Quantification of the Discontinuity Risk of Pension Funds

Jorgo Goossens
J. de Haan, Dr. M. van Leuvensteijn, Dr. S. Sender

APG, Tilburg University, Netspar

October 13, 2016
BACKGROUND

- Intern at APG since April till August; Netspar-student.
- For my MSc. Quantitative Finance & Actuarial Science, Netspar; BSc. Econometrics at Tilburg University also.
- Supervisors Thesis:
 - Dr. Samuel Sender (UvT, Netspar);
 - Dr. Michiel van Leuvensteijn (ACM, APG);
 - Jurre de Haan (APG).
- Co-reader Thesis:
 - Prof. Dr. Bertrand Melenberg (UvT, Netspar).
Outline

Introduction
 Problem Motivation
 Methodology

Results
 Reaction-function
 Financial Market & Pension Fund
 Funding Ratios: Dynamic In- and Outflow

Conclusion
DEFINITION

- Car-sharing example: discontinuity risk.
- Problem: collective amount has to be divided fairly.
 - Discontinuity due to inter-generational risk sharing.

Definition

Discontinuity risk
The probability that new generations (of 25 years old) — when they enter the labour market — abstain from entering the collective pension contract, and/or the probability that older generations (from 26 till 64 years old) — currently in the collective fund — withdraw from the collective pension contract and enter the individual fund.
Relevance & Literature

- Not taken into account in current ALM-analysis.
- Current debate: ‘hoofdlijnennota’ of the cabinet.
- Inter-generational risk-sharing, “solidarity”:
 - Welfare enhancing, if committed to contract.
- Minimum funding ratios:
 - Indifference point individual DC v.s. collective DB.
- Briefly discontinuity risk:
 - Mainly on new generations, not older generations.
I extend on the research of discontinuity risk:

1. How do new entrants and current participants react during a discontinuity event?

2. How affects (endogenous) discontinuity risk the sustainability of the (larger) pension funds in The Netherlands and how large is the discontinuity risk?

Method of analysis: Monte Carlo simulations.
In the News

- Understanding the role of debt in the financial system.
- Contract-theory: Nobelprize!

![Graph showing Payoff s(x) vs Value of collateral]

Quantification of the Discontinuity Risk of Pension Funds

APG, Tilburg University, Netspar
Current Static Approach

- Financial Market
- Pension Fund
- input
- Model
- Funding Ratios
New Dynamic Approach

Methodology

Quantification of the Discontinuity Risk of Pension Funds

APG, Tilburg University, Netspar
Quantification of the Discontinuity Risk of Pension Funds

APG, Tilburg University, Netspar
Discontinuity Event

- Evidence-based is difficult, no historic events.

- Who leave the pension fund and what are the costs of if?
 - 25-64 years, transfer values twofold.

- Can participants leave a fund and where do they go to?
 - Collective or individual scheme; options in reality.

- Do they not enter due to the (unsustainable) current situation of the fund, or because other individuals are probably not going to participate?
 - Snowball/bank-run effect a.k.a. information cascade.
Based on literature of Siegmann (2011):
- Minimum funding ratio 25-year-old at 96%.
Break-even Funding Ratios: 25-64 year-olds

Based on literature of Molenaar et al. (2011):
- Minimum funding ratio 25-year-old at 120%.
OUTLINE

- Discontinuity
- Financial Market
- Pension Fund
- Input
- Model
- Dynamic Funding Ratios

Reaction-function

Quantification of the Discontinuity Risk of Pension Funds

APG, Tilburg University, Netspar
Two dominant risks pension fund:

- Stock market;
- Interest rate (mean-reverting), with random inflation.

⇒ Realised in a continuous Black-Scholes-Vasicek model.

Output:

- Portfolio returns (6% stocks and 3% bonds) and term-structure (2% long-term interest rate).

Pension fund:

- Takes The Netherlands as baseline.
- Initial funding ratio 90%.
OUTLINE

Discontinuity → Model → Dynamic Funding Ratios

Financial Market & Pension Fund

Quantification of the Discontinuity Risk of Pension Funds

APG, Tilburg University, Netspar
(I) Dynamic Inflow

Entry level 96% (left) and entry level 120% (right): Buffer-drop due to small grey fund, effect on long-term.

Figure: Funding ratios with dynamic inflow.
(II) Dynamic Inflow and Outflow

Characteristic hump gone due to leaving near-retirees: Effect on long-term (default), but also on short-term.

Figure: Funding ratios with dynamic inflow and outflow.
Funding Ratios: Dynamic In- and Outflow

Effect Discontinuity for Participants

Effect of same magnitude as benefit reductions/recovery premia.

Figure: Change in generational accounts: value-based ALM.
Sensitivity Analysis

- Transfer value 100% of the rights, instead of conditional:
 - Assets deplete quickly (funding rate 41.15% lower).
 - Fund transfers too much w.r.t. their funding level.
 - Fund’s population too small to steer.
- Initial funding ratio steady-state 121.8%:
 - Short-term no effect, but Sinking Giant.
 - For too long too few pension income.
 - Funding rates between 33% - 71% lead to certain default.
- Lower interest and inflation rate:
 - More sensitive to shocks and more risky.
 - Higher liabilities, lower return on assets, higher transfer values.
Summary & Conclusion

Results corroborate intuition and expectation.

1st research question:
- Reactions quantified by reaction-function.
- During a discontinuity event an information cascade happens.

2nd research question:
- Funding rates become lower, sensitive and more volatile.
- Fund’s population is smaller.
- Effect of discontinuity on long-term.
- Discontinuity risks mainly elderly and entrants: 49.3% - 76.2%.
- Discontinuity has same effect as benefit reductions and recovery premia.
Recommendations & Further Research

- Pension funds should consider financial sustainability and participants’ support:
 Trade-off (only funding rate is not sufficient).

- Smoothing periods work sub-optimal:
 Make them conditional on population and funding level.

⇒ What is optimal?

- Reaction-function is used as a benchmark, but research needed:
 parameters independent, utility functions, indifferent premium levels, CDB v.s. IDC, effect of policy, population size.

- Questions?
- Suggestions?
APPENDIX 1: REACTION-FUNCTION

Discontinuity function at time t for age $25 \leq x < 64$:

$$d_{x,t}(FR_t) = \begin{cases}
1 & \text{if } FR_t \leq BFR_x \\
p(FR_t) & \text{for } BFR_x < FR_t < BFR_x + 20\% \\
0 & \text{if } FR_t \geq BFR_x + 20\%
\end{cases}$$

where BFR_x is the age-specific break-even funding ratio (constant trough time), FR_t is the prevailing nominal published funding ratio and p is the interpolating function.

Number of participants in the dynamic case $M_{x,t}^d (F_{x,t}^d)$ for each age x at time t follows from

$$M_{x,t}^d = M_{x,t} \cdot d_{x,t},$$

$$F_{x,t}^d = F_{x,t} \cdot d_{x,t},$$

where $d_{x,t}$ stems from the funding ratio at the start of year t.
APPENDIX 2: DYNAMIC IN- AND OUTFLOW

Evolution of bankruptcy in the 5%-quantile:

(I) Continuous underfunding.

(II) Nobody enters and many current cohorts of 55-64 years leave.

(III) Assets deplete due to:
 ▶ Low returns;
 ▶ No new inflow;
 ▶ Transferring of pension rights.

(IV) Liabilities decrease also, but not so fast.

(V) Namely, middle-aged cohorts remain and, thus, small population.

(VI) Steering is almost impossible in combination with suboptimal smoothing.

(VII) If no measures are taken (e.g. government or other policy), funds goes default.
Appendix 3: Leaving a Fund

Options in reality (see BPFbouw for construction workers):

(I) Become self-employed;
(II) Switch from job or employer to another pension fund provider;
(III) Work abroad;
(IV) Abstain from working;
(V) Too low z-score allows employer to switch;
(VI) Have at least an equal or better alternative.

These are examples of ‘voting with your feet’, another possibility is to ‘vote with your voice’.
Appendix 4: Term Structure

Figure: Term Structure: $\alpha = 0.15$, $\kappa = 2\%$, $\sigma_r = 1\%$

Nominal and real term structure in Vasicek model (sensitivity).
Short rate and nominal term structure at two later points.
Appendix 5: Demography Population

Figure: Evolution number of participants through time and age (males, females).
Appendix 5: Salary

Figure: Evolution (mean) income through time and age (males, females).
Appendix 6: Pension Setting

<table>
<thead>
<tr>
<th>Variable</th>
<th>Males</th>
<th>Females</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Workers (< 65)</td>
<td>1,279,622</td>
<td>1,277,190</td>
<td>2,556,812</td>
</tr>
<tr>
<td>(1,087,577)</td>
<td>(1,039,988)</td>
<td>(2,127,565)</td>
<td></td>
</tr>
<tr>
<td>Retirees (≥ 65)</td>
<td>400,395</td>
<td>483,236</td>
<td>883,631</td>
</tr>
<tr>
<td>(637,108)</td>
<td>(704,017)</td>
<td>(1,341,125)</td>
<td></td>
</tr>
<tr>
<td>Accrual rate ε (yearly)</td>
<td>1.875%</td>
<td>1.875%</td>
<td>-</td>
</tr>
<tr>
<td>Income (average)</td>
<td>€38,848</td>
<td>€23,309</td>
<td>-</td>
</tr>
<tr>
<td>Pension at 65</td>
<td>€29,136</td>
<td>€17,482</td>
<td>-</td>
</tr>
<tr>
<td>Liabilities (× bln.)</td>
<td>€318</td>
<td>€219</td>
<td>€537</td>
</tr>
<tr>
<td>Funding ratio</td>
<td></td>
<td></td>
<td>90%</td>
</tr>
</tbody>
</table>

Table: Initial Pension Fund Set-up 2015 (in parentheses the population sizes for 2060).
Appendix 7: Policy

<table>
<thead>
<tr>
<th>Percentage</th>
<th>Description</th>
</tr>
</thead>
</table>
| 140% | Full indexation
 | Lower premium
 | Surplus sharing, smoothing period 5 years |
| 140% | Full indexation
 | Cost-covering premium |
| 130% | Linear indexation
 | Cost-covering premium |
| 110% | No indexation
 | Cost-covering premium |
| 105% | No indexation
 | Cost-covering premium
 | Sustainability cut, smoothing period 10 years |
| 95% | No indexation
 | Recovery premium
 | Sustainability cut, smoothing period 10 years |
| 90% | No indexation
 | Recovery premium
 | Sustainability cut, smoothing period 10 years
 | Recovery plan, smoothing period 10 years |
Appendix 8: Static Funding Ratios

Figure: Funding Ratios: static, nominal, under P.

Cost-covering premium (on average): 18.39%.
APPENDIX 9: VALUE-BASED ALM

Figure: Effects Policy Instruments: value-based ALM.
Appendix 10: Transfer Value

Figure: Transfer value equals 100% of accrued rights.
Figure: Initial funding ratio equals steady-state 121.8%.
Appendix 12: Interest Rate

Figure: Long-term interest rate $\kappa = 0\%$, inflation rate $\mu = 0.5\%$.

APG, Tilburg University, Netspar
Appendix 13: Inflow of Cohorts

Average inflow of new entrants for static and dynamic inflow:
Less new entrants, fund’s population turns grey.

(A) No discontinuity.
(B) $FR = 96\%$.
(C) $FR = 120\%$.