

Dutch pension system

- 3 pension pillars
 - First: AOW
 - Second: Occupational pension plan
 - Defined benefit (DB)
 - Defined contribution (DC)
 - "Doorsneesystematiek"
 - Third: private savings

Pension reform

- Abolisch "Doorsneesystematiek"
- Government
 - Personal pension pots with positive buffer (based on IV-C-R)
- FNV
 - If personal pension pots → positive/negative buffers
 - Since more Intergenerational Risk Sharing (IGR)

Intergenerational Risk Sharing (IGR)

- Risk wich can be shared between living generations
 - Micro longevity risk
 - Disability risk
- Risk wich can be shared with future generations
 - Macro longevity risk
 - Stock market risk
 - Inflation risk
 - Interest rate risk
- Discontinuity risk
 - The risk that future generations are not willing to participate in a (pension) system.

Personal pension wealth with collective risk sharing (IV-C-R)

Personal pension wealth with collective risk sharing (IV-C-R)

Model assumptions

- Pay premium between 25th and 65th year
- Receive pension benefit between 65th and 85th year
- Only stock market risk (no inflation, interest-rate, longevity etc.)
- Black and Sholes financial market (normal distributed returns)

- 1. System with only positive buffers
- 2. System with both positive and negative buffers
- 3. System without a buffer

Certain equivalent (CE)

Discontinuity risk

Conclusions

- A buffer can be beneficial for everyone if
 - Negative buffers are allowed
 - A risk premium is provided
 - Future premiums are constant
- Trade-off between discontinuity risk and welfare gains.

