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Abstract

This thesis aims to contribute to the debate on systemic risk. The methodology developed

in this thesis is applied to a small set of US bank holding companies using publicly available

data. Specifically, we investigate the performance of the financial system conditional on the

bank holding company being under financial distress. To this end, we propose a Markov

switching regression model to infer the regime in which the bank holding company was at

any historical date. Conditional on the bank holding company being in a particular regime,

we model the returns of a global Bank Index as an affine function of macro-economic state

variables and the bank holding company’s stock price returns. Systemic risk contribution

is assessed using correlations, changes in parameter estimates and a measure of regime co-

movement. The results indicate that correlations of returns increase during times of turmoil.

The results are, however, mixed regarding the change in the fraction of shocks that are on

average transmitted from the bank holding company’s stock price to the global Bank Index.

We also briefly consider a Markov switching regression model with time-varying transition

probabilities.

Keywords: Systemic Risk, Markov switching regression model, Correlations, Bank Hold-

ing Companies, Financial System
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1 Introduction

The global financial system is a large, complex and dynamic network consisting of commer-

cial banks, investment banks, brokers, hedge funds, insurance companies, money market funds,

private equity funds and many other financial players. The recent financial crisis has revealed

the fragility and the interconnectedness of the financial system, and has ultimately caused an

unprecedented level of failures of large financial institutions. Because this crisis had its origin

in the run-up of real estate prices, the initially affected companies were especially involved in

mortgage lending activities. However, as the recent crisis began to unfold, it became apparent

that the failure of small mortgage lenders rapidly spilled over to several major financial insti-

tutions, including Lehman Brothers, Freddie Mac, Fannie Mae, Merrill Lynch and AIG. This

“propagation mechanism” is closely related to the notion of systemic risk, which is the risk of

the collapse of the system exacerbated by idiosyncratic shocks. Systemic risk can be studied

along multiple dimensions. The traditional literature has focused on systemic risk in bank run

models and bank contagion models (see De Bandt and Hartmann [10] for an extensive survey).

We examine systemic risk in the context of financial markets and investigate whether a shock

originating from a US bank holding company (BHC, for short) affects the stability of the finan-

cial system. By way of motivation, Figure 1 depicts Bank of America’s stock price and a global

Bank Index. Idiosyncratic shocks (indicated by black arrows) tend to lead in a sequential fash-

ion to system-wide shocks (indicated by blue ellipses). This observation suggests directionality

of correlation and the existence of an underlying economic mechanism through which shocks

are propagated from Bank of America’s stock price to the global Bank Index. Billio et al. [7]

has conducted Granger-causality tests to determine the directionality of correlation among four

indexes (i.e. Banks, Brokers, Insurers and Hedge funds). They found that during the period

2001-2008, the four indexes became highly interlinked and all (Granger) caused the S&P 500

returns.

The models, which are presented in the subsequent sections, explore the extent to which

index i’s log return behavior contributes to index j’s log return behavior conditional on index

i being under financial distress. Economic agents, such as supervisors, are often interested in

the financial institution’s risk contribution to the overall risk in the system. We call this the

institution’s contribution to systemic risk.
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Figure 1: Bank of America’s stock price and a global Bank Index
This figure depicts the evolution of Bank of America’s stock price and a global Bank Index

over time (May 26, 1986 - December 31, 2010).

The papers of e.g. Acharya et al. [1] and Huang et al. [27] consider the systemic risk exposure,

or more precisely the institution’s performance conditional on the performance of the system.

Both aspects of systemic risk are analyzed in this thesis. Our setup shares some similarity with

the proposed setup for measuring CoVaR, which is a systemic risk measure introduced by Adrian

and Brunnermeier [2]. CoVaR measures the marginal effect of the institution’s tail risk on the

tail risk of the system. Adrian and Brunnermeier [2] assess the tail risk using a Value-at-Risk

(VaR) criterion and employ the technique of quantile regressions to obtain CoVaR estimates.

This thesis differs in at least two respects from the paper of Adrian and Brunnermeier [2].

First, instead of using a VaR criterion, we employ a Markov switching regression model to

draw inference regarding index i’s different states1. Specifically, we allow the data to determine

the probabilities of being in some state at time t (i.e. so-called “smoothed state probabilities”).

These probabilities are calculated using the entire sample period. Consequently, inference is not

only based on the cross-sectional distribution of equity returns, but also on the (transitional)

dynamics of equity returns. Hamilton [22] [23] was the first to study Markov switching au-

toregression models. He used Markov switching regression (as introduced by Quandt [39] and

Goldfeld and Quandt [20]) to characterize changes in the parameters of the model.

1We use the words “state” and “regime” interchangeably.
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After the seminal work of Hamilton, many authors have employed Markov switching models to

describe regime switches in interest rates (Ang and Bekaert [4], Cai [8] and Gray [21]), business

cycles (Hamilton [22], Filardo [17] and Owyang et al. [37]), foreign exchange rates (Engel and

Hamilton [15] and Bekaert and Holdrick [6]) and stock returns (Ang and Bekaert [3]).

Secondly, to relate index i’s and index j’s log return behavior, we propose a model for in-

dex j’s conditional mean. Expressed differently, conditional on index i being under financial

distress, we are concerned with the marginal effect of index i’s log return behavior on index j’s

conditional mean (and not on index j’s conditional quantiles).

The reason why we restrict ourselves to a small set of BHCs is at least twofold. First, the

banking sector performs essential roles in the economy. Schumpeter [43] has already empha-

sized the importance of the banking sector in promoting economic growth and welfare. Banks

can potentially spur economic growth by accepting deposits and channeling those deposits to

profitable investments. In the United States, the banking sector provided $ 38 trillion of credit

to various sectors in 2008 (Worldbank, 2008). Because banks are at the heart of the economy,

it is of special importance to study systemic risk for banks. Secondly, banks may be a natural

source of systemic risk. This view is also supported by Billio et al. [7]. In times of market tur-

moil, banks may be unable to unwind positions due to the illiquidity of bank assets. According

to Diamond and Dybvig [12], the illiquidity of bank assets and the liquidity of bank liabilities

provide “the rationale for the existence of banks and for their vulnerability of runs”. Once a

bank fails, its losses may spread to the rest of the economy through e.g. real and informational

channels. Ultimately, bank runs may result in large welfare losses and costs on the economy, as

argued by Friedman and Schwartz [19].

Systemic risk can be based upon (daily, weekly) market data or accounting information, the

latter often only being available at a quarterly or yearly time horizon. For example, Adrian and

Brunnermeier [2] focus on systemic risk related to the growth rate of the market valued total

financial assets, which is based upon both daily equity prices and quarterly balance sheet data.

We study, however, systemic risk related to the growth rate of equity prices. As noted by Hull

and White [28], asset return correlation is closely related to equity return correlation. Under

the Black-Scholes assumptions, it can even be shown that the asset return correlation is equal

to the equity return correlation (see Appendix A of Huang et al. [27] for a simple proof). The

logic behind this is that equity represents an implicit call option on the underlying assets.
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Moreover, under efficient markets, equity prices are forward-looking: they appropriately reflect

changes in information on present and future performance of the company. This is in sharp

contrast to accounting information, which is often reported with a substantial time lag.

Markov switching regression models: potential to reproduce empirical stylized facts.

There is ample evidence of the fact that empirical return distributions are not well described

by a Gaussian distribution, which motivates the search for alternative return specifications. In

what follows, we consider three empirical stylized facts and motivate that a Markov switching

regression model is potentially capable of reproducing each empirical stylized fact.

Skewness

The skewness of empirical return distributions is often found to be significant. A nonzero skew-

ness coefficient is compatible with a Markov switching regression model, provided that the mean

switches between different regimes. To motivate this point, consider the following setting. Sup-

pose that nature flips an unfair coin, with the probability of a head showing up equal to 0.8.

Conditional on a head (tail) coming up, the equity return is normally distributed with mean

2 (-2) and variance 1 (9). It follows that equity returns possess a mixture distribution with a

density as shown in Figure 2.
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Figure 2: Plot of a mixture density of two univariate normal components
This figure plots a mixture density of two univariate normal components in proportions 0.8

and 0.2 with variances σ2
1 = 1 and σ2

2 = 9 and means µ1 = 2 and µ2 = −2.

Consequently, conditional on the outcome of the coin toss, equity returns are normally dis-

tributed. Unconditionally, equity returns are, however, negatively skewed and possess a non-

normal distribution.
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Heavy-taildness

Empirical work has provided convincing evidence that equity price data contain outliers gen-

erated by heavy-tailed distributions. There is also some support in favor of using Gaussian

mixture models to describe equity price data that contain outliers (see e.g. Richardson and

Smith [40] and Roll [41]). To motivate this point, consider the return behavior of the Dow Jones

Industrial Average Index, which is depicted in Figure 3A. The return behavior involves shifts

over time between periods of relative market stability (“low volatility regimes”) and periods of

relative market instability (“high volatility regimes”). Figure 3B presents both a histogram that

describes the distribution of the returns in the low volatility regime and a smoothed bell-shaped

curve that approximates the shape of the distribution. A Gaussian distribution seems capable

of capturing relevant empirical characteristics. The same conclusion seems to hold true for the

histogram depicted in Figure 3C. On the contrary, Figure 3D shows the histogram that describes

the distribution of all returns. We observe that the data sample contains outliers and hence is

not well-captured by a Gaussian distribution.
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Figure 3: Histograms Dow Jones Industrial Average
This figure depicts (a) Return series Dow Jones Industrial Average Index; (b) Histogram of

Returns with a Gaussian fit (Low volatility regime); (c) Histogram of Returns with a Gaussian
fit (High volatility regime); (d) Histogram of all Returns.
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Volatility clustering

Financial time series data often exhibit abrupt changes in their dynamics. For instance, the

Dow Jones Industrial Average Index felled 22.6% on October 19, 1987. After a dramatic break,

many stock prices, especially at a high frequency, have a tendency to behave quite differently

compared to before the break. As shown by Figure 4, the volatility of the Dow Jones Index has

changed considerable over time. The literature has widely recognized the stylized fact that stock

price volatility is time-varying and, as noted by Mandelbrot [36], “large price changes tend to be

followed by large price changes - of either sign - and small price changes tend to be followed by

small price changes”. There is also evidence that stock price volatility increases around financial

crises, as motivated by Schwert [44]. Many authors have employed (G)ARCH-type models (as

introduced by Engle [16]) and other stochastic volatility models to account for the fact that

financial time series data exhibit volatility clustering. A Markov switching regression model

is compatible with volatility clustering, as it allows the volatility parameter to switch between

different regimes. Furthermore, in Section 3, we explore a (bivariate) model, which allows both

index i’s and index j’s volatility parameter to depend on index i’s regimes.

Figure 4: Volatility of Dow Jones Industrial Average
For each year, the figure depicts the estimated standard deviation (based on 12 observations)

of the monthly log returns.

Systemic Risk Assessments

As motivated by the recent global financial crisis and other financial episodes, financial markets

seem to become increasingly intertwined during times of turmoil and, moreover, idiosyncratic

shocks that originated in one economic entity (e.g. individual institution, sector, industry, mar-

ket, economy, country or even a group of countries) tend to propagate to other economic entities.
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This propagation mechanism is often hard to analyze on the basis of macro-economic fundamen-

tals (i.e. price movements are too large to be explained by fundamentals). Given that index i is

inferred to be under financial distress (in Section 2 we propose a classifier that infers index i’s

different regimes), we investigate the extent to which index i and index j are tightly coupled.

Market connectedness can be assessed using a variety of methods. For instance, Kritzman et

al. [35] measure the fraction of the total variance of a set of assets that is absorbed by a fixed

number of eigenvectors. They introduce the so-called absorption ratio. This ratio is large when

sources of risk are more unified. The risk assessments used in this thesis are based on (linear)

correlations, parameter estimates, a so-called measure of regime co-movement and transition

probabilities2.

Estimated correlation coefficient

A wide range of literature and research has been conducted on correlation shifts: a significant

increase in correlation during times of turmoil (see e.g. Calvo and Reinhardt [9] and King and

Wadhwani [32]). In our bivariate setting, we use the estimated correlation coefficient to char-

acterize the degree of association between index i and index j. The correlation coefficient is

estimated on the basis of the different model specifications. A high correlation coefficient means

that idiosyncratic shocks are more likely to propagate to other markets. We also decompose the

correlation coefficient to account for increased volatility. As motivated by Forbes and Rigobon

[18], an increase in index i’s log return volatility may cause an increase in the correlation coeffi-

cient between index i and index j, even though the true propagation mechanism (i.e. the fraction

of shocks that are transmitted from one index to another index) remains constant. The first

component of our decomposition captures the change in correlation driven by the dynamics of

macro-economic fundamentals and index i’s idiosyncratic shocks. The remainder term captures

the change in correlation caused by a change in the underlying propagation mechanism.

Parameter estimates

We obtain parameter estimates that characterize the fraction of shocks that are (on average)

instantaneously transmitted from index i to index j. We conduct a direct test to infer whether

the change in the transmission mechanism is significantly different from zero.

2The probability of moving from one regime to another regime.
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Measure of regime co-movement

We also propose a measure that assesses the extent to which index i’s and index j’s regimes

are positively related. This measure is defined through the probabilities of being in some state

at time t. The joint probability of being in the same regime reflects the regime co-movement

between index i and index j.

Time-varying transition probabilities

In Section 4, we explore a Markov switching regression model with time-varying transition prob-

abilities. The economic rationale is that transition probabilities may be driven by exogenous

(economic) variables and hence need not be constant over time.

This thesis is structured as follows. In Section 2, we describe index i’s model specification

and propose a classifier to infer index i’s states on the basis of smoothed state probabilities.

Given inference regarding index i’s states, we relate index j’s and index i’s log return behavior

through a linear regression model. Details are given in Section 2. In Section 3, we use a refined

estimation technique to relate index i’s and index j’s log return behavior. Section 4 exam-

ines a Markov switching regression model with time-varying transition probabilities. Section 5

conducts an empirical study. Finally, in Section 6, we gather a few concluding remarks.

2 Model Formulation

This section formulates the model we propose to measure the extent to which index i’s activities

contribute to index j’s performance. The estimation procedure consists of two stages: inference

regarding index i being in state Sit = s at time t (the different states are specified in Section 2.1)

and estimating the extent to which index i’s log return behavior contributes (in a non-causal

sense) to index j’s log return behavior conditional on index i being in state Sit = s at time t.

Index i’s states are inferred ex post from the data. That is, the inference is based on all the

information contained in the sample.

This section is structured as follows. In Section 2.1, we describe the models formally. Finally,

in Section 2.2, we introduce measures to assess systemic risk.

8



2.1 Formal Description

We propose a parsimonious model in which index i’s log return behavior is characterized by

a relatively stable period and a relatively volatile period3. To be more precise, we describe

index i’s log return behavior by a two-state Markov switching regression model (Hamilton [22]

[23]) with discrete hidden (i.e. unobserved) state variable Sit ∈ {0, 1} and switching parameter

σi
Si
t

= (1 − Sit)σi0 + Sitσ
i
1. By using a Markov switching regression model, we allow the data

to determine the parameters that characterize each state and the probability of moving from

some state to another state. We also include a (1× k) vector Mt−1 of (lagged) macro-economic

fundamentals to control for the state-of-the economy. The formal description proceeds as follows.

Denote by T the sample length. Let (Rit : t ∈ {1, ..., T}) and (Rjt : t ∈ {1, ..., T}) be index

i’s and index j’s log return time series, respectively. Define Rit = (Ris : s ∈ {1, ..., t}), which is

the complete history of index i’s log return behavior observed through the date t. The model

specification of Rit is described as follows

Rit =


αi0 +Mt−1γ

i + σi0ε
i
t if Sit = 0

αi1 +Mt−1γ
i + σi1ε

i
t if Sit = 1

(t = 1, ..., T ), (2.1)

where εit
i.i.d.∼ N(0, 1).

The discrete hidden state variable Sit is governed by a first-order ergodic irreducible4 Markov

chain with transition probability matrix

P i =

 pi00 pi01

pi10 pi11

 ,

where pixy = P{Sit = y|Sit−1 = x, Sit−2, ..., S
i
1} = P{Sit = y|Sit−1 = x} denotes the probability of

moving from state x to state y. Since the transition probability from state x to some state y

must be one, we have the restriction px0 + px1 = 1 for each x ∈ {0, 1}.
3We restrict our attention to a two-state Markov switching regression model for a couple of reasons. (i) The

estimation procedure becomes computationally burdensome as the number of states exceeds two. In particular,
the number of parameters to be estimated grows exponentially in the number of states. (ii) A two-state Markov
switching regression model is intuitively appealing, since it only allows for periods of turmoil and tranquility.
(iii) We can achieve a reasonable level of flexibility with a two-state Markov switching regression model, while
maintaining parsimony.

4A Markov chain is said to be ergodic if it is aperiodic (i.e. states occur at irregular times) and positive
recurrent (i.e. expected return time is finite and expected number of visits is infinite).
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Denote by Θi = {(αi0, αi1, γi
′
, σi0, σ

i
1, p

i
00, p

i
11)
′ ∈ R6+k : (pi00, p

i
11) ∈ [0, 1]2, (σi0, σ

i
1) ∈ R2

+} the

parameter space. θi is a typical element of Θi. θi0 ∈ Θi is understood as the true parameter

value and θ̂i ∈ Θi (we do not make the dependence on T visible in the notation) denotes a

consistent estimator of θi0.

In (2.1), γi is a (k × 1) vector of non-switching parameters. Although there is some evidence of

non-linear and asymmetric responses to macro-economic fundamentals, we restrict our attention

to the non-switching case. In Section 5, we test the validity of this assumption and examine

the implications for the inference regarding index i’s states. In particular, we found that a

specification with switching parameters has little consequences for the inference regarding index

i’s regimes. As motivated by Timmermann [46], a necessary condition for the Markov switching

regression model to generate skewness is that the mean of state 0 differs from the mean of state

1. Therefore, we allow the intercept to switch between the two different regimes. The switching

parameter σi
Si
t

is especially included to account for empirically observed volatility clustering in

financial time series data.

By convention and without loss of generality, we associate Sit = 0 with a period of tranquil-

ity (“low volatility regime”) and Sit = 1 with a period of turmoil (“high volatility regime”).

The model parameters 56 are estimated by employing maximum likelihood optimization tech-

niques and Hamilton’s nonlinear filter for the hidden state variable process. As a by-product, we

obtain filtered and smoothed (state) probabilities from the estimation procedure. The smoothed

probabilities are deduced from the optimal nonlinear smoother and represent inference regarding

index i being in state Sit = s at time t conditional upon θ̂i and all the information contained

in the sample. These probabilities are used to draw statistical inference about index i being in

state Sit = s at time t. In particular, we propose the following classifier7

Ŝit =


0 if P{Sit = 0|RiT ; θ̂i} ≥ τ0

1 if P{Sit = 1|RiT ; θ̂i} ≥ τ1

inconclusive otherwise

(t = 1, ..., T ), (2.2)

5We denote by Si
0 = s the initial state. We use that P{Si

0 = s} = 1
2

for each s ∈ {0, 1}.
6We partly use the software developed by Perlin [38]. This software has been made available via MATLAB

Central.
7For notational simplicity, we suppress the dependence on τ0 and τ1 and the model parameters.

10



where (τ0, τ1) ∈ [0, 1]2 and P{Sit = s|RiT ; θ̂i} represents the estimated smoothed probability of

being in state Sit = s at time t.

Denote by T0 = (t : t ∈ {1, ..., T}, Ŝit = 0) and T1 = (t : t ∈ {1, ..., T}, Ŝit = 1).

Index i is inferred to be in state s at time t if the estimated smoothed probability of being

in state s at time t exceeds the threshold τs.

We now present the following lemma.

Lemma 2.1. Let {Xt}Tt=1 be a stochastic process defined on some underlying filtered probability

space (Ω,F , (Ft)Tt=1,PX). The risk function

P{St 6= κt(X)}

is minimized over the set of all measurable maps from κt : Ω 7→ {0, 1} by

κt(X) = 1P{St=1|X=x}> 1
2
. (2.3)

Proof. By definition,

P{St 6= κt(X)} = P{St = 1, κt(X) = 0}+ P{St = 0, κt(X) = 1}

=
∫

Ω P{St = 1|X = x}1κt(x)=0 + P{St = 0|X = x}1κt(x)=1dPX(ω).

The integral is minimized by minimizing the integrand for each x, i.e.

min
κ

P{St = 1|X = x}1κt(x)=0 + P{St = 0|X = x}1κt(x)=1.

κt(x) is either zero or one. Hence, κt(x) must be chosen such that

κt(x) =


1 if P{St = 1|X = x} > P{St = 0|X = x}

0 if P{St = 0|X = x} > P{St = 1|X = x}
.

Q.E.D.
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The minimal risk classifier (2.3) is a function of the true smoothed probabilities, which are,

however, unknown. Therefore, we base our classifier on the estimated smoothed probabilities,

which are consistent estimates of the true smoothed probabilities.

We examine the finite sample performance of Ŝit . In particular, we compute the simulated

mean squared error (SMSE) and the simulated mean squared prediction error (SMSPE) based

on 1,000 replications and T = 1, 000. The SMSE and SMSPE are defined as follows

SMSE(Sit) = 1
1,000

∑1,000
m=1 (Sit,m − Ŝit,m)2

SMSPE(Sit) = 1
1,000

∑1,000
t=1 (Sit,m − Ŝit,m)2

,

where Sit,m denotes the simulated value of Sit in simulation run m and Ŝit,m denotes the predicted

value (based on a sample of length T = 1, 000) of Sit,m in simulation run m.

Table 1 contains the (fictitious) parameter values.

τ0 0.5
τ1 0.5
αi0 0
αi1 0
γi 0
σi0 0.03
σi1 0.06
pi00 0.95
pi11 0.85

Table 1: (Fictitious) parameter values

Figure 5 depicts the SMSE for each t ∈ {1, ..., T} and the SMSPE for each replication m. We

observe that both the SMSE and the SMSPE fluctuate around the level 0.15. The SMSPE is,

however, more volatile than the SMSE. Since θ̂i is fixed for each m, averaging over time causes

the SMSPE to be more volatile than the SMSE.

We are interested in index j’s performance conditional upon index i being under financial dis-

tress. We propose a linear regression model to relate index i’s and index j’s log return behavior.

Specifically, the conditional mean of Rjt given the value of the explanatory variables is modeled

as an affine function of the explanatory variables.
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Figure 5: Simulated MSE and Simulated MSPE

The model specification of Rjt is formally written as follows

Rjt =


α
j|i
0 +Mt−1γ

j|i + β
j|i
0 Rit + σj|iε

j|i
t if Ŝit = 0

α
j|i
1 +Mt−1γ

j|i + β
j|i
1 Rit + σj|iε

j|i
t if Ŝit = 1

t ∈ T0 ∪ T1, (2.4)

where ε
j|i
t

i.i.d.∼ N(0, 1).

We again include a (1× k) vector Mt−1 of (lagged) macro-economic fundamentals to control for

the state-of-the economy.

Denote the parameter space by Θj|i = {(αj|i0 , α
j|i
1 , γj|i

′
, β

j|i
0 , β

j|i
1 , σj|i)

′ ∈ R5+k : σj|i ∈ R+}.

θj|i is a typical element of Θj|i. θ
j|i
0 is understood as the true parameter value and θ̂j|i ∈ Θj|i

denotes a consistent estimator of θ
j|i
0 .

The model is estimated by classical ordinary least squares (OLS). OLS estimation yields con-

sistent estimates, even in the presence of heteroscedastic residuals. For instance, if we want to

test β
j|i
0 −β

j|i
1 < 0, then Student’s t-test is still valid, provided that heteroskedasticity consistent

standard errors are used.

Even though the regime sequence is not directly observable by the researcher, model (2.4)

relates index j’s and index i’s log return behavior by imposing a priori index i’s regimes.
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OLS estimates are derived under the assumption that the explanatory variables are exogenous

and uncorrelated with the error term. The parameter estimates are generally inconsistent and

biased if the true data generating process is as follows

Rjt =


α
j|i
0 +Mt−1γ

j|i + β
j|i
0 Rit + σj|iη

j|i
t if Sit = 0

α
j|i
1 +Mt−1γ

j|i + β
j|i
1 Rit + σj|iη

j|i
t if Sit = 1

t ∈ T0 ∪ T1, (2.5)

where η
j|i
t

i.i.d.∼ N(0, 1).

Since Ŝit is random, we have that Ŝit = Sit + νit (here, νit represents the prediction error). Substi-

tution into (2.5) yields

Rjt = α
j|i
0 + (α

j|i
1 − α

j|i
0 )Ŝit +Mt−1γ

j|i + β
j|i
0 Rit(1− Ŝit) + β

j|i
1 RitŜ

i
t + σj|iε

j|i
t ,

where ε
j|i
t = η

j|i
t − (σj|i)−1νit [R

i
t(β

j|i
0 + β

j|i
1 ) + (α

j|i
1 − α

j|i
0 )].

Obviously, the explanatory variables are correlated with the error term unless νit = 0 for each

time instance. In Section 3, we consider model specification (2.5) with a regime dependent

volatility parameter and develop an alternative estimation technique, which yields consistent

estimates.

The interconnectedness of markets suggests the existence of a mechanism through which shocks

are transmitted from index i to index j. This instantaneous transmission mechanism is captured

by the β
j|i
0 and β

j|i
1 parameters in (2.4).

2.2 Systemic Risk Assessments

There are different definitions of systemic risk measurement. Hautsch et al. [26] define systemic

risk as the marginal effect of index i’s tail risk on index j’s tail risk. This definition is also in

accordance with the notion of CoVaR. We consider, in particular, the marginal effect of index

i’s log return behavior on index j’s conditional mean.
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Systemic risk measurement is of particular importance during times of financial turmoil. During

such times, an individual failure could cause a cascading failure, which could potentially bring

down the entire financial system. In our setup, a period of financial distress is determined by

index i’s log return behavior. Specifically, the indicator variable Ŝit , as defined in (2.2), charac-

terizes index i’s crisis and non-crisis periods.

The degree of interdependence is related, among many other things, to the β
j|i
0 and β

j|i
1 pa-

rameters in (2.4) and the correlation coefficient between index i and index j. In what follows,

we consider different assessments of systemic risk.

Estimated correlation coefficient

The first assessment is based on estimating changes in correlation coefficients. In particular, we

estimate the increase in the Pearson correlation coefficient between index i and index j during

a period of financial distress (where a period of financial distress corresponds with Ŝit = 1).

As suggested by Forbes and Rigobon [18], heteroscedasticity in returns affects estimates of

correlation coefficients. In general, it causes the correlation coefficient to be biased upwards.

Therefore, we decompose the correlation coefficient to account for increased volatility in Rit. To

this end, we propose the following decomposition rule for the change in correlation

∆ρj|i = ∆ρ
j|i
∆βj|i + ∆ρ

j|i
∆ΣM + ∆ρ

j|i
∆σi ,

where ΣM denotes the variance-covariance matrix of the (lagged) macro-economic fundamentals.

In Appendix A.1, we provide some details on this decomposition.

The last two terms on the right-hand side, ∆ρ
j|i
∆ΣM and ∆ρ

j|i
∆σi , particularly represent the

change in correlation due to a change in the volatility of Rit. The volatility of Rit is driven

by the variance-covariance matrix of the macro-economic fundamentals M and the volatility of

the Gaussian innovations. ∆ρ
j|i
∆ΣM captures the change in correlation caused by a change in the

variance-covariance matrix of the fundamentals. The other term, ∆ρ
j|i
∆σi , represents the change

in correlation due to a change in the volatility of the Gaussian innovations. This volatility only

affects the volatility of Rit, while the variance-covariance matrix of M affects both the volatility

of Rit and Rjt .
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Moreover, an increase in the volatility of Rit may cause an increase in the correlation coefficient

between Rjt and Rit, even though the transmission mechanism, as captured by the β
j|i
0 and β

j|i
1

parameters in (2.4), remains constant.

The first term on the right-hand side, ∆ρ
j|i
∆σi , represents the change in correlation due to a

change in the transmission channel. That is, it represents the change in correlation after con-

trolling for a change in the variance-covariance matrix of M and a change in the volatility of

index i’s idiosyncratic shocks.

Parameter estimates

The β
j|i
0 and β

j|i
1 parameters capture the mechanism through which shocks are instantaneously

transmitted from index i to index j. The next assessment is based on the β̂
j|i
0 and β̂

j|i
1 parameter

estimates. We provide Student’s t-values, which can be used to perform a test to determine

whether β
j|i
0 is significantly smaller than β

j|i
1 . The alternative hypothesis is then as follows

H1 : β
j|i
0 − β

j|i
1 < 0.

The test statistic T is given by

T =
β̂
j|i
0 − β̂

j|i
1√

V(β̂
j|i
0 − β̂

j|i
1 )

,

where V(·) denotes the variance.

The variance of β̂
j|i
0 − β̂

j|i
1 can be decomposed as follows

V(β̂
j|i
0 − β̂

j|i
1 ) = V(β̂

j|i
0 ) + V(β̂

j|i
1 )− 2C(β̂

j|i
0 , β̂

j|i
1 ),

where C(·, ·) represents the covariance. To control for heteroscedastic residuals, we use heteroscedasticity-

consistent standard errors (White [47]).

Under the null hypothesis, T follows Student’s t-distribution with approximately T degrees

of freedom (T large).

Measure of regime co-movement

We also introduce a measure of regime co-movement. Following Barberis et al. [5], co-movement

is understood as a pattern of positive correlation.
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Regime pairs (Sit , S
j
t ) = (1, 1) and (Sit , S

j
t ) = (0, 0) should therefore be regarded as perfect

co-movement. To assess the relative co-movement, we impose the condition that regime pairs

(Sit , S
j
t ) = (1, 1) and (Sit , S

j
t ) = (0, 0) lead to a co-movement of one (“perfect positive correla-

tion”) and regime pairs (Sit , S
j
t ) = (1, 0) and (Sit , S

j
t ) = (0, 1) lead to a co-movement of minus one

(“perfect negative correlation”) . We define our measure as the expected regime co-movement.

Formally,

Φi,j = 1− 2E[P{Sit = 0, Sjt = 1}+ P{Sit = 1, Sjt = 0}], (2.6)

where the 2 is a normalizing constant.

To estimate the joint probabilities P{Sit = 0, Sjt = 1} and P{Sit = 1, Sjt = 0}, we require

four regimes in a multivariate setting which is computationally intensive. Therefore, follow-

ing Billio et al. [7], we estimate the joint probabilities by assuming conditional independence.

Particularly,

P{Sit = 0, Sjt = 1|RiT ,R
j
T ; θ̂i, θ̂j} = P{Sit = 0|RiT ; θ̂i}P{Sjt = 1|RjT ; θ̂j},

P{Sit = 0, Sjt = 1|RiT ,R
j
T ; θ̂i, θ̂j} = P{Sit = 1|RiT ; θ̂i}P{Sjt = 0|RjT ; θ̂j}.

As argued by Billio et al. [7], to the extent that regimes are positively dependent, these esti-

mators are biased downwards (i.e. underestimate the true joint probabilities). An estimator of

(2.6) is now given by

Φ̂i,j = 1− 2
1

T

T∑
t=1

[
P{Sit = 0|RiT ; θ̂i}P{Sjt = 1|RjT ; θ̂j}+ P{Sit = 1|RiT ; θ̂i}P{Sjt = 0|RjT ; θ̂j}

]
.

3 A Refined Estimation Procedure

As shown in the previous section, OLS yields inconsistent and biased estimates if one wishes

to estimate model (2.5) instead of model (2.4). We present an alternative consistent estimation

technique to estimate model (2.5).

This section is structured as follows. In Section 3.1, we describe two models. The first model

can be viewed as (a version of) a finite mixture model with known (time-independent) mixing

weights. It is illustrative to consider this model first. The second model is more complicated in

the sense that the mixing weights are time-varying.
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Section 3.2 outlines the general principles of the expectation-maximization (EM) algorithm,

which is an iterative method for obtaining maximum likelihood parameter estimates. In Section

3.3, we consider the particular form of the EM algorithm for both models. Finally, Section 3.4

examines the finite sample behavior of the estimation procedure.

3.1 Theoretical Description

3.1.1 Finite Mixture Model

For clarity of exposition, we present a model in which index j’s log return behavior only depends

on index i’s states. These states are in turn determined by index i’s log return behavior. That

is, index j’s and index i’s log returns are only related through index i’s states.

We consider the following index i’s log return specification, which is a Markov switching re-

gression model8.

Rit =


αi0 + σi0ε

i
t if Sit = 0

αi1 + σi1ε
i
t if Sit = 1

(t = 1, ..., T ), (3.1)

where εit
i.i.d.∼ N(0, 1).

The discrete hidden state variable Sit is governed by a first-order ergodic irreducible Markov

chain with transition probability matrix

P i =

 pi00 pi01

pi10 pi11

 .

We are interested in the following index j’s log return specification

Rjt =


α
j|i
0 + σ

j|i
0 ε

j|i
t if Sit = 0

α
j|i
1 + σ

j|i
1 ε

j|i
t if Sit = 1

(t = 1, ..., T ), (3.2)

where ε
j|i
t

i.i.d.∼ N(0, 1).

Index j’s log returns are distributed according to a mixture of two Gaussian distributions.

The mixing weights are given by P{Sit = 0} and P{Sit = 1}, respectively.

8In fact, we consider the Markov switching regression model of Section 2 under a restricted parameter space.
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In a traditional mixture model, the estimation of the mixing weights are part of the estimation

procedure. However, in this setup, the mixing weights are determined by index i’s log return

dynamics. For now, we presume the mixing weights to be known with certainty (in Section 3.3,

we relax this assumption).

We first derive maximum likelihood parameter estimates. Given each observation Rjt , we know

that it is generated from a Gaussian distribution parameterized by either (α
j|i
0 , σ

j|i
0 ) or (α

j|i
1 , σ

j|i
1 ).

The density of the tth observation is given by

f(Rjt ; θ
j|i) =

1∑
s=0

P{Sit = s}f(Rjt |Sit = s; θj|i), (3.3)

where the density function under each regime is specified by

f(Rjt |Sit = s; θj|i) =
1

√
2πσ

j|i
s

exp

[
−(Rjt − α

j|i
s )2

2(σ
j|i
s )2

]
.

It is well-known from Markov theory that the unconditional probability P{Sit = s} is given for

each s ∈ {0, 1} and t ∈ {1, ..., T} by

P{Sit = s} =
1− p(s−1)(s−1)

(1− p00) + (1− p11)
.

The likelihood function is simply the product of the individual densities

L(θj|i|RjT ) =

T∏
t=1

f(Rjt ; θ
j|i).

L(θj|i|RjT ) increases without bound if we set e.g. α
j|i
0 = Rjt for any t and let σ

j|i
0 → 0 (this was

first noticed by Kiefer and Wolfowitz [32]).

Kiefer [30] argued (by verifying a set of conditions) that there exists a unique root of the

likelihood function that is consistent and asymptotically efficient. Kiefer’s theorem reads as

follows (which is given here as a lemma)

Lemma 3.1. Let the parameter space be given by −∞ < µ
j|i
0 , µ

j|i
1 < ∞, 0 < σ

j|i
0 < ∞, 0 ≤

σ
j|i
1 <∞. If Rjt is distributed according to (3.3), then for large T there exists a unique consistent

root θ̂j|i of the likelihood function and
√
n(θ̂j|i − θj|i0 ) is asymptotically normal distributed with

mean zero and variance I(θ
j|i
0 )−1, where I is the Fisher information matrix.
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Proof. See Kiefer [30]. Q.E.D.

Hathaway [24] considered the restricted parameter space

Θ
j|i
C = {θj|i ∈ Θj|i :

σ
j|i
1

σ
j|i
0

≥ C > 0,
σ
j|i
0

σ
j|i
1

≥ C > 0},

where Θj|i is the unrestricted parameter space and C ∈ (0, 1].

He then showed that there exists a global maximizer of L(θj|i|RjT ) over Θ
j|i
C and that, pro-

vided θ
j|i
0 ∈ Θ

j|i
C , this global maximizer is strongly consistent.

We now apply Bayes’ rule to define the following set of probabilities for each s ∈ {0, 1} and

t ∈ {1, ..., T}

P{Sit = s,Rjt ; θ
j|i} = P{Sit = s}f(Rjt |Sit = s; θj|i), (3.4a)

P{Sit = s|Rjt ; θj|i} =
P{Sit = s,Rjt ; θ

j|i}
f(Rjt ; θ

j|i)
. (3.4b)

(3.4b) reflects the posterior probability that index j’s log return at time t is generated by state

Sit = s given that Rjt is known (also called membership probability). This probability plays a

crucial role in the EM algorithm, as considered in Section 3.2.

Computing derivates of the log likelihood function l(θj|i|RjT ) = log
∏T
t=1 f(Rjt ; θ

j|i) yields for

each s ∈ {0, 1}

∂l(θj|i|RjT )

∂α
j|i
s

=
T∑
t=1

P{Sit = s|Rjt ; θj|i}
(σ
j|i
s )2

(αj|is −R
j
t ),

∂l(θj|i|RjT )

∂σ
j|i
s

=
T∑
t=1

P{Sit = s|Rjt ; θj|i}
[
− 1

σ
j|i
s

+
(Rjt − α

j|i
s )2

(σ
j|i
s )3

]
.

Setting the derivatives to zero, we find the following set of equations for each s ∈ {0, 1}

αj|is =

∑T
t=1 P{Sit = s|Rjt ; θj|i}R

j
t∑T

t=1 P{Sit = s|Rjt ; θj|i}
,

σj|is =

[∑T
t=1 P{Sit = s|Rjt ; θj|i}(R

j
t − α

j|i
s )2∑T

t=1 P{Sit = s|Rjt ; θj|i}

] 1
2

.
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The conditional probability P{Sit = s|Rjt ; θj|i} appears in each equation. This probability in

turn depends on θj|i through (3.4a) - (3.4b). We conclude that these equations are not easily

solvable.

3.1.2 Model with Time-varying Mixing Weights

We extend index j’s log return specification to an alternative setting. In particular,

Rjt =


β
j|i
0 Rit + σ

j|i
0 ε

j|i
t if Sit = 0

β
j|i
1 Rit + σ

j|i
1 ε

j|i
t if Sit = 1

(t = 1, ..., T ), (3.5)

where ε
j|i
t

i.i.d.∼ N(0, 1).

Index i’s log returns are again assumed to a follow a Markov switching process according to

(3.1).

The density function under each regime is given by

f(Rjt |Sit = s,Rit; θj|i) =
1

√
2πσ

j|i
s

exp

[
−(Rjt − β

j|i
s Rit)

2

2(σ
j|i
s )2

]
.

We can now specify the density of the tth observation

f(Rjt |Rit; θj|i) =

1∑
s=0

P{Sit = s|Rit}f(Rjt |Sit = s,Rit; θj|i).

The likelihood function is again the product of the individual densities

L(θj|i|RjT ,R
i
T ) =

T∏
t=1

f(Rjt |Rit; θj|i).

Maximum likelihood estimation yields the following set of equations for each s ∈ {0, 1}

βj|is =

∑T
t=1 P{Sit = s|Rjt ,Rit; θj|i}R

j
tR

i
t∑T

t=1 P{Sit = s|Rjt ,Rit; θj|i}RitRit
,

σj|is =

[∑T
t=1 P{Sit = s|Rjt ,Rit; θj|i}(R

j
t − β

j|i
s Rit)

2∑T
t=1 P{Sit = s|Rjt ,Rit; θj|i}

] 1
2

,
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where the posterior probabilities are defined as follows

P{Sit = s|Rjt ,Rit; θj|i} =
P{Sit = s,Rjt |Rit; θj|i}

f(Rjt |Rit; θj|i)
, (3.6a)

P{Sit = s,Rjt |Rit; θj|i} = P{Sit = s|Rit}f(Rjt |Sit = s,Rit; θj|i), (3.6b)

for each s ∈ {0, 1} and t ∈ {1, ..., T}.

3.2 EM algorithm

We outline the general principles underlying the expectation-maximization (EM) algorithm,

which is an iterative method for obtaining maximum likelihood parameter estimates (Dempster

et al. [11]). The general principle is as follows: given current parameter estimates θ̂
j|i
(n), the

conditional distribution of the latent variables is computed to determine the expected log likeli-

hood function (a.k.a. expectation step); the expected log-likelihood function is then maximized

to obtain new parameter estimates θ̂
j|i
(n+1) (a.k.a. maximization step). These new parameter

estimates are then used to compute the conditional distribution of the latent variables.

By way of motivation, we illustrate the general principles of the EM algorithm for the finite

mixture model. The log likelihood function is then specified as follows

l(θj|i|RjT ) =
∑T

t=1 log f(Rjt ; θ
j|i)

=
∑T

t=1 log
∑1

s=0 P{Sit = s}f(Rjt |Sit = s; θj|i)

=
∑T

t=1 log
∑1

s=0 P{Sit = s}f(Rjt |Sit = s; θj|i) · P{S
i
t=s|R

j
t ;θj|i}

P{Si
t=s|R

j
t ;θj|i}

.

In the expectation step, the probability P{Sit = s|Rjt ; θ̂
j|i
(n)} is computed for each s ∈ {0, 1} and

t ∈ {1, ..., T}. These probabilities are then used to specify an expected log likelihood function,

which is a lower bound on the true log likelihood function. The construction follows via Jensen’s

inequality. We briefly rephrase Jensen’s inequality.

Lemma 3.1. Let (Ω,F ,P) be a probability space, X a P-integrable real-valued random variable

and φ : R 7→ R a concave function. Then

φ(EX) = φ
(∫

Ω
xdP

)
≥
∫

Ω
φ(x)dP = Eφ(X).

Proof. See for example Yeh [48]. Q.E.D.
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By virtue of Jensen’s inequality, the log likelihood function can then be bounded as follows

l(θj|i|RjT ) =

T∑
t=1

log f(Rjt ; θ
j|i) ≥

T∑
t=1

1∑
s=0

P{Sit = s|Rjt ; θj|i} log
P{Sit = s}f(Rjt |Sit = s; θj|i)

P{Sit = s|Rjt ; θj|i}
.

We introduce the following object, which can be viewed as an expected log likelihood function.

Q(θj|i|θ̂j|i(n),R
j
T ) =

T∑
t=1

1∑
s=0

P{Sit = s|Rjt ; θ̂
j|i
(n)} log

P{Sit = s}f(Rjt |Sit = s; θj|i)

P{Sit = s|Rjt ; θ̂
j|i
(n)}

.

The EM algorithm is defined as follows

Start with an initial guess θ̂
j|i
(0). Execute the following iterative scheme until convergence9.

1. Expectation Step: given current parameter estimates θ̂
j|i
(n), compute the probability

P{Sit = s|Rjt ; θ̂
j|i
(n)} for each s ∈ {0, 1} and t ∈ {1, ..., T}. Then construct the expected log

likelihood function Q(θj|i|θ̂j|i(n),R
j
T ).

2. Maximization Step: MaximizeQ(θj|i|θ̂j|i(n),R
j
T ). Put θ̂

j|i
(n+1) = arg maxθj|i Q(θj|i|θ̂j|i(n),R

j
T ).

The likelihood function may have multiple (local) maxima. It could therefore be wise to start

with a grid of initial values to find the largest maximum or to apply the restricted EM, as

proposed by Hathaway [25].

Finally, we mention two well-known properties of the EM algorithm.

Lemma 3.2. The log likelihood function increases at each iteration step.

Proof. To show the assertion of the lemma, note first that

Q(θ̂
j|i
(n)|θ̂

j|i
(n),R

j
T ) =

∑T
t=1

∑1
s=0 P{Sit = s|Rjt ; θ̂

j|i
(n)} log

P{Si
t=s}f(Rj

t |Si
t=s;θ̂

j|i
(n)

)

P{Si
t=s|R

j
t ;θ̂

j|i
(n)
}

=
∑T

t=1

∑1
s=0 P{Sit = s|Rjt ; θ̂

j|i
(n)} log

P{Si
t=s,R

j
t ;θ̂

j|i
(n)
}

P{Si
t=s|R

j
t ;θ̂

j|i
(n)
}f(Rj

t ;θ̂
j|i
(n)

)
+ l(θ̂

j|i
(n)|R

j
T )

=
∑T

t=1

∑1
s=0 P{Sit = s|Rjt ; θ̂

j|i
(n)} log

P{Si
t=s,R

j
t ;θ̂

j|i
(n)
}

P{Si
t=s,R

j
t ;θ̂

j|i
(n)
}

+ l(θ̂
j|i
(n)|R

j
T )

= l(θ̂
j|i
(n)|R

j
T ).

9Different convergence criteria can be used. For instance, stop the algorithm if ||θ̂j|i(n+1) − θ̂
j|i
(n)|| < 10−8, where

|| · || is an appropriate norm.
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Combined with Jensen’s inequality and the fact that Q(θ̂
j|i
(n+1)|θ̂

j|i
(n),R

j
T ) ≥ Q(θ̂

j|i
(n)|θ̂

j|i
(n),R

j
T ) (i.e.

by definition of a maximum), we have that

l(θ̂
j|i
(n+1)|R

j
T ) ≥ Q(θ̂

j|i
(n+1)|θ̂

j|i
(n),R

j
T ) ≥ Q(θ̂

j|i
(n)|θ̂

j|i
(n),R

j
T ) = l(θ̂

j|i
(n)|R

j
T ).

Q.E.D.

Lemma 3.3. The sequence {θ̂j|i(n)} converges in probability to a local maximum likelihood esti-

mate. In particular, if

∂Q(θj|i|θ̂j|i(n),R
j
T )

∂θj|i

∣∣∣
θj|i=θ̂

j|i
(n)

= 0,

then

∂l(θj|i|RjT )

∂θj|i

∣∣∣
θj|i=θ̂

j|i
(n)

= 0.

Proof. We have that

∂Q(θj|i|θ̂j|i
(n)
,Rj

T )

∂θj|i

∣∣∣
θ=θ̂

j|i
(n)

=
∑T

t=1

∑1
s=0

P{Si
t=s|R

j
t ;θ̂

j|i
(n)
}

P{Si
t=s}f(Rj

t |Si
t=s;θ

j|i)
P{Sit = s}∂f(Rj

t |Si
t=s;θ

j|i)

∂θj|i

∣∣∣
θj|i=θ̂

j|i
(n)

=
∑T

t=1

∑1
s=0

P{Si
t=s|R

j
t ;θ̂

j|i
(n)
}

P{Si
t=s}f(Rj

t |Si
t=s;θ̂

j|i
(n)

)
P{Sit = s}∂f(Rj

t |Si
t=s;θ

j|i)

∂θj|i

∣∣∣
θj|i=θ̂

j|i
(n)

=
∑T

t=1

∑1
s=0

1

f(Rj
t ;θ̂

j|i
(n)

)
P{Sit = s}∂f(Rj

t |Si
t=s;θ

j|i)

∂θj|i

∣∣∣
θj|i=θ̂

j|i
(n)

=
∑T

t=1
∂ log f(Rj

t ;θj|i)

∂θj|i

∣∣∣
θj|i=θ̂

j|i
(n)

= ∂l(θj|i|Rj)

∂θj|i

∣∣∣
θj|i=θ̂

j|i
(n)

.

Q.E.D.

3.3 Particular form of EM algorithm

3.3.1 Finite Mixture Model

In the expectation step, the probability P{Sit = s|Rjt ; θ̂
j|i
(n)} is computed for each s ∈ {0, 1} and

t ∈ {1, ..., T}. However, these probabilities depend on the transition probabilities, which are

unknown. An obvious candidate to estimate the posterior probability is the estimator

P{Sit = s|Rjt ; θ̂
j|i
(n), θ̂

i} =
P{Sit = s,Rjt ; θ̂

j|i
(n), θ̂

i}

f(Rjt ; θ̂
j|i
(n))

, (3.7)
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where

P{Sit = s,Rjt ; θ̂
j|i
(n), θ̂

i} =
1− p̂i(1−s)(1−s)
2− p̂i00 − p̂i11

f(Rjt |Sit = s; θ̂
j|i
(n)).

We observe that the estimated posterior probability is a function of the estimated transition

probabilities. These transition probabilities are estimated on the basis of a sample of length T .

The following lemma establishes that p̂iss
P−→ piss as T →∞ for each s ∈ {0, 1}. More generally,

Lemma 3.4. The MLE of an (i.i.d.) Markov switching regression model are consistent and

asymptotically normal distributed.

Proof. See Kiefer [30]. Q.E.D.

The EM algorithm takes now the following form

1. Expectation Step Given current estimates θ̂
j|i
(n), estimate P{Sit = s|Rjt ; θ̂

j|i
(n)} for each

s ∈ {0, 1} and t ∈ {1, ..., T} by (3.7). Construct Q(θj|i|θ̂j|i(n), θ̂
i,RjT ) as follows

Q(θj|i|θ̂j|i(n), θ̂
i,RjT ) =

T∑
t=1

1∑
s=0

P{Sit = s|Rjt ; θ̂
j|i
(n), θ̂

i} log
P{Sit = s,Rjt ; θ

j|i}
P{Sit = s|Rjt ; θ̂

j|i
(n), θ̂

i}
.

2. Maximization Step Maximize Q(θj|i|θ̂j|i(n), θ̂
i,RjT ), or equivalently,

T∑
t=1

1∑
s=0

P{Sit = s|Rjt ; θ̂
j|i
(n), θ̂

i} logP{Sit = s,Rjt ; θ
j|i}.

We obtain the following estimates for each s ∈ {0, 1}

(α̂j|is )(n+1) =

∑T
t=1 P{Sit = s|Rjt ; θ̂

j|i
(n), θ̂

i}Rjt∑T
t=1 P{Sit = s|Rjt ; θ̂

j|i
(n), θ̂

i}
,

(σ̂j|is )(n+1) =

[∑T
t=1 P{Sit = s|Rjt ; θ̂

j|i
(n), θ̂

i}(Rjt − (α̂
j|i
s )(n+1))

2∑T
t=1 P{Sit = s|Rjt ; θ̂

j|i
(n), θ̂

i}

] 1
2

.

We now argue that θ̂j|i is locally consistent, i.e. θ̂j|i = θ
j|i
0 + oP (1).

Lemma 3.5. Given fixed parameter estimates θ̂
j|i
(n) and Rjt ,

P{Sit = s|Rjt ; θ̂
j|i
(n), θ̂

i} P−→P{Sit = s|Rjt ; θ̂
j|i
(n)}

as T →∞.
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Proof. By Lemma (3.4), p̂iss
P−→ piss as T → ∞ for each s ∈ {0, 1}. Let g : [0, 1]2 7→ [0, 1] be

defined by

g(x, y) =
1− x

2− x− y
.

Since g is a continuous map and the Markov chain is ergodic, we have for each s ∈ {0, 1}

P{Sit = s; θ̂i} =
1− p̂i(s−1)(s−1)

2− p̂i00 − p̂i11

P−→
1− pi(s−1)(s−1)

2− pi00 − pi11

= P{Sit = s}.

By the continuous mapping theorem, for each s ∈ {0, 1} and t = {1, ..., T},

P{Sit = s,Rjt ; θ̂
j|i
(n), θ̂

i} P−→ P{Sit = s,Rjt ; θ̂
j|i
(n)},

P{Sit = s|Rjt ; θ̂
j|i
(n), θ̂

i} P−→ P{Sit = s|Rjt ; θ̂
j|i
(n)}.

Q.E.D.

Theorem 3.1. θ̂j|i is locally consistent.

Proof. Define

θ̂
j|i
(∞) = lim

n→∞
θ̂
j|i
(n).

By Lemma 3.5, P{Sit = s|Rjt ; θ̂
j|i
(∞), θ̂

i} = P{Sit = s|Rjt ; θ̂
j|i
(∞)}+ oP (1). We show the assertion for

(α
j|i
s )(∞). For (σ

j|i
s )(∞), the proof goes analogously. We have the following decomposition

∑T
t=1 P{Si

t=s|R
j
t ;θ̂

j|i
(∞)

,θ̂i}Rj
t∑T

t=1 P{Si
t=s|R

j
t ;θ̂

j|i
(∞)

,θ̂i}
=

∑T
t=1(P{Si

t=s|R
j
t ;θ̂

j|i
(∞)
}+oP (1))Rj

t∑T
t=1(P{Si

t=s|R
j
t ;θ̂

j|i
(∞)
}+oP (1))

=

∑T
t=1 P{Si

t=s|R
j
t ;θ̂

j|i
(∞)
}Rj

t∑T
t=1 P{Si

t=s|R
j
t ;θ̂

j|i
(∞)
}

+ ...

T−1
∑T

t=1 oP (1)Rj
tT
−1

∑T
t=1 P{Si

t=s|R
j
t ;θ̂

j|i
(∞)
}

[T−1
∑T

t=1 P{Si
t=s|R

j
t ;θ̂

j|i
(∞)
}]2+T−1

∑T
t=1 oP (1)T−1

∑T
t=1 P{Si

t=s|R
j
t ;θ̂

j|i
(∞)
}
− ...

T−1
∑T

t=1 oP (1)T−1
∑T

t=1 P{Si
t=s|R

j
t ;θ̂

j|i
(∞)
}Rj

t

[T−1
∑T

t=1 P{Si
t=s|R

j
t ;θ̂

j|i
(∞)
}]2+T−1

∑T
t=1 oP (1)T−1

∑T
t=1 P{Si

t=s|R
j
t ;θ̂

j|i
(∞)
}
.

We show that the last two terms on the right-hand side converge to zero as T → ∞. Rjt is

independent and identically distributed (i.i.d.). In particular,

f(Rjt ; θ̂
j|i
(∞)) = P{Sit = 0}f(Rjt |Sit = 0; θ̂

j|i
(∞)) + P{Sit = 1}f(Rjt |Sit = 1; θ̂

j|i
(∞)).

It follows that P{Sit = s|Rjt ; θ̂
j|i
(∞)} is also an i.i.d. sequence and hence, by the weak law of large

numbers,

1

T

T∑
t=1

P{Sit = s|Rjt ; θ̂
j|i
(∞)}

P−→EP{Sit = s|Rjt ; θ̂
j|i
(∞)} > 0.
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Obviously,

1

T

T∑
t=1

oP (1)
P−→ 0.

1

T

T∑
t=1

oP (1)Rjt =
1

T

T∑
t=1

oP (1)OP (1)
P−→ 0.

Hence, by an application of the continuous mapping theorem, the last term on the right-hand

side converges to

0 · EP{Sit = s|Rjt ; θ̂
j|i
(∞)}

[EP{Sit = s|Rjt ; θ̂
j|i
(∞)}]2

−
0 · E{P{Sit = s|Rjt ; θ̂

j|i
(∞)}R

j
t}

[EP{Sit = s|Rjt ; θ̂
j|i
(∞)}]2

= 0.

The first term on the right-hand side converges to the true parameter value and hence it follows

that θ
j|i
0 = θ

j|i
(∞) + oP (1). Q.E.D.

3.3.2 Model with Time-varying Mixing Weights

We consider the following estimator of P{Sit = s|Rjt ,Rit; θ̂
j|i
(n)}

P{Sit = s|Rjt ,Rit; θ̂
j|i
(n), θ̂

i} =
P{Si = s,Rjt |Rit; θ̂

j|i
(n), θ̂

i}

f(Rjt |Rit; θ̂
j|i
(n))

, (3.8)

where

P{Sit = s,Rjt |Rit; θ̂
j|i
(n), θ̂

i} = P{Sit = s|Rit, θ̂i}f(Rjt |Sit = s; θ̂
j|i
(n)).

The filtered probabilities are estimated recursively

P{Si0 = s} = 1
2 .

P{Sit = s|Rit, θ̂i} =
∑1

x=0 P{Si
t−1=x|Ri

t−1,θ̂
i}p̂ixsf(Ri

t|Si
t=s;θ̂

i)∑1
x=0

∑1
y=0 P{Si

t−1=x|Ri
t−1,θ̂

i}p̂ixyf(Ri
t|Si

t=y;θ̂i)
.

The EM algorithm takes the following form

1. Expectation Step Given current estimates θ̂
j|i
(n), estimate P{Sit = s|Rjt ,Rit; θ̂

j|i
(n)} for each

s ∈ {0, 1} and t ∈ {1, ..., T} by (3.8). Construct Q(θj|i|θ̂j|i(n), θ̂
i,RjT ,RiT , ) as follows

Q(θj|i|θ̂j|i(n), θ̂
i,RjT ,R

i
T ) =

T∑
t=1

1∑
s=0

P{Sit = s|Rjt ,Rit; θ̂
j|i
(n), θ̂

i} log
P{Sit = s,Rjt |Rit; θj|i}

P{Sit = s|Rjt ,Rit; θ̂
j|i
(n), θ̂

i}
.
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2. Maximization Step Maximize Q(θj|i|θ̂j|i(n), θ̂
i,RjT ,RiT ), or equivalently,

T∑
t=1

1∑
s=0

P{Sit = s|Rjt ,Rit; θ̂
j|i
(n), θ̂

i} logP{Sit = s,Rjt |Rit; θj|i}.

We obtain the following estimates for each s ∈ {0, 1}

(β̂j|is )(n+1) =

∑T
t=1 P{Sit = s|Rjt ,Rit; θ̂

j|i
(n), θ̂

i}Rjt∑T
t=1 P{Sit = s|Rjt ,Rit; θ̂

j|i
(n), θ̂

i}
,

(σ̂j|is )(n+1) =

[∑T
t=1 P{Sit = s|Rjt ,Rit; θ̂

j|i
(n), θ̂

i}(Rjt − (β̂
j|i
s )(n+1))

2∑T
t=1 P{Sit = s|Rjt ,Rit; θ̂

j|i
(n), θ̂

i}

] 1
2

.

Lemma 3.6. Given fixed parameter estimates θ̂
j|i
(n), R

j
t and Rit,

P{Sit = s|Rjt ,Rit; θ̂
j|i
(n), θ̂

i} P−→P{Sit = s|Rjt ,Rit; θ̂
j|i
(n)}

as T →∞.

Proof. By Lemma (3.4), θ̂i
P−→ θi as T → ∞. By the continuous mapping theorem, for each

s ∈ {0, 1},

f(Rit|Sit = s; θ̂i)
P−→ f(Rit|Sit = s; θi)

as θ̂i
P−→ θi.

By another application of the continuous mapping theorem, it follows that

P{Sit = s|Rit, θ̂i}
P−→P{Sit = s|Rit}

as T →∞. Q.E.D.

Theorem 3.2. θ̂j|i is locally consistent.

Proof. The proof is analogous to the one of Theorem (3.1). Q.E.D.

3.4 Monte Carlo Study: Finite Sample Behavior.

In this section, we conduct a Monte Carlo study to determine the finite sample distributions of

the estimators.
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One should be aware of the fact that we are estimating a Markov switching regression model

and that the accuracy of the estimators strongly depends on the underlying transition matrix. It

could happen that no switch occurs in any finite time period. We consider a (small) setting that

mimics that of the empirical study conducted in Section 5. In particular, we choose a sample of

length T = 1, 000 and use the (fictitious) parameter values as presented in Table 2.

Model 1 Model 2

αi0 0 αi0 0
αi1 0 αi1 0
σi0 0.03 σi0 0.03
σi1 0.06 σi1 0.06
pi00 0.95 pi00 0.95
pi11 0.85 pi11 0.85

α
j|i
0 -0.03 β

j|i
0 0.30

α
j|i
1 0.03 β

j|i
1 0.60

σ
j|i
0 0.02 σ

j|i
0 0.02

σ
j|i
1 0.04 σ

j|i
1 0.04

Table 2: (Fictitious) parameter values

The Monte Carlo study proceeds as follows. For a sample of length T = 1, 000

1. With the help of a random number generator, simulate a Markov chain (i.e. index i’s

true states) with transition probability matrix P i and a sequence {εit} of independent and

identically distributed errors.

2. Calculate sample observations for Rit according to (3.1).

3. Estimate the transition probabilities and filtered probabilities.

4. Generate a sequence {εj|it } of independent and identically distributed errors.

5. Calculate sample observations for Rjt according to (3.2) and (3.5).

6. Apply EM algorithm to obtain parameter estimates.

The above steps are repeated. The number of replications is set at 1,000. The variability in the

parameter estimates is summarized by the figures and table below.

The variability in the estimators strongly depends on piss. Here, pi11 < pi00 and hence the

variability in the parameter estimates in state 1 is larger than the variability in the parameter

estimates in state 0.
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By inspection of the following figures, we observe that the estimators are concentrated around

their true values. In particular, the finite sample distributions seem to be normal.

Model 1 10% 25% 50% 75% 90%

σ
j|i
0 0.0187 0.0193 0.0200 0.0206 0.0212

σ
j|i
1 0.0329 0.0364 0.0398 0.0425 0.0444

α
j|i
0 -0.0313 -0.0306 -0.0299 -0.0290 -0.0283

α
j|i
1 0.0186 0.0238 0.0298 0.0371 0.0435

Model 2 10% 25% 50% 75% 90%

σ
j|i
0 0.0189 0.0194 0.0200 0.0206 0.0211

σ
j|i
1 0.0365 0.0380 0.0396 0.0414 0.0433

β
j|i
0 0.2607 0.2795 0.3017 0.3222 0.3416

β
j|i
1 0.5387 0.5679 0.6005 0.6328 0.6602

Table 3: Monte Carlo results.

0.015 0.02 0.025 0.03
0

50

100

150

200

250

σ
j|i

0

D
e
n

s
it
y

0.02 0.03 0.04 0.05
0

50

100

150

200

250

σ
j|i

1

D
e
n

s
it
y

−0.035 −0.03 −0.025 −0.02
0

100

200

300

α
j|i

0

D
e

n
s
it
y

0 0.05 0.1
0

50

100

150

200

250

α
j|i

1

D
e

n
s
it
y

Figure 6: Finite Sample Distributions
This figure depicts the finite sample distributions of the estimators of the finite mixture model.

Standard errors

In the empirical study, we obtain standard errors by employing (parametric) bootstrap, which

yields consistent estimates (i.e. consistency is guaranteed by the fact that the fitted parame-

ters are consistent). Specifically, we simulate M samples (Si1,m, ..., S
i
T,m), (Ri1,m, ..., R

i
T,m) and

(Rj1,m, ..., R
j
T,m) from the corresponding fitted parametric distribution. For each simulated se-

quence (Rj1,m, ..., R
j
T,m), we apply the EM algorithm to obtain parameter estimates. The stan-

dard error can be found by computing the standard deviation of the finite sample distribution.
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Figure 7: Finite Sample Distributions
This figure depicts the finite sample distributions of the estimators of the model with

time-varying mixing weights.

4 Time-varying Transition Probabilities

In this section, we propose an alternative return specification. As in Section 2, we infer index

i’s states by using a classifier. Index j’s log return behavior is now described by a Markov

switching regression model with time-varying transition probabilities. It could well happen that

transition probabilities vary with some (1× k) vector Zt−1 of exogenous variables. In Section 5,

we examine the extent to which index i’s regimes affect index j’s transition probabilities.

Consider the following index j’s log return specification

Rjt =


αj0 + σj0ε

j
t if Sjt = 0

αj1 + σj1ε
j
t if Sjt = 1

(t = 1, ..., T ),

where εjt
i.i.d.∼ N(0, 1).

The discrete hidden state variable Sjt is governed by a first-order Markov chain with transi-

tion probability matrix

P jt =

 pj00,t pj01,t

pj10,t pj11,t

 ,
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where pjxy,t = P{Sjt = y|Sjt−1 = x, Zt−1;κjx} denotes the probability of moving from state x to

state y at time t.

We specify the following functional (i.e. logistic) form of the transition probability, for each

s ∈ {0, 1},

P{Sjt = s|Sjt−1 = s, Zt−1;κjs} =
exp {Zt−1κ

j
s}

1 + exp {Zt−1κ
j
s}
,

where κjs is a (k × 1) vector of parameters.

The parameter estimates θ̂j = (α̂j0, α̂
j
1, σ̂

j
0, σ̂

j
1, κ̂

j
0, κ̂

j
1) are obtained by applying the EM algo-

rithm. Diebold et al. [13] has derived the EM procedure for a Markov switching specification

with time-varying transition probabilities.

Denote by Zt = (Zs : s ∈ {1, ..., t}). In the expectation step, the smoothed state probabili-

ties P{Sjt = s|RjT ,ZT−1; θ̂j(n)} and P{Sjt = y, Sjt−1 = x|RjT ,ZT−1; θ̂j(n)} are computed. These

probabilities are then used to construct the expected complete-data log likelihood function.

Maximization of the expected log likelihood function yields the following updated parameter

estimates

(αjs)(n+1) =

∑T
t=1 P{S

j
t = s|RjT ,ZT−1; θ̂j(n)}R

j
t∑T

t=1 P{S
j
t = s|RjT ,ZT−1; θ̂j(n)}

,

(σjs)(n+1) =
[∑T

t=1 P{S
j
t = s|RjT ,ZT−1; θ̂j(n)}(R

j
t − (αjs)(n+1))

2∑T
t=1 P{S

j
t = s|RjT ,ZT−1; θ̂j(n)}

] 1
2
.

Due to the logistic specification, the remaining first order conditions are nonlinear in κjs. Diebold

et al. [13] has deduced closed form solutions by using a first order Taylor series expansion. In

particular, for k = 2,

(κjs)(n+1) =

As ×

∑T
t=2 Z1,t−1

(
P{Sjt = s, Sjt−1 = s|RjT ,Zt−1; θ̂j(n)} − P{Sjt−1 = s|RjT ,ZT−1; θ̂j(n)}Bs

)
∑T

t=2 Z2,t−1

(
P{Sjt = s, Sjt−1 = s|RjT ,Zt−1; θ̂j(n)} − P{Sjt−1 = s|RjT ,ZT−1; θ̂j(n)}Bs

)
 ,
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where

As =


∑T

t=2 Z1,t−1P{Sjt−1 = s|RjT ,ZT−1; θ̂j(n)}
∂pjss,t

∂κj1,s

∑T
t=2 Z1,t−1P{Sjt−1 = s|RjT ,ZT−1; θ̂j(n)}

∂pjss,t

∂κj2,s∑T
t=2 Z2,t−1P{Sjt−1 = s|RjT ,ZT−1; θ̂j(n)}

∂pjss,t

∂κj1,s

∑T
t=2 Z2,t−1P{Sjt−1 = s|RjT ,ZT−1; θ̂j(n)}

∂pjss,t

∂κj2,s


−1

,

Bs = pss,t −
[
∂pjss,t

∂κj1,s

∂pjss,t

∂κj2,s

]
(κjs)(n).

The partials are understood to be evaluated at (κjs)(n).

5 Empirical Study

In this section, we conduct an empirical study to capture the extent to which index i’s perfor-

mance contributes to index j’s performance. We are interested in the systemic risk exposure

(i.e. j = BHC, i = Bank Index) and the systemic risk contribution (i.e. j = Bank Index, i =

BHC) of 25 US BHCs. These US BHCs are a subset of the 50 largest US BHCs ranked by total

asset value (as at 03/31/2011). Table 7 in Appendix A.3 provides a list of the BHCs and their

abbreviations. Throughout, we extensively use these abbreviations.

This section is structured as follows. In section 5.1, we describe the data. Section 5.2 provides

summary statistics and examines the extent to which a Markov switching regression model is

capable of mimicking the observed log return behavior. Finally, in Section 5.3, we present the

empirical results. The main tables are gathered in Appendix A.3.

5.1 Data Description

The adjusted weekly closing equity prices are obtained from Yahoo!Finance. We begin our data

sample on January 1, 1986 and end it on December 31, 2010 (T = 1, 303). For some BHCs, the

sample starts at a later period (see Table 9 for details). To define the financial system, we use

the WORLD-DS Banks index (Code: BANKSWD) which is provided by Datastream.

To control for the state-of-the economy, we include a vector Mt−1 of lagged macro-economic

fundamentals in index i’s and index j’s log return specification. Following Adrian and Brun-

nermeier [2] and Hautsch et al. [26], we confine ourselves to a small set of macro-economic

fundamentals that are well-known to capture time-variation in conditional moments of log re-

turns.
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Specifically,

1. the change in the implied volatility index (lagged), V XO, as computed by the Chicago

Options Board Exchange (abbr. VXO),

2. the change in the short term interest rate (lagged), which is defined as the 13-week

Treasury bill rate (abbr. TBR),

3. the change in the yield spread (lagged), which is defined as the difference between the

30-year Treasury yield and the short term interest rate (abbr. YSP),

4. the change in the credit spread (lagged), which is defined as the difference between the

interest rate on Moody’s BAA rated bonds and the 30-year Treasury yield (abbr. CSP),

5. the market return (lagged), which is defined as the S&P 500 index log return (abbr.

S&P).

Except for a liquidity spread and a cumulative real sector return, we use the same set of vari-

ables as suggested by Adrian and Brunnermeier [2] and Hautsch et al. [26]. The data of the

fundamentals are extracted from Yahoo!Finance.

Figure 8 depicts the evolution of the macro-economic fundamentals over time.

The top panel of Figure 8 shows the evolution of the V XO, which is a gauge of S&P 100

at-the-money index options experiencing one month out, over the period 1986 - 2010. In Octo-

ber, 1987 and late 2008, it skyrocketed to very high levels (e.g. on October 22, 2008 the VXO

closed at 70.4%). Late 2008 was experienced as a fearful time, which can also be concluded from

the observed levels of the credit spread. Particularly, the credit risk associated with Moody’s

BAA rated bonds was relatively high during late 2008.

At the end of 2009, the interest rate on 13-week Treasury bills reached an all-time low of

one basis point. We generally observe that the short term interest rate shows a cyclical pattern,

while the yield spread tends to be countercyclical. The logic behind this is that during economic

good times, central bankers will increase short term interest rates to moderate inflation and to

slow down the economy.
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Figure 8: Fundamentals
Evolution of the macro-economic fundamentals over time.

5.2 Summary statistics and Model performance

Table 8 and Table 9 report the sample size, mean, standard deviation, skewness, 5%-quantile,

median, 95%-quantile and the first, second and third order autocorrelation coefficients (denoted

by ρ1, ρ2 and ρ3, respectively) of the macro-economic fundamentals, the Bank Index (log return)

and the BHCs (log return). The BHC expected weekly log return ranges from 0.1% to 0.3%. In

general, the expected weekly return is slightly less than the median weekly return, which implies

a left-skewed empirical return distribution. The volatility of log returns for the Bank Index is

3.1%, while the volatility of log returns for the BHC ranges from 3.8% to 7.1%. We also observe

that the first order autocorrelation coefficients are negative, except for one BHC. This supports

the evidence for mean reversion in equity prices. However, higher order autocorrelation coeffi-

cients have no clear sign. The first order autocorrelation coefficient for the VXO, the 13-week

Treasury bill rate, the 30-year Treasury yield and the interest rate on Moody’s BAA rated bonds

is close to one, which means a high level of persistence in these variables. We also observe that

56% (14 out of 25) of the empirical return distributions are negatively skewed. Many authors

have also found varying degrees of skewness (see e.g. Jondeau and Rockinger [29] and Singleton

and Wingender [45]).
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Markov switching Empirical

BHC Std. Skew. Kurt. Std. Skew. Kurt.

BAC 0.0591 −0.2859 11.4709 0.0592 −0.3166 27.5513

JPM 0.0544 −0.0999 5.6378 0.0542 −0.1860 8.5902

C 0.0705 −0.6521 18.4582 0.0701 −1.5168 49.2842

WFC 0.0483 −0.1342 12.4204 0.0486 0.2473 17.1952

GS 0.0581 −0.0303 6.4053 0.0578 0.0787 7.7355

MS 0.0716 −0.0958 10.9480 0.0722 −1.0029 37.6688

MET 0.0625 −0.2183 13.9241 0.0619 −0.3471 16.5165

HBC 0.0411 −0.4474 11.2470 0.0410 −1.2750 11.3710

PNC 0.0492 −0.1508 7.6330 0.0492 −0.1494 13.9337

BK 0.0463 −0.1231 4.5547 0.0464 0.0296 3.0496

Table 4: Model Performance
The last three columns report the empirically observed standard deviation, skewness and

excess kurtosis. The first three columns report the standard deviation, skewness and excess
kurtosis generated by a Markov switching regression model, assuming the steady state.

Table 4 reports the moments of a Markov switching regression model under the condition that

the steady state probabilities apply. That is, it is assumed that the returns have converged

towards their steady state. The results should therefore be interpreted with care. Appendix A.2

shows the derivation of the moments of a Markov switching regression model, which is based

on a paper of Timmermann [46]. Not surprisingly, the empirically observed standard deviation

matches almost exactly the standard deviation generated by the Markov switching regression

model. As can be seen from the observed levels of the excess kurtosis10, the empirical return

distributions are all leptokurtic (i.e. have fatter tails than a Gaussian distribution). A Markov

switching regression model is capable - to some extent - of generating fat tails. In general, we

observe that a Markov switching regression model underestimates the excess kurtosis coefficient

(except for BK). The table shows mixed results regarding the skewness coefficient. In particular,

for BAC and PNC, the skewness coefficient generated by a Markov switching regression model

is almost equal to the empirically observed skewness coefficient.

So far, we have assumed that the (k × 1) parameter vector γi is non-switching. We now

examine the implication of this assumption. The parameter estimates of a Markov switching

regression model with switching coefficients can be found in Table 10. Except for S&P, the point

estimates do not differ much between state 0 and state 1.

10This is equal to the kurtosis parameter minus 3, which is the kurtosis of a Gaussian distribution.
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To test whether γi0 − γi1 6= 0, we can use the sum of the corresponding standard errors to

approximate the standard error of γi0 − γi1. Except for a few cases11, we found that γi0 is not

significantly different from γi1. The last two columns of Table 10 provide information on the

absolute deviation between the smoothed probabilities of a Markov switching regression model

with switching coefficients and the smoothed probabilities of a Markov switching regression

model with non-switching coefficients. We observe that the mean is, in general, close to zero,

while the standard deviation ranges from 0.014 to 0.031. We conclude that a specification

with switching parameters has little consequences for the inference regarding index i’s different

regimes.

5.3 Empirical Results

We present the main empirical results for three different model specifications. Model A and

Model B are versions of the models presented in Section 2. They only differ in the calibration

of the classifier. More precisely,

Model A: τ0 = 0.5 and τ1 = 0.5.

Model B: τ0 = 0.97 and τ1 = 0.97.

Depending on the realization of the smoothed state probability, index i is labeled to be in state

Sit = s at time t. By way of illustration, Figure 9 depicts the smoothed state probability of

being in crisis at time t.
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Figure 9: Smoothed State Probability BAC
This figure depicts the smoothed state probability of being in state Sit = 1 at time t.

11The parameter estimates of TBR and S&P on HBC and CSP on BK are significantly different between state
0 and state 1.
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The third model specification (henceforth called Model C) reads as follows

Rit =


αi0 +Mt−1γ

i + σi0ε
i
t if Sit = 0

αi1 +Mt−1γ
i + σi1ε

i
t if Sit = 1

(t = 1, ..., T ),

where εit
i.i.d.∼ N(0, 1).

Rjt =


α
j|i
0 +Mt−1γ

j|i + β
j|i
0 Rit + σj|iε

j|i
t if Sit = 0

α
j|i
1 +Mt−1γ

j|i + β
j|i
1 Rit + σj|iε

j|i
t if Sit = 1

(t = 1, ..., T ),

where ε
j|i
t

i.i.d.∼ N(0, 1).

Parameter estimates are obtained by employing the EM algorithm (cf. Section 3) and are

reported in Table 17.

Table 20 and Table 21 provide a ranking among the first ten BHCs.

5.3.1 Estimated correlation coefficient

We estimate Pearson correlation coefficients on the basis of model specification A. The results

can be found in Table 11 and are reported for j = Bank Index, i = BHC and j = BHC, i = Bank

Index. The results show that the estimated change in correlation is, in general, positive. That

is, correlations of returns increase during times of crises. This observation has been noticed by

many authors. The change in correlation between the Bank Index and C, BAC, HBC, MET and

PNC is relatively large, while the change in correlation between the Bank Index and GS and MS

is relatively small. In Table 12, we also report Spearman’s rho to capture non-linear responses.

These results confirm the fact that correlations of returns increase during times of crises. As

noted in Section 2, heteroskedasticity in returns affects estimates of correlation coefficients (i.e.

correlation coefficients are biased upwards). ∆ρ
j|i
∆βj|i captures the change in correlation that is

not ascribed to heteroskedasticity in index i’s returns (Forbes and Rigobon [18] call this the

“contagion effect”). The table shows mixed results regarding ∆ρ
j|i
∆βj|i . In particular, for j =

Bank Index and i = BHC, 3 out of 10 BHCs feature a negative ∆ρ
j|i
∆βj|i . By way of illustration,

Figure 10 depicts ∆ρ
j|i
∆βj|i versus ∆ρj|i.
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Figure 10: Estimated change in correlation
This figure depicts the estimated change in correlation during times of turmoil (vertical axis)

versus the estimated change in correlation during times of turmoil after controlling for a
change in the variance-covariance matrix of M and a change in the volatility of idiosyncratic
shocks (horizontal axis). We have j = Bank Index, i = BHC (square markers) and j = Bank

Index, i = Bank Index (circular markers).

If we assess the systemic risk relevance on the basis of ∆ρ
j|i
∆βj|i , then the BHCs located in

the northeast corner (square markers) can be regarded as systemically relevant banks.

5.3.2 Parameter estimates

Tables 13 through Table 17 provide information on parameter estimates. The parameter esti-

mates differ somewhat among the model specifications, but have the same order of magnitude.

Table 13, Table 14 and the first two columns of Table 17 consider the performance of the sytem

conditional on the BHC’s performance. In particular, the β̂
j|i
0 and β̂

j|i
1 parameter estimates

represent the fraction of shocks that are (on average) instantenously transmitted from the BHC

to the Bank Index during regime 0 and regime 1, respectively. As can be observed, the tables

reveal mixed results and in general it cannot be concluded that β
j|i
0 is smaller than β

j|i
1 . For

model A, the following table provides information on the significance of the individual regression

coefficients. One should be ware of the fact that an insignificant coefficient means that either

the data provide insufficient information to reject the null (crises are rare occurrences) or the

regression coefficient is negligibly close to zero.
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β
j|i
0 not significant β

j|i
0 significant β

j|i
1 not significant β

j|i
1 significant

JPM, PNC, BK,
STT, BBT, KEY,
NTRS, MTB,
ZION, MIC,
BPOP, FHN

BAC, C, WFC,
GS, MS, MET,
HBC, STI, AXP,
RF, FITB, SNV,
HTBAN

JPM, WFC, MS,
BK, BBT, RF,
KEY, NTRS,
MTB, SNV, HT-
BAN, MIC, BPOP,
FHN

BAC, C, GS, MET,
HBC, PNC, STI,
STT, AXP, FITB,
HTBAN

Table 5: Significance of parameter estimates
Significance level is 10%.

Comparison of Table 5 with Figure 10 reveals that β
j|i
1 is significant for BAC, C, GS, HBC and

PNC (i.e. the BHCs located in the northeast corner of Figure 10) and insignificant for JPM,

WFC, MS and BK.

We have also conducted a direct test to determine whether β
j|i
0 is significantly smaller than

β
j|i
1 . Only for STT and ZION, we are able to reject the null hypothesis. If we consider the

null hypothesis that β
j|i
0 is smaller than β

j|i
1 , then we cannot reject the null for any BHC at a

significance level of 10%.

Table 15, Table 16 and the last two columns of Table 17 consider the BHC’s performance

conditional on the performance of the system. We have again performed a test to determine

whether the regression coefficients are significantly different from zero at a significance level of

10%. The results are summarized below.

β
j|i
0 not significant β

j|i
0 significant β

j|i
1 not significant β

j|i
1 significant

JPM, MTB, HT-
BAN

BAC, C, WFC,
GS, MET, HBC,
STT, FITB, MS,
PNC, BK, STI,
BBT, AXP, RF,
KEY, NTRS,
ZION, MIC,
BPOP, SNV, FHN

JPM, MTB, HT-
BAN, MC, PNC,
BK, STI, BBT,
AXP, RF, KEY,
NTRS, ZION,
MIC, BPOP, SNV,
FHN

BAC, C, WFC,
GS, MET, HBC,
STT, FITB

Table 6: Significance of parameter estimates
Significance level is 10%.

We observe that β
j|i
0 is significant for most BHCs, while β

j|i
1 is insignificant for most BHCs.

This observation does, however, not imply that β
j|i
1 is zero for most BHCs. The t-values are

relatively large (in absolute value) for BAC, C, GS and HBC. We have also conducted a test to

determine whether β
j|i
0 is significantly smaller than β

j|i
1 .
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We are not able to reject any null hypothesis. Only for STT, we found a t-value smaller than

minus one.

5.3.3 Implications for supervision

We demonstrate one possible implication for supervision. Regulatory frameworks are often con-

cerned with the financial institution’s risk taking behavior seen in isolation (“micro prudential

aspect of regulation”). A commonly used measure to assess the institutions’s risk taking be-

havior is VaR. VaR is computed unconditionally and provides insight about the institution’s

performance under “normal market conditions”. Instead of employing a model for the condi-

tional mean of Rjt , we can also employ a model for the conditional quantiles of Rjt .

In what follows, we consider τ0 = τ1 = 1
2 .

We estimate the “unconditional VaR” (i.e. based on the entire sample) for index j at level

q, which is implicitly defined as

P{Rjt ≤ ˜V aR(q)
j|i
t } = q.

We impose the following parametric structure

˜V aR(q)
j|i
t = α̃j|i +Mt−1γ̃

j|i + β̃j|iRit + σ̃j|iε̃
j|i
t ,

where ε̃
j|i
t

i.i.d.∼ N(0, 1).

We also examine the “conditional VaR” for index j at level q, which is implicitly defined as

P{Rjt ≤ ¯V aR(q)
j|i
t } = q.

We impose the following parametric structure

¯V aR(q)
j|i
t = ᾱ

j|i
0 + (ᾱ

j|i
1 − ᾱ

j|i
0 )Ŝit +Mt−1γ̄

j|i + β̄
j|i
0 Rit(1− Ŝit) + β̄

j|i
1 RitŜ

i
t + σ̄j|iε

j|i
t ,

where ε
j|i
t

i.i.d.∼ N(0, 1) and Ŝit is index i’s inferred state at time t.
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Estimates are obtained by employing the technique of quantile regressions (Koenker and Bassett

[33]). We are especially interested in the systemic risk exposure. Figure 11 depicts the estimated

˜V aR(0.05)
j|i
t (green line) and the estimated ¯V aR(0.05)

j|i
t (blue line) for j = BAC, JPM and C

and i = Bank Index.
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Figure 11: VaR - time series
This figure depicts the estimated “unconditional VaR” (green line) and the estimated

“conditional VaR” (blue line) for j = BAC, JPM and C and i = Bank Index.

We observe that especially during the recent financial crisis, the estimated “conditional VaR” is

larger in absolute value than the estimated “unconditional VaR”. Expressed differently, condi-

tional on the system being under financial distress, the “unconditional VaR” does not appropri-

ately reflect the “conditional VaR”. During times of turmoil, the “unconditional VaR” may not

be the right device for assessing the institution’s risk taking behavior.

Analogous to ∆ CoVaR (Adrian and Brunnermeier [2]), we can also define the difference

∆V aR(q)
j|i
t = ¯V aR(q)

j|i
t − ˜V aR(q)

j|i
t .

Figure 12 depicts the histogram of ∆V aR(q)
j|i
t for a few BHCs.

The (left) tail thickness differ somewhat among the BHCs. We observe that C, WFC and

MS feature relatively thick left tails. That is, conditional on the system being under financial

distress, they have a relatively large exposure to systemic risk.
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Figure 12: VaR - histograms

This figure depicts the histogram of ∆V aR(q)
j|i
t for j = BAC, JPM, C, WFC, GS and MS and

i = Bank Index.

5.3.4 Measure of regime co-movement

In Table 18, we report the measure of regime co-movement. This measure can be interpreted as

a correlation coefficient in the sense that a reported measure of one represents perfect positive

correlation and a reported measure of minus one represents perfect negative correlation. The

reported measures range from 0.2509 to 0.8245. We observe that the regime co-movement

between the Bank Index and MS, MET and HBC is relatively large, while the regime co-

movement between the Bank Index and BK is relatively small. As noted by Billio et al. [7],

under the assumption of positive dependence, one should be aware of the fact that the reported

measure is a conservative measure of the “true” regime co-movement. The reported measure is

an average measure, but we can also define the time-varying measure

Φ̂i,j
t = 1− 2[P{Sit = 0|RiT ; θ̂i}P{Sjt = 1|RjT ; θ̂j}+ P{Sit = 1|RiT ; θ̂i}P{Sjt = 0|RjT ; θ̂j}].
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Figure 13 depicts Φ̂i,j
t between Bank of America and the Bank Index. The red ellipses indicate

the periods where Bank of America and the Bank Index are tightly coupled.
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Figure 13: Regime co-movement
This figure depicts the regime co-movement between Bank of America and the Bank Index.

We can also focus on the regime 1 co-movement. Specifically, the following measure represents

the “correlation” between Sit = 1 and Sjt = 1.

Φ̂i,j
t − 2P{Sit = 0|RiT ; θ̂i}P{Sjt = 0|RjT ; θ̂j}.

Figure 14 depicts the regime 1 co-movement between Bank of America and the Bank Index. We

observe that during the recent financial crisis, the regime 1 co-movement is almost equal to one.
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Figure 14: Regime 1 co-movement
This figure depicts the regime 1 co-movement between Bank of America and the Bank Index.

5.3.5 Time-varying transition probabilities

We examine the model specification of Section 4 with Zit−1 = (1, Ŝit−1), where Ŝit−1 is index i’s

inferred state at time t− 1. Parameter estimates can be found in Table 19. MET and C have a

relatively large impact on the transition probabilities of the Bank Index.
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Figure 15 depicts P{Sjt = 1|Sjt−1 = 0, Zit−1}.
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Figure 15: Time-varying transition probabilities Bank Index
This figure depicts the time-varying transition probability P{Sjt = 1|Sjt−1 = 0, Zit−1}. We have

j = Bank Index and i = BHC.

The probability of moving from state 0 to state 1 is larger during a period of turmoil (i.e.

Ŝit−1 = 1). We observe that C has a large effect on the transition probability, while JPM has

a negligible effect on the transition probability. This observation seems consistent with the

estimated change in correlation during times of turmoil (cf. Figure 10). Figure 16 depicts

P{Sjt = 1|Sjt−1 = 1, Zit−1}.
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Figure 16: Time-varying transition probabilities Bank Index
This figure depicts the time-varying transition probability P{Sjt = 1|Sjt−1 = 1, Zit−1}. We have

j = Bank Index and i = BHC.
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6 Concluding remarks

We have introduced a classifier that infers index i’s regimes on the basis of a Markov switching

regression specification. Conditional on index i being in a particular regime, we have estimated

index j’s conditional mean as an affine function of macro-economic state variables and index i’s

log returns. Due to the prediction error associated with index i’s inferred states, OLS estimates

are generally inconsistent and biased. In Section 3, we have developed an alternative consistent

estimation procedure. We have also briefly considered a Markov switching regression model with

time-varying transition probabilities.

The empirical study shows that correlations of returns, in general, increase during times of

market turmoil. The results are mixed regarding the change in the fraction of shocks that are

on average transmitted form index i to index j. We have also demonstrated a possible impli-

cation for supervision. Specifically, we have modeled the conditional quantile instead of the

conditional mean. The results indicate that “unconditional Value-at-Risk” might not be the

right device for assessing risk taking behavior during times of turmoil.

In future research we intend to incorporate firm-specific characteristics into the different model

specifications. We also intend to extend the Markov switching regression specification with

time-varying transition probabilities.
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A Appendix

A.1 Correlation coefficient

Assume that Rit is described by a Markov switching regression model, i.e.

Rit =


αi0 +Mt−1γ

i + σi0ε
i
t if Sit = 0

αi1 +Mt−1γ
i + σi1ε

i
t if Sit = 1

(t = 1, ..., T ),

where εit
i.i.d.∼ N(0, 1) and Sit is governed by a first-order Markov chain.

Suppose that Rjt is described by the following linear regression model

Rjt =


α
j|i
0 +Mt−1γ

j|i + β
j|i
0 Rit + σj|iε

j|i
t if Sit = 0

α
j|i
1 +Mt−1γ

j|i + β
j|i
1 Rit + σj|iε

j|i
t if Sit = 1

(t = 1, ..., T ),

where ε
j|i
t

i.i.d.∼ N(0, 1)

Assume the following

(A1) The usual OLS assumptions hold.

(A2) E{εitε
j|i
t } = 0.

We derive explicit expressions for the correlation coefficient under regime 0 and regime 1.

The correlation coefficient between index i and index j during state s is defined as follows

ρ
j|i
(s) =

C(s)(R
i
t, R

j
t )

[C(s)(R
i
t, R

i
t)C(s)(R

j
t , R

j
t )]

1
2

, (A.1)

where C(s)(·, ·) denotes the covariance.

Then C(s)(R
i
t, R

i
t) and C(s)(R

j
t , R

j
t ) are described by

C(s)(R
i
t, R

i
t) = γi

′
ΣM(s)γ

i + (σis)
2

C(s)(R
j
t , R

j
t ) = γj|i

′
ΣM(s)γ

j|i + (β
j|i
s )2(γi

′
ΣM(s)γ

i + (σis))
2 + ...

2β
j|i
s γj|i

′
ΣM(s)γ

i + (σj|i)2

,

where ΣM(s) represents the variance-covariance matrix of M under regime s.

49



The covariance C(s)(R
i
t, R

j
t ) can be written as follows

C(s)(R
i
t, R

j
t ) = C(s)(Mt−1γ

i + σisε
i
t,Mt−1γ

j|i + β
j|i
s (Mt−1γ

i + σisε
i
t) + σj|iε

j|i
t )

= γi
′
ΣM(s)γ

j|i + β
j|i
s γi

′
ΣM(s)γ

i + β
j|i
s (σis)

2.

The correlation coefficient ρ
j|i
(s) can then be expressed in terms of ΣM(s) and the parameter coefficients in

state s using (A.1). However, the states are not observed. We estimate Sit by (2.2) with τ0 = τ1 = 1
2 .

The sample estimate of ΣM(s) is specified as follows

Σ̂M(s) =
1

|Ts|
∑
t∈Ts

M
′

t−1Mt−1,

where |Ts| denotes the cardinality of Ts.

The estimated change in correlation is then given by

∆ρ̂j|i = ρ̂
j|i
(1) − ρ̂

j|i
(0),

where ρ̂
j|i
(s) = ρj|i(γ̂i, σ̂j|i, γ̂j|i, β̂

j|i
s , Σ̂M(s), σ̂

i
s).

We propose the following decomposition

∆ρ̂j|i = ρj|i(γ̂i, σ̂j|i, γ̂j|i, β̂
j|i
1 , Σ̂M(1), σ̂

i
1)− ρj|i(γ̂i, σ̂j|i, γ̂j|i, β̂j|i0 , Σ̂M(1), σ̂

i
1) + ...

ρj|i(γ̂i, σ̂j|i, γ̂j|i, β̂
j|i
0 , Σ̂M(1), σ̂

i
1)− ρj|i(γ̂i, σ̂j|i, γ̂j|i, β̂j|i0 , Σ̂M(0), σ̂

i
1) + ...

ρj|i(γ̂i, σ̂j|i, γ̂j|i, β̂
j|i
0 , Σ̂M(0), σ̂

i
1)− ρj|i(γ̂i, σ̂j|i, γ̂j|i, β̂j|i0 , Σ̂M(0), σ̂

i
0)

= ∆ρ̂
j|i
∆βj|i + ∆ρ̂

j|i
∆ΣM + ∆ρ̂

j|i
∆σi .
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A.2 Moments of a Markov switching regression model

The vector of steady state probabilities π solves the following equation

Pπ = π.

Assuming that the steady state probabilities apply, Timmermann [46] has shown that the central moments

of a Markov switching regression model can be written as follows (use the Binomial Theorem)

E{(Ri − E{Ri})n} =
∑1
s=0 πsE{(αis +Mγi + σisε

i − E{Ri})n}

=
∑1
s=0 πs

∑n
k=0

(
n
k

)
(σis)

kE{(αis +Mγi − E{Ri})n−k(εi)k}

=
∑1
s=0 πs

∑n
k=0

(
n
k

)
(σis)

kE{(π1−s(α
i
s − αi(1−s)))

n−k(εi)k}

=
∑1
s=0 πs

∑n
k=0

(
n
k

)
(σis)

k(π1−s(α
i
s − αi(1−s)))

n−kE{(εi)k}.

He has also derived explicit formulas for the variance, skewness and excess kurtosis. Specifically,

E{(Ri − E{Ri})2} = π0(σi0)2 + π1(σi1)2 + π0π1(αi0 − αi1)2

E{(Ri − E{Ri})3} = π0π1(αi0 − αi1){3[(σi0)2 − (σi1)2] + (1− 2π2
0)(αi0 − αi1)2}

E{(Ri − E{Ri})4} = π1{3(σi1)4 + π4
0(αi0 − αi1)4 + 6π2

0(σi1)2(αi0 − αi1)2}+ ...

π0{3(σi0)4 + π4
1(αi0 − αi1)4 + 6π2

1(σi0)2(αi0 − αi1)2}.

The variance, skewness and excess kurtosis are functions of the second, third and fourth central moment.
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A.3 Tables

Code BHC

BAC BANK OF AMERICA CORPORATION
JPM JPMORGAN CHASE & CO.
C CITIGROUP INC.
WFC WELLS FARGO & COMPANY
GS GOLDMAN SACHS GROUP, INC., THE
MS MORGAN STANLEY
MET METLIFE, INC.
HBC HSBC NORTH AMERICA HOLDINGS INC.
PNC PNC FINANCIAL SERVICES GROUP, INC., THE
BK BANK OF NEW YORK MELLON CORP., THE
STI SUNTRUST BANKS, INC.
STT STATE STREET CORPORATION
BBT BB&T CORPORATION
AXP AMERICAN EXPRESS COMPANY
RF REGIONS FINANCIAL CORPORATION
FITB FIFTH THIRD BANCORP
KEY KEYCORP
NTRS NORTHERN TRUST CORPORATION
MTB M&T BANK CORPORATION
HTBAN HUNTINGTON BANCSHARES INCORPORATED
ZION ZIONS BANCORPORATION
MIC MARSHALL & ILSLEY CORPORATION
BPOP POPULAR, INC.
SNV SYNOVUS FINANCIAL CORP.
FHN FIRST HORIZON NATIONAL CORPORATION

Table 7: List of Banking Holding Companies
This table reports a list of bank holding companies and their abbreviations.
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Quantile Autocorrelation

BHC T Mean Std. Skew. 5% 50% 95% ρ1 ρ2 ρ3

VXO 1304 21.375 9.128 2.296 11.204 19.920 37.482 0.916 0.872 0.825

TBR 1304 4.070 2.203 −0.224 0.140 4.670 7.703 0.996 0.993 0.989

YSP 1304 2.221 1.395 −0.004 0.060 2.080 4.303 0.994 0.987 0.981

CSP 1304 1.869 0.674 2.474 1.240 1.690 2.783 0.984 0.976 0.967

S&P 1304 826.248 416.551 −0.006 251.958 895.775 1441.393 0.997 0.995 0.992

Bank Index 1304 0.001 0.031 −0.566 −0.047 0.003 0.046 −0.023 −0.013 0.067

Table 8: Summary statistics fundamentals and Bank Index
This table reports summary statistics for the fundamentals and the return series of the Bank Index.
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Quantile Autocorrelation

BHC T Mean Std. Skew. 5% 50% 95% ρ1 ρ2 ρ3

BAC 1282 0.001 0.059 −0.317 −0.079 0.003 0.075 −0.035 0.047 −0.089

JPM 1303 0.002 0.054 −0.187 −0.082 0.003 0.084 −0.087 0.035 −0.037

C 1303 0.001 0.070 −1.520 −0.078 0.001 0.081 −0.075 0.028 −0.082

WFC 1303 0.003 0.049 0.245 −0.061 0.003 0.068 −0.158 0.048 −0.107

GS 607 0.002 0.058 0.079 −0.081 0.004 0.083 −0.156 0.069 0.022

MS 930 0.002 0.072 −1.003 −0.087 0.001 0.097 −0.236 0.054 0.010

MET 548 0.002 0.062 −0.347 −0.069 0.002 0.079 −0.044 −0.068 −0.069

HBC 597 0.001 0.041 −1.275 −0.056 0.003 0.063 −0.048 −0.000 0.004

PNC 1163 0.002 0.049 −0.149 −0.066 0.002 0.075 −0.155 0.045 −0.001

BK 1303 0.002 0.046 0.030 −0.068 0.002 0.076 −0.094 0.012 −0.027

STI 1199 0.002 0.054 −0.050 −0.067 0.003 0.067 −0.181 0.078 0.004

STT 1276 0.002 0.053 −1.254 −0.065 0.002 0.080 −0.065 −0.048 −0.030

BBT 1082 0.002 0.042 0.210 −0.063 0.001 0.074 −0.016 −0.013 −0.035

AXP 1303 0.002 0.048 −0.024 −0.073 0.001 0.072 −0.373 0.027 −0.049

RF 1082 0.001 0.058 0.795 −0.072 0.002 0.063 −0.160 0.063 0.036

FITB 1082 0.002 0.071 0.414 −0.069 0.001 0.080 −0.137 0.064 0.112

KEY 1207 0.001 0.055 −1.198 −0.069 0.003 0.069 −0.168 0.012 −0.074

NTRS 1082 0.003 0.042 −0.042 −0.062 0.003 0.067 −0.108 0.023 −0.021

MTB 1001 0.003 0.038 0.144 −0.054 0.002 0.058 −0.028 −0.042 −0.043

HTBAN 1082 0.001 0.063 1.392 −0.077 0.001 0.070 −0.105 0.066 0.070

ZION 1082 0.002 0.059 0.819 −0.080 0.002 0.076 −0.067 −0.034 0.007

MIC 1082 0.001 0.058 0.505 −0.077 0.002 0.071 −0.058 0.016 0.024

BPOP 1082 0.001 0.055 −0.056 −0.072 0.000 0.069 0.042 0.022 0.085

SNV 1093 0.001 0.058 −0.363 −0.075 0.000 0.079 −0.130 −0.002 0.049

FHN 1082 0.002 0.050 0.143 −0.070 0.002 0.071 −0.190 0.063 −0.069

Table 9: Summary statistics
This table reports summary statistics for the return series of various BHCs.
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Parameter estimates in regime 0 Parameter estimates in regime 1 ∆ Prob.

BHC VIX TBR YSP CSP S&P VIX TBR YSP CSP S&P Mean Std.

BAC 0.001 −0.027 −0.019 −0.027 −0.012 0.002 −0.051 −0.071 0.082 0.466 0.005 0.014

(0.001) (0.014) (0.012) (0.013) (0.079) (0.002) (0.088) (0.082) (0.072) (0.375)

JPM −0.000 −0.006 −0.005 −0.011 −0.170 0.001 −0.031 −0.010 0.065 0.323 0.006 0.019

(0.001) (0.015) (0.013) (0.014) (0.096) (0.001) (0.048) (0.050) (0.041) (0.206)

C 0.002 −0.039 −0.022 −0.051 0.004 0.001 −0.085 −0.189 0.184 1.077 0.005 0.019

(0.001) (0.016) (0.014) (0.015) (0.043) (0.003) (0.130) (0.151) (0.111) (0.603)

WFC 0.000 −0.025 −0.005 0.013 −0.068 0.000 0.015 −0.023 0.067 −0.160 0.001 0.004

(0.000) (0.013) (0.012) (0.012) (0.067) (0.003) (0.158) (0.160) (0.089) (0.545)

GS 0.000 −0.027 −0.002 −0.011 0.079 0.004 −0.013 −0.085 −0.045 −0.037 0.008 0.023

(0.001) (0.031) (0.024) (0.018) (0.132) (0.004) (0.086) (0.073) (0.060) (0.550)

MS 0.001 0.018 0.018 0.003 −0.054 0.004 0.054 −0.011 0.029 −0.227 0.004 0.016

(0.001) (0.024) (0.021) (0.026) (0.138) (0.008) (0.270) (0.300) (0.160) (1.221)

MET 0.001 −0.030 −0.004 −0.015 −0.124 0.001 −0.084 −0.020 0.099 0.638 0.009 0.019

(0.001) (0.021) (0.018) (0.014) (0.127) (0.004) (0.151) (0.117) (0.085) (0.645)

HBC 0.001 −0.022 −0.018 −0.026 0.110 0.006 −0.191 −0.065 −0.002 1.105 0.007 0.031

(0.001) (0.016) (0.014) (0.012) (0.078) (0.003) (0.077) (0.067) (0.025) (0.346)

PNC 0.001 −0.009 −0.003 −0.002 −0.075 −0.000 −0.002 0.023 0.092 0.145 0.008 0.020

(0.001) (0.012) (0.011) (0.012) (0.087) (0.002) (Inf) (0.035) (0.039) (0.288)

BK 0.001 −0.026 −0.021 −0.022 −0.124 0.002 0.021 0.028 0.052 0.169 0.005 0.014

(0.001) (0.014) (0.012) (0.013) (0.089) (0.001) (0.029) (0.027) (0.026) (0.134)

Table 10: Model comparison
This table reports parameter estimates of Markov switching regression models with switching coefficients. Standard errors are in parentheses. The last
two columns provide information on the absolute deviation between the smoothed probabilities of a Markov switching regression model with switching

coefficients and the smoothed probabilities of a Markov switching regression model with non-switching coefficients.
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j = Bank Index, i = BHC j = BHC, i = Bank Index

BHC ∆ρj|i ∆ρ
j|i
∆βj|i ∆ρ

j|i
∆ΣM ∆ρ

j|i
∆σi ∆ρj|i ∆ρ

j|i
∆βj|i ∆ρ

j|i
∆ΣM ∆ρ

j|i
∆σi

BAC 0.148 0.065 −0.094 0.177 0.214 0.081 −0.030 0.163

JPM 0.045 0.019 −0.037 0.062 0.083 −0.005 −0.012 0.100

C 0.216 0.118 −0.148 0.246 0.286 0.157 −0.029 0.158

WFC 0.064 −0.042 −0.147 0.254 0.150 0.039 −0.070 0.181

GS 0.096 0.032 −0.052 0.117 −0.009 −0.210 −0.137 0.338

MS 0.062 −0.018 −0.126 0.207 −0.117 −0.284 −0.146 0.313

MET 0.121 −0.007 −0.197 0.325 0.434 0.255 −0.074 0.254

HBC 0.138 0.070 −0.128 0.197 0.161 −0.063 −0.074 0.298

PNC 0.126 0.085 −0.061 0.102 0.159 0.060 −0.057 0.156

BK 0.021 0.025 −0.063 0.058 0.027 −0.090 −0.048 0.166

Table 11: Estimated change in correlation
This table reports the estimated change in the correlation coefficient.
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j = Bank Index, i = BHC j = BHC, i = Bank Index

BHC Crisis Non-crisis Crisis Non-crisis

BAC 0.1650 0.0615 0.0899 0.0629

JPM 0.1250 0.0087 0.1075 0.0420

C 0.2743 0.0406 0.0988 0.0586

WFC -0.0547 0.0559 0.0567 0.0286

GS 0.0688 0.0931 0.1140 0.0770

MS 0.0827 0.0496 0.0617 0.0554

MET 0.2539 -0.0306 0.2349 0.0091

HBC 0.2775 0.1232 0.1596 0.1662

PNC 0.1018 -0.0074 0.0334 0.0199

BK 0.0752 0.0094 0.0745 0.0294

Table 12: Spearman’s rho
This table reports Spearman’s rank correlation coefficient.
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Model A Model B

BHC β
j|i
0 β

j|i
1 β

j|i
0 β

j|i
1

BAC 0.048 0.069 0.034 0.079

(0.018) (0.028) (0.023) (0.031)

JPM 0.029 0.037 0.009 0.036

(0.021) (0.027) (0.027) (0.030)

C 0.041 0.069 0.044 0.072

(0.019) (0.022) (0.020) (0.024)

WFC 0.075 0.059 0.106 0.059

(0.022) (0.041) (0.026) (0.044)

GS 0.062 0.077 0.071 0.093

(0.024) (0.038) (0.023) (0.042)

MS 0.043 0.038 0.036 0.039

(0.015) (0.032) (0.017) (0.035)

MET 0.080 0.078 0.065 0.073

(0.032) (0.036) (0.034) (0.038)

HBC 0.098 0.141 0.135 0.143

(0.036) (0.071) (0.043) (0.074)

PNC 0.034 0.071 0.002 0.075

(0.022) (0.038) (0.029) (0.044)

BK 0.034 0.048 0.022 0.039

(0.023) (0.031) (0.026) (0.033)

STI 0.074 0.054 0.074 0.051

(0.026) (0.032) (0.027) (0.036)

STT 0.026 0.124 0.034 0.130

(0.018) (0.048) (0.023) (0.057)

BBT 0.017 0.059 -0.033 0.062

(0.029) (0.036) (0.044) (0.040)

AXP 0.045 0.066 0.036 0.072

(0.019) (0.039) (0.035) (0.052)

RF 0.082 0.032 0.070 0.029

(0.028) (0.035) (0.032) (0.036)

Table 13: Regression coefficients
This table reports the estimated regression coefficients for two different model specifications.

The robust standard errors are in parentheses. We have j = Bank index and i = BHC.
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Model A Model B

BHC β
j|i
0 β

j|i
1 β

j|i
0 β

j|i
1

FITB 0.052 0.069 0.041 0.074

(0.021) (0.035) (0.020) (0.035)

KEY 0.030 0.032 0.052 0.028

(0.024) (0.029) (0.029) (0.032)

NTRS 0.026 0.033 0.030 0.033

(0.021) (0.044) (0.025) (0.055)

MTB 0.059 0.016 0.084 0.025

(0.037) (0.054) (0.044) (0.059)

HTBAN 0.070 0.036 0.018 0.032

(0.026) (0.030) (0.033) (0.032)

ZION -0.024 0.059 -0.026 0.057

(0.027) (0.027) (0.031) (0.030)

MIC 0.040 0.051 0.039 0.052

(0.027) (0.033) (0.028) (0.034)

BPOP 0.032 0.054 0.037 0.052

(0.030) (0.041) (0.034) (0.044)

SNV 0.071 0.042 0.030 0.038

(0.025) (0.029) (0.024) (0.031)

FHN 0.027 0.023 0.024 0.015

(0.024) (0.043) (0.026) (0.046)

Table 14: Regression coefficients – continued from previous page
This table reports the estimated regression coefficients for two different model specifications.

The robust standard errors are in parentheses. We have j = Bank index and i = BHC.
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Model A Model B

BHC β
j|i
0 β

j|i
1 β

j|i
0 β

j|i
1

BAC 0.270 0.363 0.344 0.360

(0.111) (0.172) (0.200) (0.206)

JPM 0.159 0.154 0.221 0.096

(0.098) (0.145) (0.149) (0.176)

C 0.318 0.534 0.423 0.531

(0.126) (0.261) (0.208) (0.319)

WFC 0.212 0.247 0.402 0.245

(0.083) (0.147) (0.126) (0.184)

GS 0.472 0.289 0.512 0.323

(0.174) (0.155) (0.276) (0.178)

MS 0.543 0.210 0.588 0.158

(0.276) (0.200) (0.462) (0.245)

MET 0.296 0.526 0.303 0.586

(0.178) (0.243) (0.211) (0.251)

HBC 0.321 0.279 0.313 0.326

(0.107) (0.135) (0.163) (0.148)

PNC 0.203 0.254 0.281 0.357

(0.100) (0.166) (0.169) (0.195)

BK 0.191 0.115 0.312 0.130

(0.081) (0.111) (0.120) (0.138)

STI 0.285 0.276 0.157 0.322

(0.105) (0.190) (0.180) (0.235)

STT 0.164 0.436 0.162 0.519

(0.088) (0.219) (0.152) (0.277)

BBT 0.208 0.087 0.282 0.140

(0.078) (0.115) (0.126) (0.133)

AXP 0.213 0.183 0.224 0.177

(0.087) (0.115) (0.146) (0.139)

RF 0.294 0.187 0.341 0.291

(0.113) (0.231) (0.202) (0.282)

Table 15: Regression coefficients
This table reports the estimated regression coefficients for two different model specifications.

The robust standard errors are in parentheses. We have j = BHC and i = Bank Index.
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Model A Model B

BHC β
j|i
0 β

j|i
1 β

j|i
0 β

j|i
1

FITB 0.368 0.651 0.365 0.885

(0.140) (0.373) (0.226) (0.448)

KEY 0.313 0.057 0.486 0.108

(0.139) (0.168) (0.288) (0.209)

NTRS 0.160 0.028 0.142 0.039

(0.085) (0.114) (0.140) (0.140)

MTB 0.042 0.061 0.041 0.125

(0.080) (0.140) (0.130) (0.176)

HTBAN 0.187 0.333 0.166 0.454

(0.127) (0.253) (0.222) (0.308)

ZION 0.189 0.318 0.273 0.426

(0.107) (0.217) (0.169) (0.264)

MIC 0.268 0.261 0.198 0.299

(0.117) (0.213) (0.206) (0.259)

BPOP 0.274 0.240 0.191 0.362

(0.111) (0.268) (0.164) (0.327)

SNV 0.319 0.230 0.492 0.303

(0.120) (0.170) (0.210) (0.213)

FHN 0.250 0.004 0.305 -0.027

(0.119) (0.170) (0.215) (0.204)

Table 16: Regression coefficients – continued from previous page
This table reports the estimated regression coefficients for two different model specifications.

The robust standard errors are in parentheses. We have j = BHC and i = Bank Index.
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j = Bank Index, i = BHC j = BHC, i = Bank Index

BHC β
j|i
0 β

j|i
1 β

j|i
0 β

j|i
1

BAC 0.061 0.063 0.220 0.400

(0.017) (0.029) (0.097) (0.152)

JPM 0.034 0.035 0.146 0.165

(0.016) (0.026) (0.095) (0.138)

C 0.071 0.057 0.197 0.616

(0.021) (0.033) (0.119) (0.222)

WFC 0.080 0.056 0.303 0.190

(0.019) (0.037) (0.072) (0.124)

GS 0.063 0.076 0.487 0.288

(0.018) (0.032) (0.154) (0.226)

MS 0.049 0.034 0.570 0.199

(0.016) (0.033) (0.129) (0.218)

MET 0.074 0.079 0.218 0.572

(0.178) (0.243) (0.157) (0.390)

HBC 0.140 0.113 0.266 0.314

(0.026) (0.081) (0.099) (0.184)

PNC 0.051 0.063 0.144 0.299

(0.014) (0.033) (0.081) (0.117)

BK 0.044 0.044 0.230 0.098

(0.023) (0.069) (0.076) (0.108)

Table 17: Regression coefficients
This table reports the estimated regression coefficients for Model C. The bootstrap standard

errors are in parentheses.
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BAC JPM C WFC GS MS MET HBC PNC BK BIX

BAC 1 0.6135 0.7788 0.7694 0.6732 0.7833 0.7422 0.7366 0.7189 0.4682 0.6214
JPM 1 0.5191 0.5321 0.5452 0.5904 0.4220 0.3319 0.5934 0.7203 0.4504

C 1 0.8165 0.5781 0.7834 0.7482 0.7896 0.6510 0.3702 0.6686
WFC 1 0.6961 0.7779 0.7493 0.7386 0.6773 0.3700 0.6665
GS 1 0.7196 0.6903 0.5590 0.5966 0.4419 0.6425
MS 1 0.7966 0.7540 0.6776 0.4495 0.7608

MET 1 0.8245 0.6761 0.3412 0.7947
HBC 1 0.6163 0.2509 0.7763
PNC 1 0.5161 0.6023
BK 1 0.2939
BIX 1

Table 18: Measure of regime co-movement
This table reports the measure of regime co-movement between index i and index j. BIX is the abbreviation of Bank Index.
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Parameter estimates p00,t Parameter estimates p11,t

BHC Constant Ŝit−1 Constant Ŝit−1

BAC 4.2526 −3.8274 0.6234 1.2065

JPM 4.3864 −1.3988 0.6165 1.8864

C 3.8881 −26.4341 0.1552 20.5399

WFC 4.2081 −3.0762 0.8758 1.6596

GS 4.8809 7.3440 2.6581 7.1963

MS 4.7408 −3.0770 0.9409 1.7877

MET 4.9701 −14.9760 −21.8856 24.9520

HBC 4.7216 −5.8315 0.9826 4.1194

PNC 6.0647 −4.3701 −1.9696 3.7343

BK 4.0275 −0.0700 1.0179 2.1498

Table 19: Time-varying transition probabilities
This table reports the parameter estimates of a Markov switching regression model with

time-varying transition probabilities. We have j = Bank Index and i = BHC.
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β
j|i
1 − β

j|i
0 β

j|i
1

∆ρj|i ∆ρ
j|i
∆βj|i Model A Model B Model C Model A Model B Model C

C C HBC PNC GS HBC HBC HBC

BAC PNC PNC BAC PNC MET GS MET

HBC HBC C C MET GS BAC GS

PNC BAC BAC JPM BAC PNC PNC BAC

MET GS GS GS JPM C MET PNC

GS BK BK BK BK BAC C C

WFC JPM JPM HBC C WFC WFC WFC

MS MET MET MET MS BK MS BK

JPM MS MS MS WFC MS BK JPM

BK WFC WFC WFC HBC JPM JPM MS

Table 20: Ranking — Systemic Risk Contribution
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β
j|i
1 − β

j|i
0 β

j|i
1

∆ρj|i ∆ρ
j|i
∆βj|i Model A Model B Model C Model A Model B Model C

MET MET BAC BAC C C MET C

C C GS GS MET MET C MET

BAC BAC MS HBC BAC BAC BAC BAC

HBC PNC WFC MS PNC GS PNC HBC

PNC WFC MET MET HBC HBC HBC PNC

WFC JPM HBC WFC JPM PNC GS GS

JPM HBC PNC C WFC WFC WFC MS

BK BK C PNC BK MS MS WFC

GS GS BK BK GS JPM BK JPM

MS MS JPM JPM MS BK JPM BK

Table 21: Ranking – Systemic Risk Exposure
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