Strategic Asset Allocation and Longevity Risk

Claudio Tebaldi
Joint work with: E. Bisetti, C. Favero and G. Nocera

L. Bocconi University, IGIER and CAREFIN

International Pension Workshop
Amsterdam, January 2015
Realized and Projected (Lee-Carter) Expected life at 65

Life expectancy at 65
Expected life at 65 (retirement age) has been steadily increasing by four hours each day has passed over the last 40 years.
Expected life at 65 (retirement age) has been steadily increasing by four hours each day has passed over the last 40 years. There is uncertainty on future trends, such uncertainty generates a new source of risk: longevity risk. Longevity risk is the risk that an annuitant lives more than forecasted by the annuity provider, so that the company has to pay the annuity for a longer-than-expected period after her retirement.
Four Hours a Day

- Expected life at 65 (retirement age) has been steadily increasing by four hours each day has passed over the last 40 years.
- There is uncertainty on future trends, such uncertainty generates a new source of risk: longevity risk. Longevity risk is the risk that an annuitant lives more than forecasted by the annuity provider, so that the company has to pay the annuity for a longer-then-expected period after her retirement.
- Even assuming that idiosyncratic random variation risk is optimally managed by insurance and diversified by pooling by insurance companies, the common trend component remains a relevant source of aggregate risk which challenges social security systems, private and public balance sheets.
Expected life at 65 (retirement age) has been steadily increasing by four hours each day has passed over the last 40 years. There is uncertainty on future trends, such uncertainty generates a new source of risk: longevity risk. Longevity risk is the risk that an annuitant lives more than forecasted by the annuity provider, so that the company has to pay the annuity for a longer-then-expected period after her retirement.

Even assuming that idiosyncratic random variation risk is optimally managed by insurance and diversified by pooling by insurance companies, the common trend component remains a relevant source of aggregate risk which challenges social security systems, private and public balance sheets.

Economic Theory: issuing and trading longevity linked securities in financial market can improve aggregate longevity risk-sharing and offers a viable solution to mitigate the negative welfare effects of risk concentration.
Market practice: a Sharpe Ratio of 0.76

- Looking at all U.S. stocks from 1926 to 2011 that have been traded for more than 30 years Berkshire Hathaway has a higher Sharpe ratio than all U.S. mutual funds.
- Frazzini et al. (2014) report that 36% of Berkshire’s liabilities consist of insurance float, with an estimated cost which is only 2.2%, more than 3 percentage points below the average T-bill rate.
- This reduction in the cost of leverage comes at a risk:
 - In December 2010 Berkshire Hathaway opened a dispute with the reinsurer Swiss Re. Financial press reported that management felt that the losses it had suffered on the book of life reinsurance business were greater than had been expected. It recorded a pre-tax loss of $642m in 2011 due to mortality rates exceeding expectations under the quota share type deal\(^1\).

\(^1\)As on march 28 2013, the reinsurer Swiss Re has announced that its dispute with Warren Buffett’s Berkshire Hathaway regarding a 2010 life retrocession deal has been settled.
Conventional asset allocation models do not include actuarial risks among the stochastic factors that determine the investor’s opportunity set, therefore they cannot be informative for optimal asset - insurance liabilities allocation.

It is important to propose a framework to quantify the impact of longevity risk reinsurance business on the risk-return trade-off for traditional portfolios.

A fortiori this exercise involves the description of the risk return trade-off over a range of time horizons ranging from short term (e.g. monthly) financial market price fluctuations up to demographic (below business cycle) secular trends.
The State of the Art: an incomplete list of contribution areas (Sorry!)

The approach lies at the intersection between different research areas

- Actuarial Science:
 - design and valuation of longevity linked securities
 - annuity fair pricing
 - longevity risk premium estimation.

- Life-Cycle Portfolio Allocation.
- Asset Allocation in the presence of risks for the Long Run.
The Framework

- Include longevity linked securities (instruments designed to reduce the impact of systematic longevity risk on public and private balance sheets) in traditional portfolios.
- Consider explicitly the risk term structure.
 - The risk term structure describes the dependence of the risk-return tradeoff on the investor’s holding period.
 - The optimal blend of financial securities vary with the investor’s holding period due to changes in opportunity set driven by predictability effects.
Age Structure of US Population and Stock Market Returns (Favero et al. 2011, Ortu Tamoni T. 2013)

- Middle (40 to 49)-to-Young (20 to 29) ratio (left scale)
- 1-Year real US Stock Market Returns (right scale)

- Middle (40 to 49)-to-Young (20 to 29) ratio (left scale)
- 20-Year annualized real US Stock Market Returns (right scale)
Uncertainty cannot be properly measured by period volatility (e.g. yearly).

The return on traditional assets (stocks) are very little predictable at short-horizons, but their predictability increases with the horizon.

Longevity shocks are known to be driven by low frequency trends on time scales comparable to business cycles. Their impact is negligible for short-term investors but can be substantial for a long term investor like a pension fund.

Short-run returns on traditional assets are orthogonal to longevity trends while long-run returns are not.
To investigate the impact of longevity risks on the term structure of risk return trade-offs of optimal investment allocations we extend the Vector Autoregression (VAR) framework originally proposed by Campbell-Viceira (2005).

We estimate a VAR model including

- Traditional assets: US stocks, Treasury bonds, T-bills.
- Annuity Linked Security, a synthetic security exposed to longevity risk whose price is indexed to Annuity Prices which are publicly reported by North American insurance companies.
- CPredictors for traditional assets: the dividend-price ratio, the spread between long-term and short-term bonds and the nominal T-bill yield.
- Mortality predictor: innovations in the common mortality factor in the Lee-Carter (1992) stochastic mortality model.
\[R^A_{t+1} = \frac{(P_{x+1,t+1} + C)s_{x+1,t+1}}{P_{x,t}s_{x,t}} - 1 \]

after log-linearization and differencing:

\[\Delta p_{x,t} = \rho (\Delta p_{x+1,t+1}) - \Delta r^A_{t+1} + b_x (-e_t) \]

- \(\Delta p_{x,t} \): Annuity Linked Security period return on a (nontraded) tontine insurance in which contracts are terminated and then possibly renegotiated.
- \(R^A_{t+1} \): Yearly return to annuitant from an annuity contract individual-specific whose purchase is irreversible.
- \(C \): coupon, \(P_{x,t} \): price at time \(t \) for a standardized annuity sold to an individual with age \(x \).
- \(s_{x+1,t+1} \): probability to be alive in year \(t + i \), of age \(\bar{x} + i \), conditional on being alive at age \(\bar{x} \).
- \(s_{x+1,t+1} / s_{x,t} \): mortality credit component.
Lee Carter stochastic mortality modeling

Lee Carter (1992) assume that

\[q_{x,t} = \exp(a_x + b_x k_t + \epsilon_{x,t}), \]
\[k_t = c_0 + c_1 k_{t-1} + e_t, \]

and for small variations in mortality rates

\[\Delta \ln (1 - q_{x,t}) \simeq - [b_x e_t + \epsilon_{x,t+1} - \epsilon_{x,t}]. \]

and assuming \(\sum_{x=65}^{110} b_x = 1 \) and \(\sum_{x=65}^{110} (\epsilon_{x,t+1} - \epsilon_{x,t}) \simeq 0 \) then it is possible to define an aggregate longevity (mortality) shock \(qk_t \) \((e_t)\):

\[qk_t \simeq - \sum_{x=65}^{110} (b_x e_t + \epsilon_{x,t}) \simeq -e_t. \]
Iteration of the

\[
\Delta p_{x,t} \simeq - \sum_{j=0}^{m} \rho^j E_t \Delta r^A_{t+1+j} + \sum_{j=0}^{m} \rho^j b_x E_t \left(-e_{t+j+1}\right)
\]

Rationality of the annuitant forces the (log) holding period return \(r^A_t \) to be competitive (but for the mortality credit) to the compensation one would get by investing in a portfolio of traded financial securities with similar risk and return characteristics. Assuming a stationary evolution for \(r^A_t \) and integrated evolution for \(k_t \):

\[
\Delta p_{x,t} \simeq \phi^A_0 + \phi^A_1, Mkt z_t^{Mkt} + \phi^A_2 q_k, n_{t+1},
\]
\[
x\Delta p_{t+1} = \phi^A_0 + \phi^A_1, Mkt z_t^{Mkt} + \phi^A_2 q_k + n_{t+1},
\]
We now analyze the effect of extending the traditional portfolio to include excess annuity prices by considering the following augmented VAR specification:

\[
\begin{align*}
\mathbf{z}_t &= \Phi_0 + \Phi_1 \mathbf{z}_{t-1} + \nu_t \\
\nu_t &\sim \mathcal{N}(0, \Sigma_\nu)
\end{align*}
\]

(1)

where

\[
\mathbf{z}_t = \begin{bmatrix}
 r_{0t} \\
 \mathbf{x}_t^Mkt \\
 x\Delta p_t \\
 \mathbf{s}_t^Mkt \\
 qk_t
\end{bmatrix}
\]

\[
\Phi_0 \quad \Phi_1
\]

\[
\mathbf{z}_{t-1}
\]

\[
\nu_t
\]

\[
\mathcal{N}(0, \Sigma_\nu)
\]

\[
\Sigma_\nu
\]

\[
r_{0t}
\]

\[
\mathbf{x}_t^Mkt
\]

\[
x\Delta p_t
\]

\[
\mathbf{s}_t^Mkt
\]

\[
qk_t
\]
VAR(1) estimation results

<table>
<thead>
<tr>
<th></th>
<th>rtb_{t+1}</th>
<th>xr_{t+1}</th>
<th>xb_{t+1}</th>
<th>$x\Delta pr_{t+1}$</th>
<th>y_{t+1}</th>
<th>$(d - p)_{t+1}$</th>
<th>spr_{t+1}</th>
<th>$(qk)_{t+1}$</th>
<th>R^2</th>
</tr>
</thead>
<tbody>
<tr>
<td>rtb_t</td>
<td>0.477</td>
<td>0.007</td>
<td>-0.106</td>
<td>0.074</td>
<td>0.590</td>
<td>-0.010</td>
<td>-0.680</td>
<td>-0.016</td>
<td>0.475</td>
</tr>
<tr>
<td></td>
<td>(3.265)</td>
<td>(0.203)</td>
<td>(-1.753)</td>
<td>(0.640)</td>
<td>(2.534)</td>
<td>(-0.568)</td>
<td>(-1.452)</td>
<td>(-0.116)</td>
<td></td>
</tr>
<tr>
<td>xr_t</td>
<td>0.190</td>
<td>0.048</td>
<td>0.131</td>
<td>0.929</td>
<td>-0.215</td>
<td>0.154</td>
<td>-0.892</td>
<td>-0.236</td>
<td>0.167</td>
</tr>
<tr>
<td></td>
<td>(0.388)</td>
<td>(0.363)</td>
<td>(0.679)</td>
<td>(1.660)</td>
<td>(-0.225)</td>
<td>(2.423)</td>
<td>(-0.462)</td>
<td>(-0.372)</td>
<td></td>
</tr>
<tr>
<td>xb_t</td>
<td>0.917</td>
<td>-0.116</td>
<td>-0.502</td>
<td>0.116</td>
<td>0.267</td>
<td>-0.054</td>
<td>4.362</td>
<td>0.588</td>
<td>0.562</td>
</tr>
<tr>
<td></td>
<td>(4.121)</td>
<td>(-1.972)</td>
<td>(-4.311)</td>
<td>(0.370)</td>
<td>(0.550)</td>
<td>(-1.921)</td>
<td>(4.203)</td>
<td>(2.721)</td>
<td></td>
</tr>
<tr>
<td>$x\Delta pr_t$</td>
<td>0.531</td>
<td>-0.099</td>
<td>0.057</td>
<td>-0.188</td>
<td>-1.146</td>
<td>-0.034</td>
<td>-0.446</td>
<td>0.271</td>
<td>0.516</td>
</tr>
<tr>
<td></td>
<td>(4.294)</td>
<td>(-2.228)</td>
<td>(0.970)</td>
<td>(-0.968)</td>
<td>(-3.950)</td>
<td>(-1.871)</td>
<td>(-0.675)</td>
<td>(2.199)</td>
<td></td>
</tr>
<tr>
<td>y_t</td>
<td>-0.204</td>
<td>0.025</td>
<td>0.038</td>
<td>-0.046</td>
<td>0.940</td>
<td>0.007</td>
<td>0.286</td>
<td>-0.064</td>
<td>0.794</td>
</tr>
<tr>
<td></td>
<td>(-3.702)</td>
<td>(2.477)</td>
<td>(1.702)</td>
<td>(-0.841)</td>
<td>(9.253)</td>
<td>(1.896)</td>
<td>(1.315)</td>
<td>(-1.728)</td>
<td></td>
</tr>
<tr>
<td>$(d - p)_t$</td>
<td>-0.812</td>
<td>0.149</td>
<td>-0.081</td>
<td>-0.898</td>
<td>-0.038</td>
<td>0.885</td>
<td>2.475</td>
<td>0.148</td>
<td>0.845</td>
</tr>
<tr>
<td></td>
<td>(-1.392)</td>
<td>(0.808)</td>
<td>(-0.363)</td>
<td>(-1.504)</td>
<td>(-0.035)</td>
<td>(13.163)</td>
<td>(1.141)</td>
<td>(0.221)</td>
<td></td>
</tr>
<tr>
<td>spr_t</td>
<td>0.104</td>
<td>-0.017</td>
<td>0.014</td>
<td>0.048</td>
<td>0.036</td>
<td>-0.002</td>
<td>0.339</td>
<td>0.011</td>
<td>0.456</td>
</tr>
<tr>
<td></td>
<td>(2.452)</td>
<td>(-1.775)</td>
<td>(1.040)</td>
<td>(1.069)</td>
<td>(0.466)</td>
<td>(-0.585)</td>
<td>(2.076)</td>
<td>(0.404)</td>
<td></td>
</tr>
<tr>
<td>$(qk)_t$</td>
<td>-0.113</td>
<td>-0.051</td>
<td>0.000</td>
<td>-0.059</td>
<td>-0.008</td>
<td>-0.009</td>
<td>0.373</td>
<td>0.747</td>
<td>0.575</td>
</tr>
<tr>
<td></td>
<td>(-1.341)</td>
<td>(-1.671)</td>
<td>(0.002)</td>
<td>(-0.617)</td>
<td>(-0.034)</td>
<td>(-1.172)</td>
<td>(1.292)</td>
<td>(6.625)</td>
<td></td>
</tr>
</tbody>
</table>

Cross-Correlations of Residuals

<table>
<thead>
<tr>
<th></th>
<th>rtb</th>
<th>xr</th>
<th>xb</th>
<th>Δpr</th>
<th>y</th>
<th>$(d - p)$</th>
<th>spr</th>
<th>$(-qk)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>rtb</td>
<td>3.763</td>
<td>0.206</td>
<td>0.117</td>
<td>0.192</td>
<td>-0.298</td>
<td>-0.234</td>
<td>0.318</td>
<td>0.104</td>
</tr>
<tr>
<td>xr</td>
<td>-</td>
<td>14.584</td>
<td>0.040</td>
<td>-0.063</td>
<td>-0.248</td>
<td>-0.970</td>
<td>0.295</td>
<td>0.118</td>
</tr>
<tr>
<td>xb</td>
<td>-</td>
<td>-</td>
<td>7.184</td>
<td>0.176</td>
<td>-0.620</td>
<td>-0.089</td>
<td>0.132</td>
<td>-0.014</td>
</tr>
<tr>
<td>Δpr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>3.927</td>
<td>-0.547</td>
<td>0.022</td>
<td>0.583</td>
<td>-0.044</td>
</tr>
<tr>
<td>y</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.368</td>
<td>0.262</td>
<td>-0.843</td>
<td>-0.041</td>
</tr>
<tr>
<td>$(d - p)$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>15.768</td>
<td>-0.277</td>
<td>-0.098</td>
</tr>
<tr>
<td>spr</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1.047</td>
<td>0.047</td>
</tr>
<tr>
<td>$(-qk)$</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>2.617</td>
</tr>
</tbody>
</table>
A reduced model of log annuity price changes

Annuity (log) price change (real terms)

VAR Replication

C.T. (Univ L.B.)
Longevity Risk and Asset Allocation
Jan 2015 17 / 26
Results

- The Term structure of risk
- The composition of the GMV Portfolio at different horizons
- Optimal Portfolio weights with a target of 10 % returns
- Term Structure of Sharpe Ratios
The term structure of risk

Figure 3: Term structure of risks for the securities included in the Extended VAR model.
The composition of the Global Minimum Variance Portfolio at different horizons

Figure 5: Term structure of allocations forming the GMV portfolio at different horizons.
Figure 6: Term structure of risks for an allocation in T-Bill (continuous line), in the GMV portfolio restricted to financial securities (dashed line), in the GMV portfolio including also the Annuity-Linked Security.
Figure 8: Term structure of the efficient allocation with target expected return of 10%.
The term structure of Sharpe Ratios

Term Structure of Equity Sharpe Ratios

- Holding Period SR
- Long Term SR
Longevity securitization and inter-temporal hedging of the aggregate longevity risk

\[
\min_{w} \ Var_{t-1} \left[R^{qk}_t (w_{t-1}) - qk_t \right]
\]
\[
s.t. : \quad R^{qk}_t (w_{t-1}) = w_{t-1} \cdot x_t + W_{0,t-1} \cdot rtb_t
\]
\[
w_{t-1} = [w_{xr,t-1}, w_{xb,t-1}, w_{x\Delta p,t-1}],
\]
\[
x_t = [x_{rt}, x_{bt}, x_{\Delta p_t}],
\]

with solution

\[
w^* = Var [x_t]^{-1} \cdot Cov [x_t, qk_t]^T,
\]
\[
w_{rtb}^* = W_0 - w^* \cdot 1
\]
Numerical Results

<table>
<thead>
<tr>
<th>Hedging Portfolio</th>
<th>w_{xr}</th>
<th>w_{rtb}</th>
<th>w_{xb}</th>
<th>$w_{x\Delta pr}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unconstrained</td>
<td>-0.042</td>
<td>-0.014</td>
<td>0.009</td>
<td>0.047</td>
</tr>
<tr>
<td>Constrained 1</td>
<td>0</td>
<td>-0.062</td>
<td>0.004</td>
<td>0.058</td>
</tr>
<tr>
<td>Constrained 2</td>
<td>0</td>
<td>0</td>
<td>-0.059</td>
<td>0.059</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{SR}_{\infty}^{\text{Equity}}$</th>
<th>$\text{SR}_{\infty}^{\text{Long Bond}}$</th>
<th>$\text{SR}_{\infty}^{\text{ALS}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.429</td>
<td>0.0323</td>
<td>(-) 0.437</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\text{SR}_{\infty}^{\text{Unc}}$</th>
<th>$\text{SR}_{\infty}^{\text{Cons}_1}$</th>
<th>$\text{SR}_{\infty}^{\text{Cons}_2}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>(-) 0.504</td>
<td>(-) 0.421</td>
<td>(-) 0.333</td>
</tr>
</tbody>
</table>
Conclusions

- Our analysis shows that efficiency of longevity risk sharing can be achieved via integration between insurance and financial markets.
 - The long term nature of the longevity risk requires an accurate analysis of the term structure of the risk return trade-offs generated by including a longevity-linked security in the set of investments.
 - A potential large number of short term investors would be willing to increase their exposure to longevity risk without increasing their investment horizon. This requires the organization of a maturity transformation activity by financial intermediaries that seems to be a crucial step to increase the interest of the market for longevity-linked securities, as well as their liquidity.
 - An integrated market for insurance and financial contracts with a publicly traded longevity index would also imply a more transparent and efficient pricing of life annuities with a direct benefit for annuity subscribers.