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Abstract

We develop and estimate models for actual and perceived survival probabilities of married

couples. In the model, the potential lifetime dependence between spouses in a couple is generated

by correlated (un)observables that a�ect both spouses' survival probabilities, and by bereavement

e�ects - the impact of one spouse's bereavement on the surviving spouse's survival rate. We

use married couples' actual mortality experience and their survey reports of the probability to

survive until given target ages from the Health and Retirement Study. We account for possible

reporting biases in the elicited probabilities, jointly modelling couples' genuine subjective survival

probabilities and their reporting behaviour. We �nd that actual and perceived lifetimes of the two

spouses in a couple are strongly positively correlated. The bereavement e�ect explains around 60-

98% of this correlation, with correlated observables and unobservables explaining the remainder. On

average, non-widowed people younger than 75 (older than 75) tend to underestimate (overestimate)

their actual expected remaining life time. Widowers substantially underestimate their expected life

time, while widows tend to underestimate their expected life-years if they are younger than 72.
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1 Introduction

In a life-cycle model with two-person households, forward-looking married couples' economic decisions

- such as how much to save and consume, when to retire and leave a bequest, and what type of insur-

ance product to purchase - hinge upon their perceived survival expectations (Hurd, 1989; Browning,

2000; Van der Klaauw & Wolpin, 2008; Michaud, Van Soest, & Bissonnette, 2019). Studying these

life-cycle models empirically requires modeling of the couples' perceived joint survival probabilities.

Traditionally, researchers used observed mortality data as a proxy for perceived survival probabilities,

assuming that couples correctly assess their mortality risks (Casanova, 2010; Michaud et al., 2019).

This assumption is controversial because couples' perceptions regarding their survival probabilities can

systematically deviate from their actual survival probabilities. Indeed, acknowledging this controversy

and with the increasing availability of data on subjective expectations, e.g. in the Health and Retire-

ment Study (HRS) representing the 50+ population in the US, an increasing number of studies using

subjective survival expectations have appeared in the past two decades (see, e.g., Smith, Taylor, and

Sloan (2001); Van der Klaauw and Wolpin (2008); Iannario and Piccolo (2010); Ludwig and Zimper

(2013); Bissonnette, Hurd, and Michaud (2017); Heimer, Myrseth, and Schoenle (2019)). The focus of

these studies has been limited to develop models for individuals' marginal perceived survival probabil-

ities, ignoring the potential remaining lifetime dependence between spouses in a couple.

In this paper, we develop an econometric model for actual as well as perceived joint survival prob-

abilities of married couples. We estimate the model using 13 waves (from 1992 to 2016) of the HRS

data.1 The HRS is ideal in our context as it has accurate information on the respondents' actual mor-

tality experience as well as their perceived survival expectations. The longitudinal nature of the data

allows us to observe respondents' survival expectations before and after widowhood. Therefore, we

can identify the actual and perceived survival rates of respondents conditional on their partners' vital

status. To our knowledge, our paper is the �rst to analyze the joint perceived survival probabilities of

married couples using subjective expectations held by survey respondents.

Our model accounts for two sources of dependencies between remaining lifetimes of married cou-

ples, both for actual and perceived survival models. The �rst is the common-lifestyle e�ect : spouses

tend to have similar lifestyles because they are coupled based on their (observed or unobserved) sim-

ilar characteristics that a�ect their actual and perceived survival probabilities, such as their habits,

ethnicity, and educational backgrounds (Hollingshead, 1950; Burgess & Wallin, 1943). For example,

smokers may attract each other, and smoker-couples tend to have lower actual survival rates than

non-smoker-couples. The perceived survival rates of spouses in a smoker-couple can also be corre-

lated because smokers tend to underestimate the negative impact of smoking on their mortality rates

(Khwaja et al., 2007; Wang, 2014). The second source is the bereavement e�ect, also known as the

1 Numerous studies used the reported survival expectation data of the HRS,e.g., Bissonnette et al. (2017); Khwaja,
Sloan, and Chung (2007); Salm (2010); Gan, Gong, Hurd, and McFadden (2015).
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broken-heart syndrome: the (negative) impact of one spouse's death on the surviving spouses' survival

rates. Surviving spouses tend to encounter elevated stress, loneliness, depression, and anxiety after

their spouses have passed away (Williams Jr, 2005; Wittstein et al., 2005). These mental and physical

health problems reduce the actual survival rates of surviving spouses (Van den Berg, Lindeboom, &

Portrait, 2011; Spreeuw & Owadally, 2013; Sanders & Melenberg, 2016). Moreover, surviving spouses'

perceptions regarding their remaining lifetimes may change after spousal bereavement if they update

their survival expectations against health shocks (Smith et al., 2001).

To model the common-lifestyle and bereavement e�ects, we follow the Markov-type models pro-

posed by Freund (1961) and Gourieroux and Lu (2015). Freund's model captures the bereavement

e�ect by allowing jumps in mortality hazards at the time of death of one spouse. Gourieroux and

Lu (2015) extend Freund's model by allowing asymmetric reactions of the mortality hazard rates for

male and female surviving spouses at the moment the �rst spouse passes away. They also mix the

model with common unobservable factors to capture common lifestyle e�ects. We extend the model

of Gourieroux and Lu (2015) in three ways. First, we allow that spouses share correlated but not

necessarily perfectly correlated (or common) frailty terms. Second, we model that spouses' mortality

hazards depend on certain observed characteristics that are known to be good predictors of people's

actual and perceived survival probabilities. Third, we impose the same structure on both the actual

and the perceived mortality hazard rates. Thus, our approach enables us to directly test whether

people with the same characteristics, on average, correctly perceive their mortality risks.

We do not utilize the reported survival probabilities to directly infer couples' true perceived survival

probabilities because of the following challenges. First, people tend to round their subjective responses

to re�ect their uncertainty regarding the underlying process (Manski, 2004; Manski & Molinari, 2010).

People who are more uncertain regarding their survival rates are more likely to report probabilities

that are multiples of larger integers, for example, 0%, 50%, and 100%. The second challenge is that if

spouses in a couple are interviewed together, they might want to please their partners by mimicking

each other's subjective responses (Aquilino, 1993; Aquilino, Wright, & Supple, 2000), thus in�uencing

each other's reported expectations or each other's reporting behaviour. Spouses' reporting behaviour

may also be correlated due to other reasons, such as assortative matching.

To overcome the impediments of using subjective reports, we model couples' reporting behaviour

explicitly. Rounding is accounted for following the models proposed by De Bresser and Van Soest

(2013); Kleinjans and Van Soest (2014), and De Bresser (2019). To control for spouses' in�uence on

each others' responses, we allow for correlated observed and unobserved factors that a�ect the report-

ing behaviour of both spouses.

The main results of the paper are the following. In line with previous literature, we �nd that younger

spouses underestimate their remaining lifetime relative to within-sample actual survival (Bissonnette

et al., 2017; Heimer et al., 2019). In contrast, old couples overestimate their actual expected remaining

life years on average. We �nd both actual and perceived remaining lifetimes of spouses in a couple
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are positively related. Keeping observed and unobserved characteristics constant, depending on their

age, males (females) tend to live 0.6-5 additional years (0.5-4.4 years) longer if their partners are alive

than if their partners are dead (the bereavement e�ects on actual mortality). Individuals whose part-

ners are alive also perceive they would live longer than those whose partners are dead. Depending on

people's age, males (females) perceive to live for 1.4-4.8 years (1.6-2.3 years) more if their partners are

alive than if their partner is dead (the bereavement e�ects on perceived mortality). The bereavement

e�ects explain 83%-98% of the actual remaining lifetime dependence, and 60%-90% of the perceived

remaining lifetime dependence. The rest is explained by the correlations between the (un)observed

characteristics between spouses.

The actual and perceived survival curves are predicted to have substantial dispersion in survival

curves around their corresponding medians at a given age, gender, and partner's vital status. Most

of the dispersion in actual survival curves is explained by the variations in observed characteristics,

such as their ethnicity, education level, cohort, income, and health state. The unobserved frailties

explain only a small part of the dispersion in actual survival curves. In contrast, both observed and

unobserved factors explain substantial dispersion in perceived survival curves. Thus, at given observed

characteristics, there is a substantial heterogeneity in people's survival expectations compared to their

actual survival rates.

The estimation results of the reporting model suggest that people give more precise answers if they

have a high cognitive ability. Moreover, the estimated correlation between the unobserved factors that

a�ect the rounding behaviour of spouses in a couple is positive and signi�cant. This evidence may

imply that spouses in a couple have similar rounding behaviours due to assortative mating, or they

in�uence each other's subjective responses during the interview.

The paper is structured as follows. Section 2 describes the data and discusses the survival expec-

tation question in the HRS. Section 3 presents the joint survival probability model of married couples

and the reporting model. Section 4 presents the estimation results. The �nal section concludes.
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2 Data

2.1 Sample selection and descriptive statistics

We use biennial data of the Health and Retirement Study (HRS) from 1992 to 2016. The HRS

is a national panel survey of individuals over age 50 and their spouses, and it is representative of

the elderly population of the U.S. The HRS contains comprehensive information on each respondent's

marital history, vital status, survival expectations, socioeconomic characteristics, and health indicators.

Throughout our analysis, we de�ne a respondent as married at a given survey wave if the partner is

alive, and as widowed if the partner is dead. If both spouses in a couple responded that they are

o�cially married or unmarried partners, we consider them as married.

Table 1 shows our sample selection procedure. We restrict our sample to couples in which both

spouses were alive when they entered the survey. This selection excludes the sample of respondents

who entered as a widow(er) or those who never married. To simplify, we drop the observations of

respondents who were in a same-sex relationship. To avoid complications that arise due to marital

dissolution, we only keep respondents who were neither divorced nor separated during the period of

interest. Some respondents lost their �rst spouse and then married again during the sample period.

We treat these respondents' survival dates are right-censored at the time they re-married, and discard

their second spouse's observations.2 We also exclude the observations of 36 couples in which both

spouses died on the same day. We suspect that the cause of death of these couples is some unnatural

cause, such as an accident. Finally, we keep couples in which both spouses participated for at least

two waves and both responded to the survival expectation questions at least once.

Table 1: Sample selection

number of
households

number of
individuals

Initial sample 26,598 42,053
Dropping respondents who were in the same-sex relationship 26,468 41,797
Dropping if divorced or separated 19,966 33,221
Keeping if entered the survey as married 13,540 26,578
Dropping observations of second, third, and fourth spouses 13,540 26,195
Keeping if participated in the survey for at least two waves 11,838 22,994
Dropping if a couple consists of only one active respondent 11,156 22,312
Keeping if provided a valid response to the survival expectation questions at least once 11,079 22,158
Dropping if spouses died on the same day 11,043 22,086

2.2 Observed mortality experience of couples

In our �nal sample, during the period of interest (1992-2016):

� 48.4% of couples did not encounter a spousal bereavement

2 In our sample, people re-married at most four times. For those who re-married more than twice, we dropped the
observations of their second, third, and fourth spouses.
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� In 14.8% of couples, the male spouse died �rst, and the female spouse died second

� In 20.9% of couples, the male spouse died �rst, and the female spouse did not die

� In 8.3% of couples, the female spouse died �rst, and the male spouse died second

� In 7.6% of couples, the female spouse died �rst, and the male spouse did not die

More than 51% of couples have experienced a spousal bereavement between 1992 and 2016. In these

couples, male spouses died �rst in around 69%3 of all cases, due in part to the higher average entry

age for males than for females (61 versus 58, on average). This also leads to higher mortality rates for

male than for female spouses.

2.3 Survival questions in the HRS

In each wave, the HRS asks the following question:

...Pick an integer between 0 and 100 where �0� meaning no chance and �100� meaning absolutely

sure. �What is the percent chance that you will live to be ta or more?�

Here ta is the target age, linked to the respondent's age. The di�erence between the target age and

the age of respondents is at least 10 years, and the target age is always a multiple of 5. In each survey

wave, respondents answered at most two survival expectation questions with di�erent target ages. In

1992, the questions were asked with a scale of 0 to 10; in the other waves, the responses are scaled

from 0 to 100. De Bresser (2019) �nds that using scales from 0 to 10 or from 0 to 100 gives similar

measurements of the subjective survival expectations. We multiply the responses in wave one by 10 to

make them comparable to the responses in other waves.

The number of observations (respondent × wave × number of survival expectation questions at

given wave) in our sample is 73,487 for males and 87,961 for females. Besides choosing responses

between 0 and 100, respondents can also choose to answer �Don't know� or �Refuse� (DK/R). Since

rather few responses are DK/R (roughly 4.5% of males and 5.8% of females of our sample), we do not

consider the sample selection issue of ignoring these non-responses.

Table 2 shows the heterogeneity in respondents' reported survival probabilities for each target age

and a given age-interval. The average reported survival probabilities are shown separately for married

and widowed males and females. For each age interval, the mean for married respondents is higher

than that of widow(er)s. The large magnitude of the standard deviations compared to their means

imply substantial heterogeneity in people's perceptions regarding their subjective survival probabilities

(or their reporting biases).

Column 2 of Table 2 shows the mean life-table probabilities as a measure of objective survival

3 20.9+14.8
20.9+14.8+8.3+7.6

≈ 69.1
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probabilities. The HRS provides the annual life tables, controlling for age and sex, retrieved from the

National Center for Health Statistics and the Berkeley Mortality Database. Average reported prob-

abilities to target age 75 and 80 are lower than the corresponding mean life-table probabilities, for

males and females and for married and widowed respondents. On the other hand, for target age 85,

the average reported survival probabilities are slightly larger than those in the life-table. Hence, at

least compared to the mean life-table probabilities, reported survival probabilities substantially di�er

from actual survival probabilities.

Figure 1 shows the empirical distribution of the reported probabilities to the subjective survival

expectation questions, separately for males and females. We present histograms for target ages 80 and

85 as illustrating examples. The �gure shows that most responses are concentrated at multiples of

10%, and the highest concentration is at 50%; thus, the reported probabilities su�er from rounding.4

Substantial number of respondents chose 0% and 100% although these responses are unrealistic.

Table 2: Descriptive statistics of reported survival probabilities and mean life-table probabilities

Mean
Life-table

Married Widowed

Current age N Mean S.D. N Mean S.D.
Column (1) (2) (3) (4) (5) (6) (7) (8)

Males

Target age 75 64-66 73.45 2,995 65.12 27.9 132 64.05 29.76
Target age 80 68-70 63.53 2,598 58.53 28.33 234 55.41 29.98
Target age 85 73-75 47.22 2,933 53.43 29.59 301 47.79 32.21

Females

Target age 75 64-66 82.32 2697 67.66 27.53 456 64.41 27.7
Target age 80 68-70 73.11 2970 61.63 28.3 791 58.22 29.84
Target age 85 73-75 59.73 2524 54.27 29 917 52.79 30.17

Note: Column (2) shows the sample average of the life-table probability of reaching a certain target age
conditional on survived until the current age. The life-table probabilities are only available conditional on
age and sex. Columns (4) and (7) show the sample average of the reported survival probabilities of reaching
a certain target age conditional on survived until the current age for married and widowed respondents,
respectively. The descriptive statistics of responses to target age 90 are not shown since very few people
responded to the survival expectation question with target age 90.

2.4 Covariates

De�nitions of the covariates used in the actual and perceived survival probability models are given

in Panel A of Table 3. Table 4 shows some summary statistics. Since the survival probabilities are

likely to vary with respondents' health state and income, we use the following covariates: functional

4 Bruine de Bruin, Fischbeck, Stiber, and Fischho� (2002) consider that people might report 50% to express their
inability to reason in terms of probabilities, also known as epistemic uncertainty, rather than expressing their
uncertainty regarding the underlying process. De Bresser and Van Soest (2013) and Kleinjans and Van Soest (2014)
model the possibility that respondents answer 50% to re�ect their epistemic uncertainty. Bissonnette et al. (2017)
and De Bresser (2019) do not �nd any evidence of the existence of the epistemic uncertainty in subjective survival
responses once the rounding behaviors are controlled. Therefore, in our model, we assume that the reported
probability of 50% only expresses respondents' uncertainty regarding their true survival expectations, not their
epistemic uncertainty.
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Figure 1: Self-reported probabilities

(a) Males (b) Females

limitations in daily living, ever recorded chronic conditions, and household-size adjusted log income at

the time they entered the survey. The advantage of using health and income indicator variables at the

time of entry is that we can treat these variables as time-invariant, simplifying their use in our survival

models (Bissonnette et al., 2017).We also control for basic demographics and socio-economic status,

including dummies for whether a respondent is Black or Hispanic, whether a respondent's highest

obtained degree is high-school or college, and cohort dummies.

As already shown in Figure 1, the reported probabilities su�er from rounding. Section 3.3.2 dis-

cusses how we model rounding behaviour in detail. In the reporting model, we use the covariates

shown in Panels A and B of Table 3. As suggested by Manski and Molinari (2010), we use the reported

probabilities of other subjective expectation questions than the survival expectation questions asked

in the HRS in a given wave.5 We expect that if respondents choose mostly 0%, 50%, or 100% in

other subjective expectation questions, they are more likely to report coarse answers to the survival

expectation questions also.

Moreover, Hurd, McFadden, and Gan (1998) and Lillard and Willis (2001) �nd that whether re-

spondents report a coarse responses, such as 0%, 50%, or 100%, or more precise responses, such as

multiples of 1 but not of 5, is correlated with their education and cognitive abilities. Thus, we use

respondents' education degree, and their score on the immediate word recall test as proxy measures

for cognitive capacity.6

5 The number of expectation questions asked in the RAND version of the HRS varies from wave to wave. Besides
survival expectation questions, the most common questions in the survey are (1) probability of receiving any
inheritance, (2) probability of leaving any bequest, (3) probability of leaving bequest that values more than 10,000
$, (4) probability of leaving bequest that values more than 100,000 $, (5) probability of working full-time after
age 62, (6) probability of working full-time after age 65, (7) probability of moving to nursing home in next 5
years, and (8) probability of having a work limiting health problem in next 10 years. Some probability questions
were not asked depending on respondents' work, marital and health status, and age. Since the total number of
subjective expectation questions vary across waves and across individuals, we construct the proportions of choosing
{0%, 50%, 100%} to make this variables comparable across individuals and waves.

6 The HRS asks respondents to memorize a particular list of words to measure their cognitive ability. It provides
measures for immediate and delayed word recalls, which are counts of the number of correctly recalled words from
a 10 or 20-word list. We divide the number of correctly recalled words by the total number of words in a list to
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Table 3: Variable descriptions

Variable Description

Panel A.
Log of income time-invariant Log of real total household income in 2016 U.S. dollars divided

by square root of household sizea

Ever smoked time-invariant =1 if ever smoked or current smoker
Functional limitations time-invariant Number of functional limitations in daily livingb

Chronic conditions time-invariant Number of chronic conditions ever recordedc

High school time-invariant =1 if highest obtained degree is high school or GED
College time-invariant =1 if having at least college or graduate degrees
Hispanic time-invariant =1 if Hispanic
Black time-invariant =1 if Black
Cohort before 1930 time-invariant =1 if born before 1930
Cohort 1931-1945 time-invariant =1 if born between 1931 and 1945

Panel B.
Prop. multiples 50 time-varying proportion of choosing responses of 0, 50 and 100

in other subjective expectation questions
Immediate word recall time-varying proportion of number of immediate word-recalls

a : We use the imputed version of the household income available in the RAND version of the HRS. The household size counts
the number of living spouses plus the number of children living together.
b : Respondents were asked whether they have di�culty engaging with the following �ve activities: (1) walking across a room,
(2) getting in and out of bed, (3) dressing, (4) bathing, and (5) eating. Depending on the number of activities respondents �nd
to have di�culties with, the variable takes values from 0 to 5.
c : The number of chronic conditions respondents ever had. The following chronic conditions include (1) diabetes, (2) cancer,
(3) lung disease, (4) heart disease, (5) stroke, and (6) arthritis, (7) high blood pressure and (8) psychiatric problems. Depending
on the number of chronic conditions that respondents ever had, the variable takes values from 0 to 8.

Table 4: Summary statistics

Male Female
mean st.dev min max mean st.dev min max

Panel A.
Log of income 10.252 1.065 0 14.297 10.247 1.056 0 14.297
Ever smoked 0.697 0.459 0 1 0.461 0.499 0 1
Functional limitations 0.195 0.691 0 5 0.185 0.6632 0 5
Chronic conditions 1.193 1.175 0 7 1.109 1.127 0 8
High school 0.316 0.465 0 1 0.378 0.485 0 1
College 0.426 0.495 0 1 0.407 0.491 0 1
Hispanic 0.113 0.317 0 1 0.117 0.322 0 1
Black 0.131 0.338 0 1 0.128 0.334 0 1
Cohort before 1930 0.312 0.463 0 1 0.233 0.423 0 1
Cohort 1931 - 1945 0.383 0.486 0 1 0.389 0.487 0 1

Panel B.
Prop. multiples 50 0.648 0.336 0 1 0.647 0.335 0 1
Immediate word recall 0.492 0.189 0 1 0.554 0.19 0 1

Note: We use one observation from each household to calculate descriptive statistics of the variables in Panel
A since they are time-invariant. We use all available wave×respondent observations to calculate the descriptive
statistics of they variables in Panel B since the are time-varying.

make these variables comparable across waves. In couple-households, each spouse was assigned a di�erent list. The
words in the list are di�erent in each wave.
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3 Econometric model and estimation strategy

In this section, we discuss our econometric model for the actual and perceived survival probabilities.

We use the objective model to refer to the part of the model explaining actual mortality, and the

subjective model for the part explaining perceived survival probabilities.

Section 3.1 discusses the general structure of the joint remaining lifetime distribution of spouses

in a couple. Section 3.2 shows the likelihood contribution of objective model. Section 3.3 consists of

two subsections. In the �rst part, we link the perceived survival probability structure in Section 3.1

to the conditional survival probabilities in the survey. In the second part, we discuss the reporting

model. This describes our strategy to disentangle the true subjective survival from the reported survival

probabilities by controlling for both spouses' (correlated) rounding behaviours. Section 3.4 links the

likelihoods of the objective and the subjective models, allowing the unobserved factors of these to be

correlated. In the second part of Section 3.4, we discuss our estimation strategy.

3.1 Joint distribution of the remaining lifetimes

Consider a couple with two spouses: spouse 1 (male), and spouse 2 (female). In our sample, spouses

are �rst observed when the older spouse is aged 50 or older. Thus, we set the �rst time the spouses are

at risk of mortality to the point in time when the older spouse reaches age 50. Moreover, we assume

that spouses are a couple since before the older spouse reaches age 50.

Initial time at
risk (t0)

When the 1st spouse
dies

When the 2nd spouse dies

T1 = d1
T2 = d2

T1 := T p
1 = d1 + Zp

T2 := T p
1 = d2 + Zp

Ti := T q
i = di + Zp + Zq

i

Zp = min {Zp
1 , Z

p
2} Zq

i

Figure 2: Potential lifetimes of spouses

Note: After the death of the �rst spouse, spouse i is a surviving spouse. i = 1 (resp. i = 2) if the male (resp.
the female) spouse is a surviving spouse.

Figure 2 illustrates the potential lifetimes of the two spouses. d1 and d2 are their ages at the initial

time of risk (t0); if spouse 1 is older than spouse 2, then d1 = 50 and d2 ≤ 50. Zp1 and Zp2 are random

variables representing the lifetimes of spouses 1 and 2 as of t0, when their spouse is alive. The �rst

spouse dies at time t0 + Zp = t0 + min(Zp1 ;Zp2 ). After one spouse's death, there can be a change in

the surviving spouse's residual lifetime distribution due to the bereavement e�ect. Let the remaining

lifetime of spouse 1 (spouse 2) after the death of other spouse be Zq1 (Zq2). Then the total lifetimes
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after t0 of both spouses are:

T1 = d1 + Zp + Zq1 · 1{Z
p = Zp2} (1)

T2 = d2 + Zp + Zq2 · 1{Z
p = Zp1} (2)

Here 1{·} is the indicator function (1 if the argument is true and 0 otherwise). Our model does not

explicitly capture the possibility that both spouses die at the same time.

Let x = (x1, x2) be a vector of observed initial conditions or other time-invariant regressors (not

including an intercept) and let η = (η1, η2) be time-invariant unobserved frailty terms driving the

distributions of (Zp1 , Z
p
2 , Z

q
1 , Z

q
2). Spouses' remaining lifetimes can be correlated via the observed

regressors and the frailty terms. We assume that at t0, the population distribution of unobserved

frailty terms η = [η1, η2] is bivariate normal with mean 0 and arbitrary covariance matrix Σ. We

assume Zp1 , Z
p
2 , Z

q
1 and Z

q
2 are mutually independent conditional on observed regressors and unobserved

frailty terms.

Following the conditional independence assumption, the joint distribution of T1, T2|(d, x, η) can

be fully characterized by the conditional hazard rates of each spouse at each state. We impose the

mixed-proportional hazards (MPH) structure on the conditional hazard rates.7 Moreover, we assume

that the baseline hazard rates follow a Gompertz speci�cation. Under this speci�cation, the shape of

the baseline hazard depends on two unknown parameters: an intercept and a duration dependence

parameter. Previous studies have shown that the Gompertz speci�cation approximates the mortality

rates of the elderly reasonably well (Frees, Carriere, & Valdez, 1996; Carriere, 2000; Luciano, Spreeuw,

& Vigna, 2008).

The hazard rates driving Zpi , i = 1, 2 at age tpi , conditional on (xi, ηi), are:

λp(tpi |xi, ηi) = exp(αpi t
p
i + βpi )︸ ︷︷ ︸

baseline hazard rate

· exp(xiβi + ηi), where di ≤ tpi < di + zp (3)

These are the relevant hazard rates as of t0 as long as both partners are alive. Before t0, i.e., for

tpi < di, the hazard rate is set to 0. Let the corresponding integrated hazards from age ai to age t
p
i be

Λp(ti|ai, xi, ηi).

Suppose that spouse i lives longer than the partner, so Zp = Z3−i. Then the hazard rate of

widow(er) i at age ti ≥ di + Zp, conditional on (xi, ηi) is:

λq(ti|xi, ηi) = exp(αqi ti + βqi )︸ ︷︷ ︸
baseline hazard rate

· exp(xiβi + ηi), where di + Zp ≤ ti (4)

The corresponding integrated hazard rate from age ai to ti, where di +Zp ≤ ai ≤ ti, is Λq(ti|ai, xi, ηi).

In other words, bereavement changes αpi and β
p
i into αqi and β

q
i . Thus, our speci�cation captures the

7 The MPH models are one of the most widely used duration models in econometrics (Van den Berg, 2001).
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bereavement e�ect by allowing slope and level shifts in the surviving spouse's log baseline hazard rates.

Together with the conditional independence assumptions, the four hazard rates determine the joint

distribution of the lifetimes of both partners given (xi, ηi). For example, the joint survival probability

of reaching ages t1 = d1 + z and t2 = d2 + z conditional on (d, x, η) is:

S0(t1, t2|d, x, η) = P (Zp1 > z,Zp2 > z|d, x, η) (5)

= P (Zp1 > z|d1, x1, η1) · P (Zp2 > z|d2, x2, η2) (6)

= P (T p1 > t1|d1, x1, η1) · P (T p2 > t2|d2, x2, η2) (7)

= exp(−[Λp(t1|d1, x1, η1) + Λp(t2|d2, x2, η2)]) (8)

The probability that spouse i survives until at least age ti > tpi = di + zp as a widow, given that

spouse 3− i died at age tp3−i = d3−i + zp and was the �rst who died, and given (di, xi, ηi), is:

Si|3−i(ti|t
p
i , xi, ηi) = P (T qi > ti|T qi > tpi , xi, ηi) (9)

= exp(−Λq(ti|tpi , xi, ηi)) (10)

In the next two subsections, we will discuss our strategies to construct objective and subjective

likelihoods. We use ηo and ηs to denote the bivariate unobserved frailty terms of the objective and

subjective hazard rates.

3.2 Objective joint survival model

The objective survival probability model is estimated using the observed mortality data. The spouses

in a couple entered the survey at ages a∗ = (a∗1, a
∗
2), and they are last observed at ages t∗ = [t∗1, t

∗
2]. If

spouse i is dead at the last observed age, then t∗i = T oi , otherwise his/her remaining lifetime is right-

censored. Left-truncation occurs in our data-set because couples' entry ages (a∗1, a
∗
2) can be higher than

their ages at the initial time of risk (d1, d2). (tp1, t
p
2) are ages of spouses when the �rst death occurs in

a couple.

At the last observed period each couple is in one of the following states: (1) husband died �rst, and

wife died second, (2) husband died and wife survived, (3) husband died second, and wife died �rst, (4)

wife died and husband survived, or (5) both spouses are alive. Depending on a couple's state at the

last observed period, the conditional likelihood is de�ned as follows:
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Lo(γo|d, x, ηo) =



λp1(t∗1|x1, η
o
1)λq2(t∗2|x2, η

o
2)S0(t∗1, t

p
2|d, x, ηo)S2|1(t∗2|t

p
2, x2, η

o
2) if husband died 1st, wife 2nd,

λp1(t∗1|x1η
o
1)S0(t∗1, t

p
2|d, x, ηo)S2|1(t∗2|t

p
2, x2, η

o
2) if husband died and wife alive,

λq1(t∗1|x1, η
o
1)λp2(t∗2|x2, η

o
2)S0(tp1, t

∗
2|d, x, ηo)S1|2(t∗1|t

p
1, x1, η

o
1) if wife died 1st, husband 2nd,

λp2(t∗2|x2, η
o
2)S0(tp1, t

∗
2|d, x, ηo)S1|2(t∗1|t

p
1, x1, η

o
1) if wife died and husband alive,

S0(t∗1, t
∗
2|d, x, ηo) if both survived

(11)

at the last observed period. Here γo is a vector of unknown parameters that includes αpi , α
q
i , β

p
i , β

q
i ,

and βi, where i = 1, 2.

3.3 Subjective joint survival model and reporting model

3.3.1 True subjective survival probability model

This section models how married and widowed respondents formulate their survival probability to

reach a certain target age conditional on their age at a given survey wave. As the distribution of the

remaining lifetimes of married and widowed can be di�erent due to the bereavement e�ect, married

and widowed respondents follow di�erent structures to formulate their survival expectations.

Married respondents

Let a = (a1, a2) be the ages of spouses at the time of the survey, and tai be target age of the survival

question asked from spouse i in that wave. Without loss of generality, we consider the case where spouse

i formulates his/her survival expectation of reaching age tai. Let spouse j be the partner of spouse i

such that j = 3− i. The age of spouse j at the time spouse i reaches age tai is taj = tai + dj − di.

Married respondents encounter a risk of losing their partners; thus, they take into account the

potential consequences of losing their partners on their survival chances when they formulate their

survival expectations. We assume that spouses are aware that if both spouses are alive at ages (ta1, ta2)

the conditional hazard rate of spouse i is λpi (τi|xi, ηsi ) when ai ≤ τi ≤ tai. However, if spouse j dies

when i had age tpi and spouse i has survived at age tai, spouse i's conditional hazard rate is λ
p
i (τi|xi, ηsi )

when ai ≤ τi < tpi , and λ
q
i (τi|xi, ηsi ) when t

p
i ≤ τi ≤ tai.8

Following this structure, spouse i's survival probability of reaching age tai conditional on (T s1 >

8 These assumptions are necessary to identify the model and cannot be relaxed without further information on
respondents' survival expectations. First, to relax these assumptions, we need information on how married respon-
dents perceive their survival chances conditional on their partner is alive or dead in all future periods. Next, we
need information on how respondents perceive their partners' survival chances (aka. cross-expectations). Kapteyn
and Kooreman (1992) and Michaud et al. (2019) show how to measure cross-expectations and identify the joint
expectations of married couples from each spouse's perspective.
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a1, T
s
2 > a2, x, η

s) is de�ned by the following equation:

P (T si ≥ tai|T s1 ≥ a1, T
s
2 ≥ a2, d, x, η

s)

=
P (T si ≥ tai ∩ T sj ≥ aj |d, x, ηs)
P (T s1 ≥ a1 ∩ T s2 ≥ a2|d, x, ηs)

=

∫∞
aj
P (T si ≥ tai ∩ T sj = τj |d, x, ηs)dτj
P (T s1 ≥ a1 ∩ T s2 ≥ a2|d, x, ηs)

=

∫ taj
aj

P (T si ≥ tai ∩ T sj = τj |d, x, ηs)dτj + P (T s1 ≥ ta1 ∩ T s2 ≥ ta2|d, x, ηs)
P (T s1 ≥ a1 ∩ T s2 ≥ a2|d, x, ηs)

=

∫ taj
aj

λpj (τj |xj , ηsj )S0(τ1, τ2|d, x, ηs)Si|j(tai|τi, xi, ηsi )dτj + S0(ta1, ta2|d, x, ηs)
S0(a1, a2|d, x, ηs)

(12)

where τi = τj + ai − aj . The �rst line of Eq. 12 is obtained using the Bayes rule. In the second line,

the integral in the numerator is separated into two additive terms: the �rst is integral where τj goes

from aj to taj , and the second one is integral where τj goes from taj to in�nity. The second additive

term has a closed-form solution. In the third line, the probabilities are replaced by their de�nitions in

Eq. 3, 4, 8 and 10.

Widowed respondents

We assume that widowed individuals expect to remain widowed until they pass away.9 Thus, if

spouse i is a widow(er) at age ai, his or her survival probability of reaching age tai conditional on

(T si ≥ ai, xi, ηi) is:

P (T si ≥ tai|T si ≥ ai, xi, ηi) = exp
(
− Λqi (tai|ai, xi, ηi)

)
(13)

As shown in Eq. 13, the subjective integrated hazard rate of widowed spouse i follows Λq(·). This

implies that the perceived remaining lifetime distribution of spouse i has changed from the moment

he/she enters the widowhood state.

3.3.2 Reporting model

Since reported survival probabilities do not directly re�ect respondents' true survival expectations, we

follow the approaches proposed by De Bresser and Van Soest (2013); Kleinjans and Van Soest (2014);

Bissonnette et al. (2017) and De Bresser (2019) to control for respondents' rounding behavior. We

incorporate a dependence between spouses' reporting behaviors in a couple as spouses can a�ect each

other's reporting decisions.

In each survey wave, respondents answered at most two subjective survival expectation questions

with di�erent target ages. We use subscript k ∈ {1, 2} to denote the question order, and subscript

w ∈ {1, 2, .., 13} to denote the survey wave. Let Piwk be the observed response of spouse i of kth

question in survey wave w. Let Siwk be the true survival probability that spouse i reaches target age

9 In our sample, the total number of widowed people is 5,699, and 386 of them (around 6.7%) married again between
1992 and 2016.
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taiwk, that is kth question in survey wave w. If spouse i's partner is alive at given survey wave, then

Siwk follows Eq. 12. If spouse i is a widow(er), then Siwk equals Eq. 13.

We do not directly observe Siwk. The reported probabilities can be noisy:

P ∗iwk = Siwk + ε∗iwk (14)

where ε∗iwk ∼ N(0, σ2∗
iw), and σ∗iw = exp(ziwβ

σ
i ). (15)

Here ε∗iwk is a measurement error that is independent of the true survival probability of spouse i. Since

some groups of people with the same observed characteristics can make more errors than the other

groups, we allow the variance of ε∗iwk to vary with ziw, a vector of observed covariates of spouse i

(including a constant term).

Reported survival probabilities are subject to rounding. We model the rounding behavior of re-

spondents such that they choose a certain degree of rounding (or rounding rule) which de�nes how

precise the reported probabilities are. If respondents decide to report their survival probabilities pre-

cisely, they round their answer to the nearest integer that is a multiple of 1. On the other hand, if

respondents prefer reporting a coarser answer, they choose a closest integer that is a multiple of some

number larger than 1. For example, let the perceived survival probability of one respondent be 65.3%.

If that respondent chooses to provide a precise report, he/she would report 65%, the nearest multiple

of 1. Instead, if the respondent reports a less precise answer by rounding to a nearest multiple of 10,

he/she will report 70%. As an extreme example, if the respondent chooses to round to a nearest integer

that is a multiple of 50, he/she will report 50%.

Let Riwk be the rounding decision of spouse i for question k in wave w. The realization of Riwk is

r. We assume that there are �ve possible rounding rules, r ∈ {1, 2, 3, 4, 5}, and each rule corresponds

to a set of numbers Ωr that have a common divisor δr:

� Riwk = 1: Multiples of δ1 = 1 ⇐⇒ Ω1 = {0, 1, ..., 99, 10}

� Riwk = 2: Multiples of δ2 = 5 ⇐⇒ Ω2 = {0, 5, ..., 95, 100}

� Riwk = 3: Multiples of δ3 = 10 ⇐⇒ Ω3 = {0, 10, ..., 90, 100}

� Riwk = 4: Multiples of δ4 = 25 ⇐⇒ Ω4 = {0, 25, 50, 75, 100}

� Riwk = 5: Multiples of δ5 = 50 ⇐⇒ Ω5 = {0, 50, 100}

Since the rounding rules can be ordered in terms of precision, we model Riwk with an ordered response

equation, assuming spouse i chooses rounding rule r if:

Riwk = r, if mi,r−1 < ziwβ
R
i + ηRi + εRiwk ≤ mi,r. (16)
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Here mi,0,mi,1, ...,mi,5, i = 1, 2 are the threshold parameters. We set mi,0 = −∞, mi,5 =∞, and mi,1

is normalized to zero as ziw includes a constant. The random component ηRi is independent of z1w and

z2w, and it captures the unobserved time-invariant e�ects that determine spouse i's rounding decision.

The idiosyncratic rounding shock εRiwk follows a standard normal distribution and is independent of

observed covariates and all other errors.

Following the distribution assumption on εRiwk, the probability of spouse i chooses rounding rule r

conditional on (ziw, η
R
i ) is:

P (Riwk = r|ziw, ηRi ) = Φ(mi,r − ziwβRi − ηRi )− Φ(mi,r−1 − ziwβRi − ηRi ), for r = 1, 2, 3, 4, 5. (17)

Choosing a speci�c rounding rule implies an interval for the perturbed probability P ∗iwk = [LBiwk, UBiwk).

Since P ∗iwk ∼ N(Siwk, σ
2∗
iw), the probability that P ∗iwk is in the interval [LBiwk, UBiwk) is given by

P (LBiw1 ≤ P ∗iw1 < UBiw1|di, xi, ziw, ηsi )

= Φ
(UBiw1 − Siw1

σ∗iw
|di, xi, ziw, ηsi

)
− Φ

(LBiw1 − Siw1

σ∗iw
|di, xi, ziw, ηsi

)
. (18)

Respondents answer at most two survival expectation questions with di�erent target ages in each

survey wave. Given that the �rst reported probability is Piw1, if a respondent chooses rounding rule

Riw1 = r, the upper and lower boundaries in Eq. 18 are equal to

P (LBiw1 ≤ P ∗iw1 < UBiw1|di, xi, ziw, ηsi ) =
P (100%− 0.5δr ≤ P ∗iw1|di, xi, ziw, ηsi ) if Piw1 = 100%

P (Piw1 − 0.5δr ≤ P ∗iw1 ≤ Piw1 + 0.5δr|di, xi, ziw, ηsi ) if 0% < Piw1 < 100%

P (P ∗iw1 ≤ 0.5δr|di, xi, ziw, ηsi ) if Piw1 = 0%

(19)

Intuitively speaking, in the �rst question, if a perturbed probability 10% is rounded to a multiple of

5%, then the interval is [7.5%, 12.5%). Since survival probabilities are bounded between 0% and 100%,

we take account of censoring as shown in Eq. 19.

Following De Bresser (2019), whether a perturbed probability of the second question P ∗iw2 is cen-

sored or not-censored depends on the degree of rounding rule and on the reported probability to the

�rst question. Since the second question's target age is higher than that of in the �rst question, the

perturbed probability of the second question should be lower than that of in the �rst question. Thus,

for a given response of the second question Piw2 and at given rounding rule Riw2 = r, the lower and
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upper boundaries are de�ned as:

P (LBiw2 ≤ P ∗iw2 < UBiw2|di, xi, ziw, ηsi ) =
P (Piw1 − 0.5δr ≤ P ∗iw2|di, xi, ziw, ηsi ) if Piw2 ≥ Piw1 − 0.5δr

P (Piw2 − 0.5δr ≤ P ∗iw2 ≤ Piw2 + 0.5δr|di, xi, ziw, ηsi ) if 0.5δr ≤ Piw2 < Piw1 − 0.5δr

P (P ∗iw2 ≤ 0.5δr|di, xi, ziw, ηsi ) if Piw2 < 0.5δr.

(20)

Since we do not directly observe which rounding rules respondents choose, a reported probability

Piwk may result di�erent degrees of rounding. For example, observed response of 10% can be rounded

to a multiple of 1 (interval: [9.5%, 10.5%)), a multiple of 5 (interval: [7.5%, 12.5%)), or a multiple of

10 (interval: [5%, 15%)). Thus, the probability of observing Piwk conditional on (di, xi, ziw, η
R
i , η

s
i ) is:

P (Piwk|di, xiw,ziw, ηRi , ηsi ) =

5∑
r=1

1{Piwk ∈ Ωr}P (Riwk = r|ziw, ηRi )P (LBiwk ≤ P ∗iwk < UBiwk|di, xi, ziw, ηsi ) (21)

The conditional likelihood contribution of the subjective model given di, xi, ziw and ηsi , η
R
i equals

the probability of observing the reported probability Piwk and is given by:

Lsiwk(γ
s, γR|di, xi, ziw, ηRi , ηsi ) =


P (Piwk|di, xi, ziw, ηRi , ηsi ), if a response is valid

1, otherwise

(22)

As shown in Eq. 22, we set the subjective likelihood contribution to 1 if a response is invalid

(answer �Don't know� or �Refused to answer�) or if a respondent did not participate in the survey

wave.

The conditional likelihood contribution of a couple, combining all waves and questions, is:

Ls(γs, γR|d, x, z, ηs, ηR) =
13∏
w=1

2∏
i=1

2∏
k=1

Lsiwk(γ
s, γR|di, xi, ziw, ηRi , ηsi ) (23)

Here γR is a vector of unknown parameters of the reporting model, which includes βσi , β
R
i , mi,2,

mi,3, and mi,4 for i = {1, 2}.

3.4 Likelihood contribution and estimation strategy

For the complete model, the conditional likelihood contribution of couple n is given by:

Ln(γo, γs, γR|d, x, z, ηo, ηs, ηR) = Lon(γo|d, x, ηo) · Lsn(γs, γR|d, x, z, ηs, ηR) (24)
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We allow the random components of the objective and subjective models to be correlated and

assume that [ηo1, η
o
2, η

s
1, η

s
2, η

R
1 , η

R
2 ]T follows a six-dimensional normal distribution with zero means and

arbitrary covariance matrix,Σ.

The economic interpretations of some elements of Σ are worth noting. Following the common

lifestyle argument, we expect positive signs in σηo1 ,ηo2 (e.g., the covariance between ηo1 and ηo2) and

σηs1,ηs2 . If respondents' subjective and objective survival expectations are positively correlated after

controlling observed factors, as noted by Smith et al. (2001), then we expect σηo1 ,ηs1 ≥ 0 and σηo2 ,ηs2 ≥ 0.

The unobserved factors of subjective survival expectations and those of reporting models can also

be correlated. For example, suppose that cognitive capacity of people is partially captured through

unobserved factors. If people with high cognitive ability perceive they are likely to survive to very old

ages and tend to elicit precise subjective responses, we expect σR1,ηs1
≥ 0 and σR2,ηs2

≥ 0.10 Moreover,

in a couple's household, if two spouses tend to elicit their subjective responses with a similar degree

of precision, we expect σR1,R2 > 0.

Since the random components are unobserved, we need each couple's unconditional likelihood

contribution. Moreover, the average of the unobserved frailty terms of the sample decreases as the

average age of the population increases because people with higher values of ηo die sooner than people

with low values of ηo. This implies that the distribution of unobserved frailty terms depends on the

entry ages of couples (Lancaster, 1990). Accounting for this, the (unconditional) likelihood contribution

of couple n is given by:

Ln(γo, γs, γR,Σ|d, x, z)

=

∫
R6

Ln(γo, γs, γR|T o1 > a∗1, T
o
2 > a∗2, d, x, z, η

o, ηs, ηR)g(η|T o1 > a∗1, T
o
2 > a∗2, d, x, z)dη (25)

=

∫
R6

Ln(γo, γs, γR|d, x, z, ηo, ηs, ηR)

P (T o1 > a∗1, T
o
2 > a∗2|d, x, ηo)

g(η)P (T o1 > a∗1, T
o
2 > a∗2|d, x, ηo)

P (T o1 > a∗1, T
o
2 > a∗2|d, x)

dη (26)

=

∫
R6 Ln(γo, γs, γR|d, x, z, ηo, ηs, ηR)g(η)dηo

P (T o1 > a∗1, T
o
2 > a∗2|d, x)

(27)

=

∫
R6 Ln(γo, γs, γR|d, x, z, ηo, ηs, ηR)g(η)dη∫

R2 S0(a∗1, a
∗
2|d, x, ηo)g(ηo)dηo

(28)

Here g(η) is a six-variate probability density function of η, and g(ηo) is the bivariate probability den-

sity function of ηo. In the �rst line of Eq. 28, both conditional likelihood function, and the density

function of η are conditioned on spouses surviving until ages (a∗1, a
∗
2). The second line is of the equation

is obtained using Bayes rule. Note that the conditional objective probability that spouses survive until

ages (a∗1, a
∗
2), P (T1 > a∗1, T2 > a∗2|d, x, z, ηo), does not depend on (z, ηs, ηR). Because of the common

multipliers in denominator and numerator, we obtain the third line. Finally, the joint probability in

the denominator is replaced by its de�nition in Eq. 8.

10 As shown in Eq. 17, a higher value of ηRi implies coarser rounding behavior. Eq. 3 and 4 show that a higher value
of ηsi implies higher hazard rates; thus, lower subjective survival probability. Thus, following our prior intuition, we
expect positive signs in σR1,η

s
1
and σR2,η

s
2
.
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Eq. 28 does not have a closed-form expression; thus, we rely on numerical methods to approximate

the equation. First, to calculate Eq. 28, we need to approximate the integral in the numerator of

Eq. 12. We follow the Mid-point approximation rule to numerically approximate the integral in the

numerator of Eq. 12. For details, see Appendix A.

Second, we approximate the integral over unobserved random components using a simulation

method, rewriting the unobserved factors as follows:

[ηo1n, η
o
2n, η

s
1n, η

s
2n, η

R
1n, η

R
2n]T = Λun (29)

where un is a column vector of six independent standard normal random variables. Here Λ is a Cholesky

lower-triangular matrix with Σ = Λ(Λ)T .

We can now approximate Eq. 28 with:

Lsn(γo, γs, γR,Λ|d, x, z, PR) ≈
1
M

∑M
m=1 Ln(γo, γs, γR|Λumn , d, x, z, PR)
1
M

∑M
m=1 S0(a∗1, a

∗
2|Λou

o,m
n , d, x)

(30)

Here M is the number of simulations drawn for each couple n. For couple n, umn is mth simulation

draw with six elements, and uo,m is the �rst two elements of umn . In the denominator, Λouo,mn is the �rst

two elements of vector Λumn . We use Halton draws to generate random simulated draws to reduce the

variance induced from the simulation procedure.11 The model is estimated by the Maximum Simulated

Likelihood method. If the number of simulation draws for each observation -M goes to in�nity, the

Maximum Simulated Likelihood estimator is asymptotically equivalent to the Maximum Likelihood

estimator (Train, 2009).

11 The Halton sequences are generated with prime bases 3, 5, 7, 11, 13, and 17. The elements of the �rst 17 six-pairs
of the sequence are discarded since the early elements appear to be correlated (Train, 2009).
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4 Results

4.1 Objective hazard rates

Columns (1) and (4) of Table 5 show the estimation results of the objective hazard rates of males and

females, respectively. Using these estimates, we predict log objective hazard rates shown in sub�gures

(a) and (c) of Figure 3. The log hazard rates in the �gure are predicted for an average individual,

with observed regressors equal to the sample averages and unobserved frailties equal to zero. The solid

and dashed lines depict the predicted log hazard rates if respondents' partners are alive, and if their

partners died at a given age. The observed characteristics and frailties are the same when partners are

alive or dead; the only di�erence is in the baseline hazards. The dotted lines are the 95% con�dence

intervals, calculated using a parametric bootstrap method.

According to sub�gures (a) and (c) of Figure 3, the objective log hazard rates of people whose

partners are alive are signi�cantly lower than those of widowed people wth the same average char-

acteristics. Since the con�dence intervals of married and widowed people never overlap, we conclude

that there exists a statistically signi�cant and negative bereavement e�ect on the objective remaining

lifetimes of surviving spouses. These results are in line with the results of the Van den Berg et al.

(2011) and Spreeuw and Owadally (2013).

For the objective model, a positive parameter implies higher mortality risk and a lower survival

probability.12 According to the results in Columns (1) and (4) of Table 5, observed mortality risks

covary in expected ways with demographic characteristics. For example, if household-size adjusted

income increases by 1%, males' (females') mortality hazards decrease by 9.2% (10,9%). Those who

ever smoked males (females) have 36% (39%) higher mortality rates than non-smoker males (females).

If males' (females') number of functional limitations increases by one, their mortality hazards increase

by 18.9% (24.4%). If males' (females') number of ever-recorded chronic conditions increases by one,

their mortality hazards increase by 27.6% (27.3%).

Compared to less than high-school educated (fe)males, high-school educated males (females) have

9.1% (10.8%) lower mortality hazards. The magnitude of the e�ect is even larger for college-educated

people. For example, compared to less than high-school educated (fe)males, college-educated males

(females) have 22.8% (25.1%) lower objective hazards. Hispanic males (females) have 18.7% (21.2%)

lower mortality hazards than non-Hispanic (fe)males. Black males have 11.1% higher mortality hazards

than non-Black males; however, there is no signi�cant di�erence between Black and non-Black females'

mortality hazards.

12 The parameters of the hazard rates can be interpreted as relative e�ects.Following the MPH speci�cation:

∂λ(t|x, η)

∂x
=
∂λ(t) exp(xβ + η)

∂x
= βλ(t|x, η)→ β =

∂λ(t|x, η)/∂x

λ(t|x, η)

where λ(t) is the baseline hazard.
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4.2 Subjective hazard rates

Columns (2) and (5) of Table 5 show the estimation results of males' and females' subjective hazards

rates, respectively. Sub-�gures (b) and (d) of Figure 3 show the log subjective hazard rates for an

average individual male and female.

The results suggest that both males' and females' perception regarding their mortality hazards

increases signi�cantly once they encounter a spousal bereavement. However, the magnitude of the

bereavement e�ect di�ers between males and females. Males' perceived mortality risk increases irre-

spective of their age. For females the bereavement e�ect is small and insigni�cant at age below 55, but

larger and signi�cant at older ages.

To test whether people over- or underestimate the impact of certain observed factors on their ac-

tual mortality hazards, we report the estimated di�erences between the parameters of objective and

subjective hazard rates in Columns (3) and (6) of Table 5. If the di�erence is positive, people overes-

timate the impact of the covariate on their actual mortality hazard rates. The di�erences between the

objective and subjective duration dependence parameters of the baseline hazard rates are estimated

to be signi�cant and positive. These results imply that compared to the log objective baseline hazard

rates, the log subjective baseline hazard rates start at a higher level at the initial time of risk (i.e.,

when the older spouse of a couple reaches age 50). As people grow older, the average subjective haz-

ard rates increase slower than the average objective hazard rates. In other words, young people have

more pessimistic views regarding their survival chances. These �ndings are in line with the results of

Bissonnette et al. (2017) and Heimer et al. (2019).

We �nd that males correctly perceive the impact of income on their mortality hazards. In contrast,

females signi�cantly undervalue the impact of income. College or high-school educated people value

the impact of their education on their actual mortality hazards correctly. Respondents signi�cantly

underestimate the impact of being Hispanic, whereas they signi�cantly overestimate the impact of

being Black. Respondents undervalue the impact of smoking, and the positive impact of functional

limitations and chronic conditions on their actual mortality hazards.

4.3 Reporting model

The estimation results of the reporting model are shown in Columns (7) to (10) of Table 5. Columns

(7) and (9) show the estimation results of the log of the variance of measurement errors. The positive

parameters in Columns (7) and (9) imply that people with certain characteristics report their perturbed

probabilities with more measurement error than their counterparts.13

The results show that people who correctly recall a higher number of words tend to report with

13 Recall that we de�ne measurement error as the di�erence between people's perturbed probabilities, that are not
polluted with a rounding bias, and their true perceived survival probabilities
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Figure 3: Predicted log hazard rates at an average individual level, conditional on partner's vital status

(a) Male, objective (b) Male, subjective

(c) Female, objective (d) Female, subjective

Note: The log hazard rates are linear, following the assumption that the baseline hazards follow Gompertz's speci�cation.
The top two and the bottom two sub-�gures are the predicted log hazard rates of males and females, respectively. The
left- and right-hand sides are the corresponding predictions of the objective and the subjective models, respectively. The
dashed and the solid lines are the spouses' log hazards if their partners are alive and if their partners died at a given age.
The dotted lines around the dashed and solid lines represent the 95% con�dence intervals that re�ect the estimation
uncertainty.

less measurement error than those who recall fewer words. In contrast, if people's proportion of

choosing multiples of 50 in other subjective expectation questions increases, their chance of reporting

responses with more measurement error in survival expectation questions increases. High-school or

college-educated people elicit subjective survival responses with less measurement error than less-than

high-school educated people do. Blacks and Hispanics, and those born before 1945, are found to elicit

their subjective responses with more measurement errors than their respective counterparts.

Columns (8) and (10) of Table 5 show the estimation results of the rounding equation. A positive

parameter implies coarser rounding if the covariate increases. If respondents' proportions of choosing

multiples of 50 in other expectation questions are high, those respondents' probability of choosing

imprecise rounding rules is also high, in line with the �ndings of Manski and Molinari (2010). If

the number of correctly recalled words increases, the probability to report more precisely increases.
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Table 5: Estimation results, part 1

Column (1) (2) (3) (4) (5) (6)
MALE FEMALE

Objective Subjective
Di�erence

(obj-subj)
Objective Subjective

Di�erence

(obj-subj)

constant-married (βp) -9.757 -7.224 -2.533 -9.739 -5.488 -4.25
(0.215) (0.124) (0.248) (0.277) (0.126) (0.308)

constant-widowed (βq) -8.389 -6.52 -1.87 -8.218 -5.515 -2.704
(0.330) (0.356) (0.487) (0.299) (0.263) (0.402)

alpha-married (αp) 0.092 0.065 0.027 0.091 0.036 0.055
(0.002) (0.001) (0.003) (0.003) (0.002) (0.004)

alpha-widowed (αq) 0.08 0.063 0.017 0.078 0.04 0.038
(0.004) (0.005) (0.006) (0.003) (0.003) (0.005)

Log of income -0.092 -0.073 -0.018 -0.109 -0.057 -0.052
(0.012) (0.006) (0.014) (0.018) (0.005) (0.019)

Ever smoked 0.358 0.091 0.267 0.394 0.04 0.354
(0.036) (0.011) (0.038) (0.034) (0.009) (0.036)

Functional limitations 0.189 0.066 0.123 0.244 0.073 0.171
(0.016) (0.009) (0.018) (0.018) (0.009) (0.021)

Chronic conditions 0.276 0.151 0.125 0.273 0.11 0.163
(0.012) (0.005) (0.013) (0.013) (0.005) (0.014)

High-school -0.091 -0.028 -0.063 -0.108 -0.094 -0.014
(0.038) (0.018) (0.042) (0.041) (0.019) (0.046)

College -0.228 -0.164 -0.064 -0.251 -0.268 0.017
(0.04) (0.018) (0.044) (0.046) (0.019) (0.051)

Hispanic -0.187 -0.027 -0.16 -0.212 0.211 -0.423
(0.06) (0.023) (0.065) (0.069) (0.018) (0.071)

Black 0.111 -0.356 0.467 0.031 -0.164 0.195
(0.044) (0.017) (0.047) (0.053) (0.016) (0.056)

Cohort before 1930 0.015 -0.193 0.208 -0.106 0.213 -0.319
(0.085) (0.026) (0.089) (0.094) (0.036) (0.102)

Cohort 1931-1945 0.106 -0.077 0.183 -0.179 0.048 -0.227
(0.073) (0.011) (0.074) (0.078) (0.011) (0.079)

Note: The standard errors, in the brackets, are calculated using the outer-product gradient estimates. We use 30 Halton draws for
each observation. The estimated negative log-likelihood is 640,730. The total number of parameters is 119. The sample consist of
11,043 couples' observations. The total number of observations (spouses × waves × valid responses) is 126,250.

Furthermore, high-school or college-educated people appear to answer more precisely than less educated

people. Hispanics, Black, and those born before 1945 are more likely to give imprecise answers than

their counterparts.

4.4 Covariance matrix of unobserved factors

Columns (11) to (16) of Table 5 show the estimates of the Cholesky lower triangular matrix. In the

bottom half of Columns (11) to (16), we show the covariance and correlation coe�cients of unobserved

factors. The estimated covariance and correlation coe�cients are in the lower and upper triangular

parts of the matrix, respectively. The estimated variances of the unobserved factors are on the diagonal.

The standard errors of the parameters in Part B of Columns (11) to (16) are calculated using a

parametric bootstrap method.

We �nd signi�cant variation in the unobserved factors of both objective and subjective hazard

rates, both for males and females (V̂ ar(ηoi ) and V̂ ar(ηsi ) for i = 1, 2). The estimated variances of
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Table 5 continued, part 2.

Column (7) (8) (9) (10)
MALE FEMALE

log of variance

of measurement

error

rounding

model

log of variance

of measurement

error

rounding

model

constant -1.24 2.012 -0.977 2.201
(0.006) (0.024) (0.006) (0.023)

Prop. multiples of 50 0.104 0.717 0.109 0.696
(0.004) (0.014) (0.004) (0.013)

Immediate word recall -0.139 -0.223 -0.095 -0.196
(0.008) (0.028) (0.008) (0.025)

High-school -0.094 -0.069 -0.141 -0.117
(0.003) (0.015) (0.003) 0.015

College -0.164 -0.280 -0.294 -0.314
(0.003) (0.015) (0.003) (0.015)

Hispanic 0.186 0.066 0.131 0.037
(0.004) (0.018) (0.004) (0.017)

Black 0.1 0.211 0.055 0.206
(0.003) (0.015) (0.003) (0.015)

Cohort before 1930 0.341 0.078 0.406 0.145
(0.004) (0.017) (0.006) (0.019)

Cohort 1931-1945 0.065 0.098 0.117 0.078
(0.002) (0.011) (0.002) (0.011)

m1 1.180 1.217
(0.012) (0.011)

m2 −m1 1.346 1.405
(0.008) (0.007)

m3 −m2 0.389 0.431
(0.005) (0.004)

the unobserved frailty terms are much larger for subjective hazards than for objective hazards. This

suggests a higher variation among couples' perceived mortality compared to their actual mortality rates.

The correlation between the objective frailty terms of males and females is positive but insigni�cant

(Ĉorr(ηo1, η
o
2) > 0). The correlation between the subjective frailty terms of males and females is

positive and signi�cant (Ĉorr(ηs1, η
s
2) > 0). Hence, once we control observed regressors, spouses'

subjective remaining lifetimes are positively correlated.

The correlations between objective and subjective frailty terms are positive and signi�cant for

males (Ĉorr(ηo1, η
s
1) > 0) but negative and insigni�cant for females (Ĉorr(ηo2, η

s
2) > 0). These results

are in line with the results of Smith et al. (2001), who conclude that even after controlling for the main

observed mortality predictors, there is a correlation between the subjective survival responses and the

objective survival rates. The reason could be that males are aware of some factors that a�ect their

mortality rates that are unobserved to the econometrician and take account of those factors when they

formulate their survival expectations.

There is signi�cant variation in unobserved factors of the rounding decisions, both for males and
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females (V̂ ar(ηRi ) for i = 1, 2). The positive correlation between the unobserved factors of males' and

females' rounding decisions implies that spouses in a couple tend to choose a similar degree of rounding,

controlling for the observed characteristics (Ĉorr(ηR1 , η
R
2 ) > 0). The intuition can be that spouses in a

couple have intrinsically similar rounding behaviors and/or spouses interfere with each other's reporting

decisions during an interview; the latter is plausible if couples are interviewed together.

Table 5 continued. part 3

Column (11) (12) (13) (14) (15) (16)

Panel A. Cholesky lower triangular
ηo1 ηo2 ηs1 ηs2 ηR1 ηR2

ηo1 0.172
(0.023)

ηo2 0.025 0.077
(0.032) (0.026)

ηs1 0.355 0.209 0.514
(0.006) (0.005) (0.006)

ηs2 -0.304 0.002 0.358 0.001
(0.006) (0.005) (0.006) (0.005)

ηR1 -0.09 0.15 -0.09 0.01 -0.398
(0.006) (0.006) (0.005) (0.007) (0.006)

ηR2 -0.179 0.438 -0.047 0.041 0.155 0.013
(0.006) (0.006) (0.006) (0.007) (0.006) (0.007)

Panel B. Estimated covariance - correlation matrix

ηo1 ηo2 ηs1 ηs2 ηR1 ηR2
ηo1 0.029 0.302 0.539 -0.647 -0.203 -0.357

(0.008) (0.361) (0.008) (0.010) (0.014) (0.011)
ηo2 0.004 0.007 0.465 -0.192 0.26 0.723

(0.006) (0.005) (0.182) (0.234) (0.102) (0.21)
ηs1 0.061 0.024 0.434 0.247 -0.16 0.011

(0.008) (0.013) (0.008) (0.014) (0.011) (0.012)
ηs2 -0.052 -0.007 0.076 0.22 -0.021 0.162

(0.007) (0.01) (0.005) (0.005) (0.015) (0.013)
ηR1 -0.016 0.009 -0.047 -0.004 0.197 0.112

(0.002) (0.005) (0.003) (0.003) (0.005) (0.017)
ηR2 -0.031 0.029 0.004 0.038 0.025 0.252

(0.004) (0.012) (0.004) (0.003) (0.004) (0.006)

Notes: In Part B, the diagonal elements are the estimates of the variance of the
corresponding elements. The elements in the lower-triangular diagonals are the
estimated covariances of the corresponding row and column elements. The ele-
ments in the upper-triangular diagonals are the estimated correlation coe�cients
of the corresponding row and column elements. In Part B, the standard errors
are calculated using a parametric bootstrap method.

4.5 Comparing predicted objective and subjective survival probability curves

In applied work, researchers often need a proxy for people's perceived survival probabilities (French,

2005; De Nardi, French, & Jones, 2009; Casanova, 2010; Michaud et al., 2019). Using the estimation

results of the objective and subjective hazard rates, we show predicted survival probabilities in Figure
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4, presenting median survival curves but also illustrating heterogeneity.

To predict these survival curves, we �rst predict unobserved frailties of each couple, see Appendix B

for details. We predict these survival curves for individuals who survived to age 70. The black dashed

lines and solid red lines are the median predictions of the objective and subjective survival curves.

We predict the curves for the cases the partner is alive at respondent's age 70 and the partner died

at respondent's age 70. The �gure shows that if an average male's partner is alive at respondent's

age 70, his median objective and subjective survival curves are very close to each other. However, if

the partner died at respondent's age 70, his subjective survival curves are depicted above the objec-

tive survival curve. Thus, an average male tends to undervalue the impact of encountering a spousal

bereavement on his actual mortality. In contrast, an average female at age 70 predicts her subjective

survival curves very close to her objective survival curves, both if her partner is alive and if her partner

is dead. Thus, it seems that at the median, the average female with age 70 correctly perceives the

impact of encountering a spousal bereavement on mortality.

The blue and red areas re�ect the 10th and 90th percentiles of the objective and subjective curves

that re�ect the dispersion in predictions. In the top two sub-�gures, they re�ect the dispersion induced

through unobserved frailties. They show that people's perceived survival curves are more dispersed

than their objective survival curves in terms of the unobserved factors, as expected from the estimated

variances of the unobserved frailties in the subjective and objective models.

In the bottom part of Figure 4, the blue and the red areas re�ect the 10th and 90th percentiles ac-

counting for both unobserved frailties and observed characteristics. Here the objective survival curves

have much more dispersion than the subjective survival curves. This is explained by the fact that the

estimated impact of most observed characteristics is much larger for objective than for subjective haz-

ards. For example, the ever-smoking males' objective hazards rates are, on average, 35.8% higher than

the objective hazards rates of never-smoking males. In contrast, the ever-smoking males' subjective

hazards rates are, on average, only 9.1% higher than the subjective hazards rates of never-smoking

males. Although the opposite is true for Blacks and those born before 1945, the overall impact of

observed characteristics makes the predictions of objective survival curves much more dispersed than

those of subjective survival curves.

4.6 Dependent remaining lifetimes

The remaining lifetimes of spouses in a couple at a given age can be positively related through two

di�erent channels: (1) bereavement e�ects and (2) correlation between observed and unobserved fac-

tors that a�ect spouses' mortality hazards. Gourieroux and Lu (2015) propose an index to measure

the remaining lifetime dependence of spouses in a couple when the bereavement e�ect is present. They

compare the hazard rates of spouses whose partners are alive with those whose partners died at a cer-
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tain age, conditional on both spouses surviving until that age. In other words, the index measures the

immediate jump in the mortality hazard rates of surviving spouses at a time of spousal bereavement.

This dependence index can be decomposed into a part explained by the bereavement e�ect, and a part

that is explained by correlations between (un)observed factors. Details on the dependence index are

presented in Appendix C.

The dependence index is calculated for objective and subjective remaining lifetimes, and the re-

sults are illustrated in Figure 5. The orange and blue areas show the parts of the dependence index

explained by bereavement e�ects and the correlation between (un)observed factors, respectively. Since

the bereavement e�ect can have asymmetric e�ects on males' and females' hazard rates, the depen-

dence index is calculated separately for males and females. Note that the blue areas are the same for

males and females as this re�ects the part explained by the correlated (un)observed factors.

The �gure shows that spouses' objective remaining lifetimes are more related than spouses' sub-

jective remaining lifetimes. For example, conditional on both spouses have reached age 50; if a male

(female) spouse gets widowed at age 50, his (her) objective log hazard rates increases by 1 (1.2). In

contrast, conditional on both spouses have reached age 50; if a male (female) spouse gets widowed at

age 50, his (her) subjective hazard rate increases by 0.8 (0.35). Moreover, depending on age and gen-

der, the bereavement e�ect explains 87-99% of the immediate jump in the objective hazard rates. The

rest is explained by the correlations between (un)observed factors. The bereavement e�ect explains

85-92% of the immediate jump in males' subjective hazard rates and 60-88% of those of females.

The dependence index of Gourieroux and Lu (2015) has the limitation that it focuses on the im-

mediate changes in the hazard rates at the time of spousal bereavement. An alternative is to compare

expected remaining life-years of people whose partners are alive with those whose partners died at a

certain age. These can be computed using the complete predicted survival curves.

Figure 6 shows respondents' expected remaining life-years conditional on surviving to a certain

age, separately for males and females. The black and red lines are the objective and subjective ex-

pectations, respectively. The solid lines are if spouses' partners are alive, and the dashed lines if their

partners died.

To decompose into bereavement e�ect and correlation of (un)observed factors, we run several coun-

terfactual scenarios in which some dependence channels are shut down. In the left-hand sides of Figure

6, we depict the expected remaining life-years of average individuals if spouses' remaining lifetimes

only depend on (un)observed factors. We set the baseline hazards of widowed people equal to those of

married people. In that way, we shut down the bereavement e�ect channel.14 The results show that

if partners are alive at a given age, spouses' expected remaining life years are slightly larger than the

expected remaining lifetimes of spouses whose partners died.

14 We have analyzed the scenarios in which either the channel via observed characteristics or the channel via unobserved
frailties is present, and the other one is shut down. However, the impact of unobserved characteristics on the expected
remaining life-years was marginal, both for males and females and for objective and subjective models. Thus, we
do not show the analysis results in which either observed characteristics or unobserved frailties are shut down.
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Figure 5: Dependence index

A. Males

Objective lifetimes Subjective lifetimes

B. Females

Objective lifetimes Subjective lifetimes

Note: The dependence index compares the immediate changes in log hazard rates of surviving spouses at the time of
spousal bereavement. The index is calculated as lnλ(Ti|Ti ≥ ti, T3−i ≥ t3−i)− lnλ(Ti|Ti ≥ ti, T3−i = t3−i), where i = 1
for males and i = 2 for females. Note that these log hazard rates are unconditional on (un)observed factors. Appendix C
shows that the dependence index can be decomposed into additive terms. As shown in the �gure, the orange areas show
the part of the dependence index explained by the bereavement e�ect. The blue areas show the part of the dependence
index explained by the correlation between (un)observed factors of spouses.

Next, we incorporate the bereavement e�ects. The corresponding predictions are illustrated in the

middle of Figure 6. Once we introduce bereavement e�ects, there is a clear di�erence between the

expected remaining lifetimes of people whose partners are alive and people whose partners are dead.

Comparing the �gures on the left with the �gures in the middle, we can see that after incorporating

a bereavement e�ect, the predictions of married and widowed people's expected remaining lifetimes

decrease. Since we set the baseline hazards of widowed people equal to those of married people, it

is evident that the �gures on the left predict larger expected remaining life-years than those in the

middle for widow(er)s. Married people's predicted life expectancy also falls once we incorporate the
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bereavement e�ect channel because the presence of the bereavement e�ect enables the possibility that

married people are at risk of losing their partners in any future period.

On the right-hand side of Figure 6, we show the di�erences between the expected remaining life-

times of those whose partners are alive and those whose partners are dead. The positive di�erences

imply that spouses' remaining lifetimes are positively dependent, because people whose spouses are

alive tend to live longer than those whose partner is dead.15 For example, average males (females) who

survived until age 50, would live around 5 (4.4) more years if their partners are alive. Out of this 5 (4.4)

years of gain, 0.9 years, or 18% (20.5%), is explained by the correlated (un)observed factors, and 4.1

years (3.5 years), or 82% (79.5%), is explained by the fact that married people have not encountered

any spousal bereavement.

Spouses' perceived remaining lifetimes are also positively dependent. For example, males (resp.

females) who reached age 50 perceive that they would live around 4.7 (resp. 2.2) more years if their

partners are alive. Around 4.4 (resp. 1.9) years, or 94% (resp. 86%), of this gain from having their

partners alive, is explained by the fact that they have not encountered any perceived bereavement

e�ect, and the rest is explained by the correlated (un)observed factors of both spouses.

The dependence between the remaining lifetime dependence falls as people age. As shown in the

�gures, if males (resp. females) survive to age 95 with their partners, they would live 0.9 (resp. 0.6)

more years compared to males (resp. females) who lost their partners. Moreover, at older ages, people

overvalue the impact of having their partners alive on their actual life expectancy. For example, if

males (females) survive to age 95 with their partners, they perceive they would live 1.4 more years (1

more year) than males (females) whose partners are dead. For both males and females with age 95

and for objective and subjective life expectancies, most of the gain from having the partner alive is

explained by the fact that married people have not encountered any bereavement e�ect.

15 The opposite is true if the di�erence is predicted to be negative. If the remaining lifetimes of spouses in a couple
were independent, the di�erence between married and widowed people's life expectancies would be zero.
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5 Conclusion

This paper estimates the models for married couples' joint actual and perceived survival probabilities

using longitudinal data. We estimate the objective model using couples' actual mortality data and

estimate the subjective model using couples' reported subjective expectations to survive to certain

target ages. Our model captures the dependence between remaining life times of spouses in a couple

by allowing for a correlation between the (observed and unobserved) factors that explain mortality

hazard rates, as well as a structural change in the surviving spouse's baseline hazard rates when the

�rst spouse dies.

We �nd that the remaining actual and perceived lifetimes of spouses are positively correlated. De-

pending on age, males' (resp.females) are expected to live for around 0.6-5 (0.5-4.4) more years if their

partners are alive compared to males (females) whose partners are dead. People also perceive that they

would live longer if their partners are alive. For example, depending on age, males (females) perceive to

live for 1.4-4.8 (1.6-2.3) more years if their partners are alive compared to males (females) whose part-

ners are dead. The bereavement e�ect explains 85-98% of the actual life-expectancy di�erence between

widowed and non-widowed people. In contrast, the bereavement e�ect explains 60-90% of the perceived

life-expectancy di�erence between widowed and non-widowed people. Correlated (un)observables ex-

plain the rest.

We �nd that actual and perceived survival probabilities of married couples are signi�cantly di�er-

ent. On average, couples whose spouses are younger than 75 and widowed individuals underestimate

their expected remaining life years. Misinterpretation of their remaining expected life-years could let

people allocate their assets not optimally over their life courses. For example, pessimistic young couples

consume more than the optimal level, thus spending down their wealth too fast. Hence, they are at

risk of being trapped in poverty and leaving a too small bequest to a surviving spouse.

People update their survival expectations after a spousal bereavement, but they underestimate the

magnitude of the negative impact of the bereavement e�ect. This suggests that informing spouses

about the bereavement e�ect when both spouses are alive would help them understand the bereave-

ment e�ect's severe consequences. Better informed spouses are more likely to prepare against risks

that a potential widow(er) would encounter after spousal bereavement. Moreover, the bereavement

e�ects' substantial negative impact asks for a policy to support and monitor widowed people right

after a spousal bereavement to improve their remaining lifetimes.

Our predictions of married couples' survival probabilities can be used to predict couples' life-cycle

choices. Since we propose predictions based on couples' elicited survival expectations, it is more cred-

ible to use our model to compute the aspects of the joint posterior distribution of survival probability

that capture perceived dependence. Researchers can then relate the predicted perceived survival prob-

abilities to some aspects of married couples' life-cycle decisions, especially their decision before and
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after one of the spouses enter widowhood.

Throughout the paper, we assumed that married people are aware of their mortality distribution if

they get widowed. Furthermore, we assumed that both spouses in a couple have the same expectations

regarding each spouse's survival probability. In future research, these assumptions could be relaxed by

collecting more information on respondents' survival expectations conditional on remaining married or

becoming a widow(er) in all future periods. Also, further information on how spouses perceives their

partners' survival expectations will help to identify the subjective joint survival distribution from each

spouse's perspective.
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A Mid-point approximation rule

Let ψ(·) be the integral in the numerator of Eq. 12. Suppose that a married spouse has age a and

he/she answers the question with the target age ta. We need to integrate ψ(τ) over τ where τ takes

values from a to ta; however, the integral does not have a closed-form solution. Thus, we implement

the following strategy to numerically approximate the integral ψ(·):

1. Create a vector [a, a+D, a+ 2D, ..., ta−D, ta] where D = (ta−a)
∆ . We set ∆ = 10.

2. Find the mid-points that are: [a + 1
2D, a + 3

2D, ..., ta −
3
2D, ta −

1
2D]. There are ∆ number of

mid-points.

3. Then evaluate function ψ(·) at each mid-point: [ψ(a+ 1
2D), ψ(a+ 3

2D)...ψ(ta− 1
2D)]

4. Approximate the integral as
∫ ta
a ψ(τ)dτ ≈ D ·

(
ψ(a+ 1

2D) + ψ(a+ 3
2D) + ...+ ψ(ta− 1

2D)
)
.

If the value of ∆ goes to in�nity, then the approximated value equals the true value.

37



B Predicting unobserved frailties

Once we estimate the parameters, we can impute the expected value (aka. the posterior mean) of

unobserved random components. The posterior means of unobserved frailties are calculated by the

algorithm discussed in Chapter 12 of Train (2009). The algorithm is implemented as follows:

1. For each couple, generate 500x6 i.i.d. draw from a standard normal distribution. Let Q be the

matrix of generated random draws with dimension 500x6. Calculate η̃ = QΛ̂ to induce correlation

among random draws. Here Λ̂ is the estimated lower-triangular Cholesky matrix.

2. Let η̃q be the qth row of η̃, and let us de�ne η̃q = [η̃oq , η̃
s
q , η̃

R
q ]. Then for each qth row of η̃, predict

the conditional likelihood contribution of couple n as the following way:

Ln,q(γ̂|dn, xn, zn, η̃on,q, η̃sn,q, η̃Rn,q) = Lon,q(γ̂
o|dn, xn, η̃on,q) · Lsn,q(γ̂s, γ̂R|dn, xn, zn, η̃sn,q, η̃Rn,q) (31)

Here ·̂ indicates the estimates of the corresponding parameters. The conditional likelihood of

couple n is shown in Eq. 24.

3. Generate the weighting vector for each couple as

wn,q =
Ln,q(γ̂, dn, xn, zn, η̃

o
n,q, η̃

s
n,q, η̃

R
n,q)∑500

ι=1 Ln,ι(γ̂, dn, xn, zn, η̃
o
n,q, η̃

s
n,q, η̃

R
n,q)

(32)

4. Calculate the posterior mean of unobserved frailties of couple n as

η̂n =

500∑
q=1

wn,qη̃n,q (33)

Here η̂n is a column vector with 6 elements. We use these posterior means, η̂n, to predict each couples'

survival probabilities, and their expected remaining life-years.
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C Dependence index

To simplify the notation, let θi = (xi, ηi) for i = 1, 2 and θ = [θ1, θ2]. Here, I do not make a distinction

between the objective and subjective hazards. The dependence index is calculated for both objective

and subjective models and the results are reported in Section 4.

Let g(θ) be the p.d.f of θ. Let γGL1 (t1, t2) and γGL2 (t1, t2) be the dependence index of Gourieroux and

Lu (2015) from the perspective of male and female spouses when spouses have ages (t1, t2). Without

loss of generality, we show that the derivation of the index from the perspective of a male spouse (aka.

spouse 1). The mortality hazards of spouse 1 unconditional on θ

� if both spouses are alive at (t1, t2), then

λ1(t1|T1 ≥ t1, T2 ≥ t2) =

(
∂S(t1, t2)

∂t1

/
S(t1, t2)

)
≡ S1(t1, t2)

S(t1, t2)
(34)

� if spouse 2 dies at age t2 and spouse 1 survives at age t1, then

λ1|2(t1|T1 ≥ t1, T2 = t2) =

(
∂S(t1, t2)

∂t1∂t2

/
∂S(t1, t2)

∂t2

)
≡
f1|2(t1, t2)

S2(t1, t2)
(35)

γGL1 (t1, t2) is de�ned as the ratio of mortality hazard in 35 to 34. This implies

γGL(t1, t2) =
λ1|2(t1|T1 ≥ t1;T2 = t2)

λ1(t1|T1 ≥ t1;T2 ≥ t2)
=
f1|2(t1, t2)

S1(t1, t2)
· S(t1, t2)

S2(t1, t2)
(36)

=
Eθ(λq1(t1|θ1)λp2(t2|θ2)S0(t1, t2|θ))

Eθ(λp1(t1|θ1)S0(t1, t2|θ))
· Eθ(S0(t1, t2|θ))
Eθ(λp2(t2|θ2)S0(t1, t2|θ))

(37)

Let S0(t1, t2|θ) = S(t1,t2|θ))
Eθ(S(t1,t2|θ)) , then we can re-de�ne the index in Eq. 37 as:

γGL(t1, t2) =
Eθ(λq1(t1|θ1)λp2(t2|θ2)S0(t1, t2|θ))

Eθ(λp1(t1|θ1)S0(t1, t2|θ))
· 1

Eθ(λp2(t2|θ2)S0(t1, t2|θ))
(38)

=
Eθ|T≥t(λ

q
1(t1|θ1)λp2(t2|θ2))

Eθ|T≥t(λ
p
1(t1|θ1))Eθ|T≥t(λ

p
2(t2|θ2))

(39)

In the last line, (T ≥ t) stands for (T1 ≥ t1, T2 ≥ t2) and the p.d.f θ conditional on T ≥ t is

g(θ|T ≥ t) =
S0(t1, t2|θ)

Eθ(S0(t1, t2|θ))
g(θ). (40)

After re-arranging the term in the second line of Eq. 39, one obtains the following:

γGL1 (t1, t2) =
Eθ|T≥t

(
λq1(t1|θ1)

λp1(t1|θ1)

λp1(t1|θ1)λp2(t2|θ2)

Eθ|T≥t(λ
p
1(t1|θ1)λp2(t2|θ2))

)
Eθ|T≥t(λ

p
1(t1|θ1)λp2(t2|θ2))

Eθ|T≥t(λ
p
1(t1|θ1))Eθ|T≥t(λ

p
2(t2|θ2))

(41)
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Using the assumption that conditional on θ the hazard rates follow the MPH form, Eq. 41 can be

simpli�ed further as the following way:

γGL(t1, t2) =
exp(βq1 + αq1t1)

exp(βp1 + αp1t1)
·

Eθ|T≥t
(

exp(x1β1 + η1) · exp(x2β2 + η2)
)

Eθ|T≥t(exp(x1β1 + η1))Eθ|T≥t(exp(x2β2 + η2))
(42)

=
exp(βq1 + αq1t1)

exp(βp1 + αp1t1)︸ ︷︷ ︸
≡A

·
[ COVθ|T≥t

(
exp(x1β1 + η1) · exp(x2β2 + η2)

)
Eθ|T≥t(exp(x1β1 + η1))Eθ|T≥t(exp(x2β2 + η2))

+ 1
]

︸ ︷︷ ︸
≡B

(43)

In Section 4, we report the log of γGL(t1, t2) because the log version of the index can be decomposed

as a summation of the following two terms:

ln γGL(t1, t2) = lnA+ lnB (44)

The �rst multiplier lnA captures the magnitude of the dependence due to a bereavement e�ect.

Because for any relation between θ1 and θ2, the �rst multiplier equals zero if there is no bereavement

e�ects. The value of the �rst multiplier positive (resp. negative) implies that bereavement e�ect

increases (resp. decreases) the mortality hazard rates of surviving spouses. The second multiplier,

lnB captures the dependence via the correlated (un)observed factors that a�ect spouses' mortality

hazard rates. The second multiplier equals zero if there is no dependence via (un)observed factors.

The value of the second multiplier that is positive (resp. negative) implies a positive (resp. negative)

correlated (un)observed factors.
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