Retirement Behavior in the U.S. and Europe

J. de Bresser1 R. Fonseca2 P.-C. Michaud2

1University of Groningen
2Universite du Quebec a Montreal and RAND Corporation

January 2015
Research question: **how do incentives in social insurance programs affect retirement behavior?**

- *Retirement around the world* (Gruber and Wise, 1999)
 - Reduced-form models
 - Clear link between behavior and incentives
 - Do not fit spikes in retirement hazard
 - Difficult to disentangle preferences from constraints

- Structural retirement models
 - Allow evaluation of effects of policy changes
 - Estimation limited to single country (often U.S.)
Research question: **how do incentives in social insurance programs affect retirement behavior?**

- *Retirement around the world* (Gruber and Wise, 1999)
 - Reduced-form models
 - Clear link between behavior and incentives
 - Do not fit spikes in retirement hazard
 - Difficult to disentangle preferences from constraints

- Structural retirement models
 - Allow evaluation of effects of policy changes
 - Estimation limited to single country (often U.S.)
Goal: understand preferences and constraints as drivers of international differences in retirement

- Structural retirement model that captures international institutional differences
 - Decisions: labor supply, claiming and saving
 - Exit routes: public pension, private pension, unemployment and disability
- *Estimate* preference parameters using comparable longitudinal data
 - U.S.: Health and Retirement Study (HRS)
 - The Netherlands, Spain, Germany: Survey of Health, Aging and Retirement in Europe (SHARE)
- Compare model fit for common/country-specific preferences
Goal: understand preferences and constraints as drivers of international differences in retirement

- Structural retirement model that captures international institutional differences
 - Decisions: labor supply, claiming and saving
 - Exit routes: public pension, private pension, unemployment and disability
- *Estimate* preference parameters using comparable longitudinal data
 - U.S.: Health and Retirement Study (HRS)
 - The Netherlands, Spain, Germany: Survey of Health, Aging and Retirement in Europe (SHARE)
- Compare model fit for common/country-specific preferences
Goal: understand preferences and constraints as drivers of international differences in retirement

- Structural retirement model that captures international institutional differences
 - Decisions: labor supply, claiming and saving
 - Exit routes: public pension, private pension, unemployment and disability
- Estimate preference parameters using comparable longitudinal data
 - U.S.: Health and Retirement Study (HRS)
 - The Netherlands, Spain, Germany: Survey of Health, Aging and Retirement in Europe (SHARE)
- Compare model fit for common/country-specific preferences
Preliminary results

- Model with common preferences does *not* fit data
 - Institutional differences not enough to explain variation in saving and labor supply
- Counterfactual simulation: what if Europeans would have U.S. preferences?
 - They would save less (generous pensions)
 - Dutch and Spanish would work more
Preliminary results

- Model with common preferences does *not* fit data
 - Institutional differences not enough to explain variation in saving and labor supply
- Counterfactual simulation: what if Europeans would have U.S. preferences?
 - They would save less (generous pensions)
 - Dutch and Spanish would work more
Roadmap

1. **Introduction**
 - Motivation
 - Contribution
 - Results

2. **Model**

3. **Data**
 - Data
 - Auxiliary processes

4. **Results**
 - Estimates
 - Model fit
 - Counterfactual simulations

5. **Conclusion**
Overview of model

Dynamic structural model of employment with different exit routes:

- Unitary; discrete time; finite horizon (age 50-100)
- Pay-As-You-Go public pension in all countries (different incentives)

<table>
<thead>
<tr>
<th></th>
<th>United States</th>
<th>The Netherlands</th>
<th>Spain</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wealth ((w_t))</td>
<td>([0; 10^6])</td>
<td>([0; 10^6])</td>
<td>([0; 10^6])</td>
<td>([0; 10^6])</td>
</tr>
<tr>
<td>Wage ((j_t))</td>
<td>([5; 100])</td>
<td>([5; 100])</td>
<td>([5; 100])</td>
<td>([5; 100])</td>
</tr>
<tr>
<td>Health ((m_t))</td>
<td>(1 =) poor,</td>
<td>(1 =) poor,</td>
<td>(1 =) poor,</td>
<td>(1 =) poor,</td>
</tr>
<tr>
<td></td>
<td>2 = good</td>
<td>2 = good</td>
<td>2 = good</td>
<td>2 = good</td>
</tr>
<tr>
<td>DB pension ((db_t))</td>
<td>(1 =) no DB scheme,</td>
</tr>
<tr>
<td></td>
<td>2 = DB scheme</td>
<td>2 = DB scheme</td>
<td>2 = DB scheme</td>
<td>2 = DB scheme</td>
</tr>
<tr>
<td>Benefit level</td>
<td></td>
<td>(yrs\ yrswk_t,)</td>
<td>(yrs\ yrswk_t,)</td>
<td>(pts\ points_t)</td>
</tr>
<tr>
<td></td>
<td></td>
<td>(pre\ pre\ yrswk_t)</td>
<td>(pre\ pre\ yrswk_t)</td>
<td></td>
</tr>
<tr>
<td>DI ((di_t))</td>
<td>(1 =) not eligible,</td>
</tr>
<tr>
<td></td>
<td>2 = eligible</td>
<td>2 = eligible</td>
<td>2 = eligible</td>
<td>2 = eligible</td>
</tr>
<tr>
<td>UI ((ui_t))</td>
<td>(1 =) not eligible,</td>
</tr>
<tr>
<td></td>
<td>2 = eligible</td>
<td>4 = fully eligible</td>
<td>...</td>
<td>...</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7 = fully eligible</td>
<td></td>
<td>7 = fully eligible</td>
</tr>
</tbody>
</table>
Overview of model

Dynamic structural model of employment with different exit routes:

- Unitary; discrete time; finite horizon (age 50-100)
- Pay-As-You-Go public pension in all countries (different incentives)

<table>
<thead>
<tr>
<th></th>
<th>United States</th>
<th>The Netherlands</th>
<th>Spain</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wealth (w_t)</td>
<td>[0; 10⁶]</td>
<td>[0; 10⁶]</td>
<td>[0; 10⁶]</td>
<td>[0; 10⁶]</td>
</tr>
<tr>
<td>Wage (j_t)</td>
<td>[5; 100]</td>
<td>[5; 100]</td>
<td>[5; 100]</td>
<td>[5; 100]</td>
</tr>
<tr>
<td>Health (m_t)</td>
<td>{1 = poor, 2 = good}</td>
</tr>
<tr>
<td>DB pension (db_t)</td>
<td>{1 = no DB scheme, 2 = DB scheme}</td>
<td>{1 = no DB scheme, 2 = DB scheme}</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Benefit level</td>
<td>$AIME_t$</td>
<td>$yrswrk_t$, $prevearn_t$</td>
<td>$yrswrk_t$, $prevearn_t$</td>
<td>$points_t$</td>
</tr>
<tr>
<td>DI (di_t)</td>
<td>{1 = not eligible, 2 = eligible}</td>
</tr>
<tr>
<td>UI (ui_t)</td>
<td>{1 = not eligible, 2 = eligible}</td>
<td>{1 = not eligible}</td>
<td>{1 = not eligible}</td>
<td>{1 = not eligible}</td>
</tr>
</tbody>
</table>

Note: The table entries are placeholders for the actual data.
Preferences

\[u(c_t, l_t, t) = n_t \frac{((c_t/n_t)^{\kappa}/l_t^{1-\kappa})^{1-\sigma} - 1}{1 - \sigma} \]

- Utility derived from consumption \((c_t)\) and leisure \((l_t)\)

\[l_t = L_{\text{max}} - h_t - \gamma \mathbb{1} \{ h_t > 0 \} - \phi^{\text{claimdi}t} - \zeta^{\text{claimui}t} \]

\[h_t \in \{0, 1500, 2000, 2500\} \]

\[L_{\text{max}} = 4000 \]

- Bequest utility (French, 2005):

\[b(w_t) = \theta \frac{(w_t + K)^{\kappa(1-\sigma)}}{1 - \sigma} \]
Preferences

\[u(c_t, l_t, t) = n_t \frac{((\frac{c_t}{n_t})^{\kappa}l_t^{1-\kappa})^{1-\sigma} - 1}{1 - \sigma} \]

- Utility derived from consumption \((c_t)\) and leisure \((l_t)\)

\[l_t = L_{\text{max}} - h_t - \gamma I \{ h_t > 0 \} - \phi \text{claim}di_t - \zeta \text{claim}ui_t \]

\[h_t \in \{0, 1500, 2000, 2500\} \]

\[L_{\text{max}} = 4000 \]

- Bequest utility (French, 2005):

\[b(w_t) = \theta \frac{(w_t + K)^{\kappa(1-\sigma)}}{1 - \sigma} \]
Decisions

U.S.
- Consumption
- Labor supply
- UI
- DI
- DB pension
- Public pension

the Netherlands
- Consumption
- Labor supply
- UI
- DI
- DB pension
- Public pension

Spain
- Consumption
- Labor supply
- UI
- DI
- DB pension
- Public pension

Germany
- Consumption
- Labor supply
- UI
- DI
- DB pension
- Public pension

55 ERA DB; 62 NRA DB and ERA SS; 65 NRA SS.

60 ERA DB; 65 NRA DB.

60 ERA SS; 65 NRA SS.

60 ERA SS if disabled; 63 ERA SS if not disabled; 65 NRA SS.
Budget constraint

\[x_t = w_t + y^n_t - oop_t \]

\(x_t \) cash-on-hand; \(w_t \) wealth; \(y^n_t \) net income; \(oop_t \) out-of-pocket medical expenditures

- Income from 6 sources:
 \[y^n_t = \tau(y^e_t, y^{di}_t, y^{db}_t, y^{ui}_t, y^{ss}_t, y^w_t) \]

- Transfers:
 \[tr_t = \max\{n_t c_{min} - x_t, 0\} \]

- Law of motion of wealth:
 \[w_{t+1} = w_t + y^n_t + tr_t - c_t - oop_t \]
Budget constraint

\[x_t = w_t + y^n_t - oop_t \]

- \(x_t \) cash-on-hand; \(w_t \) wealth; \(y^n_t \) net income; \(oop_t \) out-of-pocket medical expenditures
- Income from 6 sources:
 \[y^n_t = \tau(y^e_t, y^di_t, y^db_t, y^ui_t, y^{ss}_t, y^w_t) \]
- Transfers:
 \[tr_t = \max\{n_t c_{\text{min}} - x_t, 0\} \]
- Law of motion of wealth:
 \[w_{t+1} = w_t + y^n_t + tr_t - c_t - oop_t \]
Budget constraint

\[x_t = w_t + y^n_t - oop_t \]

- \(x_t \) cash-on-hand; \(w_t \) wealth; \(y^n_t \) net income; \(oop_t \) out-of-pocket medical expenditures

- Income from 6 sources:
 \[y^n_t = \tau(y^e_t, y^{di}_t, y^{db}_t, y^{ui}_t, y^{ss}_t, y^w_t) \]

- Transfers:
 \[tr_t = \max\{n_t c_{\min} - x_t, 0\} \]

- Law of motion of wealth:
 \[w_{t+1} = w_t + y^n_t + tr_t - c_t - oop_t \]
Health and mortality

- Future health is uncertain
 - Health determines out-of-pocket expenditures
- First-order Markov process:
 \[
 p_m(m_t, t) = \frac{\exp(\gamma_0 + \gamma_t t + \gamma_m I\{m_t = 2\})}{1 + \exp(\gamma_0 + \gamma_t t + \gamma_m I\{m_t = 2\})}
 \]
- Mortality probability function of current health and age
 - Certain death at age \(t = 100 \)
Health and mortality

- Future health is uncertain
 - Health determines out-of-pocket expenditures
- First-order Markov process:
 \[
 p_m(m_t, t) = \frac{\exp (\gamma_0 + \gamma_t t + \gamma_m I\{m_t = 2\})}{1 + \exp (\gamma_0 + \gamma_t t + \gamma_m I\{m_t = 2\})}
 \]
 - Mortality probability function of current health and age
- Certain death at age \(t = 100 \)
Health and mortality

- Future health is uncertain
 - Health determines out-of-pocket expenditures
- First-order Markov process:
 \[p_m(m_t, t) = \frac{\exp(\gamma_0 + \gamma_t t + \gamma_m I\{m_t = 2\})}{1 + \exp(\gamma_0 + \gamma_t t + \gamma_m I\{m_t = 2\})} \]
- Mortality probability function of current health and age
 - Certain death at age \(t = 100 \)
Maximization problem

Value conditional on discrete choice d (claiming and labor supply):

$$V^d(s_{t,k}, m_t) = \max_{c_t} \left\{ u(c_t; d_k, t) \right. \right.$$
$$+ \beta \left[p_s^k(m_t, t) \mathbb{E} [V(s_{t+1,k})] + (1 - p_s^k(m_t, t)) b(w_{t+1}) \right] \right\}$$

s.t. budget constraints

Unconditional value:

$$V(s_{t,k}, m_t) = \max_{d_k \in D_k(s_{t,k}, m_t)} (V^1(s_{t,k}, m_t), \ldots, V^{D_k}(s_{t,k}, m_t))$$

- Model solved by backward induction on discretized state space
- Common or heterogenous preferences across countries
- Choice sets and constraints vary across countries

international retirement model
Maximization problem

Value conditional on discrete choice \(d\) (claiming and labor supply):

\[
V^d(s_t, k, m_t) = \max_{c_t} \left\{ u(c_t; d_k, t) + \beta \left[p^k_s(m_t, t) \mathbb{E}[V(s_{t+1}, k)] + (1 - p^k_s(m_t, t))b(w_{t+1}) \right] \right\}
\]

s.t. budget constraints

Unconditional value:

\[
V(s_t, k, m_t) = \max_{d_k \in D_k(s_t, k, m_t)} (V^1(s_t, k, m_t), ..., V^{D_k}(s_t, k, m_t))
\]

- Model solved by backward induction on discretized state space
- Common or heterogenous preferences across countries
- Choice sets and constraints vary across countries
Maximization problem

Value conditional on discrete choice d (claiming and labor supply):

$$V^d (s_t, k, m_t) = \max_{c_t} \left\{ u(c_t; d_k, t) \right.$$

$$+ \beta \left[p^k_s(m_t, t) \mathbb{E} [V(s_{t+1}, k)] + (1 - p^k_s(m_t, t)) b(w_{t+1}) \right]\right\}$$

s.t. budget constraints

Unconditional value:

$$V(s_t, k, m_t) = \max_{d_k \in D_k(s_t, k, m_t)} (V^1(s_t, k, m_t), \ldots, V^{D_k}(s_t, k, m_t))$$

- Model solved by backward induction on discretized state space
- Common or heterogenous preferences across countries
- Choice sets and constraints vary across countries
Data

- **U.S.: Health and Retirement Study (HRS)**
 - 1992-2010
- **Europe: Survey of Health, Aging and Retirement in Europe (SHARE)**
 - 2004-2011

Estimation sample:
- Auxiliary processes: Men age 50-110
- Initial conditions: Age 50-56, wage worker in first interview
- Germany: only non-civil servants
- Data moments: All individuals from initial conditions
- Older men who worked at age 50
Data

- U.S.: Health and Retirement Study (HRS)
 - 1992-2010
- Europe: Survey of Health, Aging and Retirement in Europe (SHARE)
 - 2004-2011

Estimation sample:
- Auxiliary processes:
 - Men age 50-110
- Initial conditions:
 - Age 50-56, wage worker in first interview
 - Germany: only non-civil servants
- Data moments:
 - All individuals from initial conditions
 - Older men who worked at age 50
Data

- U.S.: Health and Retirement Study (HRS)
 - 1992-2010
- Europe: Survey of Health, Aging and Retirement in Europe (SHARE)
 - 2004-2011
- Estimation sample:
 - Auxiliary processes:
 - Men age 50-110
 - Initial conditions:
 - Age 50-56, wage worker in first interview
 - Germany: only non-civil servants
 - Data moments:
 - All individuals from initial conditions
 - Older men who worked at age 50
Data

- U.S.: Health and Retirement Study (HRS)
 - 1992-2010
- Europe: Survey of Health, Aging and Retirement in Europe (SHARE)
 - 2004-2011
- Estimation sample:
 - Auxiliary processes:
 - Men age 50-110
 - Initial conditions:
 - Age 50-56, wage worker in first interview
 - Germany: only non-civil servants
 - Data moments:
 - All individuals from initial conditions
 - Older men who worked at age 50
Data

- U.S.: Health and Retirement Study (HRS)
 - 1992-2010
- Europe: Survey of Health, Aging and Retirement in Europe (SHARE)
 - 2004-2011

Estimation sample:
- Auxiliary processes:
 - Men age 50-110
- Initial conditions:
 - Age 50-56, wage worker in first interview
 - Germany: only non-civil servants
- Data moments:
 - All individuals from initial conditions
 - Older men who worked at age 50
Data

- U.S.: Health and Retirement Study (HRS)
 - 1992-2010
- Europe: Survey of Health, Aging and Retirement in Europe (SHARE)
 - 2004-2011

Estimation sample:
- Auxiliary processes:
 - Men age 50-110
- Initial conditions:
 - Age 50-56, wage worker in first interview
 - Germany: only non-civil servants
- Data moments:
 - All individuals from initial conditions
 - Older men who worked at age 50
Figure: Estimated health processes – the probability of being in good health next year as a function of age and current health
Figure: Estimated mortality processes – the probability of dying before next year as a function of age and current health
Out-of-pocket health costs

Figure: Estimated out-of-pocket medical spending – average expenditures as a function of age and current health
Estimates of preference parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Common preferences</th>
<th>United States</th>
<th>the Netherlands</th>
<th>Spain</th>
<th>Germany</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ – concavity utility</td>
<td>3.85</td>
<td>4.95</td>
<td>4.99</td>
<td>4.55</td>
<td>4.53</td>
</tr>
<tr>
<td>γ – fixed cost work (hrs)</td>
<td>628.4</td>
<td>669.7</td>
<td>1715.6</td>
<td>1179.7</td>
<td>12.4</td>
</tr>
<tr>
<td>κ – consumption share</td>
<td>0.52</td>
<td>0.72</td>
<td>0.46</td>
<td>0.57</td>
<td>0.71</td>
</tr>
<tr>
<td>ϕ – stigma DI (hrs)</td>
<td>3546.1</td>
<td>3779.9</td>
<td>3451.9</td>
<td>1192.8</td>
<td>3411.6</td>
</tr>
<tr>
<td>ζ – stigma UI (hrs)</td>
<td>3695.1</td>
<td>3999.6</td>
<td>4000.0</td>
<td>2785.8</td>
<td>3568.3</td>
</tr>
<tr>
<td>β – discount factor</td>
<td>0.50</td>
<td>0.86</td>
<td>0.50</td>
<td>0.52</td>
<td>0.998</td>
</tr>
<tr>
<td>θ – bequest weight</td>
<td>753.8</td>
<td>2099.8</td>
<td>14.0</td>
<td>571.8</td>
<td>2681.3</td>
</tr>
<tr>
<td>K – beq. concavity (10,000 $)</td>
<td>144.3</td>
<td>39.6</td>
<td>56.0</td>
<td>166.4</td>
<td>2.63</td>
</tr>
<tr>
<td>Number of individuals</td>
<td>10,866</td>
<td>7,727</td>
<td>1,432</td>
<td>1,219</td>
<td>488</td>
</tr>
<tr>
<td>Number of observations</td>
<td>42,749</td>
<td>37,833</td>
<td>2,348</td>
<td>1,729</td>
<td>839</td>
</tr>
<tr>
<td>Objective function</td>
<td>4,736.5</td>
<td>221.0</td>
<td>103.7</td>
<td>99.8</td>
<td>200.5</td>
</tr>
</tbody>
</table>

ESTIMATES ARE PRELIMINARY – PLEASE DO NOT QUOTE
Standard errors to be added.
Model fit – net wealth quartiles

Figure: Data and simulated moments – net wealth
Model fit – average hours worked

Figure: Data and simulated moments – hours worked
U.S. preferences in all countries

Figure: Counterfactual simulations – U.S. preferences (median wealth)
U.S. preferences in all countries

Figure: Counterfactual simulations – U.S. preferences (mean hours worked)
Model with common preferences does not fit data
 - Institutions not enough to explain variation in saving and labor supply
Models with country-specific preferences do provide good fit
 - Exception: Germany (hard to rationalize high labor supply)
If Europeans would have U.S. preferences they would...
 - ...save less (generous welfare states)
 - ...work more (NL and SP)
Conclusion (preliminary)

- Model with common preferences does not fit data
 - Institutions not enough to explain variation in saving and labor supply
- Models with country-specific preferences do provide good fit
 - Exception: Germany (hard to rationalize high labor supply)
- If Europeans would have U.S. preferences they would...
 - ...save less (generous welfare states)
 - ...work more (NL and SP)
Model with common preferences does not fit data
- Institutions not enough to explain variation in saving and labor supply
- Models with country-specific preferences do provide good fit
 - Exception: Germany (hard to rationalize high labor supply)
- If Europeans would have U.S. preferences they would...
 - ...save less (generous welfare states)
 - ...work more (NL and SP)
To-do list

- Add exogenous income of spouse
- Analyze identification
 - Estimate model for different risk aversions
 - Estimate model for different discount factors
 - Add moments (condition on wage tertiles?)
- Finer discretization of state space
- ... (suggestions welcome)
To-do list

- Add exogenous income of spouse
- Analyze identification
 - Estimate model for different risk aversions
 - Estimate model for different discount factors
 - Add moments (condition on wage tertiles?)
- Finer discretization of state space
- ... (suggestions welcome)
To-do list

- Add exogenous income of spouse
- Analyze identification
 - Estimate model for different risk aversions
 - Estimate model for different discount factors
 - Add moments (condition on wage tertiles?)
- Finer discretization of state space
- ... (suggestions welcome)
To-do list

- Add exogenous income of spouse
- Analyze identification
 - Estimate model for different risk aversions
 - Estimate model for different discount factors
 - Add moments (condition on wage tertiles?)
- Finer discretization of state space
- ... (suggestions welcome)