speedy restoration of funding adequacy

- In e.g. Denmark, Finland, Germany, Iceland, Norway, Sweden (Pugh and Yermo, 2008)
- In The Netherlands through Financieel Toetsings Kader

However, undertaken measures differ widely (OECD, 2013)

- Less indexation of pension benefits
- Increased contribution payments
- Writing down of accumulated pension benefits (last resort)
Motivation

Theoretically, not just a matter of bring assets closer to liabilities:

- Δ distributional consequences
- Δ implications for macroeconomic aggregates

Writing down accumulated pension benefits:

- Liabilities ↓
- Mostly hurts retirees
- Retirees have higher MPCW → aggregate consumption drops

Increasing contribution payments:

- Assets ↑
- Mostly hurts workers
- Distorts labour supply and in turn aggregate supply
Candidate model: Gertler (1999)

- Life-cycle behaviour in model calibrated at business cycle frequency
- Economy is populated by two groups of agents: workers and retirees
- Workers retire, retirees decease
- Agents take into account finiteness of life when optimising
- Government policy is non-Ricardian (and so is our pension fund)
Our model:

Innovation:

- Introduce pension fund framework of Romp (2013) to flexibly embed various types of pension funds (DB, DC, etc.)
- Highlight how pension fund policy influences agent’s incentives
Model

Discuss model elements with focus on own innovations:

1. Retiree and worker decision problem
2. Pension fund

Skip:

1. Production
2. Government
Retiree and worker decision problem

- Each period, agents choose consumption c_t^i, labour supply l_t^i, and real balances m_t^i, $i = \{r, w\}$
- Maximise expected lifetime utility with RINCE preferences (see e.g. Weil (1989) and Farmer (1990))
- Risk neutrality, but nontrivial preference for intertemporal consumption smoothing
Retiree and worker decision problem

How is the pension fund embedded in the decision problem of agents?

- Agents pay contribution 'tax' τ on labour income
- Agents accumulate ν share of labour income as additional per-period pension benefits to be received upon retirement (annuity)
- Pension fund can mark up or write down stock of per-period pension benefits with indexation instrument μ
- Pension fund announces τ, ν, and μ at the start of each period
Distorted labour supply decision

Effective retiree tax rate:

\[\tau^r_t = \tau_t - (R^r_t - 1) \nu_t \]

\[R^r_t = 1 + \mu_{t+1} \frac{\gamma}{1 + r_{t+1}} R^r_{t+1} \]

Effective worker tax rate:

\[\tau^w_t = \tau_t - R^w_t \nu_t \]

\[R^w_t = \frac{\mu_{t+1}}{1 + r_{t+1}} \left(\frac{\omega}{\Omega_{t+1}} R^w_{t+1} + (1 - \frac{\omega}{\Omega_{t+1}}) R^r_{t+1} \right) \]

\[\Omega_{t+1} = \omega + (1 - \omega) \left(\frac{1 - \tau^w_{t+1}}{1 - \tau^r_{t+1} \xi} \right)^{v_2} (\epsilon_{t+1})^{\frac{1}{1-\sigma}} \]
Funding gap policy rule:

$$K_{t+1}^f - L_{t+1}^f = \nu(K_t^f - L_t^f)$$

- K_t^f = value of managed assets
- L_t^f = value of extended pension promises to current fund participants
- $\nu \in [0, 1)$ denotes closure speed
- if $K_t^f < L_t^f \rightarrow$ either $\mu_t < 1$, or $\nu_t \downarrow$, or $\tau_t \uparrow$
- ν_{μ} denotes share of gap to be closed through indexation instrument μ
- fix $\nu_t = \nu$
Production and government

Production:

- Perfectly competitive final goods sector
- Imperfectly competitive intermediate goods sector with Calvo (1983) pricing
- Perfectly competitive capital goods sector subject to capital adjustment costs

Government:

- Central bank follows standard Taylor rule with interest rate smoothing
Results

1. Pension fund calibration
2. Restoration policy after unexpected capital stock shock
3. Impulse response functions
4. Welfare implications
Table: Pension fund parameters and targeted pension fund variables

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Formula</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Accrual rate</td>
<td>ν</td>
<td>0.0055</td>
</tr>
<tr>
<td>Implied contribution rate</td>
<td>τ</td>
<td>0.022</td>
</tr>
<tr>
<td>Implied pension fund capital to output ratio</td>
<td>$\frac{K_f}{y}$</td>
<td>0.89</td>
</tr>
<tr>
<td>Implied retiree pension transfers to output ratio</td>
<td>$\frac{Pr_r}{f}$</td>
<td>0.049</td>
</tr>
<tr>
<td>Implied pension fund capital to aggregate capital ratio</td>
<td>$\frac{K_f}{k}$</td>
<td>0.274</td>
</tr>
</tbody>
</table>
As in Shimer (2012), suppose unexpected capital stock shock evaporates 10% of capital.
Pension fund now has $K_t^f < L_t^f \rightarrow$ conduct restoration policy.
(a) Defined Contribution

(b) Indexation
Pension fund balance sheet

Labour income tax rates

Indexation

(c) Hybrid

(d) Defined Benefit
Impulse response diagrams I

Output

Capital

Retiree labour supply

Worker labour supply

-4.00%
-3.50%
-3.00%
-2.50%
-2.00%
-1.50%
-1.00%
-0.50%

0 5 10 15 20 30

-10.50%
-9.50%
-8.50%
-7.50%
-6.50%
-5.50%
-4.50%
-3.50%

0 5 10 15 20

Laissez-faire Defined Contribution Indexation Hybrid Defined Benefit

Laissez-faire Defined Contribution Indexation Hybrid Defined Benefit
Figure: Impulse response diagrams for various variables after a 10% capital stock shock, compared over different pension systems. Values are in percentual deviation from the steady state.
Welfare implications

Table: First period equivalent variations (as a percentage of GDP) compared to Defined Contribution scenario after a 10% capital stock shock across different pension arrangements.

<table>
<thead>
<tr>
<th></th>
<th>Retirees EV</th>
<th>Workers EV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indexation</td>
<td>0.19%</td>
<td>−0.42%</td>
</tr>
<tr>
<td>Hybrid</td>
<td>0.49%</td>
<td>−1.68%</td>
</tr>
<tr>
<td>Defined Benefit</td>
<td>0.78%</td>
<td>−3.04%</td>
</tr>
</tbody>
</table>

- Only compute welfare of current groups of workers and retirees (income effects in labour supply)
- When pension funding gap is closed over time, part of welfare gains come at expense of future generations
Sensitivity analyses

- Low retiree productivity \rightarrow welfare improving scope of DB fund \uparrow
- Large DB pension fund \rightarrow shelter retirees from shocks \uparrow
- Increased life-expectancy \rightarrow retirees better equipped against shocks
- Trade-off between slow and fast recovery
Concluding remarks

Major take-aways:

- Economies with DC-type pension funds behave similarly to economies without pension funds
- Significant deviations when pension funds use τ to fill funding gaps
- DB pension funds distort labour supply, but can shelter retirees from shocks
- Retiree self-sufficiency, size of pension funds, and speed of recovery are key determinants

Retiree decision problem

\[V_{t}^{r,i} \left(\frac{1 + r_t}{\gamma} a_{t-1}^{r,i}, \mu_t P_{t}^{r,i} \right) = \max_{c_t^{r,i}, a_t^{r,i}, l_t^{r,i}, m_t^{r,i}} \left[\left(c_t^{r,i} \right)^{v_1} (1 - l_t^{r,i})^{v_2} (m_t^{r,i})^{v_3} \right]^{\frac{1}{\rho}} + \beta \gamma \left[V_{t+1}^{r,i} \left(\frac{1 + r_{t+1}}{\gamma} a_{t+1}^{r,i}, \mu_{t+1} P_{t+1}^{r,i} \right) \right]^{\frac{1}{\rho}} \]

subject to:

\[c_t^{r,i} + a_t^{r,i} + \frac{i_t}{1 + i_t} m_t^{r,i} = \frac{1 + r_t}{\gamma} a_{t-1}^{r,i} + (1 - \tau_t) \xi w_t l_t^{r,i} + \mu_t P_{t}^{r,i} - \tau_t^g \]

\[P_{t+1}^{r,i} = \mu_t P_{t}^{r,i} + \nu_t \xi w_t l_t^{r,i} \]
Retiree decision problem

Special attention to labour supply decision:

\[1 - l_t^{r,i} = \frac{v_2}{v_1} \frac{c_t^{r,i}}{(1 - \tau_t^r)\xi w_t}, \]

where \(\tau_t^r = \tau_t - (R_t^r - 1)\nu_t \) and \(R_t^r = 1 + \mu_{t+1} \frac{\gamma}{1+r_{t+1}} R_{t+1}^r \)

Optimisation gives:

- Retiree consumes fraction \(\epsilon_t \pi_t \) of total lifetime wealth in period \(t \)
- Total lifetime wealth: PDV of disposable income
Retiree decision problem

Optimisation gives:

\[c_{t+1}^{r,i} = \left[\beta (1 + r_{t+1}) \frac{(1 - \tau_t^r)w_t}{(1 - \tau_{t+1}^r)w_{t+1}} \right]^{\sigma} \left(\frac{1 + i_{t+1}}{i_{t+1}} \frac{i_t}{1 + i_t} \right)^{v_3 \rho} c_t^{r,i} \]

\[1 - l_t^{r,i} = \frac{v_2 \frac{c_t^{r,i}}{v_1 (1 - \tau_t^r)\xi w_t}}{v_1 (1 - \tau_t^r)\xi w_t} \]

\[m_t^{r,i} = \frac{v_3}{v_1} \frac{1 + i_t}{i_t} c_t^{r,i} \]

where \(\tau_t^r = \tau_t - (R_t^r - 1) \nu_t \) and \(R_t^r = 1 + \mu_{t+1} \frac{\gamma}{1 + r_{t+1}} R_{t+1}^r \)
Worker decision problem

\[V_{t,j}^w (1 + r_t a_{t-1}^w j, \mu_t P_t^w j) = \max_{c_t^w j, a_t^w j, l_t^w j, m_t^w j} \left[(c_t^w j)^{v_1} (1 - l_t^w j)^{v_2} (m_t^w j)^{v_3} \right]^p + \beta \left[\omega V_{t+1,j}^w (1 + r_{t+1} a_t^w j, \mu_{t+1} P_{t+1}^w j) + (1 - \omega) V_{t+1}^{r,j} ((1 + r_{t+1}) a_t^{r,j} \mu_{t+1} P_{t+1}^{r,j}) \right]^{\frac{1}{p}} \]

subject to the constraints that become operative once he retires and:

\[c_t^w j + a_t^w j + \frac{i_t}{1 + i_t} m_t^w j = (1 + r_t) a_{t-1}^w j + (1 - \tau_t) w_t l_t^w j + f_t - \tau_t^g \]

\[P_{t+1}^w j = \mu_t P_t^w j + \nu_t w_t l_t^w j \]
Worker decision problem

\[\omega c_{t+1}^{w,j} + (1 - \omega)c_{t+1}^{r,j} \Lambda_{t+1} = c_t^{w,j} \left[\beta (1 + r_{t+1}) \Omega_{t+1} \left(\frac{(1 - \tau_t^w)w_t}{(1 - \tau_{t+1}^w)w_{t+1}} \right)^{v_2\rho} \left(\frac{1 + i_{t+1}}{i_{t+1}} \frac{i_t}{1 + i_t} \right)^{v_3\rho} \right]^\sigma \]

\[1 - l_t^{w,j} = \frac{v_2}{v_1} \frac{c_t^{w,j}}{(1 - \tau_t^w)w_t} \]

\[m_t^{r,j} = \frac{v_3}{v_1} \frac{1 + i_t}{i_t} c_t^{w,j} , \]

with:

\[\Lambda_{t+1} = (\epsilon_{t+1})^{\frac{\sigma}{1 - \sigma}} \]

\[\chi_{t+1} = \left(\frac{1 - \tau_{t+1}^w 1}{1 - \tau_{t+1}^r \xi} \right)^{v_2} \]

\[\Omega_{t+1} = \omega + (1 - \omega)\chi_{t+1}(\epsilon_{t+1})^{\frac{1}{1 - \sigma}} \]
Aggregation

Aggregation is straight-forward due to:

- Linearity of l_t^z and m_t^z in c_t^z
- π_t and $\epsilon_t \pi_t$ the same for all workers and retirees, respectively

Example:

$$l_t^r = \sum_i (1 - \frac{v_2}{v_1} \frac{c_t^{r,i}}{(1 - \tau_t^r) \xi w_t}) = N^r - \frac{v_2}{v_1} \frac{c_t^r}{(1 - \tau_t^r) \xi w_t}$$

$$c_t^r = \sum_i \left(\epsilon_t \pi_t \left(\frac{(1 + r_t)}{\gamma} a_t^{r,i} + h_t^{r,i} \right) \right) = \epsilon_t \pi_t \left((1 + r_t) a_{t-1}^r + h_t^r \right)$$
Aggregation

\[l_t^r = \sum_i \left(1 - \frac{v_2}{v_1} \frac{c_{t,i}^r}{(1 - \tau_t^r)\xi w_t} \right) = \mathcal{N}^r - \frac{v_2}{v_1} \frac{c_t^r}{(1 - \tau_t^r)\xi w_t} \]

\[l_t^w = \sum_j \left(1 - \frac{v_2}{v_1} \frac{c_{t,j}^w}{(1 - \tau_t^w)w_t} \right) = \mathcal{N}^w - \frac{v_2}{v_1} \frac{c_t^w}{(1 - \tau_t^w)w_t} \]

\[l_t = l_t^w + \xi l_t^r, \]

\[d_t^r = \sum_i \left((1 - \tau_t)\xi w_t l_t^{r,i} + \mu_t P_t^{r,i} - \tau_t^g \right) = (1 - \tau_t)\xi w_t l_t^r + \mu_t P_t^{r,f} - \tau_t^g \mathcal{N}^r \]

\[d_t^w = \sum_j \left((1 - \tau_t)w_t l_t^{w,j} + f_t - \tau_t^g \right) = (1 - \tau_t)w_t l_t^w + f_t \mathcal{N}^w - \tau_t^g \mathcal{N}^w, \]
\[h^r_t = \sum^i (d^r_{t,i} + \frac{\gamma}{1 + r_{t+1}} h^r_{t+1,i}) = d^r_t + \frac{\gamma}{1 + r_{t+1}} h^r_{t+1} \]

\[h^w_t = \sum^j \left(d^w_{t,j} + \frac{1}{1 + r_{t+1}} \left(\frac{\omega}{\Omega_{t+1}} h^w_{t+1,j} + (1 - \frac{\omega}{\Omega_{t+1}}) h^r_{t+1,j} \right) \right) \]

\[= d^w_t + \frac{1}{1 + r_{t+1}} \left(\frac{\omega}{\Omega_{t+1}} h^w_{t+1} + (1 - \frac{\omega}{\Omega_{t+1}}) \frac{1}{\psi} h^r_{t+1} \right), \]

\[a^r_t = (1 + r_t) a^r_{t-1} + d^r_t - c^r_t - \frac{i_t}{1 + i_t} m^r_t + \]

\[(1 - \omega) \left((1 + r_t) a^w_{t-1} + d^w_t - c^w_t - \frac{i_t}{1 + i_t} m^w_t \right) \]

\[a^w_t = \omega \left((1 + r_t) a^w_{t-1} + d^w_t - c^w_t - \frac{i_t}{1 + i_t} m^w_t \right) \]

\[a_t = a^w_t + a^r_t, \]
Aggregation III

\[c_t^r = \sum_i \left(\epsilon_t \pi_t \left(\frac{(1 + r_t)}{\gamma} a_{t-1}^{r,i} + h_t^{r,i} \right) \right) = \epsilon_t \pi_t \left((1 + r_t) a_{t-1}^r + h_t^r \right) \]

\[c_t^w = \sum_j \left(\pi_t \left((1 + r_t) a_{t-1}^{w,j} + h_t^{w,j} \right) \right) = \pi_t \left((1 + r_t) a_{t-1}^w + h_t^w \right) \]

\[c_t = c_t^r + c_t^w, \]

\[m_t^r = \sum_i \left(\frac{v_2}{v_1} \frac{1 + i_t}{i_t} c_t^{r,i} \right) = \frac{v_2}{v_1} \frac{1 + i_t}{i_t} c_t^r \]

\[m_t^w = \sum_j \left(\frac{v_2}{v_1} \frac{1 + i_t}{i_t} c_t^{w,j} \right) = \frac{v_2}{v_1} \frac{1 + i_t}{i_t} c_t^w \]

\[m_t = m_t^w + m_t^r \]
Liabilities:

\[L_t^f = R_{t,f}^r P_{t,f}^r + R_{t,f}^w P_{t,f}^w \]

Counterparts of \(P_{t,f}^r \) and \(P_{t,f}^w \):

- \(P_{t,f}^r \) = aggregate stock of per-period pension benefits of currently retired
- \(P_{t,f}^w \) = aggregate stock of per-period pension benefits of currently working

Counterparts of \(R_{t}^r \) and \(R_{t}^w \):

\[R_{t,f}^r = 1 + \frac{\gamma}{1 + r_{t+1}} R_{t+1}^r \]

\[R_{t,f}^w = \frac{1}{1 + r_{t+1}} (\omega R_{t+1}^w + (1 - \omega) R_{t+1}^r) \]
Back to (??)

\[y_t = \left[\int_0^1 (y_{z,t})^{\frac{\theta-1}{\theta}} \, dz \right]^{\frac{\theta}{\theta-1}} \]

\[y_{z,t} = y_t \left[\frac{P_{z,t}}{P_t} \right]^{-\theta} \]

\[P_t = \left[\int_0^1 (P_{z,t})^{1-\theta} \, dz \right]^{\frac{1}{1-\theta}} \]

\[y_{z,t} = (A_t^{lap} l_{z,t})^\alpha (k_{z,t})^{1-\alpha} \]
\[w_t = mc_t\left[\alpha \left(\frac{k_{z,t}}{A_{t}^{lap} l_{z,t}}\right)^{1-\alpha}\right] A_{t}^{lap} \rightarrow mc_t = \frac{w_t l_{z,t}}{\alpha y_{z,t}} \]

\[r_t^k = mc_t[(1-\alpha)\left(\frac{A_{t}^{lap} l_{z,t}}{k_{z,t}}\right)^{\alpha}] \rightarrow mc_t = \frac{r_t^k k_{z,t}}{(1 - \alpha) y_{z,t}} \]

\[f_{z,t} = \frac{P_{z,t}}{P_t} y_{z,t} - w_t l_{z,t} - r_t^k k_{z,t} \]

\[= y_{z,t} \left(\frac{P_{z,t}}{P_t} - mc_t\right) \]

\[\frac{k_{z,t}}{l_{z,t}} = \frac{1 - \alpha \ w_t}{\alpha \ r_t^k} \]

\[mc_t = \left(\frac{w_t}{\alpha A_t^{lap}}\right)^{\alpha} \left(\frac{r_t^k}{1 - \alpha}\right)^{1-\alpha} \]
Production III

\[
\frac{P_t^*}{P_t} = \frac{\theta}{\theta - 1} \frac{\sum_{i=0}^{\infty} (\zeta \beta)^i \Delta t + i \left(\frac{1}{P_{t+i}} \right)^{1-\theta} y_{t+i} mc_{t+i} \frac{P_{t+i}}{P_t}}{\sum_{i=0}^{\infty} (\zeta \beta)^i \Delta t + i \left(\frac{1}{P_{t+i}} \right)^{1-\theta} y_{t+i}}
\]

\[
P_t = \left[\zeta (P_{t-1})^{1-\theta} + (1 - \zeta) (P_t^*)^{1-\theta} \right]^{\frac{1}{1-\theta}}
\]

\[
k_t = (1 - \delta) k_{t-1} + (1 - S \left[\frac{i^k_t}{i^k_{t-1}} \right]) i^k_t
\]

\[
1 + r_t = \frac{P^k_t (1 - \delta) + r^k_t}{P^k_{t-1}}
\]

\[
1 = P^k_t \left(1 - S \left[\frac{i^k_t}{i^k_{t-1}} \right] - S' \left[\frac{i^k_t}{i^k_{t-1}} \right] \frac{i^k_t}{i^k_{t-1}} \right) + \frac{P^k_{t+1}}{1 + r_{t+1}} S' \left[\frac{i^k_{t+1}}{i^k_t} \right] (\frac{i^k_t}{i^k_t})^2
\]
\[l_t = \int_0^1 l_{z,t} \, dz \]

\[k_{t-1} = \int_0^1 k_{z,t} \, dz \]

\[y_t = \left[\int_0^1 (y_{z,t})^{\frac{\theta-1}{\theta}} \, dz \right]^{\frac{\theta}{\theta-1}}, \text{ with } y_{z,t} = (A_{t}^{lap} l_{z,t})^{\alpha} (k_{z,t})^{1-\alpha} \]

\[f_t N^w = \int_0^1 f_{z,t} \, dz = \int_0^1 \left(\frac{P_{z,t}}{P_t} - mc_t \right) y_{z,t} \, dz \text{, with } y_{z,t} = (A_{t}^{lap} l_{z,t})^{\alpha} (k_{z,t})^{1-\alpha} \]

\[a_t + K_f^t + \tau_t w_t l_t - \mu_t P_{t,r} = P_t^k k_t + \frac{m_t}{1 + i_t} \]

\[y_t = c_t + i_t^k \]

\[i_t = \eta i_{t-1} + (1 - \eta) [r_{t+1} + \gamma_{y} \pi^{P}_{t} + \gamma_{y} \tilde{y}_t] \]
\[\tau_t^g = m_{t-1} \frac{P_{t-1}}{P_t} - m_t \]