An Empirical Investigation of Affine Term Structure Model Uncertainty

Jing Li

Tiburg University

Netspar Pension Day, Utrecht
14th Oct, 2016
Motivation

- Practitioners prefer simple models for tractability reason.
- Model uncertainty might be significant, if using simple (nominal) models.
 - nominal model (NOM): the model you use.
 - model uncertainty: all uncertainty that causes your model to fail to capture the true DGP.
- Affine term structure models of different estimation approaches and factors choices.

Research Question: How does model uncertainty affect asset pricing using Affine Term Structure Models (ATSM).
Literature

• Hansen and Sargent [2007] v.s. Schneider and Schweizer [2015]
 - possibly complicated nominal models v.s. potentially simple ones.
 - parametric model uncertainty v.s. model misspecification uncertainty.
• Glasserman and Xu [2014] v.s. Perez-Cruz [2008]
 - Divergence calculation by definition v.s. by empirical approach
• Adrian et al. [2013] easy-to-implement estimation for ATSM
 - focus on the different structures of factor models
This Paper

- Analyzes the **uncertainty impacts** of expected yield curves.
 - uncertainty impacts: the outcomes of the best case and the worse case.
- Compares the impacts of **chosen** nominal ATSM.
- Evaluates the impacts by **two empirical approaches** based on different divergence calculations.
Contents

Introduction
 Motivation
 Literature
 This Paper

Model Uncertainty Evaluation Theory
 Model Uncertainty Illustration
 Asset Pricing Model
 Evaluation of the Impacts

Empirical Studies
 Data Description
 Model Confidence Set
 Empirical Model Uncertainty Impacts
 Results

Summary & Conclusions

Appendix
Model Uncertainty Evaluation Theory

Introduction

Model Uncertainty Illustration I

- Based on data, select a model confidence set \((\mathcal{P}_C)\) from a big collection of models with various structures and variables, deemed as a set of empirically indistinguishable models that captures the true DGP [Hansen et al., 2011].

- Quantify the model uncertainty of the NOM by \(\kappa^*\), the maximal KL divergence from the \(\mathcal{P}_C\), and use it to construct the uncertainty set \(\mathcal{P}_U\).

- Consider the impacts as the best outcome and the worst outcome, which are obtained from the alternative models in \(\mathcal{P}_U\) by a change of measure from the NOM [Glasserman and Xu, 2014].
Model Uncertainty Illustration II

\(\mathcal{P}_U \) (\(\mathcal{P}_{\kappa^*} = \mathcal{P}_{\kappa_{\theta^*}} \))

\(\mathcal{P}_C \)

NOM

\(\kappa^* \): the true DGP.

\(\kappa_{\theta^*} \): the maximum divergence from \(\mathcal{P}_C \).

\(\kappa_{\theta^*} \): equals to \(\kappa^* \); the divergence from the alternative model.

\(\tau \) (maturity)

\(y \) (bond yield)

worst case

best case

parameter uncertainty v.s. model misspecification uncertainty.
Application: Affine Term Structure Models

- The bond yield y with maturity of τ at time t is given by
 \[y_t^{(\tau)} = A_\tau + B_\tau' X_{t,j} + u_t^{(\tau)}, \]
 (1)
 where parameters A_τ and B_τ are estimated by Adrian et al. [2013], and $X_{t,j}$ is the pricing-factor vector of model j following a VAR(1) process.

- A model j is defined as a conditional probability $p_j(y|X)$.
- We are interested in the expected pricing outcomes from \mathcal{P}_U
 - $E_j(y)$ under $p_j(y)$
 - the best case $\text{sup } E_j(y)$ under $p_{j,\text{sup}}(y)$
 - the worst case $\text{inf } E_j(y)$ under $p_{j,\text{inf}}(y)$
Evaluation of the Impacts I

Consider the optimization problem

$$\sup_{m \in \mathcal{P}_\kappa} \mathbb{E}_{\text{NOM}} (c \cdot m \cdot y),$$

(2)

where m is the Radon-Nikodym derivative equal to $\frac{p_j(y)}{p_{\text{NOM}}(y)}$. $c = 1$ is for the best case, and $c = -1$ is for the worst case.

- Quantify model uncertainty by KL divergence, defined by $\mathbb{E} (m \log m)$.
- $m_j \in \mathcal{P}_\kappa$ implies $\mathbb{E} (m \log m) \leq \kappa$.
Evaluation of the Impacts II

• Form the dual optimization problem,

$$\inf_{\theta > 0} \sup_m \mathbb{E}_{\text{NOM}} \left[c \cdot m \cdot y - \frac{1}{\theta} (m \log m - \kappa) \right],$$

The optimal solution is

$$m^*_\theta = \frac{\exp (c\theta \cdot y)}{\mathbb{E}_{\text{NOM}} \{\exp [c\theta \cdot y]\}}, \quad \theta > 0,$$ \hspace{0.5cm} (3)

By change of measure, the probability measure of the best case or the worst case is

$$p_{\theta, \text{NOM}}(y) = m^*_\theta \cdot p_{\text{NOM}}(y).$$ \hspace{0.5cm} (4)
Approach 1–Evaluation of the Impacts

- The impacts are evaluated by

\[\mathbb{E}_j(y) = \mathbb{E}_{NOM}(m_{\theta_1}^* \cdot y). \quad (5) \]

- Measure the KL divergence by

\[\kappa_{\theta_1} = \mathbb{E}(m_{\theta_1}^* \log m_{\theta_1}^*), \quad (6) \]

and calibrate \(\theta_1 \) such that \(\kappa_{\theta_1} = \kappa^* \), giving \(\theta_1^* \).
Approach 2-Evaluation of the Impacts 1

- Given $p_{NOM}(y) \sim \mathcal{N}(\mu_y, \Sigma_y)$, then

 $$p_{\theta,NOM}(y) \sim \mathcal{N}(\mu_y + c\theta_2 \Sigma_y, \Sigma_y)$$

 by $p_{\theta,NOM}(y) = m_{\theta_2}^* \cdot p_{NOM}(y)$.

- The impacts are evaluated by

 $$\mathbb{E}_j(y) = \mathbb{E}_{NOM}(y + c\theta_2 \Sigma_y) \quad (7)$$
Approach 2—Evaluation of the Impacts II

- KL divergence is **empirically calculated** by the kNN approach [Perez-Cruz, 2008]

$$
\kappa_{\theta_2} = \frac{d}{N_2} \sum_{n_2=1}^{N_2} \log \frac{r_k(\tilde{y}_{n_2})}{s_{k+1}(\tilde{y}_{n_2})} + \log \frac{N_1}{N_2 - 1},
$$

using i.i.d samples $\tilde{y} = \{\tilde{y}_{n_2}\}_{n_2=1}^{N_2}$ and $\hat{y} = \{\hat{y}_{n_1}\}_{n_1=1}^{N_1}$ drawn from $p_{\theta,\text{NOM}}(y)$ and $p_{\text{NOM}}(y)$ respectively.

- $r_k(\tilde{y}_{n_2})$: the Euclidean distance of the k-th nearest-neighbour of \tilde{y}_{n_2} in \hat{y};
- $s_{k+1}(\tilde{y}_{n_2})$ the Euclidean distance of the $(k + 1)$-th nearest-neighbour of \tilde{y}_{n_2} in \tilde{y}.

- θ_2^* is **calibrated** such that $\kappa_{\theta_2} = \kappa^*$
Data Description I

Panel A: The Estimation Errors of the NSS Approach

| Maturity (month) | $|\text{mean}|$ (%) | std (%) | obs |
|------------------|--------------|---------|------|
| 1 | 0.0020 | 0.0066 | 150 |
| 3 | 0.00002 | 0.0035 | 384 |
| 6 | 0.0012 | 0.0033 | 384 |
| 12 | 0.0005 | 0.0027 | 661 |
| 24 | 0.00002 | 0.0022 | 451 |
| 36 | 0.0010 | 0.0020 | 661 |
| 60 | 0.0004 | 0.0015 | 661 |
| 84 | 0.0004 | 0.0015 | 534 |
| 120 | 0.0007 | 0.0017 | 661 |
| 240 | 0.0005 | 0.0027 | 661 |
| 360 | 0.0013 | 0.0034 | 443 |

Panel B: Data descriptions of NSS estimates of bond yields.

<table>
<thead>
<tr>
<th>Maturity (month)</th>
<th>mean (%)</th>
<th>std (%)</th>
<th>minimum (%)</th>
<th>maximum (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1371</td>
<td>0.0634</td>
<td>0.0004</td>
<td>0.2574</td>
</tr>
<tr>
<td>3</td>
<td>0.1437</td>
<td>0.0606</td>
<td>0.0022</td>
<td>0.2586</td>
</tr>
<tr>
<td>6</td>
<td>0.1486</td>
<td>0.0596</td>
<td>0.0016</td>
<td>0.2638</td>
</tr>
<tr>
<td>12</td>
<td>0.1540</td>
<td>0.0584</td>
<td>0.0033</td>
<td>0.2679</td>
</tr>
<tr>
<td>24</td>
<td>0.1605</td>
<td>0.0541</td>
<td>0.0146</td>
<td>0.2710</td>
</tr>
<tr>
<td>36</td>
<td>0.1648</td>
<td>0.0497</td>
<td>0.0257</td>
<td>0.2702</td>
</tr>
<tr>
<td>60</td>
<td>0.1699</td>
<td>0.0430</td>
<td>0.0443</td>
<td>0.2650</td>
</tr>
<tr>
<td>84</td>
<td>0.1728</td>
<td>0.0389</td>
<td>0.0600</td>
<td>0.2617</td>
</tr>
<tr>
<td>120</td>
<td>0.1752</td>
<td>0.0353</td>
<td>0.0771</td>
<td>0.2607</td>
</tr>
<tr>
<td>240</td>
<td>0.1793</td>
<td>0.0319</td>
<td>0.1032</td>
<td>0.2600</td>
</tr>
<tr>
<td>360</td>
<td>0.1828</td>
<td>0.0324</td>
<td>0.1123</td>
<td>0.2656</td>
</tr>
</tbody>
</table>

- Original data of bond yields are **unbalanced**.
- Apply **Nelson-Siegel-Svensson (NSS)** approach to get data balanced.
- Compare the estimates with the original data. NSS performs well.
Data Description II

Use **NSS estimates** as the data input for the following studies.
Model Confidence Set I

- The Great Candidate Set

\[\mathcal{M}_0 = \{[1], [6], [9], [24], [60], [84], [120], [1, 6], [6, 9], [9, 12], [12, 36], [12, 60], [36, 84], [60, 120], [1, 6, 9], [6, 9, 12], [12, 24, 60], [36, 60, 84], [12, 60, 120], [1, 6, 9, 12], [6, 9, 12, 24], [24, 36, 60, 84], [6, 9, 12, 24, 36], [6, 24, 36, 60, 84], [1, 6, 12, 24], [6, 12, 24, 36, 60, 120], [9, 12, 36, 60, 84, 120], [1, 6, 9, 12, 24, 36, 60], [12, 24, 36, 60, 84, 120], [6, 9, 12, 24, 36, 60, 84, 120] \}.

- A collection of ATSM based on factor models.
- Factors are bond yields with \(\tau \)-month maturities as the numbers indicate.
- The selection procedure first ranks them according to a loss function, and then tests whether the worst has to be eliminated.
- Set significant level \(\alpha = 5\% \).
Model Confidence Set II

- For instance, pricing the 30-month bond gives the ranked set

\[\mathcal{M}_r = \{[1], [120], [84], [6], [1, 6], [60], [9], [6, 9], [1, 6, 9], [60, 120], [9, 12], [24], [6, 9, 12], [1, 6, 9, 12], [12, 60], [36, 84], [36, 60, 84], [12, 36], [12, 60, 120], [24, 36, 60, 84], [12, 24, 60], [6, 9, 12, 24], [1, 6, 9, 12, 24], [9, 12, 36, 60, 84, 120], [12, 24, 36, 60, 84, 120], [6, 24, 36, 60, 84], [6, 9, 12, 24, 36], [6, 12, 24, 36, 60, 120], [1, 6, 9, 12, 24, 36, 60, 84, 120]\}.

The \(p \)-value for each \(r \) round of test collected correspondingly in the set

\[p_{r-val}(\mathcal{M}_r) = \{0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.00\%, 0.01\%, 0.01\%, 0.01\%, 0.01\%, 0.01\%, 0.01\%, 0.01\%, 1.01\%, 1.22\%, 1.80\%, 5.68\%, 6.24\%, 56.54\%, 100\%\}. \]
A General Picture of Pricing Results from models in \mathcal{M}_0
Model Uncertainty Investigation

- Investigate the bond pricing with maturities of 10-month, 30-month, 40-month, 50-month, 60-month, 80-month, 90-month and 110-month.
- X_{NOM}s for comparison

 \[
 NOM_1 = [1]; \quad NOM_2 = [120]; \quad NOM_3 = [12, 36]; \\
 NOM_4 = [12, 60]; \quad NOM_5 = [6, 9, 12]; \quad NOM_6 = [12, 60, 120]; \\
 NOM_7 = [1, 6, 9, 12, 24].
 \]

- The uncertainty impacts will form "uncertainty bands" across maturity.
κ* obtained by the kNN approach

Table: The KL divergence κ*

<table>
<thead>
<tr>
<th></th>
<th>τ</th>
<th>10</th>
<th>30</th>
<th>60</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM1</td>
<td>10</td>
<td>0.0467</td>
<td>0.1854</td>
<td>0.1506</td>
<td>0.1696</td>
</tr>
<tr>
<td>NOM3</td>
<td>30</td>
<td>0.0008</td>
<td>0.0007</td>
<td>0.0009</td>
<td>0.0093</td>
</tr>
<tr>
<td>NOM5</td>
<td>60</td>
<td>—</td>
<td>0.0006</td>
<td>0.0021</td>
<td>0.0144</td>
</tr>
<tr>
<td>NOM6</td>
<td>110</td>
<td>0.0007</td>
<td>0.0005</td>
<td>0.0006</td>
<td>0.0001*</td>
</tr>
<tr>
<td>NOM7</td>
<td>284</td>
<td>—</td>
<td>0.0004</td>
<td>0.0007</td>
<td>0.0019</td>
</tr>
</tbody>
</table>

- NOM5 and NOM7 are in the MCS when pricing 10-month bond, cases not considered in this paper.
θ\(^*\) obtained by Approach 1 and Approach 2

Table: The **θ**\(^*\) for the best cases, based on calibrations by Approach 1 and Approach 2.

<table>
<thead>
<tr>
<th>θ(^*)</th>
<th>(X_{NOM})</th>
<th>10</th>
<th>30</th>
<th>60</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>θ(_1^*)</td>
<td>NOM(_1)</td>
<td>6.2800</td>
<td>12.1700</td>
<td>12.1680</td>
<td>14.1700</td>
</tr>
<tr>
<td></td>
<td>NOM(_3)</td>
<td>0.6970</td>
<td>0.7130</td>
<td>0.9620</td>
<td>3.7700</td>
</tr>
<tr>
<td></td>
<td>NOM(_5)</td>
<td>—</td>
<td>0.6850</td>
<td>1.5250</td>
<td>4.7000</td>
</tr>
<tr>
<td></td>
<td>NOM(_6)</td>
<td>0.6344</td>
<td>0.6835</td>
<td>0.8250</td>
<td>0.2813</td>
</tr>
<tr>
<td></td>
<td>NOM(_7)</td>
<td>—</td>
<td>0.5219</td>
<td>0.8500</td>
<td>1.7000</td>
</tr>
<tr>
<td>θ(_2^*)</td>
<td>NOM(_1)</td>
<td>20.9330</td>
<td>14.8469</td>
<td>12.4250</td>
<td>14.22</td>
</tr>
<tr>
<td></td>
<td>NOM(_3)</td>
<td>919.00</td>
<td>683.00</td>
<td>108.18</td>
<td>35.1200</td>
</tr>
<tr>
<td></td>
<td>NOM(_5)</td>
<td>—</td>
<td>111.60</td>
<td>24.00</td>
<td>24.10</td>
</tr>
<tr>
<td></td>
<td>NOM(_6)</td>
<td>1300.00</td>
<td>747.00</td>
<td>5006.00</td>
<td>3650.00</td>
</tr>
<tr>
<td></td>
<td>NOM(_7)</td>
<td>—</td>
<td>12060.00</td>
<td>66.00</td>
<td>18.00</td>
</tr>
</tbody>
</table>
A conjecture: θ_2 decreases in Σ_y

Recall Approach 2

<table>
<thead>
<tr>
<th>Σ_y</th>
<th>θ_2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1×10^{-7}</td>
<td>2.73×10^{-4}</td>
</tr>
<tr>
<td>5×10^{-7}</td>
<td>5.65×10^{-3}</td>
</tr>
<tr>
<td>1×10^{-6}</td>
<td>2.78×10^{-3}</td>
</tr>
<tr>
<td>5×10^{-6}</td>
<td>548</td>
</tr>
<tr>
<td>1×10^{-5}</td>
<td>275</td>
</tr>
<tr>
<td>5×10^{-5}</td>
<td>56.2</td>
</tr>
<tr>
<td>1×10^{-4}</td>
<td>28</td>
</tr>
<tr>
<td>5×10^{-4}</td>
<td>6.3</td>
</tr>
<tr>
<td>1×10^{-3}</td>
<td>3.5</td>
</tr>
<tr>
<td>5×10^{-3}</td>
<td>1.115</td>
</tr>
</tbody>
</table>

Figure: θ_2 and Σ_y for a same $\kappa^* = 0.0021$ in pricing 60-month bond using NOM_5. The table on the right lists the values plotted in the figure.
Uncertainty Bands of Yield Curves

\begin{align*}
\text{NOM}_1 &= [1] \\
\text{NOM}_2 &= [120] \\
\text{NOM}_3 &= [12, 36] \\
\text{NOM}_4 &= [12, 60] \\
\text{NOM}_5 &= [6, 9, 12] \\
\text{NOM}_6 &= [12, 60, 120] \\
\text{NOM}_7 &= [1, 6, 9, 12, 24]
\end{align*}
Summary & Conclusions

- Evaluation of the impacts by two empirical approaches. Impacts by both approaches are the same. But θ^* are not, conjectured resulting from θ_2 decreasing in Σ_Y.
- Comparison of the impacts of chosen nominal ATSM. All uncertainty bands satisfy to include the outcomes from P_C.
- Financial interpretations
 - The largest impacts are in the case using a single-factor model with a short rate.
 - The minimal impacts are in the case using three-factor model with short, medium and long rates.
Topics of Future Research

- Extend by considering more advanced ATSM.
- Study the empirical model uncertainty impacts on institutional investments.
- Develop advanced ATSM incorporating model uncertainty.
References I

Thank You!
Table: The expected sample variances $\hat{\Sigma}_y$

<table>
<thead>
<tr>
<th>X_{NOM}</th>
<th>10</th>
<th>30</th>
<th>60</th>
<th>110</th>
</tr>
</thead>
<tbody>
<tr>
<td>NOM_1</td>
<td>0.0007</td>
<td>0.0021</td>
<td>0.0020</td>
<td>0.0017</td>
</tr>
<tr>
<td>NOM_3</td>
<td>2.64 · 10$^{-6}$</td>
<td>2.87 · 10$^{-6}$</td>
<td>1.62 · 10$^{-5}$</td>
<td>1.40 · 10$^{-4}$</td>
</tr>
<tr>
<td>NOM_5</td>
<td>—</td>
<td>1.68 · 10$^{-5}$</td>
<td>1.16 · 10$^{-4}$</td>
<td>2.54 · 10$^{-4}$</td>
</tr>
<tr>
<td>NOM_6</td>
<td>1.69 · 10$^{-6}$</td>
<td>2.43 · 10$^{-6}$</td>
<td>3.21 · 10$^{-7}$</td>
<td>1.03 · 10$^{-7}$</td>
</tr>
<tr>
<td>NOM_7</td>
<td>—</td>
<td>1.19 · 10$^{-7}$</td>
<td>2.33 · 10$^{-5}$</td>
<td>1.27 · 10$^{-4}$</td>
</tr>
</tbody>
</table>