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1 Introduction

The pension fund industry has grown dramatically over the past four decades: U.S. total

retirement assets rose from 369 billion dollars in 1974 to 23 trillion dollars in 2013 (ICI, 2014).

During the same period, we have seen in particular a pronounced increase in retirement saving

through personal retirement accounts, such as IRAs and DC plans (Poterba, Venti, and Wise,

2009). More specifically, the percentage of U.S. total retirement assets accounted for by IRAs

and DC plans grew from about 18% in 1974 to about 54% in 2013 (ICI, 2014). These figures

highlight the importance of adequate individual consumption, savings and investment decisions

over the life cycle, and of the design of such individual financial plans.

Since the seminal works of Merton (1969, 1971) and Samuelson (1969), a considerable

number of authors have studied optimal consumption and portfolio choice over the life cycle in a

wide variety of settings. Standard life cycle models assume that preferences are represented by

expected utility with constant relative risk aversion (CRRA); see, e.g., Wachter (2002), Cocco,

Gomes, and Maenhout (2005), Liu (2007), Gomes, Kotlikoff, and Viceira (2008), to name just

a few. With such standard preferences (and without constraints), the optimal log consumption

choice is a linear function of the log state price density (see, e.g., Karatzas and Shreve, 1998,

p. 103). Furthermore, under such standard preferences, financial shocks are directly absorbed

into the optimal log consumption choice: a CRRA agent chooses to instantaneously adjust

consumption to financial shocks.

These predictions of standard life cycle models stand in sharp contrast to actual income

streams generated by financial and insurance products. Financial fiduciaries have developed a

variety of features, options and guarantees so as to make base financial products more attractive

for individuals (see, e.g., van Rooij, Kool, and Prast, 2007; Antoĺın, Payet, Whitehouse, and

Yermo, 2011; Bodie and Taqqu, 2011). These include guaranteed minimum income benefits,

guaranteed minimum withdrawal benefits and minimum rate of return guarantees. In addition,

many actively traded financial derivative securities have a nonlinear payoff structure, and

provide some degree of protection against downside risk. The popularity of these products

contradicts the linearity of the standard consumption rule.

Furthermore, a substantial body of literature (see, e.g., Sundaresan, 1989; Constantinides,

1990) argues that agents become accustomed to a certain level of consumption. This strand

of the literature suggests that agents evaluate and adjust consumption relative to a reference

(or a habit) level. The empirical literature (see, e.g., Lupton, 2003) provides evidence of habit

persistence in consumption, with consumption being smooth relative to wealth. Moreover,

financial fiduciaries (such as life insurers and pension funds) increasingly offer plans with payout

streams that are not directly but only sluggishly linked to the performance of the underlying

investment portfolio.1 There have been numerous attempts to reconcile theory and practice

1In many European countries, but also in the US and Japan, the importance of participating (or with profits)
annuities is growing (see, e.g., Guillén, Jørgensen, and Nielsen, 2006; Maurer, Mitchell, and Rogalla, 2010). A
key characteristic of participating annuities is that investment returns are smoothed so as to reduce payout
volatility. For example, in the Netherlands, pension funds are allowed to gradually absorb financial shocks into
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of life cycle consumption and portfolio choice. However, to the best of our knowledge, the

literature has not yet been able to provide a fully satisfactory answer that accommodates

these features — nonlinearity of the consumption rule and smoothing of financial shocks — all

together.

In this paper, we explore consumption and portfolio choice under reference-dependent

preferences. More specifically, we analyze optimal consumption and portfolio choice under

the utility (or value) function of prospect theory (Kahneman and Tversky, 1979; Tversky

and Kahneman, 1992) and adopt an endogenous updating mechanism for the dynamics of

the reference level.2 The consumption and portfolio choice model we consider is able to

generate both a nonlinear consumption rule and smoothing of financial shocks in an integrated

framework. The optimal choice seeks protection against consumption losses due to financial

shocks inducing a (“soft”) guarantee on consumption. Furthermore, the optimal consumption

choice exhibits sluggish response to financial shocks.

Following prospect theory, we assume that the agent’s instantaneous utility function is

represented by the two-part power utility function. This utility function incorporates several

behavioral properties, such as reference dependence (i.e., the carriers of utility are gains and

losses rather than absolute levels of consumption), loss aversion (i.e., losses hurt more than

gains satisfy), and diminishing sensitivity (i.e., the impact of a marginal change in consumption

decreases as the agent moves further away from the reference level).3,4 Diminishing sensitivity

implies a convex utility function below the reference level.5 The empirical literature is, however,

inconclusive as to whether the utility function is convex in the loss domain; see, e.g., Abdellaoui,

Vossmann, and Weber (2005).6 Therefore, the current paper considers not only the case of a

convex utility function in the loss domain, but also the case of a concave utility function in the

loss domain.7

Our main results can be summarized as follows. First, we demonstrate that the agent

optimally chooses to divide the states of the economy into two categories: insured states (i.e.,

good to intermediate economic scenarios or, equivalently, low to intermediate state prices)

and uninsured states (i.e., bad economic scenarios or high state prices). In insured states,

consumption is guaranteed to be larger than the reference level, while in uninsured states,

consumption is smaller than the reference level. If consumption is larger (smaller) than the

pension entitlements. Also, life insurers use special smoothing techniques in an attempt to stabilize payouts.
2We abstract away from (subjective) probability weighting.
3Kőszegi and Rabin (2006, 2007) develop a class of reference-dependent preferences with endogenous updating
(and without probability weighting). See Section 3 for further details about the connection between the class
of Kőszegi and Rabin (2006, 2007) and our model.

4According to Wakker (2010, p. 242), “reference dependence, in combination with loss aversion, is one of the
most pronounced empirical phenomena in decision under risk and uncertainty.”

5We note that, in our context, a convex utility function implies risk-seeking behavior.
6Etchart-Vincent (2004) investigated the sensitivity of the utility function to the magnitude of the underlying
payoffs. She found that a larger proportion of the subjects exhibited concavity when facing large losses than
when facing small losses.

7The literature also provides some support for the idea that agents exhibit an inverted S-shaped utility function
in the loss domain. For example, Laughhunn, Payne, and Crum (1980) found that a large proportion of the
subjects (64%) switched from risk-seeking to risk-averse behavior when facing ruinous losses.

2



reference level, then the agent experiences a gain (loss). Because of loss aversion, the agent has

a strong preference to maintain consumption above the reference level, but when the state of

the economy is really bad, the (soft) guarantee on consumption can no longer be maintained.

More specifically, the optimal consumption profile (i.e., the optimal consumption choice as a

function of the log state price density) displays a 90◦ rotated S-shaped pattern.8 We show that

when the agent becomes more afraid of incurring losses, the probability of consumption falling

below the reference level decreases. At the same time, the agent must give up some upward

potential in order to finance this more conservative consumption profile.

Second, under our preference assumptions, the optimal consumption choice gradually adjusts

to financial shocks. Kahneman and Tversky (1979) argue that the status quo, an expectation

or an aspiration level can serve as a reference level, but do not specify how the reference level

is formed and updated over time. Following the internal habit formation literature (see, e.g.,

Constantinides, 1990), we assume that the reference level depends on the agent’s own past

consumption choices. More specifically, we assume that the reference level can be decomposed

into two components: a stochastic and a deterministic component.9 The stochastic component

is given by an exponentially weighted average of the agent’s own past consumption choices.

The specification of the reference level is motivated by the idea that agents become accustomed

to a certain level of consumption. A main implication of the consumption and portfolio choice

model we consider is that after a financial shock, optimal consumption adjustment is sluggish

(at least in the short run). That is, a current financial shock has a larger impact on consumption

in the distant future than on consumption in the near future. Part of the financial shock will be

directly reflected into gains and losses, another part will smoothly enter through the reference

level, which is endogenously updated over time.

Third, the optimal portfolio profile displays a U-shaped pattern: the total dollar amount

invested in risk-bearing assets will be lower in intermediate economic scenarios than in good

or bad economic scenarios. As a by-product of interest in its own right, the agent implements

a life cycle investment strategy, even without taking human capital into account.10 Since the

agent has less time to absorb financial shocks as he grows older, the equity risk exposure, on

average, decreases over the life cycle.

Finally, to investigate the impact of implementing suboptimal consumption and portfolio

strategies on the agent’s welfare, we conduct a welfare analysis. We compute the welfare

losses (in terms of the relative decline in certainty equivalent consumption) associated with

8The exact behavior of the agent below the reference level depends on the shape of utility function in the loss
domain.

9The reference level is characterized by three parameters: the initial reference level, an endogeneity parameter
(which measures the degree of endogeneity) and a deprecation parameter (which measures the rate at which
the agent depreciates the reference level).

10Under CRRA utility, the agent has a constant equity risk exposure if the investment opportunity set is assumed
to be constant. Bodie, Merton, and Samuelson (1992) give a justification for adopting a life cycle investment
strategy based on human capital considerations. If human capital is risk-free, then agents implicitly hold a
risk-free asset. To offset this implicit risk-free asset holding, financial wealth should be tilted toward risky
assets. As the share of human capital in total wealth decreases from one to zero during the working period,
the optimal proportion of financial wealth invested in risk-free assets increases over the life cycle.
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implementing suboptimal consumption and portfolio strategies. Because of the endogeneity

of the reference level, this requires a non-standard computation of certainty equivalents. The

results indicate that welfare losses can be substantial. Particularly, for our realistic parameter

values, we find that the welfare loss associated with implementing the classical Merton strategy

(see Merton, 1969) can be as large as 40%. We also compute the welfare losses of suboptimal

behavior due to incorrect assumptions on the underlying agent’s preference parameters. We find

that consumption and portfolio strategies based on incorrectly assuming a constant exogenous

reference level (or only a very limited degree of endogeneity), thus implying no (or only very

limited) smoothing of financial shocks, substantially reduce welfare.

To solve the consumption and portfolio choice model, we first apply the solution technique

of Schroder and Skiadas (2002). This method enables us to transform the consumption and

portfolio choice model with endogenous updating into a dual consumption and portfolio choice

model without endogenous updating. The dual utility function is time-additive and separable.

This fact facilitates the derivation of the optimal consumption and portfolio choice. Next,

we solve the dual problem by using convex-duality (or martingale) techniques, and by using

techniques proposed by Basak and Shapiro (2001) and Berkelaar, Kouwenberg, and Post

(2004) to deal with pseudo-concavity and non-differentiability aspects of the problem. We

adapt the latter techniques to our setting with intertemporal consumption. Upon transforming

our solutions under the dual model back into the primal model, we finally arrive at explicit

closed-form solutions to our initial problem under consideration.

The literature on optimal consumption and portfolio choice under prospect theory type

preferences is scarce. Berkelaar et al. (2004) examine analytically optimal portfolio choice under

the two-part power utility function. Their paper differs from ours in at least two main respects.

First and foremost, we assume that the agent is concerned not with terminal wealth, but with

intertemporal consumption. This allows us to examine how the agent’s consumption strategy

evolves as time proceeds and risk resolves, which is our prime focus. Second, in this setting with

intertemporal consumption, we allow the agent to not just stochastically but also endogenously

update his reference (or habit) level of consumption over time. Jin and Zhou (2008) and He

and Zhou (2011, 2014) consider optimal portfolio choice under prospect theory. They focus on

the impact of subjective probability weighting on optimal portfolio (not consumption) choice,

developing an analytic solution method based on a quantile formulation. They do not consider

endogenous updating of the reference level. Our model specification has the attractive feature

that it allows to analyze both separately and jointly the effects on consumption and portfolio

choice of loss aversion and of endogenous updating of the reference level, which are controlled

in the model by separate parameters. Furthermore, our model nests traditional models, such

as models with internal habit formation, with an exogenous minimum level of consumption,

and with CRRA utility, as special (limiting) cases.

The remainder of this paper is structured as follows. Section 2 describes the economy. The

agent’s instantaneous utility function is introduced in Section 3. Section 4 analytically derives

the optimal consumption and portfolio choice. The properties of the optimal strategies are
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explored in Section 5. Section 6 considers, as a robustness check, the optimal consumption and

portfolio choice under a slightly alternative specification of the agent’s instantaneous utility

function. Finally, Section 7 concludes the paper. The proofs of the theorems and propositions

and the details of the certainty equivalent computations are relegated to the Appendix.

2 The Economy

We define a continuous-time financial market following Karatzas and Shreve (1998) and Back

(2010). Let T > 0 be a fixed finite terminal time. The uncertainty in the economy is represented

by a filtered probability space (Ω,F ,F,P), on which is defined a standard N -dimensional

Brownian motion {Zt}t∈[0,T ]. Let the filtration F ≡ {Ft}t∈[0,T ] be the augmentation under

P of the natural filtration generated by the standard Brownian motion {Zt}t∈[0,T ]. Throughout,

(in)equalities between random variables are meant to hold P-almost surely.

The financial market consists of an instantaneously risk-free asset and N risky stocks, which

are traded continuously on the time horizon [0, T ]. The price of the risk-free asset, B, evolves

according to

dBt

Bt

= rt dt, B0 = 1.

The scalar-valued risk-free rate process, r, is assumed to be Ft-progressively measurable and

uniformly bounded. The N -dimensional vector of risky stock prices, S, satisfies the following

stochastic differential equation:

dSt
St

= µt dt+ σt dZt, S0 = 1N .

Here, 1N denotes an N -dimensional vector of all ones. The N -dimensional mean rate of

return process, µ, and the (N × N)-matrix-valued volatility process, σ, are both assumed

to be Ft-progressively measurable and uniformly bounded.

We assume that, for some positive ε,

ϑ>σtσ
>
t ϑ ≥ ε||ϑ||2, for all ϑ ∈ RN . (2.1)

Here, > denotes the transpose sign. The strong non-degeneracy condition (2.1) implies that

the inverse of σt exists and is bounded. The Ft-progressively measurable market price of risk

process, λ, solves the following equation:

σtλt ≡ µt − rt1N .

The unique positive-valued state price density process, M , can now be defined as follows:

Mt ≡ exp

{
−
∫ t

0

rs ds−
∫ t

0

λ>s dZs −
1

2

∫ t

0

||λs||2 ds

}
.
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The economy is populated by a single price-taking agent endowed with initial wealthW0 ≥ 0.

The agent’s objective is to choose an Ft-progressively measurable N -dimensional process π,

referred to as the portfolio process and representing the dollar amounts invested in the N risky

stocks, and an Ft-progressively measurable process c, referred to as the consumption process,

so as to maximize the expectation of lifetime utility.11 We impose the following integrability

conditions, which we assume throughout to be satisfied for any consumption and portfolio

process:∫ T

0

π>t σtσ
>
t πt dt <∞,

∫ T

0

∣∣πt (µt − rt1N)
∣∣ dt <∞, E

[∫ T

0

|ct|2 dt

]
<∞.

The wealth process, W , associated with a consumption and portfolio strategy (c, π) satisfies

the following dynamic budget constraint :

dWt =
(
rtWt + π>t σtλt − ct

)
dt+ π>t σt dZt, W0 ≥ 0 given. (2.2)

Equation (2.2) reveals that the agent’s wealth equals initial wealth, plus trading gains, minus

cumulative consumption. The total dollar amount invested in the risk-free asset at time t ∈
[0, T ] is given by Wt − π>t 1N . We call a consumption and portfolio strategy admissible if the

associated wealth process is uniformly bounded from below. Then the static budget constraint

is also satisfied; see, e.g., Karatzas and Shreve (1998, p. 91-92) for further details.

3 The Agent’s Utility Function

This section introduces the agent’s (instantaneous) utility function u (ct; θt). Here, θt represents

the agent’s reference level to which consumption is compared. We assume that the agent derives

utility from the difference between consumption ct and the reference level θt. Specifically,

following the prospect theory literature (see, e.g., Tversky and Kahneman, 1992), we assume

that the agent’s utility function u (ct; θt) is represented by the two-part power utility function:

u (ct; θt) = v (ct − θt) ≡

−κ (θt − ct)
γ1 , if ct < θt;

(ct − θt)
γ2 , if ct ≥ θt.

(3.1)

Here, γ1 > 0 and γ2 ∈ (0, 1) are curvature parameters, and κ ≥ 1 stands for the loss aversion

index. If consumption is larger (smaller) than the reference level, then the agent experiences a

gain (loss).

Figure 1 illustrates the two-part power utility function (3.1) for γ1 = 1.3 (solid line) and

γ1 = 0.7 (dash-dotted line). The figure shows that the two-part power utility function exhibits

a kink at the reference level. The kink is due to the different treatment of gains and losses. We

note that even in the case of κ = 1, the agent’s utility function displays a kink at the reference

level whenever γ1 6= γ2.

11The agent’s utility function is introduced in the next section.
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Figure 1.

Illustration of the two-part power utility function
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Notes: The figure illustrates the two-part power utility function for γ1 = 1.3 (solid line) and γ1 = 0.7
(dash-dotted line). The agent’s reference level is set equal to 10, the loss aversion index κ to 2.5 and
γ2 to 0.5.

A simple calculation shows that the two-part power utility function (3.1) is convex below the

agent’s reference level if γ1 ≤ 1, and concave otherwise. Convexity corresponds to risk-seeking

behavior and concavity to risk-averse behavior.12 Tversky and Kahneman (1992) found that

the agent’s utility function is convex in the loss domain. Table 1 reviews the empirical literature

regarding the shape of the utility function for losses. The table shows that the literature is

inconclusive as to whether the utility function is convex below the reference level. Among the

mentioned studies, Etchart-Vincent (2004) explored the sensitivity of the agent’s utility function

to the magnitude of the underlying payoffs. She found that a larger proportion of the subjects

exhibited concavity when facing large losses than when facing small losses. Etchart-Vincent

(2004) argued that this finding may be due to the size of the losses at stake. Therefore,

the current paper considers not only the case of a convex utility function in the loss domain

(0 < γ1 ≤ 1), but also the case of a concave utility function in the loss domain (γ1 > 1).

Inspired by the literature on internal habit formation (see, e.g., Constantinides, 1990;

Detemple and Zapatero, 1992; Detemple and Karatzas, 2003), we assume that the agent’s

reference level evolves according to:

dθt = (βct − αθt) dt, θ0 ≥ 0 given.

12This statement is not true if probabilities are distorted (see Chateauneuf and Cohen, 1994). For example, an
S-shaped utility function and overweighting of small probabilities can together explain the fourfold pattern
of risk attitudes: risk-averse behavior when gains have large probabilities and losses have small probabilities,
and risk-seeking behavior when losses have large probabilities and gains have small probabilities.
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Table 1.
Classification of the utility function for losses

Shape of the utility function for losses

Study Convex Concave Linear Mixed

Abdellaoui (2000) 42.5 20.0 25.0 12.5
Abdellaoui et al. (2005) 24.4 22.0 22.0 31.7
Abdellaoui, Bleichrodt, and Paraschiv (2007) 68.8 8.3 22.9 -
Booij and van de Kuilen (2009) 47.1 22.5 30.4 -
Etchart-Vincent (2004)∗ 37.1 25.7 25.7 11.4
∗The reported results are for the case of large losses.

Notes: The table reviews the empirical literature regarding the shape of the utility function for losses.
Numbers are expressed as a percentage of total subjects. All the mentioned studies use the trade-off
method (see Wakker and Deneffe, 1996) to elicit the utility functions of the subjects.

Here, θ0 denotes the agent’s initial reference level, α ≥ 0 corresponds to the depreciation

(or persistence) parameter, and β ≥ 0 indexes the extent to which the current reference

level responds to current consumption. The agent’s reference level exhibits a low degree of

depreciation (or a high degree of persistence) if α is low. The impact of current consumption

on the current reference level increases as β increases. We can explicitly write the agent’s

reference level as follows:

θs = β

∫ s

t

exp {−α(s− u)} cu du+ exp {−α(s− t)} θt, s ≥ t ≥ 0. (3.2)

Equation (3.2) shows that the reference level can be decomposed into two components: a

stochastic and a deterministic component. The parameter β measures the importance of the

stochastic component relative to the deterministic component. In what follows, we refer to

β as the endogeneity parameter. The stochastic component becomes more important as β

increases. The first component on the right-hand side of equation (3.2) is an exponentially

weighted integral of the agent’s own past consumption choices (i.e., the reference level is

backward-looking). We observe that the current reference level depends more on consumption

in the recent past than on consumption in the distant past. The second component on the

right-hand side of equation (3.2) is independent of past consumption choices and decreases

exponentially at a rate of α.

The two-part utility function (3.1) is a member of the class of reference-dependent preferences

introduced by Kőszegi and Rabin (2006, 2007). They assume that the agent’s instantaneous

utility function can be decomposed into two components. The first component represents

classical utility from consumption; that is, utility derived from absolute levels of consumption.

The second component captures reference-dependent gain-loss utility; that is, utility derived

from the difference between classical consumption utility and the reference level of utility.
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Specifically, Kőszegi and Rabin (2006, 2007) consider the following agent’s utility function:

u (ct; θt) = η ·m (ct) + (1− η) · w (m (ct)−m (θt)) . (3.3)

Here, m stands for the classical consumption utility function, w denotes the gain-loss utility

function and η ∈ [0, 1] is a weight parameter controlling the relative importance of the two

components. The two-part utility function (3.1) emerges as a special case of (3.3) if the

gain-loss utility function w is represented by the two-part power utility function (3.1), the

weight parameter η is set equal to zero and m (ct) = ct. Section 6 considers another special

case of (3.3), where the weight parameter η is unequal to zero. Kőszegi and Rabin (2006, 2007)

do not assume that the agent’s reference level is a weighted integral of past consumption choices.

Instead, they assume that the agent’s reference level represents an expectation. Both Kőszegi

and Rabin (2006, 2007) and our model assume that the reference level is chosen endogenously.13

The two-part power utility function (3.1) displays loss aversion in the sense that the disutility

of a loss of one unit is κ times larger than the utility of a gain of one unit.14 There is,

however, no agreed-upon definition of loss aversion in the literature. According to Kahneman

and Tversky (1979), loss aversion refers to the fact that losses loom larger than same-sized

gains, i.e., −w(−x) > w(x) for all x > 0. A loss aversion index can then be defined as the mean

or median value of −w(−x)/w(x) over relevant x (see Abdellaoui, Bleichrodt, and L’Haridon,

2008). Köbberling and Wakker (2005) define the loss aversion index as the ratio between the

left-hand and right-hand derivative of the gain-loss utility function at the reference level. The

loss aversion index κ is equal to the loss aversion index proposed by Köbberling and Wakker

(2005) if γ1 = γ2.

Finally, we note that the two-part power utility function (3.1) with reference level dynamics

given by (3.2) includes several important special (limiting) cases. The internal habit formation

model studied by Constantinides (1990) arises as a special case if the agent is infinitely loss

averse. The assumption of infinite loss aversion implies that consumption is not allowed to

fall below the reference level. If the reference level is also assumed to be exogenous, then

the two-part power utility function reduces to a utility function with an exogenous minimum

consumption level. Such a utility function has been studied by Deelstra, Grasselli, and Koehl

(2003). The constant relative risk aversion (CRRA) utility function emerges as a special case if

the reference level is equal to zero and consumption is non-negative. The CRRA utility function

has been widely explored in the economics literature since at least Merton (1969).

4 The Consumption and Portfolio Choice Problem

This section derives the optimal consumption and portfolio choice. Section 4.1 formulates the

agent’s maximization problem. To determine the optimal consumption and portfolio choice, we

13Yogo (2008) analyzes asset pricing implications of reference-dependent preferences, with an exogenously given
reference level.

14As pointed out by Wakker (2010, p. 267), the degree of loss aversion depends on the monetary unit.
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transform the agent’s (primal) maximization problem into a dual problem. The technique that

solves this dual problem is outlined in Section 4.2. Section 4.3 presents the optimal consumption

choice and Section 4.4 gives the optimal portfolio choice.

4.1 The Agent’s Maximization Problem

The agent’s dynamic consumption and portfolio choice problem of Section 2 with the agent’s

utility function given in Section 3 can, by virtue of the martingale approach (Pliska, 1986;

Karatzas, Lehoczky, and Shreve, 1987; Cox and Huang, 1989, 1991), be transformed into the

following equivalent static variational problem:

maximize
c

E
[∫ T

0

exp {−δt} v (ct − θt) dt

]
subject to E

[∫ T

0

Mtct dt

]
≤ W0, dθt = (βct − αθt) dt,

ct ≥ θt − Lt for all t ∈ [0, T ].

(4.1)

Here, δ ≥ 0 stands for the subjective rate of time preference. We require that consumption

is not allowed to fall more than Lt ≥ 0 below the agent’s reference level θt.
15 In addition,

we assume that Lt only depends on time t (and not on the state of nature ω ∈ Ω).16 If

Lt = exp {−αt} θ0, then consumption is guaranteed to be non-negative. We can view θt − Lt
as the agent’s minimum consumption level.

4.2 The Dual Technique

To derive the optimal consumption and portfolio choice in our model, we first apply the

solution technique proposed by Schroder and Skiadas (2002). These authors show that a

generic consumption and portfolio choice model with linear internal habit formation can be

mechanically transformed into a dual consumption and portfolio choice model without linear

internal habit formation.17 Hereinafter, we refer to the solution technique considered by

Schroder and Skiadas (2002) as the dual technique. This section sketches the basic ideas

underlying the dual technique. The Appendix provides more details.

The dual consumption and portfolio choice model [see problem (A1) in the Appendix] is

solved in a dual financial market. This dual financial market is characterized by the dual state

price density M̂t, the dual (instantaneously) risk-free rate r̂t, the dual volatility σ̂t and the dual

15In the case of risk-seeking behavior in the loss domain, the agent’s maximization problem is ill-posed if
consumption is not bounded from below (a maximization problem is called ill-posed if its supremum is infinite).

16One could argue that Lt should also depend on the agent’s past consumption choices. However, this would
complicate the agent’s maximization problem considerably. We leave it for future research to explore the
impact of an endogenous Lt on the agent’s optimal consumption and portfolio choice.

17The consumption and portfolio choice model considered in the current paper indeed has a utility specification
that incorporates linear internal habit formation.
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market price of risk λ̂t:

M̂t ≡Mt (1 + βAt) ,

r̂t ≡ β +
rt − αβAt
1 + βAt

,

σ̂t ≡ σt,

λ̂t ≡ λt −
β

1 + βAt

∫ T

t

exp {−(α− β)(s− t)}Pt,sΨt,s ds.

Here, Pt,s corresponds to the time t price of a default-free unit discount bond that matures at

time s ≥ t ≥ 0 and Ψt,s stands for the time t volatility of the instantaneous return on such a

bond (both in the primal financial market). We can view At ≥ 0 as the time t price of a bond

paying a continuous coupon:

At ≡
1

Mt

Et
[∫ T

t

Ms exp {−(α− β)(s− t)} ds

]
.

In case the investment opportunity set is constant, At only depends on time t. As a consequence,

the optimal portfolio choice can be computed explicitly in this case (see Section 4.4).

Dual wealth Ŵt is subject to the following dynamic equation:

dŴt =
(
r̂tŴt + π̂>t σ̂tλ̂t − ĉt

)
dt+ π̂>t σ̂t dZt, Ŵ0 =

W0 − A0θ0

1 + βA0

. (4.2)

Here, ĉt ≡ ct − θt stands for the agent’s surplus consumption choice and π̂t denotes the dual

portfolio choice. Dual wealth Ŵt is equal to the discounted value of future surplus consumption

choices. Hence, we can view Ŵt as wealth needed to finance future gains and losses. In what

follows, we refer to Ŵt as surplus wealth.

The condition of consumption being bounded from below in (4.1) implies that the agent’s

initial wealth W0 must be sufficiently large to ensure the existence of an optimal consumption

strategy. Specifically, we require

W0 ≥ −E

[∫ T

0

M̂t

M̂0

Lt dt

]
− βA0E

[∫ T

0

M̂t

M̂0

Lt dt

]
+ A0θ0. (4.3)

The right-hand side of equation (4.3) corresponds to initial wealth that is required to finance

the minimum consumption stream {θt − Lt}t∈[0,T ]. We note that W0 is also required to be

non-negative; see equation (2.2).

4.3 The Optimal Consumption Choice

This section derives the optimal consumption choice. We obtain the optimal consumption choice

as follows. First, the agent’s maximization problem (4.1) is converted into its dual problem

(Section 4.2). The dual utility function is time-additive and separable. This fact facilitates the
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derivation of the optimal consumption and portfolio choice. Second, the dual problem is solved

using martingale techniques and by adapting to our setting with intertemporal consumption

the solution technique as described by Basak and Shapiro (2001) and Berkelaar et al. (2004).

The central idea of the latter solution technique is to split the agent’s (dual, in our case)

problem into two maximization problems: a gain part problem and a loss part problem. The

optimal solution to each problem represents a local maximum of the dual problem. The global

maximum of the dual problem is determined by comparing, in a particular way, the two local

maxima. Finally, the optimal surplus consumption choice ĉ ∗t is translated back into the agent’s

optimal consumption choice c∗t . Theorem 1 below presents the optimal consumption choice c∗t .

We note that the theorem distinguishes between risk-averse and risk-seeking behavior in the

loss domain. Indeed, in the case of risk-averse behavior in the loss domain, the utility function

is concave below the reference level, whereas in the case of risk-seeking behavior in the loss

domain, the utility function is convex in the loss domain.

Theorem 1. Consider an agent with the two-part power utility function (3.1) and reference

level dynamics (3.2) who solves the consumption and portfolio choice problem (4.1). Let θ∗

be the agent’s optimal reference level implied by substituting the (past) optimal consumption

choice in (3.2) and let y be the Lagrange multiplier associated with the static budget constraint

in (4.1). Define

kt ≡
y exp {δt}

γ2

and lt ≡
y exp {δt}

κγ1

.

Then:

• If the agent is risk-averse in the loss domain, the optimal consumption choice c∗t at time

t ∈ [0, T ] is given by

c∗t =


θ∗t +

(
ktM̂t

) 1
γ2−1

, if M̂t ≤ ξt;

θ∗t −
[(
ltM̂t

) 1
γ1−1 ∧ Lt

]
, if M̂t > ξt.

The threshold ξt is determined in such a way that f (ξt) = 0 where the function f is

defined as follows:

f(x) ≡ exp {−δt} (1− γ2) (ktx)
γ2
γ2−1 + κ exp {−δt}

[
(ltx)

1
γ1−1 ∧ Lt

]γ1

− yx
[
(ltx)

1
γ−1 ∧ Lt

]
.

(4.4)

• If the agent is risk-seeking in the loss domain, the optimal consumption choice c∗t at time

t ∈ [0, T ] is given by

c∗t =

θ
∗
t +

(
ktM̂t

) 1
γ2−1

, if M̂t ≤ ξt;

θ∗t − Lt, if M̂t > ξt.
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The threshold ξt is determined in such a way that g (ξt) = 0 where the function g is defined

as follows:

g(x) ≡ exp {−δt} (1− γ2) (ktx)
γ2
γ2−1 + κ exp {−δt}Lγ1

t − yxLt. (4.5)

The Lagrange multiplier y is chosen such that the static budget constraint holds with equality.

Theorem 1 shows that the agent optimally chooses to divide the states of the economy into

two categories: insured states (good to intermediate economic scenarios or, equivalently, low to

intermediate state prices) and uninsured states (bad economic scenarios or high state prices).

In insured states, consumption is guaranteed to be larger than the reference level, while in

uninsured states, consumption is smaller than the reference level. The optimal consumption

choice is, however, never equal to the reference level. Section 5 further explores the properties

of the optimal consumption choice.

4.3.1 Comparative Statics

The threshold ξt and the Lagrange multiplier y depend on the underlying agent’s preference

parameters. Proposition 1 summarizes the impact of an increase in the agent’s preference

parameters on the threshold ξt and the Lagrange multiplier y, ceteris paribus.

Proposition 1. Consider an agent with the two-part power utility function (3.1) and reference

level dynamics (3.2) who solves the consumption and portfolio choice problem (4.1). Then:

• All else being equal, if the loss aversion index κ increases, then both the threshold ξt and

the Lagrange multiplier y increase.

• All else being equal, if the agent’s initial reference level θ0 increases, then the threshold ξt

decreases and the Lagrange multiplier y increases.

Suppose that initial surplus wealth Ŵ0 is non-negative.

• All else being equal, if the depreciation parameter α increases, then the threshold ξt

increases and the Lagrange multiplier y decreases.

• All else being equal, if the endogeneity parameter β increases, then the threshold ξt

decreases and the Lagrange multiplier y increases.

Proposition 1 shows that when the agent becomes more afraid of incurring losses, the

probability of consumption falling below the reference level decreases. At the same time, the

agent must give up some upward potential to finance the new consumption profile. When

the agent’s initial reference level increases (or the depreciation parameter α decreases or the

endogeneity parameter β increases), more wealth is required to finance future reference levels.

As a consequence, the probability of incurring a loss increases.
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4.4 The Optimal Portfolio Choice

To derive the optimal portfolio choice, we first need to derive the agent’s optimal wealth W ∗
t .

As pointed out in the Appendix (see Proposition 4), the agent’s optimal wealth W ∗
t can be

decomposed as follows:

W ∗
t = Ŵ ∗

t + W̃ ∗
t . (4.6)

Here, Ŵ ∗
t denotes optimal surplus wealth, and W̃ ∗

t stands for wealth required to finance future

optimal reference levels. We refer to W̃ ∗
t as optimal required wealth. Optimal surplus wealth

Ŵ ∗
t and optimal required wealth W̃ ∗

t can be further decomposed as follows:

Ŵ ∗
t = ŴG∗

t + ŴL∗
t and W̃ ∗

t = βAtŴ
∗
t + Atθ

∗
t . (4.7)

Here, ŴG∗
t denotes wealth required to finance future optimal gains, ŴL∗

t corresponds to wealth

required to finance future optimal losses, βAtŴ
∗
t stands for wealth required to finance the

stochastic part of future optimal reference levels, and Atθ
∗
t represents wealth required to finance

the deterministic part of future optimal reference levels. Figure 2 illustrates the decomposition

of the agent’s optimal wealth W ∗
t .

Figure 2.

Decomposition of the agent’s optimal wealth W ∗
t

Optimal wealth W ∗
t

Optimal surplus wealth Ŵ ∗
t Optimal required wealth W̃ ∗

t

ŴG∗
t ŴL∗

t βAtŴ
∗
t Atθ

∗
t

Notes: The figure illustrates the decomposition of the agent’s optimal wealth W ∗t .

Proposition 2 below presents ŴG∗
t and ŴL∗

t for the case of a constant investment opportunity

set (i.e., rt = r, σt = σ and λt = λ). The general expressions for ŴG∗
t and ŴL∗

t are given in
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the Appendix.

Proposition 2. Consider an agent with the two-part power utility function (3.1) and reference

level dynamics (3.2) who solves the consumption and portfolio choice problem (4.1) assuming

a constant investment opportunity set. Let N denote the cumulative distribution function of a

standard normal random variable. Define Γu, Πu, d1(x), d2(x) and d3(x) as follows:

Γu =
δ − γ2r̂u
1− γ2

− 1

2

γ2

(1− γ2)2 ||λ||
2, Πu =

δ − γ1r̂u
1− γ1

− 1

2

γ1

(1− γ1)2 ||λ||
2,

d1(x) =
1

||λ||
√
s− t

[
log(x)− log

(
M̂t

)
+

∫ s

t

r̂u du− 1

2
||λ||2(s− t)

]
,

d2(x) = d1(x) +
||λ||

1− γ2

√
s− t, d3(x) = d1(x) +

||λ||
1− γ1

√
s− t.

Then:

• If the agent is risk-averse in the loss domain, we find

ŴG∗
t =

(
ktM̂t

) 1
γ2−1

∫ T

t

exp

{
−
∫ s

t

Γu du

}
N [d2 (ξs)] ds,

ŴL∗
t =

(
ltM̂t

) 1
γ1−1

∫ T

t

exp

{
−
∫ s

t

Πu du

}(
N [d3 (ζs ∨ ξs)]−N [d3 (ξs)]

)
ds

−
∫ T

t

exp

{
−
∫ s

t

r̂u du

}
LsN [−d1 (ζs ∨ ξs)] ds.

Here, ζs ≡ exp {δs} γ1κL
γ1−1
s y−1. The threshold ξs is determined in such a way that

f (ξs) = 0 where the function f is given by equation (4.4).

• If the agent is risk-seeking in the loss domain, we find

ŴG∗
t =

(
ltM̂t

) 1
γ2−1

∫ T

t

exp

{
−
∫ s

t

Γu du

}
N [d2 (ξs)] ds,

ŴL∗
t =

∫ T

t

exp

{
−
∫ s

t

r̂u du

}
LsN [−d1 (ξs)] ds.

The threshold ξs is determined in such a way that g (ξs) = 0 where the function g is given

by equation (4.5).

When the dual state price density tends to zero (so that the probability of the dual state

price density M̂s being smaller than the threshold ξs approaches one), optimal surplus wealth

Ŵ ∗
t converges to the optimal wealth of an agent with CRRA utility. Hence, in good economic

scenarios, the agent behaves like a CRRA agent.

The optimal dual portfolio choice can be constructed using classical hedging arguments.

We explicitly determine the optimal dual portfolio choice for the case of a constant investment

opportunity set. To this end, it is convenient to express Ŵ ∗
t as a function of time t and the dual
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state price density M̂t; that is, Ŵ ∗
t = h

(
t, M̂t

)
for some (regular) function h. Straightforward

application of Itô’s Lemma to the function h yields

dŴ ∗
t =

[
∂h

∂t
− ∂h

∂M̂t

M̂tr̂t +
1

2

∂2h

∂M̂ 2
t

M̂ 2
t ||λ||2

]
dt− ∂h

∂M̂t

M̂tλ̂
> dZt. (4.8)

Comparing the diffusion part of the dynamic budget constraint (4.2) with the diffusion part of

equation (4.8) yields the dual optimal portfolio choice:

π̂∗t = − ∂h

∂M̂t

M̂tλ̂
>σ̂−1. (4.9)

The agent’s optimal (primal) portfolio choice follows from Schroder and Skiadas (2002):

π∗t = π̂∗t + βAtπ̂
∗
t . (4.10)

The optimal dual portfolio choice π̂∗t can be further decomposed as follows:

π̂∗t = π̂G∗t + π̂L∗t .

Here, π̂G∗t denotes the optimal dual portfolio choice that finances gains, and π̂L∗t corresponds to

the optimal dual portfolio choice that finances losses. Theorem 2 below presents π̂G∗t and π̂L∗t

for the case of a constant investment opportunity set. This theorem follows from application

of equation (4.9). The optimal primal portfolio choice then follows from equation (4.10).

Theorem 2. Consider an agent with the two-part power utility function (3.1) and reference

level dynamics (3.2) who solves the consumption and portfolio choice problem (4.1) assuming

a constant investment opportunity set. Let φ denote the standard normal probability density

function. Then:

• If the agent is risk-averse in the loss domain, we find

π̂G∗t = λ̂>σ̂−1

[
1

1− γ2

ŴG∗
t +

(
ktM̂t

) 1
γ2−1

∫ T

t

exp

{
−
∫ s

t

Γu du

}
φ [d2 (ξs)]

||λ||
√
s− t

ds

]
,

π̂L∗t = λ̂>σ̂−1

[
1

γ1 − 1

(
ŴL∗
t +

∫ T

t

exp

{
−
∫ s

t

r̂u du

}
LsN [−d1 (ζs ∨ ξs)] ds

)
+
(
ltM̂t

) 1
γ1−1

∫ T

t

exp

{
−
∫ s

t

Πu du

}
φ [d2 (ζs ∨ ξs)]− φ [d2 (ξs)]

||λ||
√
s− t

ds

+

∫ T

t

exp

{
−
∫ s

t

r̂u du

}
Ls
φ [−d1 (ζs ∨ ξs)]
||λ||
√
s− t

ds

]
.

• If the agent is risk-seeking in the loss domain, we find

π̂G∗t = λ̂>σ̂−1

[
1

1− γ2

ŴG∗
t +

(
ktM̂t

) 1
γ2−1

∫ T

t

exp

{
−
∫ s

t

Γu du

}
φ [d2 (ξs)]

||λ||
√
s− t

ds

]
,
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π̂L∗t = λ̂>σ̂−1

∫ T

t

exp

{
−
∫ s

t

r̂u du

}
Ls
φ [−d1 (ξs)]

||λ||
√
s− t

ds.

Theorem 2 reveals that in good economic scenarios, the optimal dual portfolio strategy π̂∗t

can be approximated by λ̂>σ̂−1/ (1− γ2) Ŵ ∗
t . In these economic scenarios, the agent behaves

like a CRRA agent and invests a constant proportion of surplus wealth in risk-bearing assets.

5 Analysis of the Solution

With the analytical solutions and comparative statics to the general consumption and portfolio

choice problem provided in Section 4 (and the Appendix), we proceed in this section to their

numerical analysis. Section 5.1 introduces the underlying assumptions and discusses the key

parameter values used in the numerical analysis. Section 5.2 illustrates the agent’s optimal

consumption and portfolio choice. Finally, Section 5.3 conducts a welfare analysis.

5.1 Assumptions and Key Parameter Values

We allow the agent to invest his wealth in a risk-free asset and a single risky stock. The

investment opportunity set is assumed to be constant (i.e., rt = r, σt = σ and λt = λ). The

equity premium σλ = µ− r is set at 4%. The risk-free rate r is set at 1%, and the volatility of

innovations to the risky stock price σ is set at 20%. These estimates coincide with the estimates

reported by Gomes et al. (2008).

The terminal time T is set equal to 20 years. We interpret T as the total number of years

of retirement. The agent’s initial wealth W0 can then be viewed as total pension (or financial)

wealth at the age of retirement.18 For the ease of illustration, we assume that the agent retires

at the age of 65.

The loss aversion index κ is set equal to 2.5. The estimates of the median loss aversion

index reported in the literature vary from 1 to 5 (see, e.g., Abdellaoui et al., 2008). The degree

of loss aversion largely differs among individuals, and typically depends on the model. In the

welfare analysis, we consider, among other things, the impact of a change in the loss aversion

index κ on the agent’s welfare. Finally, the subjective rate of time preference δ is set equal to

1%.

5.2 The Optimal Consumption and Portfolio Choice

5.2.1 Loss Aversion Only

This section illustrates the optimal consumption and portfolio choice of a loss averse agent

without endogenous updating of the agent’s reference level (i.e., the endogeneity parameter β

is set equal to zero). In addition, we assume that the agent’s reference level is constant (i.e.,

18In the numerical analysis, we set W0 equal to 500 (×1,000 dollars) units, and we report our results relative
to W0.
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the depreciation parameter α is also set equal to zero). Inspired by Barberis, Huang, and

Santos (2001), the agent’s constant reference level θt = θ is assumed to be equal to the level

of consumption that would be obtained if the agent’s initial wealth W0 was kept in the money

market account for the entire retirement phase.19 The assumption here is that the agent is

likely to be disappointed if consumption is less than the payment he would receive from a fixed

annuity. The agent’s constant reference level θ solves the following equation:

W0 = θ

∫ T

0

exp {−rt} dt ≡ θA0. (5.1)

Simple algebra yields θ = 5.5% ·W0; that is, the annuity factor A0 ≡
∫ T

0
exp {−rt} dt is equal

to 1/5.5% ≈ 18 < T = 20. Equation (5.1) implies that initial surplus wealth Ŵ0 ≡ ŴG
0 − ŴL

0

is equal to zero. This assertion follows from equations (4.6) and (4.7) with α = β = 0%. Put

differently, initial wealth required to finance future gains ŴG
0 is equal to initial wealth required

to finance future losses ŴL
0 . We note that ŴG

0 and ŴL
0 are not equal to zero unless the agent

is infinitely loss averse.

Figure 3 illustrates the optimal consumption choice (expressed as a percentage of the agent’s

initial wealth W0) at age 70 (i.e., t = 5) as a function of the then-current log state price density

for the case of risk-averse behavior in the loss domain. Here, consumption is constrained

to be non-negative; that is, L = θ. Under the optimal choice, the loss averse agent seeks

protection against consumption losses due to financial shocks, thus inducing a (soft) guarantee

on consumption. The agent optimally desires to maintain consumption above the reference

level, but under really adverse circumstances this (soft) guarantee on consumption cannot

be maintained. As a direct consequence, we can divide the states of the economy into two

categories: good to intermediate states (i.e., logMt ≤ log ξt) and bad states (i.e., logMt >

log ξt). In good to intermediate states, optimal consumption is guaranteed to be larger than

the reference level, while in bad states, optimal consumption is smaller than the reference level.

The dotted line shows the probability density function (PDF) of the then-current log state

price density conditional upon information available at the age of retirement. The probability

of consumption being smaller than the reference level can be controlled by choosing appropriate

values for the preference parameters. We observe that the optimal consumption profile displays

a 90◦ rotated S-shaped pattern with a discontinuity at the point logMt = log ξt. Hence,

optimal consumption is never equal to the reference level. The dash-dotted line illustrates the

consumption choice of an agent with CRRA utility. The relative risk aversion coefficient γ is

set equal to two. The (log) consumption choice of a CRRA agent varies linearly with the (log)

state price density. As a consequence, for typical values of the relative risk aversion coefficient

γ, a CRRA agent incurs more frequently a loss than a loss averse agent (where we define gains

and losses relative to the reference level).

Next, Figure 4 displays the optimal consumption choice (expressed as a percentage of the

19Barberis et al. (2001) argue that the risk-free interest rate serves as a natural benchmark for evaluating gains
and losses. In our context, this assumption implies that the agent is likely to be disappointed if consumption
is less than the payment he would receive from a fixed annuity.
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Figure 3.

Consumption profile for the case of risk-averse behavior in the loss domain
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Notes: The figure shows the optimal consumption choice (expressed as a percentage of the agent’s
initial wealth W0) at age 70 as a function of the then-current log state price density. The curvature
parameter γ1 (γ2) is set equal to 1.2 (0.7). Consumption is constrained to be non-negative by taking
L = θ. The dashed line corresponds to the agent’s reference level (expressed as a percentage of W0).
The dotted line shows the probability density function (PDF) of the then-current log state price density
conditional upon information available at the age of retirement. The dash-dotted line illustrates the
consumption choice (expressed as a percentage of W0) of an agent with CRRA utility. The relative
risk aversion coefficient γ is set equal to two.

agent’s initial wealth W0) at age 70 as a function of the then-current log state price density

for the case of risk-seeking behavior in the loss domain. Here, consumption is allowed to fall

2% point below the (normalized) reference level θ/W0. We observe again that, because of

loss aversion, the agent has a strong preference to maintain consumption above the reference

level. As in the case of risk-averse behavior in the loss domain, we can divide the states of the

economy into two categories: good to intermediate states (i.e., logMt ≤ log ξt) and bad states

(i.e., logMt > log ξt). In good to intermediate states, optimal consumption is guaranteed to

be larger than the reference level, while in bad states, optimal consumption is equal to the

minimum consumption level θ − L. We also observe that at the threshold logMt = log ξt,

optimal consumption jumps to the lower bound θ − L. This behavior can be explained by the

fact that the agent is risk-seeking in the loss domain.

Figure 5 shows the optimal portfolio choice (i.e., the total dollar amount invested in the

risky stock) at age 70 as a function of the then-current log state price density for the case

of risk-averse behavior in the loss domain. The optimal portfolio choice is expressed as a

percentage of the agent’s initial wealth W0. We observe that the optimal portfolio profile

displays a U-shaped pattern: the total dollar amount invested in the risky stock will be lower
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Figure 4.

Consumption profile for the case of risk-seeking behavior in the loss domain
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Notes: The figure shows the optimal consumption choice (expressed as a percentage of the agent’s
initial wealth W0) at age 70 as a function of the then-current log state price density. The curvature
parameter γ1 (γ2) is set equal to 0.8 (0.6). Consumption is allowed to fall 2% point below the
(normalized) reference level θ/W0. The dashed line corresponds to the agent’s reference level
(expressed as a percentage of W0). The dotted line shows the probability density function (PDF) of
the then-current log state price density conditional upon information available at the age of retirement.
The dash-dotted line illustrates the consumption choice (expressed as a percentage of W0) of an agent
with CRRA utility. The relative risk aversion coefficient γ is set equal to two.

in intermediate economic scenarios than in good or bad economic scenarios. When the (non-log)

state price density tends to zero, the fraction of surplus wealth Ŵ ∗
t invested in the risky stock

converges to the constant λ/ [σ (1− γ2)]. Hence, in good economic scenarios, the optimal

portfolio choice behaves in a similar fashion as the portfolio choice of a CRRA agent.20 We

note that W ∗
t − Ŵ ∗

t = Atθ is fully invested in the money market account. When the state

price density is relatively high, the fraction of surplus wealth invested in the risky stock can be

approximated by the constant λ/ [σ (1− γ1)] < 0.21 Not only in good but also in bad economic

scenarios, a loss averse agent behaves like a CRRA agent. In intermediate economic scenarios,

the total dollar amount invested in the risky stock is relatively small.

Figure 6 shows the optimal portfolio choice (i.e., the total dollar amount invested in the

risky stock) at age 70 as a function of the then-current log state price density for the case of

risk-seeking behavior in the loss domain. The portfolio choice is expressed as a percentage of

20This is not directly visible in Figure 5, where the portfolio choice of the CRRA agent does not match the
portfolio choice of the loss averse agent in good (or bad) states, because the relative risk aversion coefficient
γ (CRRA agent) differs from its counterpart 1− γi (loss averse agent) specified by the curvature parameters
γi, i = 1, 2, and because total wealth differs from surplus wealth.

21We note that in bad states (i.e., high state prices), surplus wealth is negative.
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Figure 5.

Portfolio profile for the case of risk-averse behavior in the loss domain
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Notes: The figure shows the optimal portfolio choice (i.e., the total dollar amount invested in the
risky stock) at age 70 as a function of the then-current log state price density. The portfolio choice is
expressed as a percentage of the agent’s initial wealth W0. The curvature parameter γ1 (γ2) is set equal
to 1.2 (0.7). Consumption is constrained to be non-negative; that is, L = θ. The dash-dotted line
illustrates the portfolio choice (expressed as a percentage of W0) of an agent with CRRA utility. The
relative risk aversion coefficient γ is set equal to two. The increasing dotted line represents π̂L∗t /W0

while the decreasing dotted line corresponds to π̂G∗t /W0.

the agent’s initial wealth W0. As in the case of risk-averse behavior in the loss domain, the

optimal portfolio profile displays (primarily) a U-shaped pattern. When the state price density

tends to zero, the fraction of surplus wealth invested in the risky stock converges to the constant

λ/ [σ (1− γ2)]. Hence, in good economic scenarios, the portfolio choice of a loss averse agent

behaves in a similar fashion as the portfolio choice of a CRRA agent. When the state price

density tends to infinity, the fraction of surplus wealth invested in the risky stock ultimately

converges to zero. Indeed, in bad economic scenarios, the minimum consumption level θ − L
must be guaranteed.

Figure 7 shows the optimal portfolio choice measured as a fraction of total wealth invested

in the risky stock at age 70 as a function of the then-current log state price density. We

recall that Figures 5 and 6 show the optimal portfolio choice measured as a fraction of initial

wealth invested in the risky stock. We observe that the optimal portfolio profile still displays

(primarily) a U-shaped pattern. The portfolio choice of a CRRA agent is no longer a decreasing

line but a straight line: a CRRA agent always invests a constant fraction λ/ (σγ) of total wealth

in the risky stock, irrespective of the state of the economy.
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Figure 6.

Portfolio profile for the case of risk-seeking behavior in the loss domain
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Notes: The figure shows the optimal portfolio choice (i.e., the total dollar amount invested in the
risky stock) at age 70 as a function of the then-current log state price density. The portfolio choice
is expressed as a percentage of the agent’s initial wealth W0. The curvature parameter γ1 (γ2) is set
equal to 0.8 (0.6). Consumption is allowed to fall 2% point below the (normalized) reference level
θ/W0. The dash-dotted line illustrates the portfolio choice (expressed as a percentage of W0) of an
agent with CRRA utility. The relative risk aversion coefficient γ is set equal to two. The increasing
dotted line represents π̂L∗t /W0 while the decreasing dotted line corresponds to π̂G∗t /W0.

5.2.2 Loss Aversion and Endogenous Updating

This section considers the case where the loss averse agent endogenously updates his reference

level over time. We assume that the endogeneity parameter β as well as the depreciation

parameter α are equal to 20%. Furthermore, we assume that the initial reference level θ0 is

equal to 5.5% of the agent’s initial wealth W0, and Lt is equal to the initial reference level (i.e.,

Lt = L = θ0). These parameter values imply that initial surplus wealth Ŵ0 is equal to zero.

Figure 8 illustrates the impact of a positive shock in initial wealth on median consumption

for the case of risk-averse behavior in the loss domain. The left panel applies to the case in which

the loss averse agent endogenously updates his reference level over time (i.e., α = β = 20%),

while the right panel displays the case of no endogenous updating (i.e., α = β = 0%). The

dash-dotted lines in both panels represent the agent’s median consumption choice with the

shock in initial wealth. We observe that with endogenous updating a financial shock is gradually

absorbed into future consumption (i.e., consumption adjusts sluggishly to financial shocks): the

impact of a financial shock on consumption is smoothed over time, having a larger impact in

the distant future than in the near future. By contrast, in the case of no endogenous updating,

a financial shock is directly absorbed into future consumption, leading to an even distribution
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Figure 7.

Fraction of total wealth invested in the risky stock
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(a) γ1 = 1.2 and γ2 = 0.7
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(b) γ1 = 0.8 and γ2 = 0.6

Notes: The figure shows the optimal portfolio choice measured as a fraction of total wealth invested
in the risky stock at age 70 as a function of the then-current log state price density. Panel (a) displays
the case of risk-averse behavior in the loss domain (taking, as before, γ1 = 1.2 and γ2 = 0.7), while
panel (b) displays the case of risk-seeking behavior in the loss domain (taking, as before, γ1 = 0.8 and
γ2 = 0.6). The dash-dotted line illustrates the portfolio choice of a CRRA agent. The relative risk
aversion coefficient γ is set equal to two.

of the shock’s impact on future consumption choice.

Figure 9 shows the optimal consumption choice (expressed as a percentage of the agent’s

initial wealth W0) at age 70 as a function of the then-current log state price density and the

then-current reference level. Indeed, we note that the optimal consumption profile depends not

only the then-current state price density but also on the then-current reference level (i.e., the

optimal consumption profile is path-dependent). The threshold ξt is however state independent.

The agent is assumed to be risk-averse in the loss domain. The figure shows that the optimal

consumption choice increases with the reference level, and decreases with the state price density.

Compared to the case of loss aversion only as in the previous subsection, endogeneity of the

reference level has the reinforcing effect that the agent gives up even more upward potential

in then-current consumption to guarantee consumption above the reference level. At the same

time, the agent is also willing to accept somewhat larger consumption losses if the state of the

economy is really adverse.

Figure 10 illustrates the optimal portfolio choice (i.e., the total dollar amount invested in

the risky stock expressed as a percentage of the agent’s initial wealth W0) at age 70 as a

function of the then-current log state price density for the case of risk-averse behavior in the

loss domain. As in the case of loss aversion only, the optimal portfolio profile is U-shaped.

While the then-current reference level affects the optimal consumption profile (see Figure 9),

it does not impact the optimal portfolio profile. However, because of endogenous updating,

optimal required wealth W̃ ∗
t (i.e., wealth required to finance future optimal reference levels) is

23



Figure 8.

Gradual adjustment to financial shocks
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(a) With endogenous updating
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(b) No endogenous updating

Notes: The figure illustrates the impact of a positive shock in initial wealth on median consumption
(expressed as a percentage of the agent’s initial wealth W0) for the case of risk-averse behavior in
the loss domain (i.e., γ1 = 1.2). The curvature parameter γ2 is set equal to 0.7 as before, and L to
θ0. The right panel displays the case of no endogenous updating (i.e., α = β = 0%), while the left
panel presents the case in which the agent endogenously updates the reference level over time (i.e.,
α = β = 20%). The dash-dotted lines in both panels represent the agent’s median consumption choice
with a shock in initial wealth from 500 to 750 (×1,000 dollars) units.

partly invested in the risky stock. Put differently, the dual portfolio choice no longer coincides

with the agent’s optimal (primal) portfolio choice. By contrast, in the case of no endogenous

updating as in the previous subsection, optimal required wealth W̃ ∗
t is fully invested in the

money market account. Since the reference level depends on the agent’s own past consumption

choices (i.e., the reference level is path-dependent), the agent typically invests more in the risky

stock under endogenous updating.

Figure 11 illustrates the median optimal portfolio choice measured as a fraction of total

wealth invested in the risky stock as a function of the horizon, which represents the number

of years spent in retirement. We observe that the agent implements a life cycle investment

strategy (i.e., the fraction of wealth invested in the risky stock, on average, decreases as the

agent ages). Indeed, since the agent has less time to absorb financial shocks as he grows older,

the equity risk exposure, on average, decreases over the life cycle.22

22The slight increase in median optimal portfolio choice towards the end of the life span can be explained from
the fact that the median optimal dual portfolio choice, which dictates the median optimal (primal) portfolio
choice, displays a U-shaped pattern as a function of the horizon. This, in turn, is due to the fact that the
absolute difference between optimal median consumption and the reference level as a function of the horizon
is U-shaped, being smaller for intermediate horizons than for large and small horizons.
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Figure 9.

Consumption profile for the case of risk-averse behavior in the loss domain
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Notes: The figure illustrates the optimal consumption choice (expressed as a percentage of the agent’s
initial wealthW0) at age 70 as a function of the then-current log state price density and the then-current
reference level. The curvature parameter γ1 (γ2) is set equal to 1.2 (0.7).

Figure 10.

Portfolio profile for the case of risk-averse behavior in the loss domain
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Notes: The figure illustrates the optimal portfolio choice (i.e., the total dollar amount invested in
the risky stock) at age 70 as a function of the then-current log state price density. The curvature
parameter γ1 (γ2) is set equal to 1.2 (0.7). The dash-dotted line represents the optimal dual portfolio
choice π̂∗t /W0.
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Figure 11.

Median portfolio choice
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Notes: The figure illustrates the median optimal portfolio choice measured as a fraction of total wealth
invested in the risky stock as a function of the horizon. The curvature parameter γ1 (γ2) is set equal
to 1.2 (0.7). The dash-dotted line represents the optimal dual portfolio choice π̂∗t /W0.
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5.3 Welfare Analysis

This section conducts a welfare analysis. Section 5.3.1 reports the welfare losses (in terms of

the relative decline in certainty equivalent consumption) associated with incorrect values of the

agent’s preference parameters.23 Precisely, we compute the welfare losses due to implementing

suboptimal consumption and portfolio strategies derived by solving the agent’s maximization

problem on the basis of wrong values of the loss aversion index κ, the depreciation parameter α

and the endogeneity parameter β. Section 5.3.2 reports the welfare losses associated with

implementing alternative (simpler) consumption and portfolio strategies. Throughout the

welfare analysis, we assume that the agent’s optimal consumption and portfolio choice is

characterized by the following (“true”) values of the preference parameters: θ0 = 5.5% ·W0,

κ = 2.5, α = β = 20%, γ1 = 1.2 and γ2 = 0.7. Thus, the agent is risk-averse in the loss

domain. The welfare losses are computed relative to the agent’s optimal consumption and

portfolio strategy. The Appendix outlines the numerical procedure employed to compute the

welfare losses. This procedure is non-standard due to the endogeneity of the reference level.

The numerical procedure is implemented with ∆t = 1/8 and S = 1, 000, 000. Here, ∆t denotes

the time step and S represents the total number of simulations.

5.3.1 Welfare Losses Due to Incorrect Parameter Values

Tables 2 and 3 report the welfare losses associated with implementing suboptimal consumption

and portfolio strategies derived on the basis of wrong values of the loss aversion index κ, the

depreciation parameter α and the endogeneity parameter β. In Table 2 we assume that the

agent’s initial surplus wealth is equal to zero, while in Table 3 we assume that the agent

has positive initial surplus wealth.24 Table 2 shows that the welfare losses associated with

incorrectly assuming a constant reference level (i.e., α = β = 0%) are substantial. Specifically,

the welfare loss is about 30%. If the agent has positive initial surplus wealth, as in Table

3, this welfare loss is even larger. More generally, the tables reveal that consumption and

portfolio strategies based on a constant exogenous reference level or on a very limited degree of

endogeneity, thus implying no or only very limited smoothing of financial shocks, substantially

reduce welfare. At the same time we observe that the impact of a change in the loss aversion

index κ is larger when the agent’s initial surplus wealth is equal to zero than when the agent’s

initial surplus wealth is positive. Indeed, κ determines the multiplicity of states in which

consumption falls below the reference level. As a consequence, the impact of a change in κ is

more pronounced when initial surplus wealth is small.

23We define the certainty equivalent of an uncertain consumption strategy to be the constant, certain
consumption level that yields indifference to the uncertain consumption strategy.

24More specifically, Table 2 assumes that the agent’s initial wealth W0 equals 500 (×1,000 dollars) units, while
Table 3 assumes that W0 is equal to 750 (×1,000 dollars) units.
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Table 2.
Welfare losses due to incorrect parameter values (zero initial surplus wealth)

Loss aversion index (κ) Endogeneity parameter (β)

0 0.05 0.10 0.20

2.5 31.93 17.50 8.25 0
5 28.58 22.56 18.33 11.85

10 28.00 25.99 24.87 22.40

Notes: The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing suboptimal consumption and portfolio strategies derived on the
basis of wrong values of the loss aversion index κ, the depreciation parameter α, and the endogeneity
parameter β. The depreciation parameter α always equals the endogeneity parameter β. The agent
has zero initial surplus wealth. The numbers represent a percentage.

Table 3.
Welfare losses due to incorrect parameter values (positive initial surplus wealth)

Loss Aversion Index (κ) Endogeneity Parameter (β)

0 0.05 0.10 0.20

2.5 89.33 13.32 0.93 0
5 88.97 13.22 1.14 0.42

10 88.86 13.20 1.17 0.51

Notes: The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing suboptimal consumption and portfolio strategies derived on the
basis of wrong values of the loss aversion index κ, the depreciation parameter α, and the endogeneity
parameter β. The depreciation parameter α always equals the endogeneity parameter β. The agent
has positive initial surplus wealth. The numbers represent a percentage.

5.3.2 Welfare Losses Due to Alternative Strategies

Table 4 reports the welfare losses, compared to the optimal strategies of a loss averse agent who

endogenously updates his reference level, due to implementing the consumption and portfolio

strategy of an agent with CRRA utility (i.e., the Merton strategy). The welfare losses are

reported for various values of the coefficient of relative risk aversion γ underlying the Merton

strategy. The implementation of the Merton strategy, under which log consumption varies

linearly with the log state price density and financial shocks are directly absorbed into future

consumption, leads to substantial welfare losses of about 40%. The welfare losses are minimal

for intermediate values of γ (γ = 5 in the table). We note that γ =∞ corresponds to a risk-free

strategy.

Finally, we consider the following practical consumption and portfolio strategy: we assume

that the agent consumes a fraction 1/(T − t) of wealth Wt. Furthermore, we assume that a

constant fraction of wealth is invested in the risky stock (i.e., we assume πt/Wt to be constant),

as under the Merton strategy. Table 5 reports the welfare losses for various values of the fraction

of wealth invested in the risky stock. We observe that the welfare losses are again substantial,
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Table 4.
Welfare losses due to implementing the Merton strategy

Relative Risk Aversion Coefficient (γ)
1 2 5 10 ∞

44.11 37.47 37.39 38.87 40.11

Notes: The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing the consumption and portfolio strategy of an agent with CRRA
utility (i.e., the Merton strategy). The table reports the welfare losses for various values of the
coefficient of relative risk aversion γ underlying the Merton strategy. The agent has zero initial
surplus wealth. The numbers represent a percentage.

but smaller than when implementing the Merton consumption rule. Indeed, our numerical

results reveal that the Merton strategy generates a more volatile consumption profile, with

consumption falling below the reference level more often than when implementing the 1/(T − t)
consumption rule. Thus, from the perspective of a loss averse agent, who strongly prefers

to maintain consumption above the reference level, the 1/(T − t) consumption rule is less

suboptimal than the Merton consumption rule. Furthermore, the welfare losses in Table 5 are

relatively insensitive to changes in πt/Wt. The welfare losses are minimal for relatively low

fractions of wealth invested in the risky stock (πt/Wt = 10% in the table). We also computed,

under the 1/(T − t) consumption rule, the welfare losses associated with implementing various

state-independent life cycle investment strategies. We find that the welfare losses do not

substantially reduce when implementing a state-independent life cycle investment strategy.

Table 5.
Welfare losses due to implementing a practical alternative consumption and portfolio strategy

Fraction of Wealth Invested in the Risky Stock
0 0.10 0.20 0.30 0.40

30.03 28.71 28.73 29.64 30.90

Notes: The table reports the welfare losses (in terms of the relative decline in certainty equivalent
consumption) due to implementing a practical alternative consumption and portfolio strategy. The
table reports the welfare losses for various values of the fraction of wealth invested in the risky stock
(i.e., πt/Wt). The agent has zero initial surplus wealth. The numbers represent a percentage.

6 An Alternative Utility Function

This section explores, as a robustness check, the agent’s optimal consumption and portfolio

choice under an alternative specification of the agent’s instantaneous utility function. More

specifically, we assume that the agent’s utility function is represented by the kinked HARA

utility function. The kinked HARA utility function emerges as a special case of (3.3) if (i)

classical consumption utilitym is represented by the HARA utility function and (ii) the gain-loss
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utility function w equals the two-part power utility function v with γ1 = γ2 = 1. The HARA

classical consumption utility function is defined as follows:25

m (ct) =
ϕ

1− ϕ

(
ρ

ϕ
ct + ψ

)1−ϕ

.

Here, ϕ ∈ (0,∞)\{1}, ρ > 0 and ψ ≥ 0 are preference parameters.

Figure 12 illustrates the kinked CRRA utility function, which appears as a special case

when ρ = ϕ and ψ = 0, for κ = 2.5 and κ = 5. The figure shows that the kinked CRRA

utility function has a kink at the reference level, with the slope of the utility function over

losses being steeper than the slope of the utility function over gains. Furthermore, we observe

that the kinked CRRA utility function is concave everywhere. Hence, the agent exhibits risk

averse behavior in both the gain and the loss domain.

Figure 12.

The kinked CRRA utility function
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Notes: The figure illustrates the kinked CRRA utility function (i.e., ρ = ϕ and ψ = 0) for κ = 2.5
(solid line) and κ = 5 (dash-dotted line). The reference level θt is set equal to 10, the weight parameter
η to 0 and the curvature parameter ϕ to 5.

Unfortunately, the kinked HARA utility function cannot be expressed in terms of the agent’s

surplus consumption choice ĉt ≡ ct − θt. As a direct consequence, the solution technique of

Schroder and Skiadas (2002) is not applicable here. However, we can still obtain an analytical

solution to the optimal consumption and portfolio choice problem if the agent’s reference level

25The HARA class of utility functions contains several important special cases. With suitable choice of preference
parameters, the HARA utility function can exhibit increasing, decreasing or constant relative risk aversion.
Important special cases are the commonly used CRRA (ρ = ϕ and ψ = 0), exponential (ψ = 1 and ϕ→∞)
and logarithmic (ρ = 1 and ϕ→ 1) utility functions.

30



is exogenously given. The assumption of an exogenous reference level implies that the agent’s

own (past) consumption choices do not affect the reference level. However, factors beyond the

control of the agent are allowed to influence the reference level. Hence, the consumption and

portfolio choice model considered in this section can be viewed as an external, rather than an

internal, habit formation model (see, e.g., Abel, 1990). In what follows, the reader should keep

in mind that the reference level is independent of the agent’s own (past) consumption choices.

Theorem 3 below presents the optimal consumption choice for an agent with the kinked

HARA utility function.

Theorem 3. Consider an agent with the kinked HARA utility function and an exogenously

given reference level process θ who solves the consumption and portfolio choice problem, with

consumption constrained to be non-negative. Then the optimal consumption c∗t at time t ∈ [0, T ]

is given by

c∗t =


ϕ
ρ

(
y exp{δt}Mt

ρ

)− 1
ϕ − ψϕ

ρ
, if Mt < ξ

t
;

θt, if ξ
t
≤Mt ≤ ξt;[

ϕ
ρ

(
y exp{δt}Mt

ρκ̄

)− 1
ϕ − ψϕ

ρ

]
∨ 0, if Mt > ξt.

Here, κ̄ ≡ η+ (1− η)κ stands for the adjusted loss aversion index. The thresholds ξ
t

and ξt are

defined as follows:

ξ
t

=
ρ

y
exp {−δt}

(
ξ

ϕ
θt + ψ

)−ϕ
, ξt =

ρκ̄

y
exp {−δt}

(
ξ

ϕ
θt + ψ

)−ϕ
.

The Lagrange multiplier y is chosen such that the static budget constraint holds with equality.

Theorem 3 shows that the state price density can be divided into three regions. In good

economic scenarios (i.e., low state prices), consumption is (strictly) larger than the reference

level; in these scenarios, the agent can afford to consume above the reference level. Next, in

intermediate economic scenarios (i.e., intermediate state prices), consumption is equal to the

reference level. The adjusted loss aversion index κ̄ determines the multiplicity of states in

which consumption is equal to the reference level. Finally, in bad economic scenarios (i.e.,

high state prices), the agent’s wealth is insufficient to finance consumption at the reference

level. In the case of two-part power utility (see Section 4), similarly, the optimal consumption

choice also falls below the reference level in bad states of the world. Figure 13 illustrates

the optimal consumption profile of an agent with kinked CRRA utility. We observe that, as

before, the optimal consumption choice as a function of the log state price density is 90◦ rotated

S-shaped, thus confirming the impact of loss aversion on the optimal consumption profile. We

also observe that c∗t is a continuous function of the state price density. In particular, the optimal

consumption profile does not exhibit a jump at the reference level. Indeed, marginal utility at

the reference level is finite.
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Figure 13.

Optimal consumption profile of an agent with kinked CRRA utility
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Notes: The figure shows the optimal consumption choice (expressed as a percentage of the agent’s
initial wealth W0) at age 70 as a function of the then-current log state price density. The curvature
parameter ϕ is set equal to 4. The remaining parameter values are the same as in Section 5. The
dashed line corresponds to the agent’s reference level (expressed as a percentage of W0). The dotted
line shows the probability density function (PDF) of the then-current log state price density conditional
upon information available at the age of retirement.

The agent’s optimal wealth W ∗
t can be decomposed in the same way as in Section 4:

W ∗
t = Ŵ ∗

t + W̃ ∗
t = ŴG∗

t + ŴL∗
t + W̃ ∗

t

Proposition 3 below presents ŴG∗
t , ŴL∗

t and W̃ ∗
t for the case of a constant investment opportunity

set (i.e. rt = r, σt = σ and λt = λ).

Proposition 3. Consider an agent with the kinked HARA utility function and an exogenously

given reference level process θ who solves the consumption and portfolio choice problem, with

consumption constrained to be non-negative and assuming a constant investment opportunity

set. Let N be the cumulative distribution function of a standard normal random variable.

Define C, d1(x) and d2(x) as follows:

C ≡ δ + r(ϕ− 1)

ϕ
+

1

2

ϕ− 1

ϕ2 ||λ||
2,

d1(x) =
1

||λ||
√
s− t

[
log(x)− log (Mt) +

(
r − 1

2
||λ||2

)
(s− t)

]
,

d2(x) = d1(x) +
||λ||
ϕ

√
s− t.
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Then:

ŴG∗
t =

ϕ

ρ

(
y exp {δt}

ρ

)− 1
ϕ

M
− 1
ϕ

t

∫ T

t

exp {−C(s− t)}N
[
d2

(
ξ
s

)]
ds

− ψϕ

ρ

∫ T

t

exp {−r(s− t)}N
[
d1

(
ξ
s

)]
ds,

ŴL∗
t =

ϕ

ρ

(
y exp {δt}

ρκ̄

)− 1
ϕ

M
− 1
ϕ

t

∫ T

t

exp {−r(s− t)}
(
N
[
d1

(
ξ
∗
s

)]
−N

[
d1

(
ξs
)] )

ds

− ψϕ

ρ

∫ T

t

exp {−r(s− t)}
(
N
[
d1

(
ξ
∗
s

)]
−N

[
d1

(
ξs
)] )

ds,

W̃ ∗
t =

∫ T

t

θs exp {−r(s− t)}
(
N
[
d1

(
ξs
)]
−N

[
d1

(
ξ
s

)])
ds.

Here, ξ
∗
s ≡ ψ

−ϕ
ρκ̄

y exp{δt} .

The agent’s optimal portfolio choice π∗t can be computed in a similar way as in Section 4.

Figure 14 illustrates the optimal portfolio profile of an agent with kinked CRRA utility. We

observe that the optimal portfolio profile displays again a U-shaped pattern. In good as well as

in bad states, the agent behaves like a CRRA agent. In particular, in these states, the fraction

of wealth invested in the risky stock is equal to the constant λ/ (σϕ).

Figure 14.

Optimal portfolio profile of an agent with kinked CRRA utility
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Notes: The figure shows the optimal portfolio choice measured as a fraction of total wealth invested
in the risky stock at age 70 as a function of the then-current log state price density. The curvature
parameter ϕ is set equal to 4. The remaining parameter values are the same as in Section 5.
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7 Conclusion

We have explicitly derived the optimal consumption and portfolio choice under the two-part

power utility function of Tversky and Kahneman (1992) while allowing the agent to endogenously

update his reference level over time. We have shown that the loss averse feature of the

utility function gives rise to a nonlinear consumption profile, inducing a (soft) guarantee on

consumption, and that endogenous updating of the reference level implies smoothing of financial

shocks.

We have assumed that agents are able to objectively evaluate the probabilities associated

with future outcomes. A large body of research suggests that agents subjectively weight

probabilities and e.g., have a tendency to overweight unlikely extreme outcomes (see, e.g.,

Abdellaoui, 2000). Jin and Zhou (2008) and He and Zhou (2011, 2014) consider optimal

portfolio choice under subjective probability weighting; see also Laeven and Stadje (2014).

However, these authors do not consider intertemporal consumption or endogenous updating

of the reference level. In future work we intend to extend our setting with intertemporal

consumption and endogenous updating of the reference level to explore the impact of probability

weighting on the optimal consumption and portfolio choice. Interestingly, as already shown by

He and Zhou (2014), probability weighting may generate an endogenous insurance if small

probabilities are sufficiently overweighted.
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Appendix

The Dual Technique

Schroder and Skiadas (2002) show that a generic consumption and portfolio choice model

with linear internal habit formation can be mechanically transformed into a dual consumption

and portfolio choice model without linear internal habit formation. The dual technique can

be applied to an arbitrary utility function, including the two-part power utility function v

[see expression (3.1)]. To formulate the dual consumption and portfolio choice model, let us

define the agent’s surplus consumption choice ĉt as the agent’s consumption choice ct minus the

agent’s reference level θt; that is, ĉt ≡ ct − θt. We can view ĉ as a gain process.26 The agent’s

maximization problem (4.1) is now equivalent to the following dual problem:

maximize
ĉ

E
[∫ T

0

exp {−δt} v (ĉt) dt

]
subject to E

[∫ T

0

M̂tĉt dt

]
≤ Ŵ0 (1 + βA0) , ĉt ≥ −Lt for all t ∈ [0, T ].

(A1)

Here, M̂t and Ŵ0 represent the dual counterparts of the state price density Mt and the agent’s

initial wealth W0, respectively.

The relationship between the agent’s maximization problem (4.1) and the dual problem

(A1) is characterized in terms of the auxiliary process A:

At ≡
1

Mt

Et
[∫ T

t

Ms exp {− (α− β) (s− t)} ds

]
.

We can view At as the time t price of a bond paying a continuous coupon. In case the investment

opportunity set is constant, At only depends on time t. As a direct consequence, the optimal

portfolio choice can be computed explicitly in this case. The dual state price density M̂t and

the dual initial wealth Ŵ0 are given by

M̂t ≡Mt (1 + βAt) , Ŵ0 ≡
W0 − A0θ0

1 + βA0

.

Furthermore, the dual reference level

θ̂s = β

∫ s

t

exp {− (α− β) (s− u)} ĉu du+ exp {− (α− β) (s− t)} θ̂t, s ≥ t ≥ 0,

is equal to the agent’s reference level θs.

Surplus wealth Ŵt is defined as follows:

Ŵt ≡
1

M̂t

Et
[∫ T

t

M̂sĉs ds

]
.

26We note that a negative gain corresponds to a (positive) loss.
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Surplus wealth Ŵt is invested in a dual financial market that is characterized by the dual

risk-free rate r̂t, the dual volatility σ̂t and the dual market price of risk λ̂t:

r̂t ≡ β +
rt − αβAt
1 + βAt

, σ̂t ≡ σt,

λ̂t ≡ λt −
β

1 + βAt

∫ T

t

exp {−(α− β)(s− t)}Pt,sΨt,s ds.

Here, Pt,s corresponds to the time t price of a default-free unit discount bond that matures at

time s ≥ t and Ψt,s stands for the time t volatility of the instantaneous return on such a bond

(all in the primal financial market). The optimal dual portfolio choice π̂∗t is determined such

that it finances the optimal surplus consumption choice ĉ ∗t .

The next proposition is adapted from Schroder and Skiadas (2002).

Proposition 4. Suppose that we have solved the dual problem (A1). Let us denote the optimal

surplus consumption choice by ĉ ∗t , the optimal dual reference level by θ̂ ∗t , the optimal surplus

wealth by Ŵ ∗
t and the optimal dual portfolio choice by π̂∗t . Then:

• The optimal consumption for the agent at time 0 ≤ t ≤ T is given by

c∗t = ĉ ∗t + θ̂ ∗t .

• The optimal wealth for the agent at time 0 ≤ t ≤ T is given by

W ∗
t = Ŵ ∗

t + βAtŴ
∗
t + Atθ̂

∗
t .

• The optimal portfolio choice for the agent at time 0 ≤ t ≤ T is given by

π∗t = π̂∗t + βAtπ̂
∗
t +

(
βŴ ∗

t + θ̂ ∗t

)
(σ̂t)

−1

∫ T

t

exp {−(α− β)(s− t)}Pt,sΨt,s ds.

Proposition 4 shows how to transform the optimal solution to the dual problem (A1) back into

the optimal solution to the agent’s maximization problem (4.1).

Proof of Theorem 1

The proof uses some of the techniques developed by Basak and Shapiro (2001) and Berkelaar

et al. (2004) to deal with pseudo-concavity and non-differentiability aspects of the problem and

adapts these to our setting with intertemporal consumption.

The dual problem, equivalent to the agent’s maximization problem (4.1), is given by

maximize
ĉ

E
[∫ T

0

exp {−δt} v (ĉt) dt

]
subject to E

[∫ T

0

M̂tĉt dt

]
≤ Ŵ0 (1 + βA0) , ĉt ≥ −Lt for all t ∈ [0, T ].
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The corresponding Lagrangian L is defined as follows:

L = E
[∫ T

0

exp {−δt} v (ĉt) dt

]
+ y

(
Ŵ0 − E

[∫ T

0

M̂tĉt dt

])
=

∫ T

0

E
[
exp {−δt} v (ĉt)− yM̂tĉt

]
dt+ yŴ0.

Here, y denotes the Lagrange multiplier associated with the static budget constraint. The

agent wishes to maximize exp {−δt} v (ĉt)− yM̂tĉt subject to ĉt ≥ −Lt. Denote the part of the

two-part power utility function with domain below zero by v1, and the part with domain above

zero by v2. Let us denote by c∗1t the agent’s optimal surplus consumption choice for utility

function v1, and by c∗2t the agent’s optimal surplus consumption choice for utility function v2.

We first consider the case where the agent is risk-averse in the loss domain. Due to the

concavity of v1 and v2, the optimal surplus consumption choices c∗1t and c∗2t satisfy the following

optimality conditions:27

exp {−δt} v′j
(
c∗jt
)

= yM̂t − xjt, c∗jt ≥ −Lt, for j = 1, 2,

xjt
(
c∗jt + Lt

)
= 0, xjt ≥ 0, for j = 1, 2.

Here, xjt denotes the Lagrange multiplier associated with the constraint on surplus consumption.

After solving the optimality conditions, we obtain the following two local maxima:

c∗1t = −
[(
ltM̂t

) 1
γ1−1 ∧ Lt

]
, c∗2t =

(
ktM̂t

) 1
γ2−1

.

Here, lt ≡ y exp {δt} · 1
κγ1

and kt ≡ y exp {δt} · 1
γ2

.

To determine the global maximum ĉ ∗t , we introduce the following function:

f
(
M̂t

)
= exp {−δt} v (c∗2t)− yM̂tc

∗
2t −

[
exp {−δt} v (c∗1t)− yM̂tc

∗
1t

]
= exp {−δt} (1− γ2)

(
ktM̂t

) γ2
γ2−1

+ κ exp {−δt}
[(
ltM̂t

) 1
γ1−1 ∧ Lt

]γ1

− yM̂t

[(
ltM̂t

) 1
γ1−1 ∧ Lt

]
.

The global maximum ĉ ∗t is equal to c∗2t if f
(
M̂t

)
≥ 0; and equals c∗1t otherwise. It follows that

limM̂t→∞
f
(
M̂t

)
= −∞, limM̂t→0 f

(
M̂t

)
= ∞ and f ′

(
M̂t

)
< 0 for all M̂t. Hence, f

(
M̂t

)
is

strictly decreasing. As a direct consequence, f
(
M̂t

)
has one zero in the interval (0,∞). Define

ξt to be such that f (ξt) = 0. The global maximum ĉ ∗t is equal to c∗2t if M̂t ≤ ξt; and equals c∗1t

otherwise.

We now consider the case where the agent is risk-seeking in the loss domain. Due to the

concavity of v2, the optimal surplus consumption choice c∗2t satisfies the following optimality

27The derivative of a function f at a point a is denoted by f ′(a).
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conditions:

exp {−δt} v′2
(
c∗jt
)

= yM̂t − x2t, c∗2t ≥ −Lt,

x2t (c∗2t + Lt) = 0, x2t ≥ 0.

After solving the optimality conditions, we obtain the following local maximum:

c∗2t =
(
ktM̂t

) 1
γ2−1

.

Due to the convexity of v1, the optimal surplus consumption choice c∗1t lies at a corner point of

the feasible region. Hence, the only two possible candidates for c∗1t are −Lt and 0.

To determine the global maximum ĉ ∗t , we introduce the following function:

g
(
M̂t

)
= exp {−δt} v (c∗2t)− yM̂tc

∗
2t −

[
exp {−δt} v (c∗1t)− yM̂tc

∗
1t

]
.

The global maximum ĉ ∗t is equal to c∗2t if g
(
M̂t

)
≥ 0; and equals c∗1t otherwise. We distinguish

between the following two cases:

• c∗1t = 0. Straightforward computations show that g
(
M̂t

)
is given by

g
(
M̂t

)
= exp {−δt} (1− γ2)

(
ktM̂t

) γ2
γ2−1

.

Since 0 < γ2 < 1 and y > 0, it follows that g
(
M̂t

)
> 0 for all M̂t. We conclude that

c∗1t = 0 is never optimal.

• c∗1t = −Lt. Straightforward computations show that g
(
M̂t

)
is given by

g
(
M̂t

)
= exp {−δt} (1− γ2)

(
ktM̂t

) γ2
γ2−1

+ exp {−δt}κLγ1
t − yM̂tLt.

It follows that g
(
M̂t

)
> 0 for all M̂t ≤ κ

y
exp {−δt}Lγ1−1

t . Further, limM̂t→∞
g
(
M̂t

)
=

−∞ and g′
(
M̂t

)
< 0 for all M̂t. Hence, g

(
M̂t

)
is strictly decreasing. As a direct

consequence, g
(
M̂t

)
has one zero in the interval

(
κ
y

exp {−δt}Lγ1−1
t ,∞

)
. Define ξt to

be such that g (ξt) = 0. It follows that the global maximum ĉ ∗t is equal to c∗2t if M̂t ≤ ξt;

and equals c∗1t otherwise.

A standard verification (see, e.g., Karatzas and Shreve, 1998, p. 103) that the optimal solutions

obtained from the Lagrangian are the optimal solutions to the dual problem completes the

proof. �

Proof of Proposition 1

We distinguish between the following two cases:
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• Risk-averse behavior in the loss domain. Define the following function:

f̃(x) ≡ (1− γ2)

(
x

γ2

) γ2
γ2−1

+ κ

[(
x

γ1κ

) 1
γ1−1

∧ Lt

]γ1

− x

[(
x

γ1κ

) 1
γ1−1

∧ Lt

]
.

Let ξ̃t be such that f̃
(
ξ̃t

)
= 0. It follows that ξ̃t = y exp {δt} ξt. The quantity ξ̃t increases

as the loss aversion index κ increases. Furthermore, initial surplus wealth Ŵ0 decreases

with the initial reference level θ0, increases with the depreciation parameter α (provided

that Ŵ0 is non-negative), and decreases with the endogeneity parameter β (provided that

Ŵ0 is non-negative).

• Risk-seeking behavior in the loss domain. Define the following function:

g̃ (x) ≡ (1− γ2)

(
x

γ2

) γ2
γ2−1

+ κLγ1
t − xLt.

Let ξ̃t be such that g̃
(
ξ̃t

)
= 0. It follows that ξ̃t = y exp {δt} ξt. The quantity ξ̃t increases

as the loss aversion index κ increases. Furthermore, initial surplus wealth Ŵ0 decreases

with the initial reference level θ0, increases with the depreciation parameter α (provided

that Ŵ0 is non-negative), and decreases with the endogeneity parameter β (provided that

Ŵ0 is non-negative).

The proposition now follows straightforwardly from Berkelaar et al. (2004). �

Proof of Proposition 2

Optimal surplus wealth is given by

Ŵ ∗
t =

1

M̂t

Et
[∫ T

t

M̂sĉ
∗
s ds

]
. (A2)

We first consider the case where the agent is risk-averse in the loss domain. Substituting the

optimal surplus consumption choice ĉ ∗s into equation (A2) yields

Ŵ ∗
t =

1

M̂t

Et

[∫ T

t

M̂s

(
ksM̂s

) 1
γ2−1

1[M̂s≤ξs] ds

−
∫ T

t

M̂s

(
lsM̂s

) 1
γ1−1

1[ξs<M̂s<ξs∨ζs] ds−
∫ T

t

M̂sLs1[M̂s≥ξs∨ζs] ds

]

=
(
ktM̂t

) 1
γ2−1 Et

∫ T

t

(
M̂s

M̂t

) γ2
γ2−1

exp

{
δ(s− t)
γ2 − 1

}
1[M̂s≤ξs] ds


−
(
ltM̂t

) 1
γ1−1 Et

∫ T

t

(
M̂s

M̂t

) γ1
γ1−1

exp

{
δ(s− t)
γ1 − 1

}
1[ξs<M̂s<ξs∨ζs] ds


− Et

[∫ T

t

M̂s

M̂t

Ls1[M̂s≥ξs∨ζs] ds

]
.

(A3)
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Here, ζs ≡ exp {−δs} γ1κ
y
Lγ1−1
s . The closed-form expression for Ŵ ∗

t can be determined by

computing the conditional expectations. In case the investment opportunity set is constant, we

find

Et

[
M̂s

M̂t

Ls1[M̂s≥ξs∨ζs]

]
= exp

{
−
∫ s

t

r̂u du

}
LsN [−d1 (ξs ∨ ζs)] , (A4)

Et

(M̂s

M̂t

) γ2
γ2−1

exp

{
δ(s− t)
γ2 − 1

}
1[M̂s≤ξs]

 = exp

{
−
∫ s

t

Γu du

}
N [d2 (ξs)] , (A5)

Et

(M̂s

M̂t

) γ1
γ1−1

exp

{
δ(s− t)
γ1 − 1

}
1[ξs<M̂s<ξs∨ζs]

 = exp

{
−
∫ s

t

Πu du

}
×
(
N [d3 (ξs ∨ ζs)]−N [d3 (ξs)]

)
.

(A6)

Here, N is the cumulative distribution function of a standard normal random variable, and Γu,

Πu, d1(x), d2(x) and d3(x) are defined as follows:

Γu ≡
δ − γ2r̂u
1− γ2

− 1

2

γ2

(1− γ2)2 ||λ||
2, Πu ≡

δ − γ1r̂u
1− γ1

− 1

2

γ1

(1− γ1)2 ||λ||
2,

d1(x) ≡ 1

||λ||
√
s− t

·
[
log(x)− log

(
M̂t

)
+

∫ s

t

r̂u du− 1

2
||λ||2(s− t)

]
,

d2(x) ≡ d1(x) +
||λ||

1− γ2

√
s− t, d3(x) ≡ d1(x) +

||λ||
1− γ1

√
s− t.

Substituting the conditional expectations (A4), (A5) and (A6) into equation (A3) yields the

optimal surplus wealth.

We now consider the case where the agent is risk-seeking in the loss domain. Substituting

the optimal surplus consumption choice ĉ ∗s into equation (A2) yields

Ŵ ∗
t =

1

M̂t

Et

[∫ T

t

M̂s

(
ksM̂s

) 1
γ2−1

1[M̂s≤ξs] ds−
∫ T

t

M̂sLs1[M̂s>ξs] ds

]

=
(
ktM̂t

) 1
γ2−1 Et

∫ T

t

(
M̂s

M̂t

) γ2
γ2−1

exp

{
δ(s− t)
γ2 − 1

}
1[M̂s≤ξs] ds


− Et

[∫ T

t

M̂s

M̂t

Ls1[M̂s>ξs] ds

]
.

(A7)

The closed-form expression for Ŵ ∗
t can be determined by computing the conditional expectations.
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In case the investment opportunity set is constant, we find

Et

[
M̂s

M̂t

Ls1[M̂s>ξs]

]
= exp

{
−
∫ s

t

r̂u du

}
LsN [−d1 (ξs)] , (A8)

Et

(M̂s

M̂t

) γ2
γ2−1

exp

{
δ(s− t)
γ2 − 1

}
1[M̂s≤ξs]

 = exp

{
−
∫ s

t

Γu du

}
N [d2 (ξs)] . (A9)

Substituting the conditional expectations (A8) and (A9) into equation (A7) yields the optimal

surplus wealth. �

Welfare Analysis

This appendix describes a numerical procedure for computing welfare losses. The numerical

procedure is based on the assumptions that the investment opportunity set is constant and the

agent can only invest in one risky stock. We introduce the following notation:

• ∆t: time step;

• tn ≡ n∆t for n = 0, ...,
⌊
T
∆t

⌋
;

• S: total number of simulations.

The floor operator b·c rounds a number downward to its nearest integer.

To compute the welfare loss associated with a suboptimal consumption strategy ct, we apply

the following steps:

1. We generate S trajectories of the pricing kernel:

M s
tn+1

= M s
tn
− rM s

tn
∆t− λM s

tn

√
∆tεstn , n = 0, ...,

⌊
T

∆t

⌋
, s = 1, ...,S.

Here, εstn is a standard normally distributed random variable.

2. We compute the optimal surplus consumption choice ĉ ∗stn for n = 0, ...,
⌊
T
∆t

⌋
and s =

1, ...,S. We note that the optimal surplus consumption choice ĉ ∗stn is a function of the dual

state price density M̂ s
tn
≡M s

tn

(
1 + βAtn

)
. Expected utility can now be approximated by

E
[∫ T

0

exp {−δt} v (ĉ ∗t ) dt

]
≈ 1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ĉ ∗stn
)

∆t. (A10)

The right-hand side of equation (A10) is an approximation of E
[∫ T

0
exp {−δt} v (c∗t − θ∗t ) dt

]
.
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3. We solve for certainty equivalent consumption ce∗:

1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ĉ ∗stn
)

∆t =

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ce∗ − θ∗tn

)
∆t,

where

θ∗tn = θ0 exp {−αtn}+ β
n−1∑
i=0

exp {−α (tn − ti)} ce∗∆t.

4. We compute the suboptimal consumption strategy ĉ stn ≡ cstn − θ
s
tn

for n = 0, ...,
⌊
T
∆t

⌋
and

s = 1, ...,S. Expected utility can now be approximated by

E
[∫ T

0

exp {−δt} v (ĉt) dt

]
≈ 1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ĉ stn
)

∆t.

5. We solve for certainty equivalent consumption ce:

1

S

S∑
s=1

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ĉ stn
)

∆t =

⌊
T
∆t

⌋∑
n=0

exp {−δtn} v
(
ce− θtn

)
∆t,

where

θtn = θ0 exp {−αtn}+ β
n−1∑
i=0

exp {−α (tn − ti)} ce∆t.

6. Finally, we compute the welfare loss WL:

WL =
ce∗ − ce
ce∗

.

Proof of Theorem 3

The proof uses some of the techniques developed by Basak and Shapiro (2001) and Berkelaar

et al. (2004) and adapts these to our setting with intertemporal consumption.

The agent’s maximization problem is given by

maximize
c

E
[∫ T

0

exp {−δt} u (ct; θt) dt

]
subject to E

[∫ T

0

Mtct dt

]
≤ W0, ct ≥ 0 for all t ∈ [0, T ].
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The corresponding Lagrangian L is defined as follows:

L = E
[∫ T

0

exp {−δt}u (ct; θt) dt

]
+ y

(
W0 − E

[∫ T

0

Mtct dt

])
=

∫ T

0

E [exp {−δt}u (ct; θt)− yMtct] dt+ yW0.

Here, y denotes the Lagrange multiplier associated with the static budget constraint. The agent

wishes to maximize exp {−δt}u (ct; θt)−yMtct subject to ct ≥ 0. Denote the part of the utility

function with domain below zero by u1, and the part with domain above zero by u2. Let us

denote by c∗1t the agent’s optimal consumption choice for utility function u1, and by c∗2t the

agent’s optimal consumption choice for utility function u2.

Due to the concavity of u1 and u2, the optimal consumption choices c∗1t and c∗2t satisfy the

following optimality conditions:

exp {−δt}u′j
(
c∗jt; θt

)
= yMt − xjt, c∗jt ≥ 0, for j = 1, 2,

xjtc
∗
jt = 0, xjt ≥ 0, for j = 1, 2.

Here, xjt denotes the Lagrange multiplier associated with the non-negativity constraint on

consumption. After solving the optimality conditions, we obtain the following two local maxima:

c∗1t = min

{
θt,

[
ϕ

ρ

(
y exp {δt}Mt

ρκ̄

)− 1
ϕ

− ψϕ

ρ

]
∨ 0

}
,

c∗2t = max

{
θt,

ϕ

ρ

(
y exp {δt}Mt

ρ

)− 1
ϕ

− ψϕ

ρ

}
.

Here, κ̄ ≡ η + (1− η) · κ.

To determine the global maximum c∗t , we introduce the following function:

f (Mt) = exp {−δt}u (c∗2t; θt)− yMtc
∗
2t − [exp {−δt}u (c∗1t; θt)− yMtc

∗
1t] .

The global maximum is equal to c∗2t if f (Mt) ≥ 0; and equals c∗1t otherwise. It follows that f (Mt)

changes sign at the points ξ
t

= ρ
y

exp {−δt}
(
ρ
ϕ
θt + ψ

)−ϕ
and ξt = ρκ̄

y
exp {−δt}

(
ρ
ϕ
θt + ψ

)−ϕ
.

We consider the following three cases:

• ξ
t
≤ Mt ≤ ξt. It follows that θt is the only candidate solution. We conclude that c∗t = θt

is the global maximum.

• Mt > ξt. We compare the candidate solutions c∗1t =

[
ϕ
ρ

(
y exp{δt}Mt

ρκ̄

)− 1
ϕ − ψϕ

ρ

]
∨ 0 and

c∗2t = θt. Some straightforward computations show that f
(
ξt
)

= 0, f ′
(
ξt
)

= 0 and

f ′′ (Mt) < 0 for all Mt > ξt. Hence, f (Mt) < 0 for all Mt > ξt. We conclude that c∗t = c∗1t

is the global maximum.

• Mt < ξ
t
. We compare the candidate solutions c∗1t = θt and c∗2t = ϕ

ρ

(
y exp{δt}Mt

ρ

)− 1
ϕ − ψϕ

ρ
.
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Some straightforward computations show that f
(
ξ
t

)
= 0, f ′

(
ξ
t

)
= 0 and f ′′

(
ξ
t

)
> 0

for all Mt < ξ
t
. Hence, f (Mt) > 0 for all Mt < ξ

t
. We conclude that c∗t = c∗2t is the global

maximum.

A standard verification (see, e.g., Karatzas and Shreve, 1998, p. 103) that the optimal solution

obtained from the Lagrangian is the optimal solution to the static maximization problem

completes the proof. �

Proof of Proposition 3

Optimal wealth is given by

W ∗
t =

1

Mt

Et
[∫ T

t

Msc
∗
s ds

]
. (A11)

Substituting the optimal consumption choice into equation (A11) yields

W ∗
t =

1

Mt

Et
[∫ T

t

Msθs1[ξs≤Ms≤ξs] ds

+

∫ T

t

Ms

{
ϕ

ρ

(
y exp {δs}Ms

ρ

)− 1
ϕ

− ψϕ

ρ

}
1[Ms<ξs]

ds

+

∫ T

t

Ms

{
ϕ

ρ

(
y exp {δs}Ms

ρκ̄

)− 1
ϕ

− ψϕ

ρ

}
1[ξs<Ms<ξ

∗
s] ds

]

= Et
[∫ T

t

Ms

Mt

θs1[ξs≤Ms≤ξs] ds

]
+
ϕ

ρ

(
y exp {δt}

ρ

)− 1
ϕ

M
− 1
ϕ

t Et

[∫ T

t

{
Ms

Mt

}ϕ−1
ϕ

exp

{
−δ(s− t)

ϕ

}
1[Ms<ξs]

ds

]

− ψϕ

ρ
Et
[∫ T

t

Ms

Mt

1[Ms<ξs]
ds

]
+
ϕ

ρ

(
y exp {δt}

ρκ̄

)− 1
ϕ

M
− 1
ϕ

t Et

[∫ T

t

{
Ms

Mt

}ϕ−1
ϕ

exp

{
−δ(s− t)

ϕ

}
1[ξs<Ms<ξ

∗
s] ds

]

− ψϕ

ρ
Et
[∫ T

t

Ms

Mt

1[ξs<Ms<ξ
∗
s] ds

]
.

(A12)

Here, ξ
∗
s ≡ ψ

−ϕ
ρκ̄

y exp{δt} . The closed-form expression for W ∗
t can be determined by computing the

conditional expectations. In case the investment opportunity set is constant, we find

Et

[{
Ms

Mt

}ϕ−1
ϕ

exp

{
−δ(s− t)

ϕ

}
1[Ms<ξs]

]
= exp {−C(s− t)}N

[
d2

(
ξ
s

)]
, (A13)
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Et

[{
Ms

Mt

}ϕ−1
ϕ

exp

{
−δ(s− t)

ϕ

}
1[ξs<Ms<ξ

∗
s]

]
= exp {−C(s− t)}

×
(
N
[
d2

(
ξ
∗
s

)]
−N

[
d2

(
ξs
)] )

,

(A14)

Et
[
Ms

Mt

θs1[ξs≤Ms≤ξs]

]
= θs exp {−r(s− t)}

(
N
[
d1

(
ξs
)]
−N

[
d1

(
ξ
s

)])
, (A15)

Et
[
Ms

Mt

1[ξs<Ms<ξ
∗
s]

]
= exp {−r(s− t)}

(
N
[
d1

(
ξ
∗
s

)]
−N

[
d1

(
ξs
)] )

, (A16)

Et
[
Ms

Mt

1[Ms<ξs]

]
= exp {−r(s− t)}N

[
d1

(
ξ
s

)]
. (A17)

Here, N is the cumulative distribution function of a standard normal random variable, and C,

d1(x) and d2(x) are defined as follows:

C =
δ + r(ϕ− 1)

ϕ
+

1

2

ϕ− 1

ϕ2 ||λ||
2,

d1(x) =
1

||λ||
√
s− t

[
log(x)− log(Mt) +

(
r − 1

2
||λ||2

)
(s− t)

]
,

d2(x) = d1(x) +
1

ϕ
||λ||
√
s− t.

Substituting the conditional expectations (A13) – (A17) into equation (A12) yields the optimal

wealth. �
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