Time-Inconsistent Preferences, Borrowing Costs, and Social Security

T. Scott Findley Frank N. Caliendo
Summary

- Individuals have time-inconsistent preferences
 - Hyperbolic discounting
- Social security can act as a commitment device
- Assumption about credit markets
 - Complete ✓
 - Totally missing ✓
 - Borrowing is costly (credit spreads) ?
Summary

- Individuals have time-inconsistent preferences
 - Hyperbolic discounting
- Social security can act as a commitment device
- Assumption about credit markets
 - Complete ✓
 - Totally missing ✓
 - Borrowing is costly (credit spreads) ✓
Credit spreads

\[r(k(t)) = \begin{cases}
 r_B, & \text{if } k(t) < 0, \\
 r_S, & \text{if } k(t) > 0,
\end{cases} \]

where \(r_B \geq r_S \).

Approximation

\[r(k(t)) \approx r_S - \frac{r_S - r_B}{1 + \exp[\psi k(t)]}, \]

where \(\psi \) is a large, positive scaler.
Model

\[r(k) \]

\[r_B \]

\[r_S \]

\[(0, (r_B + r_S)/2) \]
Model

- Consumer Optimization Problem

\[
\max_{c(\nu)} \int_t^{\bar{T}} F(\nu - t) u[c(\nu)] d\nu,
\]

subject to

\[
\frac{d k(\nu)}{d \nu} = r(k(\nu)) k(\nu) + y(\nu) - c(\nu),
\]

\[
y(\nu) = \begin{cases}
(1 - \tau) w, & \text{for } \nu \in [t, T], \\
 b, & \text{for } \nu \in [T, \bar{T}],
\end{cases}
\]

\[
r(k(t)) = r_S - \frac{r_S - r_B}{1 + \exp[\psi k(t)]},
\]

\[k(t) \text{ given, } k(\bar{T}) = 0.\]
Welfare

Theorem

*Of the full spectrum of credit spreads ranging from zero (perfect credit markets) to infinity (missing credit markets), a fully-funded social security arrangement is irrelevant *only* at the knife edge of perfect credit markets.*

Welfare Metric

\[
g(\tau) \equiv \sqrt{\int_0^{\bar{T}} [c^*(t|\tau) - c_0(t)]^2 dt},
\]

\[
\Delta g \equiv \frac{g(0) - g(\tau)}{g(0)}.
\]
From the Theorem to Welfare:

- Theorem

\[c(t) \]

\[\tau > 0 \]

\[\tau = 0 \]

A credit spread \(r_B > r_S \) is sufficient to alter the distribution of consumption over the life cycle, but it doesn’t guarantee a welfare improvement.
From the Theorem to Welfare (ctd):

- Welfare Metric

 Small discount rate which values the consumption in old age.

- All that we need is $\rho_w < \rho_c$. In the paper we have:

 $$\rho_w < \rho_c \iff \begin{cases}
 \rho_c = \beta u - t > 0, \ u \in (t, \bar{T}] \\
 \rho_w = 0,
\end{cases}$$

 since

 $$\begin{align*}
 F_c &= \frac{1}{1 + \rho_c} = \frac{1}{1 + \beta(u - t)}, \ u \in [t, \bar{T}] \\
 F_w &= \frac{1}{1 + \rho_w} = 1.
 \end{align*}$$
Comment

![Graph showing consumption over age with three lines: actual (τ = b = 0), actual (τ = 0.106, b = 0.3743), and first plan (τ = b = 0). The graph plots consumption, c(t), against age, t.]
Comment

- The result is driven by two key assumptions:
 - Social security acts as a commitment device, which requires that the credit market is not complete so that individuals cannot perfectly undo the effects of social security by transacting in their private accounts.
 - The discount rate used in measuring the welfare must be smaller than the discount rate used in making consumption choices, so that old age consumption are highly valued *ex post*.

- Is the assumption of Time-inconsistent Preference relevant?
- Is there a fundamental difference between a positive credit spread and missing credit market?
In the robustness check, Δg is negative for some parameter values. Can you explain the intuition behind it?

How do you explain the kinks in the consumption path? Is it sensitive to the initial wealth (e.g. $k(0) > 0$)?

As the tax rate τ increases, the consumption path moves farther away from the first plan, which is welfare reducing by measuring with Euclidean distance. Is it a upper bound for τ such that social security is welfare improving?

Please explain the discount function $F(\nu - t)$ in the model description rather than in the numerical examples.