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Abstract

We present a model of optimal allocation to liquid and illiquid assets, where illiquidity risk results

from the restriction that an asset cannot be traded for intervals of uncertain duration. Illiquidity

risk leads to increased and state-dependent risk aversion, and reduces the allocation to both liquid

and illiquid risky assets. Uncertainty about the length of the illiquidity interval, as opposed to a

deterministic non-trading interval, is a primary determinant of the cost of illiquidity. We allow

market liquidity to vary from ‘normal’ periods, when all assets are fully liquid, to ‘illiquidity

crises’, when some assets can only be traded infrequently. The possibility of a liquidity crisis

leads to limited arbitrage in normal times. Investors are willing to forego 2% of their wealth to

hedge against illiquidity crises occurring once every ten years.
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1 Introduction

Many financial assets are illiquid, and this lack of liquidity can often be traced to difficulty in finding

a counterparty with whom to trade. In several markets, appropriate counterparties need to have

specialized abilities and capital which are in limited supply. Importantly, the waiting time until the

next opportunity to trade is uncertain.1 Further, systematic variation in the level of market liquidity

is possible as financial intermediaries receive negative shocks and withdraw from market making. In

this paper, we investigate the effects of this illiquidity and illiquidity risk on asset allocation.

We develop a tractable model of illiquidity. An illiquid asset can only be traded contingent on

the arrival of a randomly occurring trading opportunity – a liquidity event – modeled as an i.i.d.

Poisson process. We interpret these random trading times as the reduced-form outcome of a search

process to find an appropriate counterparty (e.g. Diamond, 1982). Since the illiquid asset cannot be

traded for an uncertain period of time, the investor is exposed to risk that cannot be hedged.

Illiquidity risk affects the portfolio choice problem in two ways. First, liquid and illiquid wealth

are imperfect substitutes. The investor’s immediate obligations – consumption or payout – can only

be financed through liquid wealth. If the investor’s liquid wealth drops to zero, these obligations

cannot be met until after the next liquidity event. Thus, the investor reduces her allocation to

both the liquid and illiquid risky assets in order to reduce the probability that a state with zero

liquid wealth – as opposed to only zero total wealth – is reached. This increase in effective risk

aversion corresponds to real-world situations where investors or investment funds are insolvent, not

because their assets under management have hit zero, but because they cannot fund their immediate

obligations. The resulting underinvestment in illiquid assets relative to the Merton benchmark is

substantial.2 Second, since the investor’s ability to fund intermediate consumption depends on her

liquid wealth, fluctuations in the share of illiquid assets in the portfolio induce endogenous time-

varying risk aversion.

We extend our baseline model of illiquidity to include time-varying arrival rates of liquidity events.

Specifically, we allow for infrequently occurring illiquidity crises. There are two distinct regimes. The

first regime represents ‘normal’ times, where all assets are fully liquid, as in the Merton benchmark.

1Examples include structured credit products, private equity and venture capital; small equity and bond issues, or
large real estate and infrastructure projects. In some of these markets, the waiting time until the next opportunity
to trade is uncertain because the number of participants is small. In other cases, for instance in private equity and
venture capital limited partner investments, the time of exit and re-investment is stochastic and depends on the IPO
or M&A markets.

2A standard calibration indicates that if the expected time between liquidity events is once a year, the investor
should cut her investment in the illiquid asset by 33% relative to an otherwise identical but fully liquid asset. Further,
the investor should be prepared for large, skewed changes in the relative value of illiquid to liquid holdings in her
portfolio.
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The second regime represents a ‘drying up’ of liquidity – a liquidity crisis – where now one of the

risky assets becomes illiquid and can only be traded at infrequent intervals. This model is thus

applicable to a wide range of assets that are normally liquid, but are subject to occasional market

freezes.3

The possibility of a liquidity crisis leads to limited arbitrage in normal times. We consider the

case in which there are two perfectly correlated securities with different Sharpe ratios. In a portfolio

choice model without illiquidity risk, this case presents an arbitrage opportunity; the investor takes

positions of plus or minus infinity in the two different assets. When one asset is illiquid, the investor

allocates a finite amount – and will not use leverage – in the ‘arbitrage’ trades, even in normal times.

While both securities are fully liquid during normal times, ‘arbitrage’ trades entail a hidden cost

because in the event of a crisis they become imperfect substitutes. The inability to immediately

de-lever at the onset of a crisis implies that potential arbitrageurs avoid leverage in normal times.

Hence, investment in apparent arbitrage opportunities is limited by the wealth of arbitrageurs, even

when realizing the arbitrage involves no short positions.

We derive the risk premium associated with a systematic liquidity crisis.4 Following an approach

similar to the ICAPM Merton (1973), we examine the investor’s marginal value of wealth, taking

the prices of other risky assets as given. A transition from the liquid into the illiquid state raises

the marginal value of liquid wealth, implying a negative risk premium. Hence, assets that pay off in

the onset of a liquidity crisis earn lower risk premia. For typical parameter values, the investor is

willing to pay 0.5% to 2% per annum over the actuarial probability of a crisis to receive liquid funds

at the onset a deterioration of market liquidity. Hence, our model provides a theoretical justification

of empirical specifications of the stochastic discount factor that load on measures of illiquidity.

Finally, we explore the determinants of the cost of illiquidity by varying the baseline model.

First, we compute portfolio policies and the utility cost of illiquidity in a version of our model

without intermediate consumption. We confirm that the sub-optimal diversification that results

from infrequent trade is not sufficient by itself to generate large utility costs of illiquidity. Absent

the motive to smooth intermediate consumption, the effect of illiquidity on portfolio policies and

welfare is minimal. Second, we compare welfare and portfolio policies between our setting and a

3For example, Brunnermeier (2009), Gorton (2010), Tirole (2011), and others have highlighted market freezes as a
stylized fact of the 2008-2009 financial crisis. This is not simply a question of a seller reducing prices to a level where a
buyer is willing to step in. As Tirole (2011) and Krishnamurthy, Nagel, and Orlov (2012) comment, there were no bids,
at any price, representing “buyers’ strikes” in certain markets where whole classes of investors simply exited previously
liquid markets.

4This ‘illiquidity risk premium’ refers to the risk premium of an Arrow-Debreu security that pays off at the onset
of a liquidity crisis. This risk premium is distinct from the ‘illiquidity premium’, defined as the price discount of an
illiquid security.
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version of our model with a deterministic rebalancing interval. The effect of illiquidity on portfolio

choice is dramatically larger when the length of the illiquidity period is uncertain. Third, we verify

that our quantitative results are not driven by the possibility that the investor reaches states with

zero liquid wealth – and thus infinite marginal utility – by allowing the investor to pay a fixed cost

to transact immediately. Last, we disentangle the effect of preference parameters; we find that the

utility cost of illiquidity is highest for agents that unwilling to substitute across time (low elasticity

of intertemporal substitution) but are willing to substitute across states (low risk aversion).

2 Illiquidity in Asset Markets

We motivate and quantify our notion of illiquidity based on a number of stylized facts, and we

contrast our model with previous approaches in the literature.

Stylized Fact 1 Most asset classes are illiquid, in the sense that trading is infrequent.

Table 1 shows that most assets markets are characterized by long times between trades, low

turnover, and trade in over-the-counter markets in which it is difficult to find counterparties. Except

for ‘plain vanilla’ fixed income securities and public equities, investors need to wait for indeterminate

periods before they can re-balance illiquid assets, and sometimes the time between liquidity events

can extend to decades. Even within the fixed income and public equity markets, there are sub-

classes that are illiquid. For instance, while the public equity market has a turnover well over 100%,

corporate bonds have a turnover around 25-35%. The average municipal bond trades only twice

per year; the entire market has a turnover of less than 10% per year. Further, transactions times

for many over-the-counter equities, such as those traded on the pinksheet or NASDAQ OTC-BB

markets, are often longer than a week with a turnover of approximately 35%.

In real estate markets, Levitt and Syverson (2008) report, for example, a typical time to sale

between 110-135 days after initial listing of a house. The standard deviation of the time to sale is

even larger than the mean and Levitt and Syverson note that some houses never sell. Lastly, typical

holding periods for venture capital and private equity portfolios are 3 to 10 years. Even though

the investment horizon is nominally fixed, partnerships often return investor’s money prior to the

partnership’s formal 10-year end. Further, these times are stochastic. For example, in private equity,

the median investment duration is four years with 16% returned before two years and 26% returned

after six years (see e.g. Lopez-de Silanes, Phalippou, and Gottschalg, 2010).5

5The turnover from trade of private equity investments on the secondary market is much lower. While data on
private equity portfolio turnover is not typically reported. Kensington, a Canadian private equity fund, reports a 2%
turnover in 2008. Alpinvest, a large private equity fund-of-funds reports flows that imply a turnover of approximately
6%. This compares with typical turnover of over 70% for mutual funds (Wermers, 2000).
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In most of these markets, illiquidity is characterized by the need to find counterparties to trade.

Our notion of illiquidity in which an illiquid asset can only trade when there is a liquidity event –

when an appropriate counterparty is found – puts us squarely in the tradition of Diamond (1982).

A number of authors have used models with search frictions to consider the impact of illiquidity

risk. Duffie, Gârleanu, and Pedersen (2005, 2007) consider risk-neutral and CARA utility cases and

restrict asset holdings at two levels: zero and one. In Vayanos and Weill (2008), agents can only go

long or short one unit of the risky asset. Gârleanu (2009) and Lagos and Rocheteau (2009) allow for

unrestricted portfolio choice, but Gârleanu considers only CARA utility and Lagos and Rocheteau

focus on proving the existence of equilibrium with search frictions. In contrast to these models, we

focus on the investors’ portfolio choice problem with CRRA and Epstein-Zin utility, which allows us

to consider more general preference specifications that allow for wealth effects.6 An alternative, and

equally plausible, micro-foundation for our notion of liquidity can be found in models with adverse

selection. For instance, Daley and Green (2012, 2013) show that adverse selection can generate

significant delays in trading times and time-varying costs of liquidity.

Our notion of liquidity is conceptually distinct from two other common conceptualizations previ-

ously studied in the portfolio choice literature. The first is the idea that many assets are expensive to

trade: securities are partially marketable and can be traded at posted prices, but with transactions

costs (e.g. Constantinides (1986); Grossman and Laroque (1990); Vayanos (1998); Lo, Mamaysky,

and Wang (2004)). In these models, liquidity can always be generated by paying a cost. Our results

imply that this uncertain waiting time plays an important role in portfolio decisions.

The second type of liquidity studied in portfolio choice allows assets to be freely traded at posted

prices, but only in limited quantities (e.g. Longstaff (2001)) or at deterministic times (e.g. Kahl,

Liu, and Longstaff (2003); Koren and Szeidl (2003); Schwartz and Tebaldi (2006); Longstaff (2009);

De Roon, Guo, and Ter Horst (2009); Dai, Li, Liu, and Wang (2010)). In these models, trade can

always be generated at a known rate simply by waiting.7 Similarly, the margin-based asset pricing

literature (e.g. Gârleanu and Pedersen (2011)) develops models with differential borrowing costs and

portfolio constraints but then allows for continuous trade within those constraints. In contrast, we

6Our work also relates to models with unhedgeable human capital risk (e.g. Heaton and Lucas, 2000; Santos and
Veronesi, 2006). An important distinction is that our illiquid asset is infrequently traded, unlike human capital which
is never traded.

7The only other model that features random opportunities to trade is Rogers and Zane (2002), who solve a model
with random trading opportunities and no liquid risky asset using asymptotic expansions near the Merton benchmark
1/λ→ 0. However, Rogers and Zane do not prove that these expansions are valid. In contrast to Rogers and Zane, we
solve the ODEs characterizing the investors’ problem numerically and intentionally consider realistic cases where 1/λ
is large, as is the case for many illiquid asset markets (see Table 1). The behavior of the model as 1/λ→ 0 can be very
different from the Merton benchmark. In particular, even as 1/λ→ 0, the investor is still trading on a set of measure
zero, hence would never take a short position in either liquid or illiquid wealth.
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show that illiquidity risk leads to investors behaving as if they were subject to portfolio constraints –

e.g. not taking short positions in illiquid or potentially illiquid assets – as a response to the illiquidity

friction.

Stylized Fact 2 Illiquid asset classes are large.

The illiquid asset markets listed in Table 1 are large and rival the size of the public equity market.

For instance, the market capitalization of NYSE and NASDAQ is approximately $17 trillion. The

estimated size of the residential real estate market is $16 trillion and the estimated size of the (direct)

institutional real estate market is $9 trillion.8 Further, the share of illiquid assets in many investors’

portfolios is very large. Kaplan and Violante (2010) show that individuals hold the majority of

their net wealth in illiquid assets, with 91% and 81% of households’ net portfolios tied up in illiquid

positions, mostly housing, taking median and mean values, respectively. High net worth individuals

in the U.S. allocate 10% of their portfolios to “treasure” assets like fine art, jewelry, and the share

of treasure assets rises to almost 20% in other countries.9 The share of illiquid assets in institutions’

portfolios has also dramatically increased over the last 20 years. Pension funds increased their

holdings in illiquid (“other”) asset classes from 5% in 1995 to close to 20% in 2010, as reported in

the “Global Pension Asset Study 2011” by Towers Watson. Data from the National Association of

College and University Business Officers (NACUBO) show that the (dollar-weighted) average share

of illiquid “alternatives” in university endowment portfolios rose from 25% in 2002 to 52% in 2010.

Stylized Fact 3 Normally liquid asset classes sometimes become illiquid.

An important feature of feature of financial markets is that sometimes liquidity dries up in

markets that are normally liquid. For instance, Krishnamurthy et al. (2012) document that in the

market for money market funds, a usually liquid market, there were instances of “buyers’ strikes”

during the recent financial crisis, where investors were unwilling to trade at any price. Anderson

and Gascon (2009) note that the commercial paper market froze not only in the 2008-2009 financial

crisis, but it also froze in 1970 when the Penn Central railroad collapsed. In both cases, the Federal

Reserve stepped in to help restore liquidity.

8NYSE and NASDAQ market capitalizations are approximately $12 trillion and $5 trillion as of July 2012 from
nyxdata.com and nasdaqtrader.com. The estimated size of the U.S. residential real estate market is at December
2011 and is estimated by Keely, van Ark, Levanon, and Burbank (2012), down from a peak of $23 trillion in 2006.
The estimate of the U.S. institutional real estate market is by Florance, Miller, Spivey, and Peng (2010), with the
institutional real estate market losing $4 trillion from 2006 to 2010. The direct real estate market dwarfs the traded
REIT market, with the FTSE NAREIT All Equity REITs Index having a total market capitalization of approximately
$500 billion at the end of June 2012.

9Reported in “Profit or Pleasure? Exploring the Motivations Behind Treasure Trends,” Wealth Insights, Barclays
Wealth and Investment Management, 2012.
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These illiquidity crises occur regularly in many asset markets.10 Other examples include the repo

market (Gorton and Metrick, 2012); residential and commercial mortgage-backed securities (Gorton,

2009; Acharya and Schnabl, 2010; Dwyer and Tkac, 2009); structured credit (Brunnermeier, 2009);

and the auction rate security market (McConell and Saretto, 2010), which became illiquid in 2008

and is still frozen in 2013.11 Borio (2004) notes that liquidity also dries up during periods of severe

market distress: the Latin American debt crisis in the 1980s, the Asian emerging market crisis in

the 1990s, Russian default crisis in 1998 (see also Elul, 2008), and of course the financial crisis over

2008-2009. Major liquidity crises have occurred at least once every ten years, many occurring in

tandem with large downturns in asset markets.

We extend our baseline model to allow for infrequent illiquidity crises which has one normal

regime, where all assets are liquid, and a regime representing a liquidity crisis, where the illiquid asset

can only be traded at infrequently occurring liquidity events. In our model, investors underinvest

in arbitrage opportunities during normal times because they carry illiquidity risk if a liquidity crisis

arrives. Other models also generate limited arbitrage, like (e.g. Shleifer and Vishny, 1997; Gromb

and Vayanos, 2002), but in these models investors underinvest in arbitrage opportunities because

demand shocks to other investors can push prices further away from fundamentals. Limited arbitrage

occurs in our setting, in contrast, due to the risk of a market freeze. At the onset of a liquidity crisis,

arbitrageurs cannot reduce leveraged positions to prevent states with zero consumption. Hence they

are unwilling to employ leverage in normal times, and arbitrage activity is limited by their wealth.

Last, our model provides a theoretical framework to study the pricing of liquidity risk. Recent

empirical work has documented that several measures of liquidity are priced in the cross-section of

asset returns (e.g. Pastor and Stambaugh, 2003; Acharya and Pedersen, 2005; Sadka, 2006; Korajczyk

and Sadka, 2008). Specifically, stocks with heterogenous exposure to various measures of market

liquidity earn different average stock returns, often controlling for their own level of liquidity. To

the extent that these empirical measures of liquidity are correlated with the difficulty of finding a

counterparty to trade, our model provides a framework to quantify the magnitude of this liquidity.

In the spirit of Merton’s ICAPM, we derive the magnitude of this risk premium directly from the

first order conditions of an optimizing investor faced with the possibility of a liquidity crisis. Relative

10Practitioners refer to these events as “liquidity black holes.” See (Taleb, 1997; Persaud, 2001; Morris and Shin,
2010).

11As noted by the SEC, “Report on the Municipal Securities Market,” July 31, 2012: in 2008, the auction rate
securities (ARS) market totaled approximately $200 billion; in February 2008, the market froze because there were no
bidders in the primary auctions, where floating interest rates are set. As there was no secondary market, thousands
of customers were unable to sell their ARS holdings. In 2011, there were no new issues of ARS. Other intermediated
fund vehicles also became more illiquid during this time: hedge funds, for example, imposed ‘gates’ provisions that did
not allow for investors to withdraw capital (see Ang and Bollen, 2010).
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to Acharya and Pedersen (2005), who also propose a theoretical model with liquidity risk, the utility

cost of illiquidity is endogenous in our model.

3 The Baseline Model

3.1 Information

The information structure obeys standard technical assumptions. There exists a complete probability

space (Ω,F ,P) supporting the vector of two independent Brownian motions Zt = (Z1
t , Z

2
t ) and an

independent Poisson process (Nt). P is the corresponding measure and F is a right-continuous

increasing filtration generated by Z ×N .

3.2 Assets

There are three assets in the economy: a risk-free bond B, a liquid risky asset S, and an illiquid

risky asset P . The riskless bond B appreciates at a constant rate r:

dBt = r Bt dt (1)

The second asset S is a risky asset whose price follows a geometric Brownian motion with drift µ

and volatility σ:

dSt
St

= µdt+ σ dZ1
t . (2)

The first two assets B and S are liquid and holdings can be re-balanced continuously.

The third asset P is an illiquid risky asset; its fundamental value evolves according to a geometric

Brownian motion with drift ν and volatility ψ:

dPt
Pt

= ν dt+ ψρ dZ1
t + ψ

√
1− ρ2 dZ2

t , (3)

where ρ captures the correlation between the returns on the two risky assets. The illiquid asset

P differs from the first two assets B and S because it can only be traded at stochastic times τ ,

which coincide with the arrival of a Poisson process with intensity λ. The parameter λ captures the

severity of the illiquidity friction; the expected time between liquidity events is 1/λ. When a trading

opportunity arrives, the investor can trade at the price Pt without any other frictions.

In addition, the illiquid asset P cannot be pledged as collateral. Investors can issue non-state

contingent debt by taking a short position in the riskless bond B; however, they cannot issue risky

debt using the illiquid asset as collateral. If investors were allowed to do so, they could convert the

illiquid asset into liquid wealth and thus implicitly circumvent the illiquidity friction.
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3.3 The Investor

The investor has CRRA utility over sequences of consumption, Ct, given by:

E

[∫ ∞
0

e−βt
C1−γ

1− γ
dt

]
, (4)

where β is the subjective discount factor and γ > 1.12

The agent’s wealth has two components, liquid and illiquid wealth. Liquid wealth includes the

amount invested in the liquid risky asset and the risk-free asset. Illiquid wealth, which equals the

amount invested in the illiquid asset, cannot be immediately consumed nor converted into liquid

wealth. The joint evolution of the investor’s liquid, Wt, and illiquid wealth, Xt, is given by:

dWt

Wt
= (r + (µ− r) θt − ct) dt+ θtσdZ

1
t −

dIt
Wt

(5)

dXt

Xt
=νdt+ ψρdZ1

t + ψ
√

1− ρ2dZ2
t +

dIt
Xt

. (6)

The agent invests a fraction θ of her liquid wealth into the liquid risky asset, while the remainder

(1 − θ) is invested in the bond. Following Dybvig and Huang (1988) and Cox and Huang (1989),

we restrict the set of admissible trading strategies, θ, to those that satisfy the standard integrability

conditions. All policies are appropriately adapted to Ft. The agent consumes out of liquid wealth,

so liquid wealth decreases at rate ct = Ct/Wt. When a trading opportunity arrives, the agent can

transfer an amount dIτ from her liquid wealth to the illiquid asset.

Finally, we assume the standard discount rate restriction, as in the Merton two-risky-asset model,

β > (1− γ)r +
1− γ

2γ(1− ρ2)

((
µ− r
σ

)2

− 2ρ

(
µ− r
σ

)(
ν − r
ψ

)
+

(
ν − r
ψ

)2
)
, (7)

and that the illiquid asset has at least as high a Sharpe ratio as the liquid asset,

ν − r
ψ
≥ µ− r

σ
. (8)

3.4 Discussion of Assumptions

Our assumption that the illiquid asset P cannot be collaterilized is motivated by the difficulty of

finding a counterparty who is willing to lend cash using illiquid assets as collateral.13 Alternatively, we

12The γ = 1 (log) case is qualitatively similar to the γ > 1 case. Quantitatively, the results for the log case can actually
be more extreme because the low level of risk aversion results in a very high percentage of wealth invested in risky
assets in the benchmark Merton economy. We discuss variation in risk aversion in Section 5.4, and a characterization
of the Hamilton-Jacobi-Bellman equation in the log case is available from the authors on request.

13For instance, Krishnamurthy et al. (2012) find evidence suggesting that money market mutual funds, which are
the main providers of repo financing, were unwilling to accept private asset-backed securities as collateral between the
third quarter of 2008 and the third quarter of 2009. Even when illiquid assets like real estate, private equity, and
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could re-interpret P as the fraction of illiquid wealth that cannot be collateralized. This interpretation

is similar to the portfolio constraints analyzed in Gârleanu and Pedersen (2011).14 The key difference

is that we introduce an additional stochastic trading friction on the non-collateralizable portion of

wealth, namely that it can be traded only infrequently.

Our assumption of an infinite horizon for the investor is conservative; any effects of illiquidity

are magnified with finite horizons. For instance, if opportunities to trade arise every 10 years, on

average, then an investor with a one-year horizon views the illiquid asset as a very unattractive asset.

Thus, the portfolio weights, effects on consumption policies, and certainty equivalent compensations

for bearing illiquidity risk should all be viewed as conservative bounds for finite-horizon investors.

4 The Solution to the Baseline Model

Markets are not dynamically complete, hence we use dynamic programming techniques to solve the

investor’s problem. First, we establish some basic properties of the solution. Then, we compute the

investor’s value function and optimal portfolio and consumption policies.

4.1 The Value Function

The agent’s value function is equal to the discounted present value of her utility flow,

F (Wt, Xt) = max
{θ, I, c}

Et

[∫ ∞
t

e−β(s−t)U(Cs)ds

]
. (9)

Problem 1 (Baseline) The investor performs the maximization in (9), subject to the two inter-

temporal budget constraints (5) and (6), with re-balancing (dIt 6= 0) only when the Poisson process

Nλ
t jumps.

Our first step is to establish that the investor does not use leverage – that liquidity risk eliminates

any willingness by the investor either to short the illiquid asset or to fund long purchases of the illiquid

asset using a net short position in liquid wealth:

Proposition 1 Any optimal policies in Problem 1 will have W > 0 and X ≥ 0 a.s.

even art can be used as collateral, an investor cannot borrow an amount equal to the whole value of the illiquid asset
position and thus our decomposition into liquid and illiquid assets is still valid.

14In the case of real estate, we could interpret the illiquid asset P as the fraction of the value of the property that
cannot be used as collateral against a mortgage or a home equity line. Our interpretation assumes that the amount
that the asset can be collateralized does not vary over time and that the constraint is always binding. We could extend
the model to allow the investor to endogenously choose the amount of collateralized borrowing every period, up to a
limit. This model is equivalent to a hybrid model of infrequent trading and transaction costs, with similar qualitative
effects as the extension we introduce in Section 5.3.
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Thus, without loss of generality, we restrict our attention to solutions with Wt > 0 and Xt ≥ 0.

Second, the value function is bounded below by the problem in which the illiquid asset does not

exist, and it is bounded above by the problem in which the entire portfolio can be continuously

re-balanced: the Merton one- and two-stock problems.

Third, the utility function is homothetic and the return processes have constant moments, and

so it must be the case that F is homogeneous of degree 1− γ:

F (W,X) = (W +X)1−γH (ξ) , where ξ ≡ X

X +W
. (10)

Thus, the investor’s value function can be represented as a power function of total wealth times a

function H(ξ) of the fraction of her portfolio held in illiquid assets, ξ.

Our fourth step is to characterize the value function at the instant when the agent can re-balance

between her liquid and illiquid wealth. When the Poisson process hits and the agent re-balances

her portfolio, the value function will jump discretely. Denote the new, higher, value function as

F ∗(Wt, Xt), so that the total amount of the jump is F ∗−F . At the Poisson arrival, the agent is free

to make changes to her entire portfolio, and thus

F ∗(Wt, Xt) = max
I∈[−Xt,Wt)

F (Wt − I,Xt + I). (11)

Since F ∗ must also be homogeneous of degree 1 − γ, there exists a function H∗ such that F ∗ =

(W + X)1−γH∗ (ξ). Since trading the illiquid asset is costless when a liquidity event arrives, the

investor re-balances her portfolio so that the ratio of illiquid to total wealth equals ξ∗ = arg maxH(ξ);

hence, H∗ is a constant function and equal to H(ξ∗).

We can now solve the Baseline investor’s problem:

Proposition 2 (Baseline) In Problem 1, the investor’s value function can be written as in (10),

where H(ξ) exists and is finite, continuous, and concave for ξ ∈ [0, 1). H(ξ) obtains its maximum

for some ξ ∈ [0, 1). Define H∗ = maxξH(ξ) and ξ∗ = arg maxξH(ξ). When a trading opportunity

occurs at time τ , the trader selects Iτ so that Xτ
Xτ+Wτ

= ξ∗. In addition, H(ξ) is characterized between

liquidity events by

0 = max
c, θ

[
1

1− γ
c1−γ (1− ξ)1−γ − β H(ξ) + λ (H∗ −H(ξ)) +H(ξ)A(ξ, c, θ) +

∂H(ξ)

∂ξ
B(ξ, c, θ)

+
1

2

∂2H(ξ)

∂ξ2
C(ξ, c, θ)

]
. (12)

10



where the functions A, B, and C are defined as

A(ξ, c, θ) ≡ (1− γ)
(
r + (1− ξ)((µ− r)θ − c) + ξ(ν − r)− 1

2
γ
(
ξ2ψ2 + (1− ξ)2σ2θ2 + 2ξ(1− ξ)ψρσθ

) )
B(ξ, c, θ) ≡ ξ(1− ξ)

(
ν − (r + (µ− r)θ − c) + γψθρσ(2ξ − 1) + γθ2σ2(1− ξ) + γψ2ξ

)
C(ξ, c, θ) ≡ ξ2(1− ξ)2

(
θ2σ2 + ψ2 − 2ψθρσ

)
(13)

The investor’s value function has two parts. The first part (W + X)1−γ captures the effect of

total wealth on the continuation utility. The second component H(ξ) captures the effect of wealth

composition between liquid and illiquid wealth. We hold total wealth constant and plot the function

H(ξ) in Panel A of Figure 1. We can interpret H(ξ) as a composition penalty function: the investor

has an optimal portfolio composition ξ∗ to which she returns whenever she is able to re-balance.

Between liquidity events, she experiences a welfare loss for two reasons as her portfolio composition

deviates from the optimum. First, there is the standard effect from lack of optimal diversification.

Second, there is an asymmetric effect arising from the fact that consumption is funded by liquid

wealth only. Examining the slope of H(ξ) as ξ → 1, we see that this second effect is the main

mechanism in our model.

4.2 Imperfect Substitutability of Liquid and Illiquid Wealth

In our model, liquid and illiquid wealth are imperfect substitutes. Illiquid wealth can be used to fund

consumption only after the next trading time t = τ . In contrast, liquid wealth can fund consumption

both before and after τ . To quantify this non-substitutability, consider a fictitious market that lets

the investor exchange one unit of illiquid wealth for q units of liquid wealth. Between liquidity events,

the investor would be indifferent in participating in this fictitious market as long as

q =
FX
FW

. (14)

When the investor has the opportunity to re-balance, q = 1. Between liquidity events, the relative

price q differs from one, depending on whether the investor has too much, or too little illiquid

wealth X relative to her desired allocation. In Panel B of Figure 1 we see that the relative price of

illiquid wealth rapidly declines as the investor’s allocation to illiquid assets ξ increases. When the

illiquid endowment is large X � W , liquid wealth W is only used to fund immediate consumption,

while illiquid wealth is used to fund future consumption. In this case, variation in liquid wealth

becomes unimportant for long-run consumption and the value function becomes separable in X and

W . Hence, even though liquid and illiquid wealth may be correlated, that correlation becomes a

secondary concern for portfolio allocation.

11



4.3 Parameter Values

In our numerical solutions, we select our parameter values so that the liquid asset can be interpreted

as an investment in the aggregate stock market. We set the parameters of the liquid asset to be

µ = 0.12, σ = 0.15, and set the risk-free rate to be r = 0.04. Table 2 shows that this set of parameters

closely matches the performance of the S&P500 before the financial crisis.15 We work mostly with the

risk aversion case γ = 6, which for an investor allocating money between only the S&P500 and the

risk-free asset produces an equity holding close to a classic 60% equity, 40% risk-free bond portfolio

used by many institutional investors.

For most of our analysis, we take a conservative approach and set the parameters of the illiquid

asset, ν = 0.12 and ψ = 0.15, to be the same as those of the liquid asset. This has the advantage

of isolating the effects of illiquidity rather than obtaining results due to the higher Sharpe ratio of

the illiquid asset. Further, even for individual funds this assumption is not unrealistic, at least for

some illiquid asset classes.16 These parameters imply that our illiquid asset can be interpreted as

any composite investment with the same Sharpe ratio as public equities, for example a composite

illiquid risky bond investment. Further, to isolate the effect of illiquidity, in the baseline case we

assume that the two risky assets are uncorrelated, ρ = 0; we explore the effect of correlation by

subsequently varying ρ between 0 and 1.

Regarding the severity of the illiquidity friction, we take a baseline case of λ = 1, implying

on average one year between transactions. For comparison, individual private equity, buyout, and

venture capital funds can have average investment durations of approximately four years, which

corresponds to λ = 1/4; an appropriate horizon for a single large real estate investment by institutions

is 10 years (λ = 1/10) (see e.g. Table 1). Since λ is an important parameter, we take special care to

show the portfolio and consumption implications for a broad range of λ. The economics behind the

solution are immune to the particular parameter values chosen.

4.4 Optimal Portfolio Policies

In this section we characterize the investor’s optimal asset allocation and consumption policies. Even

though the investment opportunity set is constant, the optimal policies vary over time as a function

15The mean of the S&P500 including 2008-2010 falls to 0.10 and slightly more volatile, at 0.18, but our calibrated
values are still close to these estimated values.

16Kaplan and Schoar (2005), Driessen, Lin, and Phalippou (2008) and Phalippou and Gottschalg (2009), for example,
estimate private equity fund alphas, with respect to equity market indexes, close to zero. Table 2 shows that the reported
returns on a composite illiquid investment in private equity, buyout, and venture capital has similar characteristics to
equity. For example, over the full sample (1981-2010), the mean log return on the illiquid investment is 0.11 with a
volatility of 0.17. This is close to the S&P500 mean and volatility of 0.10 and 0.18, respectively, over that period. Table
2 shows that the returns on liquid and illiquid investments are even closer in terms of means and volatilities before the
financial crisis.
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of the amount of illiquid assets held in the investor’s portfolio.

Participation

Before characterizing the optimal allocation, we first show the sufficient conditions for the investor

to have a non-zero holding of the illiquid asset:

Proposition 3 An investor prefers holding a small amount of the illiquid asset to holding a zero

position if and only if

ν − r
ψ
≥ ρµ− r

σ
. (15)

The condition for participation is identical to the Merton two-asset case and depends only on the

mean-variance properties of the two securities. Somewhat surprisingly, the degree of illiquidity λ does

not affect the decision to invest a small amount in the illiquid asset because of the infinite horizon

of the agent: a trading opportunity will eventually arrive where the illiquid asset can be converted

to liquid wealth and eventual consumption. However, even though the conditions for participation

are the same as the standard Merton case, the optimal holdings of the illiquid and liquid assets are

very different, as we show below.

Illiquid Asset Holdings

Illiquidity induces underinvestment in the illiquid asset relative to the Merton case. In Table 3,

we present the investor’s optimal rebalancing point ξ∗ along with the long-run average level illiquid

portfolio holdings E[ξ] for different values of λ. For comparison, and in an abuse of notation, we

report the consumption and portfolio policies for an investor able to continuously trade one (λ = 0)

and two (λ = ∞) risky assets. The optimal holding of illiquid assets at λ = 1 upon arrival of a

liquidity event is 0.37, which is lower than the optimal two-asset Merton holding at 0.60.

In addition to underinvestment in the illiquid asset, the inability to trade implies that the in-

vestor’s portfolio can deviate from optimal diversification for a long time. Panel C of Figure 1 plots

the stationary distribution of an investor’s holding of the illiquid asset, ξ. For most of the time – the

20% to 80% range – the share of wealth allocated in illiquid securities is 0.36 to 0.45, while the 1%

to 99% range is 0.30 to 0.65. Furthermore, the distribution of portfolio holdings is positively skewed,

since illiquid wealth grows faster on average than liquid wealth since only the latter is used to fund

consumption. As a result of this skewness, the investor chooses a rebalancing point lower than the

mean of the steady-state distribution of portfolio holdings, that is, ξ∗ < E [ξt].

The degree of skewness is increasing in the illiquidity of the investment. When λ = 1, the mean
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holding is 0.41, compared to a rebalancing value of 0.37, while the distribution of portfolio holdings

has a standard deviation of 6.3% and normalized skewness coefficient of 1.9. In the case when the

investor can trade once every four years on average (λ = 4), the standard deviation of the investor’s

illiquid holdings increases to 12% and the skewness increases to 2.3.

Liquid Asset Holdings

In addition to under-investment in the illiquid asset, illiquidity affects the investment in the liquid

asset. The allocation to the liquid risk asset as a fraction of the investor’s liquid holdings is equal to

θt =
µ− r
σ2

(
− FW
FWWWt

)
+ ρ

ψ

σ

(
− FWXXt

FWWWt

)
. (16)

The allocation to the liquid asset as a function of her total wealth is equal to θ (1 − ξ). There are

two aspects of the optimal policy that merit attention.

First, even in the case where the liquid and illiquid asset returns are uncorrelated, ρ = 0, the

allocation to the liquid asset differs from the Merton benchmark due to time-varying effective risk

aversion. In Panel D of Figure 1, we compare the curvature of the investor’s value function with

respect to liquid wealth −FWWW/FW to that of a Merton investor. For low values of allocation to

illiquid assets, ξ, the two behave in a similar fashion: as the share of liquid wealth W declines in

the investor’s total wealth W +X, so does the investor’s aversion to gambles in W . However, when

the investor’s liquid wealth becomes sufficiently low, the two lines diverge, since liquid wealth is no

longer viewed as a substitute for illiquid wealth. The investor in our problem becomes much more

averse to taking gambles in terms of liquid wealth than a Merton investor. Further, her effective risk

aversion not only increases but it varies over time as a function of her current allocation to illiquid

assets, ξ.

Second, in the case where the liquid and illiquid asset are correlated, ρ 6= 0, the investor hedges

changes in the value of illiquid wealth. The hedging demands depend on the correlation between

the liquid and illiquid asset returns, ρ, and the elasticity of substitution between liquid and illiquid

wealth, −FWXX/FWWW . In Panel E of Figure 1 we plot the second component for the demand

for the liquid risky asset, −FWXX/FWWW , and contrast it to the term corresponding to a Merton

investor for the case of ρ = 0.6. For low values of X relative to total wealth the two lines are very

similar, whereas they diverge dramatically as X increases relative to W . In our model, the term

−FWXX/FWWW converges to zero rather than minus infinity in the Merton case, implying zero

hedging demand at the limit. The hedging motive disappears when illiquid securities comprise the

majority of the agent’s portfolio since illiquid assets are not a substitute for liquid wealth. In this
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case, the investor chooses the allocation in liquid assets to smooth consumption rather than hedging

fluctuations in her illiquid portfolio.

Panel F of Figure 1 plots the agent’s optimal allocation to the liquid risky asset as a function

of her current allocation in illiquid assets ξ. The agent partially compensates for the risk of being

unable to trade the illiquid asset for a long period of time by underinvesting in the liquid risky asset.

In Table 3 we summarize the average long-run holdings in the liquid risky asset for different degrees

of illiquidity 1/λ. Illiquidity negatively impacts the allocation to the liquid risky asset, but less so

than the illiquid asset. In the case where λ = 1, the investor reduces her allocation in the liquid

risky asset from 60% in the Merton benchmark to 56%, compared to a reduction from 60% to 37%

for the illiquid security.

Effect of Correlation

To study the effect of correlation on portfolio policies, we focus on the interesting case when the

two securities have different Sharpe ratios – for this comparison, we set the expected return of the

illiquid asset to ν = 0.2. In the Merton case where both assets are fully liquid: varying ρ from zero

to one leads to large swings in portfolio allocations. As ρ approaches one, the investor takes large

offsetting positions in the two assets that tend to plus or minus infinity. In Panel G of Figure 1 we

compare the target allocation ξ∗ as a function of the correlation coefficient. We see that the effect

of correlation is significantly muted relative to the Merton benchmark. The investor never shorts

the liquid risky asset even when the correlation approaches one. From the investor’s perspective,

the liquid and illiquid asset are imperfect substitutes, since only the former can be used to fund

short-term consumption. This imperfect substitutability decreases the desire to use the liquid risky

asset to hedge price changes in the illiquid asset.

4.5 Consumption

The investor’s optimal consumption choice satisfies

U ′(C) = FW (W,X). (17)

In the short run, consumption is funded by liquid assets. Hence, the investor equates the marginal

utility of consumption with the marginal value of liquid, rather than total wealth. Using the form

for the value function (10), the ratio of consumption to liquid wealth equals

c =
(

(1− γ)H(ξ)−H ′(ξ)ξ
)− 1

γ
(1− ξ)−1 . (18)
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Panel H of Figure 1 plots the agent’s optimal consumption to total wealth ratio, c(1 − ξ), as a

function of the current allocation in illiquid assets ξ. The investor always consumes a lower fraction

of her total wealth than the two-asset Merton benchmark. Further, in contrast to the Merton

benchmark, the consumption to wealth ratio is time-varying, since the marginal value of liquid

wealth varies with the current allocation to the illiquid security.

The investor’s consumption policy sheds further light on the behavior of the marginal value of

liquid wealth FW . When the share of illiquid assets in the portfolio is small, the share of total

wealth consumed is insensitive to portfolio composition ξ; the investor smooths lifetime consumption

by consuming a higher fraction of liquid wealth today as ξ increases. In contrast, as the share of

illiquid assets ξ increases towards one, her marginal value of liquid wealth increases, leading to a

lower consumption to total wealth ratio.

In Table 3 we compute the average consumption rate E[c(1 − ξ)] for different values of λ. As

we vary the expected time until the next trading opportunity 1/λ from 1 week (1/λ = 1/50) to 10

years, the fraction of total wealth consumed per year declines from 8.8% to 5.9%. Interestingly, when

the average length of the illiquidity period is sufficiently long (λ ≤ 1/4), the investor consumes a

lower fraction of her total wealth than an investor who is unable to trade the second asset at all.

The presence of illiquidity risk constrains how an investor can fund consumption. Since consumption

must be met out of liquid wealth, the greater the proportion of illiquid assets or the longer the times

between liquidity events, the lower the optimal consumption.

4.6 The Cost of Illiquidity

To quantify the cost of illiquidity, we compute the fraction of initial wealth α the investor would be

willing to give up at the instant of the liquidity event, in order to be fully able to trade the illiquid

asset

KM2 ((Wt +Xt)(1− α))1−γ = (Wt +Xt)
1−γH(ξ∗). (19)

The left hand side of equation (19) is the value function of a Merton investor able to invest in two

risky securities. We refer to α as the utility or certainty equivalent cost of illiquidity.

In Table 3 we compute the certainty equivalent cost of illiquidity for different values of λ. The

cost of illiquidity can be substantial. Even when the investor can trade on average once a week

(λ = 50), she would be willing to forego 1.8% of her total wealth in order to make the second asset

fully liquid. For higher degrees of illiquidity, the cost increases substantially; an investor trading an

asset with an average of 10 years between trades (λ = 0.1), such as institutional real estate, would
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be willing to give up 22% of her total wealth in order to be able to continuously trade the illiquid

asset. Here, we should emphasize that α is a conservative estimate of the cost of illiquidity. Since

H(ξ∗) ≥ H(ξt), the investor would be willing to pay at least a fraction α at any point between

liquidity events. Replacing H(ξ∗) with its long-run average E[H(ξt)] leads to higher costs.

5 Determinants of the Utility Cost of Illiquidity

In this section we explore the key determinants of the utlity cost of illiquidity. First, we separate

the cost due to suboptimal diversification from the inability to fund consumption; we show that

smoothing consumption is more important than maintaining optimal diversification. Second, we

disentangle the effect of illiquidity from illiquidity risk by comparing our setup to a model with

deterministic periods of illiquidity; we find that the uncertainty about the frequency of trade magnifies

the utility cost of illiquidity. Third, we verify that our results are not driven by the fact that marginal

utility is infinite in the extreme states where liquid wealth – and consumption – drops to zero, by

allowing the investor to pay a fixed cost to transact immediately. Last, we explore the impact of

preference parameters, disentangling the effect of the coefficient of risk aversion from the elasticity

of intertemporal substitution; the utility cost of illiquidity is highest for investors who are willing to

substitute across states but not across time.

5.1 The Effect of Consumption Smoothing

Illiquidity impedes consumption smoothing and optimal diversification. To separate these two effects,

we consider an investor who only values consumption at some future stochastic terminal date τ

Problem 2 (No Intermediate Consumption) The investor maximizes

Fnc(Wt, Xt) = max
{θ, I}

Et [U(Cτ̂ )] , (20)

where τ̂ is a stochastic retirement time that is exponentially distributed according to a Poisson process

with arrival rate δ subject to the budget constraints given by

dWt

Wt
= (r + (µ− r) θt) dt+ θtσdZ

1
t −

dIt
Wt

, (21)

and equation (6), with Ct = Wt +Xt. Re-balancing (dIt 6= 0) occurs only when the Poisson process

Nλ
t jumps.

The following proposition characterizes the solution to Problem 2
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Proposition 4 (No Intermediate Consumption) In Problem 2, the investor’s value function

can be written as Fnc(W,X) = (W+X)1−γHnc (ξ), where Hnc(ξ) exists and is finite, continuous, and

concave for ξ ∈ [0, 1]. Hnc(ξ) obtains its maximum for some ξ ∈ [0, 1]. When a trading opportunity

occurs at time τ , the trader selects Iτ so that Xτ
Xτ+Wτ

= ξ∗nc, where H∗nc and ξ∗nc are defined as in

Proposition 2. In addition, Hnc(ξ) is characterized for t ≤ τ̂ by

0 = max
θ

[
δ

(
1

1− γ
−Hnc(ξ)

)
+ λ (H∗nc −Hnc(ξ)) +Hnc(ξ)A(ξ, 0, θ) +

∂Hnc(ξ)

∂ξ
B(ξ, 0, θ)

+
1

2

∂2Hnc(ξ)

∂ξ2
C(ξ, 0, θ)

]
. (22)

where the functions A, B and C are defined in (13).

The differential equation characterizing the solution to the problem without intermediate con-

sumption is similar to our baseline model, up to a difference in the discount rate. To facilitate

comparison with the baseline case, we consider the case where the investor’s effective rate of impa-

tience is equal to our baseline calibration, δ = β.

In Table 4, we compute optimal policies and utility costs across different levels of illiquidity 1/λ.

Absent the motive to smooth intermediate consumption, the effects of illiquidity are quantitatively

small. The illiquidity cost in terms of certainty equivalent wealth is below 40 basis points across all

values of λ. Even for an average time between liquidity events of 10 years, the optimal holdings in the

illiquid asset are 0.52, compared to 0.59 for the Merton case. This compares to 0.05 in Table 3 with

intermediate consumption for the same average times between liquidity events. Thus, the inability

to fully smooth consumption across states is the primary determinant of the cost of illiquidity, which

confirms our intuition in Section 4.2.

5.2 Stochastic Versus Deterministic Trading Opportunities

To disentangle the effect of the length of the illiquid period from the uncertainty over its duration,

we consider the case where the agent is allowed to re-balance her portfolio at fixed intervals, spaced

T periods apart. The investor’s problem is

Problem 3 (Deterministic Liquidity) The investor maximizes (9), subject to the budget con-

straints (5) and (6), with re-balancing (dIt 6= 0) only at the deterministic times τ = 0, T, 2T, . . . .

The following proposition characterizes the solution to Problem 3:

Proposition 5 (Deterministic Liquidity) For Problem 3, the investor’s value function can be

written as FT (t,W,X) = (W + X)1−γHT (t, ξ), where HT (t, ξ) exists and is finite, continuous, and
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concave in ξ for ξ ∈ [0, 1). HT (t, ξ) obtains its maximum in ξ for some ξ ∈ [0, 1). We have HT (τ, ξ) =

maxξ limε↓0HT (τ + ε, ξ), and we define ξ∗T = arg maxξ limε↓0HT (τ + ε, ξ) with τ = 0, T, 2T, ..., the

repeated trading times. At t = τ , the investor selects Iτ so that Xτ
Xτ+Wτ

= ξ∗T .17 The function HT (t, ξ)

is characterized by

0 = max
c, θ

{
1

1− γ
c1−γ (1− ξ)1−γ − βHT (t, ξ) +

∂HT (t, ξ)

∂t
+HT (t, ξ)A(ξ, c, θ)

+
∂HT (t, ξ)

∂ξ
B(ξ, c, θ) +

1

2

∂2HT (t, ξ)

∂ξ2
C(ξ, c, θ)

}
. (23)

where the functions A, B and C are defined in (13).

Table 5 computes the optimal policies and the utility cost of illiquidity for different lengths of

the illiquidity period. In contrast to the case with stochastic trading opportunities (see Table 3),

varying the length of the deterministic illiquidity period has only a small effect on optimal policies.

For example, when the time until the next trade is known in advance, varying the expected time

until the next liquidity date from 1/50 to 10 years leads to a drop in the fraction of total wealth

consumed per year from 8.9% to 8.4%. Similarly, the effects on welfare are small and are relative

insensitive to the length of the illiquidity period; the utility cost of illiquidity varies between 1.1%

(1/50 years) to 2.8% (10 years).

Comparing Table 5 to Table 3, we conclude that the uncertainty regarding the opportunity to

trade is a major component of the utility cost of illiquidity. When the trading intervals are known

in advance, lengthening the intervals of non-trading has a small impact on investor utility. The

investor’s main concern is to avoid states of the world where her liquid wealth – and therefore her

consumption – drops to zero before the next opportunity to trade. If the investor can trade at

deterministic intervals, this state can be avoided with probability one by investing an appropriate

amount into the riskless asset and consuming a constant fraction. That is, the investor can hedge

against deterministic illiquidity. Illiquidity risk represented by stochastic non-trading intervals –

the unknown time until the next liquidity event – is unhedgeable and induces large portfolio choice

effects.

5.3 Introducing Costly Liquidity

Our model can be interpreted as a setting where the cost of transacting is infinite, except at times

when the Poisson process hits, in which case it is equal to zero. Effectively, we are assuming that

sometimes there is no available counterparty with which to trade, at any price. However, this

17The limit statement reflects the fact that the value function is continuous in ξ but not in t at t = τ : at t = τ + ε,
ξ is a state variable, and so H(τ + ε, ξ) is discretely less than H(τ, ξ), except for ξ = ξ∗T .
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assumption may be extreme: often, in addition to a decentralized market, there are certain trading

partners that are always available, but at a cost. Here, we explore a hybrid of our baseline model and

a model with transaction costs. Specifically, the investor has two options if she wants to re-balance

her portfolio, she can i) wait for the arrival of the Poisson process, just like the baseline model, or ii)

pay a cost and re-balance freely. We assume that this fixed fee is independent of the trading amount

and scales with the investor’s total wealth.

Problem 4 (Fixed Transaction Cost) The investor maximizes (9), subject to the budget con-

straints (5) and (6), with re-balancing (dIt 6= 0) only when the Poisson process Nλ
t hits or upon the

payment of a fixed fraction κ of total wealth W +X.

The following proposition characterizes the solution to Problem 4:

Proposition 6 (Fixed Transaction Cost) In Problem 4, the investor’s value function can be

written as Ffc(W,X) = (W + X)1−γHfc (ξ), where Hfc(ξ) exists and is finite, continuous, and

concave in ξ ∈
[
ξ, ξ
]
. Define H∗fc and ξ∗fc as in Proposition 2. When ξ hits the boundaries [ξ, ξ], the

trader pays κ(W +X) and selects Iτ so that Xτ
Xτ+Wτ

= ξ∗fc. In the no-trade region, ξ ∈
[
ξ, ξ
]
, Hfc(ξ)

solves

0 = max
c, θ

[
1

1− γ
c1−γ (1− ξ)1−γ − β H(ξ) + λ

(
H∗fc −H(ξ)

)
+H(ξ)A(ξ, c, θ) +

∂H(ξ)

∂ξ
B(ξ, c, θ)

+
1

2

∂2H(ξ)

∂ξ2
C(ξ, c, θ)

]
. (24)

where the functions A, B and C are defined in (13) and the boundaries of the no-trading region,

[ξ, ξ], solve H(ξ) = H(ξ) = (1− κ)1−γH∗fc.

We choose a fixed, rather than proportional, transaction cost for several reasons. First, the fixed

costs of trading is the closest analogue to our baseline model, because it leads to very similar policy

functions.18 Second, the fixed cost can be interpreted as the investor paying attention to look for a

counterparty in the market for the illiquid asset, in the spirit of Abel, Eberly, and Panageas (2007).

Effectively, we are endowing the investor with the option to pay a fee to temporarily increase the

18The portfolio policies take the same form in the baseline model and the fixed transaction cost model. Intuitively,
the investor must wait for a liquidity event to trade in the baseline model. Then, the investor can re-balance his
portfolio freely and chooses allocation ξ∗. From Proposition 6, the fixed cost operates in a similar fashion. Once the
wealth allocation process exits the set

[
ξ, ξ
]
, the investor can re-balance freely to any portfolio weight after paying the

fixed cost – and therefore re-balances to the same point ξ∗. Note that ξ∗ ∈
[
ξ, ξ
]
, so after hitting the boundary the

investor re-balances once and it will be some time before hitting the boundary again. In a proportional costs model,
the investor’s portfolio holdings also lie in a bounded set (see, for example, Constantinides (1986)). However, under
proportional transaction costs, the investor transacts the minimal amount necessary to keep the portfolio weight within
the boundary, which implies continuous trading.
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arrival rate λ to infinity. Third, the numerical solution to hybrid model with proportional transacion

costs is more complex and numerically challenging. We expect, however, the underlying economics

between fixed and proportional transaction costs is similar: the investor always wishes to avoid

high ξ states – which are states with low liquid wealth and therefore high marginal utility. The

investor wishes to avoid these states by paying a cost, and whether the cost is fixed or proportional

is secondary.

Table 6 computes the optimal policies and the utility cost of illiquidity for different levels of

illiquidity λ and transaction cost κ. Comparing Table 6 to Table 3, we see that, the availability of

the option to freely trade upon payment of the cost κ dampens the effect of illiquidity. For example,

in the case where λ = 1, varying the level of the fixed cost from infinite to 1% of total wealth, the

utility cost falls from 6.7% to 2.9%. In contrast to our baseline model, here the investor has the

option to trade at will; hence she trades only when her illiquid allocation ξ exits the inaction region

[ξ, ξ], that is, only when the cost of illiquidity is high. Doing so allows the investor to eliminate the

occurrence of states when her liquid wealth – and therefore her consumption – drops to zero. This

option is exercised more frequently if the probability of otherwise finding a counterparty, λ, or the

exercise cost κ, is low.

In the last row of each panel in Table 6, we compute optimal policies and the utility cost of

illiquidity in the case where λ = 0. Doing so allows us to compare our baseline setup with a pure

transaction costs model. Our baseline model and the pure transaction costs model lead to similar

qualitative predictions as our model – the investor trades infrequently. As a comparison of the

utility costs across the two models, an investor facing liquidity events arriving on average once a year

(λ = 1) would be willing to pay a fraction κ = 2.6% of her total wealth to an intermediary each time

to transact freely. This extension illustrates that the substantial utility costs are not driven by the

extreme behavior of marginal utility when liquid wealth drops to zero.

We conclude that endowing that investor with the option to trade at will, though at a cost, lowers

the cost of illiquidity. If investors have access to a market maker who is able to absorb the illiquid

asset for a fee, this hybrid model is more appropriate. However, in many situations, liquidity is not

always available, even at a cost. Adverse selection or search frictions may lead to the inability to

trade immediately at any price. In the financial crisis, many markets experienced liquidity freezes

where no transactions were possible at any price (see Tirole (2011)). In these cases, our baseline

model is more appropriate than transaction costs notions of illiquidity.
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5.4 Intertemporal Substitution and Risk Aversion

The curvature of the value function is an important determinant of the cost of illiquidity. In par-

ticular, the investor fears the probability that she reaches states with very low liquid wealth for two

reasons. First, states with low liquid wealth are states with low consumption, and the investor likes

to smooth consumption across states; the coefficient of risk aversion captures the magnitude of this

preference. Second, in states where liquid wealth is low relative to total wealth, the investor faces

a steeply increasing consumption profile. The agent dislikes these states because she wants to have

smooth consumption paths over time; the elasticity of intertemporal substitution (EIS) governs this

preference. A feature of time-separable preferences is that these two effects are linked. To investigate

these two motives separately, we consider the case where the agent has recursive preferences.

Problem 5 (Epstein-Zin) The investor maximizes

Fez(Wt, Xt) = max
{θ, I, c}

Et

[∫ ∞
t

f
(
Cs, Fez(Ws, Xs)

)
ds

]
, (25)

where the aggregator f is defined following Duffie and Epstein (1992) as

f(C, J) ≡ β

1− ζ

(
C1−ζ

((1− γ)J)
γ−ζ
1−γ
− (1− γ) J

)
, (26)

subject to the budget constraints (5) and (6), with re-balancing (dIt 6= 0) only when the Poisson

process Nλ
t jumps.19

The following proposition characterizes the solution to Problem 5:

Proposition 7 (Epstein-Zin) For Problem 5, the investor’s value function can be written as Fez(W,X) =

(W +X)1−γHez (ξ), where Hez(ξ) exists and is finite, continuous, and concave for ξ ∈ [0, 1). Hez(ξ)

obtains its maximum for some ξ ∈ [0, 1). Define H∗ez and ξ∗ez as in Proposition 2. When a trading

opportunity occurs at time τ , the trader selects Iτ so that Xτ
Xτ+Wτ

= ξ∗ez. In addition, Hez(ξ) is

characterized by

0 = max
c, θ

{
β

1− ζ

(
c1−ζ (1− ξ)1−ζ

(
(1− γ)Hez(ξ)

) ζ−γ
1−γ − (1− γ)Hez(ξ)

)
+ λ (Hez

∗ −Hez(ξ))

+Hez(ξ)A(ξ, c, θ) +
∂Hez(ξ)

∂ξ
B(ξ, c, θ) +

∂2Hez(ξ)

∂ξ2
C(ξ, c, θ)

}
. (27)

where the functions A, B and C are defined in (13).

19See Duffie and Epstein (1992) for more details. Here, β is the subjective discount rate, γ is the coefficient of risk
aversion and ζ is the inverse of the elasticity of intertemporal substitution. The case of power utility corresponds to
γ = ζ.
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To quantify the impact of risk aversion and the elasticity substitution on portfolio policies, we

compute optimal policies and utility costs for different preference parameters and levels of illiquidity

1/λ. We show the results in Table 7. In Panel A, we vary the coefficient of risk aversion γ and the

likelihood of trading λ, holding the EIS fixed. As risk aversion increases, the investor’s policies (ξ∗),

her rate of consumption out of liquid wealth (c), and the fraction of her liquid wealth invested in the

liquid asset (θ) all converge to the frictionless benchmark. For instance, in the case where λ = 10, an

investor with a risk aversion of γ = 3 allocates 80% of her total wealth to the illiquid asset, compared

to 118% for a Merton investor. In contrast, if the investor had a risk aversion of γ = 15, she would

allocate only 22% of her total wealth to the illiquid asset, compared to 24% for a Merton investor.

An investor with high risk aversion chooses to invest less in risky assets, hence for her, the cost of

illiquidity is small. Indeed, as we see in Panel A.ii, the utility cost of illiquidity decreases with risk

aversion.

In Panel B, we vary the elasticity of intertemporal substitution 1/ζ and the likelihood of trading

λ, holding risk aversion fixed. The elasticity of intertemporal substitution has a quantitatively small

impact on portfolio policies. As we see in Panels B.i and B.iv, varying the EIS from 1.5 to 1/6

has essentially no impact on the allocation to the liquid asset, and a small impact on the allocation

to the illiquid asset. However, as we see in Panel B.iii, varying the EIS has an impact on the

investor’s optimal consumption policy. When the investor’s desire to smooth consumption across

states increases (EIS = 1/6), her optimal fraction of wealth consumed declines faster with λ than

when her elasticity of substitution is high. Hence, we find that low EIS magnifies the utility cost of

illiquidity to the investor, as we see in Panel B.ii.

We conclude that the utility cost of illiquidity is higher for agents with low inter-temporal elastic-

ity of substitution and low risk aversion. Holding portfolio allocations constant, the cost of illiquidity

is higher for more risk averse agents that are also reluctant to substitute across time. However, this

utility cost depends on the fraction of wealth invested in illiquid securities, and the amount of in-

vestment in the illiquid risky asset is decreasing in risk aversion.

6 Liquidity Crises

Here, we extend the model to a setting where financial markets are normally liquid, but transition

to infrequent liquidity crises. These liquidity crises are temporary, and they adversely affect the

liquidity of otherwise liquid securities. We consider two applications of the extended model. First,

we show that the possibility of a deterioration in market liquidity leads to limited arbitrage in normal

times. Second, using the investor’s marginal value of wealth, we derive the price of illiquidity risk.
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6.1 A Model With Systematic Liquidity Risk

The level of market liquidity depends on two states, St ∈ {I, L}. In state L, corresponding to

‘normal’ times, all assets are perfectly liquid, as in the Merton benchmark. In state I – the ‘crisis’

state – the investor needs to wait for the arrival of a trading opportunity to trade the now illiquid

asset P , as in the model in Section 3. The state of market liquidity, St, follows a continuous-time

Markov process with transition probability matrix between time t and t+ dt given by

P =

(
1− χL dt χL dt
χI dt 1− χI dt

)
. (28)

Hence, the frequency and average duration of a liquidity crisis are χI and 1/χL respectively.

The investor’s problem is

Problem 6 (Liquidity Crises) The investor maximizes (9) subject to the budget constraints (5)

and (6). The state of the economy (St ∈ {I, L}) evolves as in (28). If St = L, trade in both assets

is continuous; if St = I, the investor can re-balance (dIt 6= 0) only when the Poisson process Nλ
t

jumps.

Our first result is that even in normal times, S = L, the investor will not short the potentially

illiquid asset or have a short position in liquid wealth:

Proposition 8 Any optimal policies in Problem 6 will have W > 0 and X ≥ 0 a.s. for both S = I

and S = L.

The possibility of a liquidity crisis affects portfolio policies in normal times. The transition from

liquid to illiquid is a surprise event and occurs without the opportunity to re-balance. Consequently,

the portfolio restrictions from the illiquid state – see Proposition 1 – also apply in the liquid state.

The following proposition characterizes the solution to Problem 6:

Proposition 9 (Liquidity Crises) For Problem 6, the investor’s value function can be written as

FLC(W,X,S) = (W +X)1−γHLC (ξ, S), where HLC(ξ) exists and is finite, continuous, and concave

in ξ for ξ ∈ [0, 1). HLC(ξ) obtains its maximum for some ξ ∈ [0, 1). The function HLC is given by

HLC(ξ, S) =

{
HI(ξ), S = I
H∗L, S = L

, (29)

where the function HI(ξ) satisfies the Hamilton-Jacobi-Bellman equation

0 = max
c, θ

{
1

1− γ
c1−γ (1− ξ)1−γ − βHI(ξ) + λ (H∗I −HI(ξ)) + χL (H∗L −HI(ξ)) (30)

+HI(ξ)(1− γ)A(ξ, c, θ) +
∂HI(ξ)

∂ξ
B(ξ, c, θ) +

1

2

∂2HI(ξ)

∂ξ2
C(ξ, c, θ)

}
,
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and the functions A, B and C are defined in (13). The constants H∗L and H∗I solve

0 = max
c, θ,ξ

{
1

1− γ
c1−γ (1− ξ)1−γ − β H∗L + χI (HI(ξ)−H∗L) +A

(
ξ,

c

1− ξ
,

θ

1− ξ

)
H∗L

}
(31)

H∗I = max
ξ
HI(ξ) (32)

The policies {c∗I , θ∗I} and {c∗L, θ∗L, ξ∗L} maximize (30) and (31) respectively. The policy ξ∗I maxi-

mizes (32).

In this case, the investor’s value function depends not only on her wealth composition ξ, but

also on the condition of market liquidity. In normal times, S = L, the investor can freely re-balance

between both risky assets and thus the function HL(ξ) is a constant. During a liquidity crisis,

S = I, the investor’s problem is similar to the problem analyzed in Section 3, and, therefore, her

value function HI depends on the ratio of illiquid to total wealth ξ. When a liquidity crisis occurs,

the investor is constrained to hold her current allocation to the now illiquid security until the next

opportunity to trade. Hence, the investor’s optimal portfolio holdings in the liquid state are affected

by the possibility of a liquidity crisis.

In Figure 2, we compare portfolio policies across regimes for different values of the frequency,

χI , average duration 1/χL and severity 1/λ of liquidity crisis. As we see, the investor reduces her

allocation in illiquid asset not only during a crisis, but also during normal times. Similarly, the

investor reduces her consumption rate in both regimes. Both of these effects are increasing in χI ,

1/χL and 1/λ. In addition, the investor holds fewer liquid risky assets, but only during the liquidity

crisis; her portfolio allocation in liquid risky assets is the same as the Merton benchmark in normal

times, assuming the two assets S and P are uncorrelated.

In summary, the possibility of a liquidity crisis leads to underinvestment in assets that are cur-

rently fully liquid but whose liquidity can dry up during a crisis. The same mechanism leads to

limited arbitrage, which we explore below.

6.2 Limits to Arbitrage

In the absence of any trading friction, the existence of two perfectly correlated securities with dif-

ferent Sharpe ratios implies an arbitrage opportunity. Faced with this arbitrage, the investor should

construct a zero-investment portfolio that has a positive payoff, and take an infinite position in this

strategy. In our setting, the investor is reluctant to fully invest in arbitrage opportunities that involve

potentially illiquid securities – even if both securities are currently fully liquid and taking advantage

of this arbitrage involves no short positions in risky assets.
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Corollary 10 (Limits to Arbitrage) If |ρ| = 1 and ν−r
ψ 6=

µ−r
σ the investor’s portfolio policies θ∗L

and ξ∗L are finite and satisfy

ν − r
ψ
− ρµ− r

σ
= −χ

I

ψ

H ′I(ξ
∗
L)

H∗L(1− γ)
(33)

ξ∗L ∈ [0, 1) (34)

θ∗L =
µ− r
γσ2

− ρψ
σ
ξ∗L (35)

Limits to arbitrage arise naturally in our setting. In the event of a crisis, the investor is not

able to continuously re-balance her position. Hence, even if both securities are currently fully liquid,

undertaking the arbitrage exposes the investor to illiquidity risk. In equation (33), the investor

will increase her holdings of the illiquid asset until the marginal welfare loss in the illiquid state –

determined by H ′I(ξ
∗
L) – times the probability of that state occurring is proportional to the difference

in the Sharpe ratios between the liquid and illiquid assets. Examining the investor’s allocation to

the liquid asset (35), we see two components: the first part depends on the Sharpe ratio of the liquid

risky asset; the second part hedges fluctuations to her wealth due to the investment in the potentially

illiquid security. Since ξ∗L is finite, her overall portfolio is not riskless.

The arbitrageur’s investment in this apparent arbitrage opportunity is limited by her wealth.

The investor will never take a levered position in the illiquid asset during a liquidity crisis – see

proposition 1 – since doing so would lead to states with zero consumption. The inability to reduce

leverage at the onset of a liquidity crisis – since the illiquid asset cannot be traded immediately

– dissuades her from leveraging her potentially illiquid investment in normal times, as we see in

equation (34). Consequently, the amount of resources the agent commits to an ‘arbitrage opportunity’

will be bounded above by her level of wealth, leading to limited arbitrage.

To quantify the magnitude of limited arbitrage in our setting, we compute the optimal portfolio

policies θ∗L and ξ∗L in a setting with an arbitrage opportunity. We assume the two risky assets are

perfectly correlated, |ρ| = 1, and we set the mean return to the potentially illiquid asset to be two

percentage points higher than the mean return of the liquid asset, ν = 0.14. As we see in Figure 3,

the leverage constraint (34) is not binding. Even when the severity of the liquidity crisis is small –

the potentially illiquid asset can be traded on average once a month – the investor only allocates 95%

of her wealth into the potentially illiquid security; as the severity of the crisis increases to 1/λ = 2

years, the investor allocates just 60% of her wealth in the apparent arbitrage. An increase in the

frequency, or the average duration of a crisis has similar qualitative results.

We conclude that the possibility of a liquidity crisis leads to limited arbitrage in normal times.

Our mechanism is distinct from existing models; limits to arbitrage arise even in a state of the world
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where all securities are fully liquid, there are no transaction costs, and riskless profits are possible.

To the extent that there is a negative relation between the degree of aggressiveness in arbitrageurs’

strategies and the degree of mispricing, our model suggests that mispricing is worse in markets where

liquidity crises are more likely, last longer, and are more severe.

6.3 The Pricing of Illiquidity Risk

A model with systematic liquidity crises allows us to quantify the illiquidity risk premium, that is,

the expected return differential between two liquid securities with heterogeneous return exposure to

illiquidity crises. Using an approach similar to Merton’s ICAPM, we derive the price of the risk of

a liquidity crisis. To compute this risk premium, we examine the effect of a rise of illiquidity on the

investor’s marginal value of liquid wealth FW taking the processes governing asset returns as given.

During normal times, that is, in the liquid state S = L, the investor’s marginal value of wealth

process πt ≡ FW evolves according to

dπt
πt

= [. . . ] dt+ [. . . ] dZ1
t + [. . . ] dZ2

t +
FW (W,X, I)− FW (W,X,L)

FW (W,X,L)

∣∣∣
ξ=ξ∗L

dN I
t , (36)

where N I
t is a Poisson count process such that dN I

t = 1 at the onset of a liquidity crisis, S = I.

The last term in (36) corresponds to the increase in the investor’s marginal utility at the onset of a

financial crisis. This term determines the market price of illiquidity risk.

The marginal utility process (36) provides a theoretical justification for empirical specifications

of the stochastic discount factor (SDF) that include measures of systematic illiquidity risk (e.g.

Pastor and Stambaugh, 2003; Sadka, 2006; Korajczyk and Sadka, 2008). In particular, several of

the illiquidity measures considered in the literature are likely to be correlated with an increase in

the difficulty of finding counterparties to trade. For instance, Korajczyk and Sadka (2008) show

comovement among several measures of liquidity; these measures include the average turnover in the

stock market. A more direct test of the SDF (36) would include the common component of illiquidity

measures across asset markets. Hu, Pan, and Wang (2012) provide some empirical evidence along

these lines.

To quantify the magnitude of the illiquidity risk premium, we introduce a derivative security in

zero net supply that allows the investor to hedge a deterioration in market liquidity, which we call

illiquidity protection. By purchasing illiquidity protection, the investor pays an annual premium

equal to χ̂I in order to receive a cash payment of $1 dollar in the event of a liquidity crisis. The

following corollary computes the cost of illiquidity insurance that would induce zero demand for the

derivative security
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Corollary 11 The annual premium for liquidity protection is equal to

χ̂I = χI
FW (W,X, I)

FW (W,X,L)

∣∣∣
ξ=ξ∗L

(37)

Corollary 11 shows that the cost of illiquidity insurance is equal to the probability of a liquidity

crisis, times the increase in the marginal value of liquid wealth on the event of a crisis. Since liquid

wealth becomes more valuable during a liquidity crisis than normal times, the investor is willing

to pay a higher rate that the objective probability χI to obtain some protection against a liquidity

crisis.

The illiquidity risk premium is related to the utility cost of illiquidity. In Panel A of Figure 4 we

compare the risk premium χ̂I − χI of a liquidity crisis across different values of χI , χL and λ. We

see that the investor is willing to pay a substantial premium over the subjective probability χI in

order to obtain liquidity during a crisis. For example, the investor would be willing to pay an excess

premium of 80 bps per year to obtain liquidity on the event of a once in a decade liquidity crisis

(χI = 0.1), with average duration of two years (χL = 0.5), during which liquidity events arrive on

average once a year (λ = 1).

In Panel B of Figure 4, we compute the utility cost of a liquidity crisis, defined as the fraction

of total wealth the investor would pay ex-ante to eliminate the possibility of a crisis. Even though

illiquidity crises are temporary, they still lead to substantial utility costs. For instance, the investor

would be willing to forgo 2% of her wealth to eliminate the possibility of a once in a decade liquidity

crisis (χI = 0.1), with average duration of two years (χL = 0.5), during which the investor can re-

balance on average once a year (λ = 1). Comparing Panels A and B, we see that the illiquidity risk

premium is related to the utility cost of illiquidity. Changes in the model specification or parameters

that amplify the utility cost of illiquidity – for instance those considered in Section 5 – also lead to

a higher illiquidity risk premium.

The risk premium of the security offering illiquidity protection helps us understand differences in

average return among similar, liquid securities, that have different price behavior during a liquidity

crisis. A classic example is the swap-treasury spread. Both securities are very liquid and have

similar exposures to interest rate and credit risk; yet, swaps have been historically priced cheaper

than treasuries. This difference in price could be due to their differential price reaction to changes

in the level of market illiquidity. For instance, during the flight-to-quality episodes that followed the

financial crisis of 2008, the swap spread increased and stayed high for some time. Similar behavior

was observed for mortgage spreads, especially for the riskiest parts of the mortgage market. Our

model provides a framework to understand the spread differential during a liquidity crisis, by relating
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the price of illiquidity risk to the marginal utility of financial market participants.

7 Conclusion

We study the effect of illiquidity risk on portfolio choice by extending the Merton (1971) framework to

allow for infrequent and stochastic trading opportunities. Relative to the Merton economy, illiquidity

leads to a large reduction in the allocation to both illiquid and liquid assets, lower consumption rates

and time-varying effective relative risk aversion. There are two main drivers of these results. First,

consumption is financed through liquid assets. Investors care about both liquid and illiquid wealth,

and as illiquid wealth becomes larger, the investor endogenously acts in a more risk-averse fashion

fearing states with low liquid wealth. Second, the fact that the duration of the illiquidity period is

uncertain greatly amplifies the cost of illiquidity. In contrast to models with deterministic trading

dates, the investor cannot hedge against the likelihood that her liquid wealth – and therefore her

intermediate consumption – drops to zero.

We study the pricing of liquidity crises by allowing the risk of illiquidity to vary over time.

Motivated by the behavior of many asset markets that exhibit periodic pronounced periods where

liquidity “dries up” , we extend the model to allow for multiple liquidity regimes. We consider the

case where all assets are fully liquid during normal times, but there exist temporary regimes during

which the illiquid asset can be traded only infrequently. Our model allows for the possibility of

‘arbitrage opportunities’ which occur when all assets are perfectly liquid, but agents do not take

advantage of them due to the possibility that liquidity will evaporate. Our calibration implies that

agents would be willing to pay an illiquidity risk premium of 2% to insure against illiquidity crises

occurring once every ten years.
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A Proofs and Derivations

A.1 Proof of Proposition 1

The value function is bounded below by the problem in which the illiquid asset does not exist, and it is bounded above
by the problem in which the entire portfolio can be continuously rebalanced: the Merton one- and two-stock problems.
Hence, there exist constants KM1 and KM2 such that

KM1W
1−γ ≤ F (W,X) ≤ KM2 (W +X)1−γ ≤ 0. (A.1)

Combining (A.1) and (10) yields that H(ξ) exists and is finite for ξ ∈ [0, 1).
Consumption is out of liquid wealth only and the illiquid asset cannot be pledged, so Wt ≤ 0 implies zero con-

sumption before the next trading day, leaving the objective function (4) at −∞. For |ρ| < 1, Xt < 0 implies that
under any admissible investment and consumption policy, there is a positive probability that at the next trading time
Wτ +Xτ ≤ 0, violating limited liability, implying zero consumption, and leaving the objective function (4) at −∞. For
ρ = 1, Xt < 0 is ruled out by assuming that the illiquid asset has a weakly higher Sharpe ratio than the liquid asset
(8). For ρ = −1 the investor invests positive amounts in the illiquid asset Xt and the liquid risky asset.

A.2 Proof of Proposition 2

The arguments in the proof of proposition 1 are sufficient to show that H(1) = −∞. Concavity of H(ξ) on ξ ∈ [0, 1)
follows from Lemma 12 (below), and continuity on ξ ∈ [0, 1] from inspection. That H(ξ) obtains its maximum for some
ξ ∈ [0, 1) follows from concavity, continuity, and H(1) = −∞.

Lemma 12 H(ξ) is concave on ξ ∈ [0, 1).

Proof. Define Q = X + W to be total wealth, and let {Q0, X
1
0} and {Q0, X

3
0} be two initial values with the

associated optimal policies {C1, π1} and {C3, π3} where π = θW . For κ ∈ (0, 1), we consider a middle initial value
{Q0, X

2
0 = κX1

0 +(1−κ)X3
0} and the associated (possibly optimal) policies {C2 = κC1+(1−κ)C3, π2 = κπ1+(1−κ)π3},

which are feasible because of the linearity of the budget constraint. From (5) and (6), we have

dQt = [rQt + (µ− r)πs + (ν − r)Xt − Ct] dt+ [πsσ + ψρXt] dZ
1
t + ψXt

√
1− ρ2dZ2

t (A.2)

for any time t. Thus, from the construction of our initial values and optimal policies, we have Q2
t = κQ1

t + (1− κ)Q3
t .

Next, consider the objective function

E

[∫ ∞
0

e−βtU(Ct)

]
= E

[∫ τ

0

e−βtU(Ct)dt+ e−βτQ1−γ
τ H∗

]
(A.3)

Because U(C) is increasing and concave, we have U(C2
t ) > κU(C1

t ) + (1 − κ)U(C3
t ). From Jensen’s inequality and

H∗ < 0, we have Q2
τ
1−γ

H∗ > κQ1
τ
1−γ

H∗ + (1− κ)Q3
τ
1−γ

H∗. Thus, E2
[∫∞

0
e−βtU(Ct)

]
> κE1

[∫∞
0
e−βtU(Ct)

]
+ (1−

κ)E3
[∫∞

0
e−βtU(Ct)

]
, and so the value function is concave in X for fixed Q. Since ξ = X

Q
, this is sufficient to show

that the value function is concave in ξ for fixed Q, so H is concave.
To continue, we observe that the principal of optimality implies the Hamilton-Jacobi-Bellman equation between

rebalancing times:

0 = max
c, θ

[
1

1− γ (cW )1−γ − βF + FWW (r + (µ− r)θ − c) + FXXν (A.4)

+λ (F ∗ − F ) +
1

2
FWWW

2θ2σ2 +
1

2
FXXX

2ψ2 + FWXWXψσρθ

]
and substituting in (10) yields the stated ODE. A standard verification argument completes the proof.

A.3 Proof of Proposition 3

An investor prefers holding a small amount of the illiquid asset to holding a zero position if and only if FX(W,X =
0) ≥ FW (W,X = 0).

We begin by showing that ν−r
ψ
− ρµ−r

σ
≤ 0 implies FX(W,X = 0) ≤ FW (W,X = 0).

Assume that we have {W0, X0 = ε}, which gives rise to an optimal portfolio policy in number of shares equal to
ζt = θtWt

St
along paths for t ∈ [0, τ ], where τ is the next trading time. {W0, X0 = ε} also gives rise to a consumption
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policy Ct along those same paths. Then, total discounted wealth at the next trading time equals

e−rτ (Wτ +Xτ ) = W0 + ε+

∫ τ

0

e−rt [ζt(µ− r)St + (ν − r)Xt − Ct] dt

+

∫ τ

0

e−rt [ζtσSt + ψρXt] dZ
1
t +

∫ τ

0

e−rt
[
ψ
√

1− ρ2Xt
]
dZ2

t

Now consider the starting point {Ŵ0 = W0 + ε, X̂0 = 0} and use the previous consumption policy state-by-state
(feasible because consumption is out of liquid wealth). The portfolio policy is now ζ̂t = ζt + ψρXt

σSt
. Then,

e−rτ
(
Ŵτ + X̂τ

)
= W0 + ε+

∫ τ

0

e−rt
[
ζt(µ− r)St +

ψρXt
σ

(µ− r)− Ct
]
dt

+

∫ τ

0

e−rt [ζtσSt + ψρXt] dZ
1
t .

The drift in the second ({Ŵ0 = W0 + ε, X̂0 = 0}) minus the drift in the first ({W0, X0 = ε}) equals∫ τ

0

e−rt
[
ψρXt

µ− r
σ
− (ν − r)Xt

]
dt,

which is positive if ψρµ−r
σ
− (ν− r) ≥ 0. Thus, the second initial condition produces higher expected wealth and lower

volatility, path by path, with a possibly sub-optimal portfolio and consumption strategy. Since the value function at
rebalancing (F ∗) is increasing and concave, this proves that ρµ−r

σ
− ν−r

ψ
≥ 0 implies F (W0 + ε, 0) ≥ F (W0, ε).

Next we will show that ν−r
ψ
− ρµ−r

σ
≥ 0 implies FX(W,X = 0) ≥ FW (W,X = 0). Consider a deviation in which a

trader starting with {W0, 0} is able to move an amount ε into X, and then withdraws it at the next trading day. This
results in higher utility if

0 ≤ −FW (W0, 0)ε+ E

[
e−βτFW (Wτ , 0)ε

Xτ
X0

]
,

with Wt following the optimal portfolio and consumption policies (as a function of Wt) for Xt = 0. Plugging in the
value function at X = 0, we obtain

1 ≤ E

[
e−βτ

(
Wτ

W0

)−γ
Xτ
X0

]
.

Direct calculation show that this is true if ν−r
ψ
− ρµ−r

σ
≥ 0, and hence FX(W,X = 0) ≥ FW (W,X = 0).

A.4 Sketch of Proof for Propositions 4, 5, 7, and 9

The characterization of the value function in each of these economies closely follows the characterization in the baseline
(Problem 1) economy. Each value function is bounded above and below (analogously to equation by economies in which
the illiquid asset is fully liquid and in which the illiquid asset does not exist. Concavity and the other properties of
the H(·) functions can be observed using arguments analogous to those in the proof of Proposition 2. The Hamilton-
Jacobi-Bellman equation follows from the principal of optimality, and a standard verification theorem can be used to
complete the characterizations. The solution to the model with fixed transaction costs follows standard arguments.
See Stokey (2008) for a textbook treatment.

A.5 Proof of Proposition 8

The arguments in the proof of Proposition 1 are sufficient to show that for |ρ| < 1, the objective function is at −∞ if
either W ≤ 0 or X < 0 for S = I. For S = L, we observe that the state will shift to S = I without the possibility of
re-balancing; as a result, if either W ≤ 0 or X < 0, the objective function in the liquid state is also equal to −∞. For
ρ = 1, X < 0 is ruled out by (7). For ρ = −1 the investor invests positive amounts in the illiquid asset Xt and the
liquid risky asset.
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A.6 Proof of Corollary 10

In the liquid state, the investor’s optimal portfolio policies θ∗L and ξ∗L satisfy the first order conditions

0 =H∗L(1− γ)(µ− r)−H∗L(1− γ) γ θ∗L σ
2 −H∗Lγ (1− γ) ρψ σ ξ∗L

0 =χIH ′I(ξ
∗
L) +H∗L(1− γ)(ν − r)−H∗Lγ (1− γ)ψ2 ξ∗L −H∗L(1− γ)γρψθ∗Lσ

Setting ρ = 1, dividing the first equation by σH∗L(1− γ) and the second by ψH∗L(1− γ), and then subtracting the first
equation from the second leads to (33) and (35) with ρ = 1. Setting, ρ = −1, dividing the first equation by σH∗L(1−γ)
and the second by ψH∗L(1− γ), and then adding the first equation from the second leads to (33) and (35) with ρ = −1.

A.7 Proof of Corollary 11

Consider a derivative security Y that pays a fixed rate of return κ when the aggregate state S switches from L to
I. Denoting by dNI

t the Poisson count process that denotes the arrival of a liquidity crisis, the price of this security
evolves according to

dYt
Yt

= (r + µY − κχI) dt+ κdNI
t .

The investor is indifferent between participating in the market for security Z and her current portfolio policy as long
as the excess return µY is equal to

µY dt = −cov
(
dYt
Yt

,
dFW
FW

)

= κχI
H∗L(1− γ)−HI(ξ∗L)(1− γ) + ξ∗LH

′
I(ξ
∗
L)

H∗L(1− γ)
dt, (A.5)

where we have used the investor’s marginal value of wealth process (36). There exists a fictitious probability measure
Q under which the security Y has an expected excess return equal to zero,

EQt

[
dYt
Yt

]
= (r + µY − κχI + κχ̂I) dt = r dt

rearranging, using (A.5) and solving for the risk-neutral crisis probability χ̂I yields

χ̂I = χI
FW (W,X, I)

FW (W,X,L)
= χI

HI(ξ
∗
L)(1− γ)− ξ∗LH ′I(ξ∗L)

H∗L(1− γ)
,

Under that measure, the present value of the expected payments p has to equal the expected payoff in the event of a
liquidity crisis

EQt

∫ τ

t

e−r(s−t)pds = EQt

[
e−r(τ−t)

]
⇒
∫ ∞
t

e−(r+χ̂I )(s−t)pds =

∫ ∞
τ

e−(r+χ̂I )(τ−t)χ̂Idτ

⇒ p = χ̂I
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Table 1: Holding Periods and Turnover of Various Asset Classes

Asset Class Typical Time
between
Transactions

Annualized
Turnover

References

Public Equities Within seconds over 100% Turnover can be computed from NYSE and NASDAQ
data at nyxdata.com and nasdaqtrader.com,
respectively.

OTC (Pinksheet)
Equities

Within a day, but
many stocks over a
week

∼35% Ang, Shtauber, and Tetlock (2012).

Corporate Bonds Within a day 25-35% Bao, Pan, and Wang (2011).

Municipal Bonds ∼6 months, with 5%
of muni bonds
trading more
infrequently than
once per decade

< 10% Holding period statistics computed from an updated
version of the dataset from Ang, Bhansali, and
Xing (2010) and summarized in Ang and Green
(2011). Turnover numbers from the SEC Report on
Transactions in Municipal Bond Securities, 2004.

Private Equity Funds last for 10
years; the median
investment duration
is 4 years; secondary
trade before exit is
relatively unusual.

< 10% Private equity contracts are described by Metrick
and Yasuda (2010); for duration see Lopez-de Silanes
et al. (2010). For estimates of “secondaries” in private
equity see http://lavca.org/2012/07/19/lp-profile-
an-interview-with-maureen-downey-pantheon/ and
Winchell (2010).

Residential
Housing

4-5 years, but ranges
from months to
decades

4-6% For median duration in residences see Hansen (1998)
and Case and Shiller (1989), with Miller, Peng, and
Sklarz (2011) comments on the range. Turnover
numbers are computed by Frans M. Dieleman and
Deurloo (2000).

Institutional Real
Estate

8-11 years ∼7% See Fisher and Young (2000) and Collett, Lizieri, and
Ward (2003) for holding periods and Ling, Marcato,
and McAllister (2009) for turnover.

Institutional
Infrastructure

50-60 years for initial
commitment, some
as long as 99 years

Negligible Beeferman (2008), Bitsch, Buchner, and Kaserer
(2010).

Art 40-70 years < 15% For holding periods see Goetzmann (1993) and
Kaplan (1997). Turnover can be inferred from the
size of the art market estimated by Skaterschivkov
(2006) and estimated annual art sales.
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Table 2: Liquid and Illiquid Asset Returns

1981Q3 – 2010Q2 1981Q3 – 2006Q4

Mean Stdev Corr Mean St Dev Corr

Equity 0.103 0.182 1.000 0.125 0.157 1.000

Illiquid Assets

Private Equity 0.103 0.229 0.629 0.110 0.231 0.605
Buyout 0.092 0.134 0.267 0.097 0.110 0.010
Venture Capital 0.133 0.278 0.557 0.143 0.286 0.548
Illiquid Investment 0.109 0.165 0.674 0.117 0.159 0.623

The table reports summary statistics on excess returns on liquid and illiquid assets. Liquid equity returns are
total returns on the S&P500. Data on private equity, buyout, and venture capital funds are obtained from
Venture Economics and Cambridge Associates. We construct annual horizon log returns at the quarterly
frequency. We compute log excess returns using the difference between log returns on the asset and year-
on-year rollover returns on one-month T-bills expressed as a continuously compounded rate. The column
“Corr” reports the correlation of excess returns with equity. The illiquid investment is a portfolio invested
with equal weights in private equity, buyout, and venture capital and is rebalanced quarterly.

Table 3: The Baseline Model

Avg. Rebalancing Optimal Illiquidity Average policies

Interval (1/λ) Rebalance (ξ∗) Utility cost E[ξ] E[c(1− ξ)] E[θ(1− ξ)]

0 0.593 - 0.593 0.089 0.593
1/50 0.535 0.018 0.541 0.088 0.583
1/10 0.493 0.028 0.511 0.087 0.578
1/4 0.475 0.036 0.485 0.086 0.571
1/2 0.442 0.045 0.461 0.083 0.568
1 0.373 0.067 0.409 0.081 0.558
2 0.251 0.103 0.299 0.075 0.546
4 0.132 0.165 0.212 0.069 0.536
10 0.048 0.222 0.214 0.059 0.489
∞ - - - 0.070 0.593

The table displays the effect of illiquidity on portfolio choice and welfare in the baseline model. The long-run
average policies are computed using a long simulation of 10,000 years. The cases E(T ) = 0 and E(T ) =∞
correspond, with some abuse of notation, to the Merton one- and two-asset cases respectively. The fraction
of illiquid assets to total wealth is ξ, with optimal value ξ∗ at the time of re-balancing. Consumption as
a fraction of total wealth is c(1 − ξ) and the allocation to the liquid asset as a function of total wealth is
θ(1− ξ). The table is computed using the following parameter values: γ = 6, β = 0.1, µ = ν = .12, r = .04,
σ = ψ = .15, and ρ = 0.
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Table 4: The Model Without Intermediate Consumption

Avg. Rebalancing Optimal Illiquidity Average policies

Interval (1/λ) Rebalance (ξ∗) Utility cost E[ξ] E[θ(1− ξ)]

0 0.593 - 0.593 0.593
1/50 0.557 0.002 0.555 0.580
1/10 0.547 0.002 0.546 0.578
1/4 0.544 0.002 0.543 0.576
1/2 0.535 0.002 0.534 0.574
1 0.527 0.003 0.526 0.571
2 0.523 0.003 0.523 0.567
4 0.520 0.003 0.518 0.563
10 0.518 0.004 0.516 0.555
∞ - - - 0.593

The table displays the effect of illiquidity on portfolio choice and welfare in the case without intermediate
consumption, see Section 5.1 for more details. The cases E(T ) = 0 and E(T ) = ∞ correspond, with some
abuse of notation, to the Merton one- and two-asset cases respectively. The long-run average policies are
computed using a long simulation of 10,000 years. The fraction of illiquid assets to total wealth is ξ, with
optimal value ξ∗ at the time of re-balancing. The allocation to the liquid asset as a function of total wealth
is θ(1 − ξ). The table is computed using the following parameter values: γ = 6, β = 0.1, µ = ν = .12,
r = .04, σ = ψ = .15, and ρ = 0.

Table 5: The Model With Deterministic Liquidity

Rebalancing Optimal Illiquidity Average policies

Interval (T ) Rebalance (ξ∗) Utility cost E[ξ] E[c(1− ξ)] E[θ(1− ξ)]

0 0.593 - 0.593 0.089 0.593
1/50 0.575 0.011 0.579 0.089 0.589
1/10 0.555 0.013 0.559 0.088 0.585
1/4 0.532 0.016 0.542 0.088 0.579
1/2 0.516 0.019 0.522 0.087 0.576
1 0.494 0.022 0.512 0.087 0.575
2 0.488 0.024 0.501 0.086 0.574
4 0.455 0.025 0.481 0.085 0.573
10 0.448 0.028 0.464 0.084 0.571
∞ - - - 0.070 0.593

The table displays the effect of illiquidity on portfolio choice and welfare in the case where trading
opportunities arrive deterministically, see Section 5.2 for more details. The cases E(T ) = 0 and E(T ) =∞
correspond, with some abuse of notation, to the Merton one- and two-asset cases respectively. The long-run
average policies are computed using a long simulation of 10,000 years. The fraction of illiquid assets to total
wealth is ξ, with optimal value ξ∗ at the time of re-balancing. Consumption as a fraction of total wealth
is c(1 − ξ) and the allocation to the liquid asset as a function of total wealth is θ(1 − ξ). Unless otherwise
noted, we use the following parameter values: γ = 6, β = 0.1, µ = ν = .12, r = .04, σ = ψ = .15, and ρ = 0.
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Table 6: Allowing for Costly Liquidity

A. Frequency Cost Paid B. Optimal Rebalance (ξ∗) C. Illiquidity Utility Cost

λ
∖
κ 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

50 0.000 0.000 0.000 0.000 0.535 0.535 0.535 0.535 0.017 0.017 0.017 0.017
10 0.000 0.000 0.000 0.000 0.505 0.505 0.505 0.505 0.024 0.024 0.024 0.024
4 0.001 0.000 0.000 0.000 0.496 0.496 0.496 0.496 0.025 0.025 0.025 0.025
2 0.002 0.000 0.000 0.000 0.483 0.483 0.483 0.483 0.026 0.026 0.026 0.026
1 0.007 0.001 0.001 0.001 0.460 0.454 0.451 0.446 0.029 0.034 0.037 0.038
1/2 0.034 0.006 0.004 0.003 0.435 0.409 0.397 0.38 0.034 0.040 0.043 0.048
1/4 0.063 0.023 0.014 0.009 0.418 0.367 0.341 0.308 0.039 0.053 0.061 0.073
1/10 0.101 0.046 0.033 0.021 0.405 0.332 0.291 0.242 0.043 0.065 0.081 0.103
0 0.131 0.077 0.059 0.046 0.395 0.302 0.248 0.193 0.046 0.078 0.102 0.135

D. Average Policies

E[ξ] E[c(1− ξ)] E[θ(1− ξ)]

λ
∖
κ 1% 5% 10% 20% 1% 5% 10% 20% 1% 5% 10% 20%

50 0.542 0.509 0.509 0.509 0.088 0.088 0.088 0.088 0.585 0.581 0.578 0.577
12 0.518 0.509 0.509 0.508 0.088 0.088 0.088 0.087 0.581 0.577 0.576 0.575
4 0.507 0.507 0.507 0.501 0.087 0.087 0.086 0.086 0.578 0.575 0.575 0.572
2 0.502 0.502 0.501 0.491 0.087 0.087 0.086 0.085 0.574 0.574 0.573 0.570
1 0.500 0.484 0.481 0.477 0.086 0.086 0.085 0.084 0.569 0.557 0.551 0.551
1/2 0.499 0.479 0.471 0.451 0.086 0.085 0.084 0.083 0.566 0.558 0.552 0.550
1/4 0.495 0.477 0.455 0.434 0.085 0.084 0.084 0.082 0.564 0.550 0.541 0.528
1/10 0.492 0.478 0.468 0.425 0.084 0.083 0.081 0.078 0.562 0.541 0.521 0.511
0 0.490 0.476 0.475 0.471 0.084 0.082 0.079 0.073 0.550 0.536 0.509 0.489

The table reports the optimal policies and the utility cost of illiquidity for different levels of illiquidity λ
and transaction cost κ, in the hybrid model with transaction costs. See Section 5.3 for more details. The
long-run average policies are computed using a long simulation of 10,000 years. The fraction of illiquid assets
to total wealth is ξ, with optimal value ξ∗ at the time of re-balancing. Consumption as a fraction of total
wealth is c(1− ξ) and the allocation to the liquid asset as a function of total wealth is θ(1− ξ). The table
is computed using the following parameter values: γ = 6, β = 0.1, µ = ν = .12, r = .04, σ = ψ = .15, and
ρ = 0.
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Figure 2: Optimal Policies Across Liquidity Regimes

A. Allocation to the Illiquid Asset
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The figure compares portfolio (Panels A and B) and consumption (Panel C) policies across the liquid (solid
line) and illiquid (dotted line) regimes for different frequency (χI), average duration (1/χL), and severity
(1/λ) of liquidity crises. Unless noted otherwise, the curves are plotted with the following parameter values:
γ = 6, β = 0.1, µ = ν = .12, r = .04, σ = ψ = .15, ρ = 0, χI = 0.1, χL = 1/1.5 and λ = 1
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Figure 3: Limits to Arbitrage

A. Allocation to the Illiquid Asset (% of total wealth)
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B. Allocation to the Liquid Asset (% of total wealth)
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The figure compares portfolio policies of liquid assets (Panel A) and illiquid assets (Panel B) in the liquid
regime in the case of an apparent arbitrage opportunity. We vary the frequency (χI), average duration
(1/χL) and severity (1/λ) of liquidity crises. Unless noted otherwise, the curves are plotted with the
following parameter values: γ = 6, β = 0.1, µ = .12, ν = .14, r = .04, σ = ψ = .15, χI = 0.1, χL = 1/1.5
and λ = 1
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Figure 4: Liquidity Risk Premium and the Welfare Cost of Illiquidity

A. Liquidity risk premium
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B. Welfare cost of illiquidity
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The figure shows the risk premium associated with liquidity insurance χ̂I−χI (Panel A) and the welfare cost
of illiquidity (Panel B) for different frequency (χI), average duration (1/χL) and severity (1/λ) of liquidity
crises. Unless noted otherwise, the curves are plotted with the following parameter values: γ = 6, β = 0.1,
µ = ν = .12, r = .04, σ = ψ = .15, ρ = 0, χI = 0.1, χL = 1/1.5
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