DISCUSSION OF:
‘The Impact of Introduction of Funded Pension Scheme on Intragenerational Inequality in Estonia: a Cohort Based Analysis’

by ANDRES VÕRK*, MAGNUS PIIRITS, EVELIN JÕGI

Elena Jarocińska,
CASE–Center for Social and Economic Research, Warsaw

INTERNATIONAL PENSION WORKSHOP, Amsterdam, January 28-30 2015
This paper:

- Studies the impact of pension reforms in Estonia on income distribution of the future retirees
- Uses a Markov switching model based on the administrative micro data
- Projects pension benefits in 2045 (for the old and the new pension systems)

Main findings:

- As expected, pension reforms lead to more inequality (earnings-related)
- Gini coefficient increases from 0.10 (before the reform) to 0.22 (current pension system)
Discussion (1): Contribution to the literature

- First paper that projects pension benefits from a microsimulation model for Estonia

- Uses administrative data from the Estonian National Social Insurance Board:
 - high degree of accuracy
 - high level of representativeness (both rich and poor)
 - low attrition rate (the same individuals across time)

- Results compared to EC-Ageing Working Group projections (European Commission, 2012):

 Average individual gross replacement rate for men
 - 51.3 in 2045 (this paper)
 - 50.1 in 2050 (EC, for a hypothetical worker)
Discussion (2): Sensitivity of results

Projection of individual wages depends on –>

• (estimated) transition probabilities between wage groups
• on economy-wide average wage (forecast of the Estonia Ministry of Finance)

→ Are the results sensitive to the lower growth rates in the economy?

→ e.g. secular stagnation (Summers, 2014)?
Discussion (3): Representative sample

• Results are for one age cohort (born in 1980)
 → To what extent are they representative for other cohorts?
 • income differences between cohorts
 • younger cohorts work longer
 • changes in female labour force participation
• Does not take into account demographic changes (mortality, divorces, children)
 → re-weight microunits' characteristics to future aggregate data - *static aging* (see e.g. Merz, 1994)
 → updating each year - *dynamic aging* (See e.g. Knoef, Alessie and Kalwij, 2013)
Discussion (4): Labour market status

• In the paper a person is *unemployed* if previous wages equal to zero.

→ How many ‘unemployed’ do you have in your dataset and is it consistent with the country unemployment rate?

→ An alternative: model the transitions between the labour market states (based on age, cohort, marital status, children)

→ requires a richer dataset
Discussion (5):

- Model’s assumption: work until retirement at the statutory age

 → What about early retirement (quite common in Estonia) and late retirement? Compare Gini coefficients for retirement in 2043 and 2047 with 2045

- Focus on men

 → add women: some first results are already in the paper!
THANK YOU!