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1 Introduction

The Committee Parameters (Langejan et al. (2014)) advises to use the KNW-model (after Koijen
et al. (2010)) to generate a representative scenario set for feasibility studies of pension funds. The
scenario set enables a stochastic analysis of such feasibility studies. The underlying KNW-model
is based on an affine factor model for the term structure. Stock returns, bond returns, interest
rates, and inflation depend on observed factors and two latent factors. As such, the model contains
relations between key financial risk factors of pension funds. CPB’s task is to estimate the model on
Dutch data and, if appropriate, to calibrate some parameters in order to fit the recommendations
of the Committee Parameters. Draper (2014) describes the current methods for this estimation and
calibration.

The calibration aims to adjust the Ultimate Forward Rate (UFR) and certain long-term expec-
tations and covariances of the variables in the model. However, this calibration process introduces
some arbitrariness. More specifically, the resulting parameter set may deviate substantially from
the maximum likelihood set, even when taking the restrictions of the calibration into account. In-
stead of calibrating the model, we show how to impose restrictions in a continuous-time affine term
structure model. In this way, the parameters correspond to the optimum of a constrained maximum
likelihood estimation. The results suggest that the method in Draper (2014) provides suboptimal
parameter estimates.

The main result of this paper is the derivation of closed-form expressions for the long-term
(unconditional) expectations, covariances, and the term structure. The expressions are required for
the constrained likelihood optimization, and replace simulations for a long-run analysis of parameter
sets. Our results apply to a wide range of continuous-time affine term strucure models with the
Markov property, including the models in Dai and Singleton (2002) and Koijen et al. (2010).
∗I am grateful to Nick Draper and Bas Werker for discussing several issues, and Albert van der Horst and Marcel

Lever for helpful comments. I would also like to thank DNB for sharing their parameter set.
†email:s.muns@cpb.nl
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The model is outlined in Section 2. Section 3 provides expressions for the mean and covariance
of possibly transformed variables in a VAR(1)-model. Section 4 presents closed-form expressions
for some characteristics of the term structure in terms of the parameters. The estimation results
are in Section 5. We draw conclusions in Section 6.

2 The model1

Affine term structure models are very common in the literature (see e.g., Dai and Singleton (2002),
Koijen et al. (2010), and Gürkaynak and Wright (2012)). We outline a generalized version of
the model in Koijen et al. (2010)2, though our results apply to the VAR(1)-representation of any
continuous-time affine term structure model.

As key determinants of pension risk, we consider inflation dΠ/Π, the stock return dS/S, the
bond portfolio return dPB(τ)/PB(τ) with a constant maturity τ , and the term structure y(τ). The
assumed dynamics are3

Unobserved states dXt = −KXtdt+ dZ̃t (1)
Instant. expected inflation πt = δ0π + δ′1πXt (2)

Price index process
dΠt

Πt
= πtdt+ σ′ΠdZt (3)

Instant. nom. interest rate Rt(0) = δ0R + δ′1RXt (4)

Stock return process
dSt
St

= (Rt(0) + ηS) dt+ σ′SdZt (5)

Bond return process
dPBt (τ)

PBt (τ)
=
(
Rt(0) +B(τ)′Λ̃t

)
dt+B(τ)′dZ̃t (6)

Prices of risk Λt = Λ0 + Λ1Xt (7)

Stochastic discount factor
dφt
φt

= −Rt(0)dt− Λ′tdZt (8)

where dZ ∼ N(0(k+2)×1, I(k+2)×(k+2)), and

K ∈ Rk×k σΠ, σS ,Λ0 ∈ Rk+2 dZ̃t =
[
Ik×k 0k×2

]
dZt

δ1π, δ1R ∈ Rk Λ1 ∈ R(k+2)×k Λ̃t =
[
Ik×k 0k×2

]
Λt

To ensure identification of X and Z, Koijen et al. (2010) impose

(i) σΠ(k+2) = 0: This excludes rotations (e.g., a switch) of the last two components of Z.

1Koijen et al. (2010) and Draper (2014) contain further details and references on the derivations in this section.
2This model is based on assumptions and derivations in Duffie and Kan (1996) and Duffee (2002).
3The assumptions are identical to Koijen et al. (2010), except that (i) here, the number of state variables is k

instead of two, and (ii) we add the implied dynamics of a bond portfolio with constant duration as introduced in
Draper (2014).
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(ii) K is a lower triangular matrix: This excludes rotations (e.g., a switch) of the components of
X, and thus of the first k components of Z.

More implicit identification restrictions are the absence of a drift term in (1) which excludes a
translation of X, and the unit standard deviations of dZ which excludes a scaling of X. To exclude
that −X gives the same fit as X, an additional identification restriction should be imposed on the
sign of X or on the sign of certain parameters. Of course, none of the identification restrictions
changes any of the dynamics of the non-state variables, or any of the expressions we derive.

Using stochastic calculus, the aggregate model is a multivariate Ornstein-Uhlenbeck process:

dΥt = (Θ0 + Θ1Υt)dt+ σΥdZt (9)

where

Υt =


Xt

log Πt

logSt
logPB(τ)

 σΥ =


Ik×k 0k×3

σ′Π
σ′S

B(τ)′ 01×3



Θ0 =


0k×1

δ0π − 1
2σ
′
ΠσΠ

δ0R + ηS − 1
2σ
′
SσS

δ0R +B(τ)′Λ̃0 − 1
2B(τ)′B(τ)

 Θ1 =


−K 0k×3

δ′1π 01×3

δ′1R 01×3

δ′1R +B(τ)′Λ̃1 01×3


Λ̃0 =

[
Ik×k 0k×2

]
Λ0 Λ̃1 =

[
Ik×k 0k×2

]
Λ1

After discretization with step length h, a VAR(1)-model emerges from (9):

Yt = γ + ΓYt−h + εt εt ∼ N(0, V ) (10)

where Yt =
[
Xt ∆ log Πt ∆ logSt ∆ logPB(τ)

]′ is a random vector, and4

γ = UFU−1Θ0 Γ = U exp (Dh)U−1 V = UWU ′ (11)

with F a diagonal matrix, Θ1 = UDU−1, and

Fii = hα(Diih)

α(x) =

{
(exp (x)− 1)/x x 6= 0

1 x = 0

Wij =
[
U−1σY

(
U−1σY

)′]
ij
hα ([Dii +Djj ]h)

4As in Dai and Singleton (2002), Sangvinatsos and Wachter (2005), Koijen et al. (2010), the expressions in (11) are
for diagonalizable Θ1. Though this class is dense in the class of complex matrices, Appendix A derives the expressions
for the general case. This extension seems to be unknown in the literature.
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The random vector Y is stationary if X is stationary, or equivalently, K is positive definite in (1).
The flexible step length h is useful if estimation and simulation have a different frequency.

Without loss of generality, we restrict the analysis to the case h = 1.
Using (8) and a no arbitrage argument, the term structure of nominal continuously compounded

(i.e., nominal log) yields yt is affine in the k state variables:

yt(τ) = −1

τ

(
A(τ) +B(τ)′Xt

)
+ ξτ,t (12)

with τ the term to maturity, and ξτ,t ∼ N(0, στ ) an independent measurement error. The maximum
likelihood estimate corresponds to the maximal loglikelihood sum of the disturbances εt in (10) and
the measurement errors ξτ,t in (12).

The functions A : τ → R, and B : τ → Rk satisfy

A(τ) =

ˆ τ

0
Ȧ(s)ds A(0) = 0 (13)

B(τ) = M−1 [exp (−Mτ)− Ik×k] δ1R B(0) = 0k×1 (14)

Ȧ(τ) = −δ0R − Λ̃′0B(τ) +
1

2
B(τ)′B(τ) Ȧ(0) = −δ0R (15)

Ḃ(τ) = −δ1R −MB(τ) Ḃ(0) = −δ1R (16)

where M =
(
K + Λ̃1

)′
and ẋ denotes the derivative of the function x. Define

b0 := lim
τ→∞

B(τ) = −M−1δ1R.

We assume a positive definite M in (16) which ensures a finite b0.
The Ultimate Forward Rate (UFRlog) is the cross-sectional limτ→∞ E[yt (τ)]. Since X is sta-

tionary and limτ→∞B(τ)/τ = 0, we find for each t

UFRlog = lim
τ→∞

−A(τ)

τ
= lim

τ→∞
−Ȧ(τ) = δ0R +

(
Λ̃0 −

1

2
b0

)′
b0. (17)

The UFR as an annually compounded rate of return is given by

UFR = exp (UFRlog)− 1. (18)

Equation (12) implies that only measurement error ξτ,t can explain time variation in the observed
UFR:

lim
τ→∞

yt (τ) = UFRlog + lim
τ→∞

ξτ,t
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Since E[Xt] = E[ξτ,t] = 0 if t→∞, the unconditional expected term structure is determined by5

R(τ) := lim
t→∞

E[yt (τ)] = −A(τ)

τ
. (19)

The dynamics in the price of risk in (7) are completely determined by the k prices in Λ̃. To see
this, (i) inflation, (ii) the stock return, and (iii) the bond return depend on the state variables in
X as well as variable-specific shocks. None of these three variables affects the dynamics of priced
risk:

(i) The price of unexpected inflation risk has no risk premium in (3) because the price of un-
expected inflation risk cannot be identified on the basis of data on the nominal side of the
economy alone. We follow Koijen et al. (2010) by assuming that the price of unexpected
inflation risk equals zero.

(ii) The equity premium in (5) is assumed to be fixed at ηS , and thus time independent.

(iii) The risk premium of the bond price in (6) is derived from the affine term structure yt(τ) in
(12).

Hence, the dynamics in the price of risk are implied by the dynamics of the k linearly independent
risks in Λ̃. The bottom two risks in Λ that are absent in Λ̃ follow from the restriction on the
equity premium (σ′SΛ0 = ηS and σ′SΛ1 = 01×k), and the absence of priced unexpected inflation risk
(Λ0(k+1) = Λ1(k+1,1) = . . . = Λ1(k+1,k) = 0). Therefore, the parameters that determine the price of
risk are in Λ̃0 and Λ̃1.

It is straightforward to augment Y in (10) with additional bond portfolios having different
maturities (augment Θ0, Θ1, and σΥ in (9)), or with yields from (12) (augment γ, Γ, and V directly
in (10)). Adding bond portfolios or yields to Y does not add any new parameter to the VAR(1)-
model. In any case, the model we estimate contains the same number of parameters.

In the next section, we derive the mean and covariance of Y in (10). Closed-form expressions
for some characteristics of R(τ) in (19) are in Section 4.

3 Mean and covariance6

We derive expressions for the mean vector and covariance matrix of the variables Y in the VAR(1)-
model in (10). Such expressions are needed for the implementation of certain constraints in an

5To keep our derivations manageable, we consider the term structure of continuously compounded yields. Other-
wise, we need to consider yields following a lognormal distribution with long-run expectation

lim
t→∞

E[exp (yt(τ))] = exp
(
−τ−1A(τ) + τ−2B(τ)′Var (X)B(τ)

)
.

The additional term from the variance would complicate the analysis unnecessarily.
6The main derivations in this section are based on Cochrane (2005).
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optimization procedure. In addition, they are helpful for informative purposes on the long-run
behaviour of the model. The expressions are unconditional on realizations of Y which means that
the expressions are long-run expectations. The random vector Y may contain any stationary series:
inflation, GDP growth, returns (possibly continuously compounded), a latent stationary factor, etc.
We derive arithmetic means and variances of the annually compounded returns Ỹ = exp(Y ) − 1.
We end this section with an expression for the geometric mean of Y .

Without loss of generality, we consider a step length of one period, h = 1. Induction on (10)
gives

Yt = γ + Γ (γ + ΓYt−2 + εt−1) + εt

= Γt−1Y0 +

t−1∑
s=0

Γs (γ + εt−s)

It follows from the stationarity of Y that the eigenvalues of Γ are within the unit circle of the
complex plane. Accordingly, Γt−1Y0 → 0 as t→∞, and for some µ and Σ,

Yt → Y ∗ ∼ N(µ,Σ) (20)
Y ∗ ∼ γ + ΓY ∗ + ε (21)

Using (21):

µ = (I − Γ)−1 γ (22)
Σ = ΓΣΓ′ + V (23)

vec(Σ) = (Γ⊗ Γ) vec(Σ) + vec(V )

This leads to an explicit expression for the elements in Σ:7

vec(Σ) = (I − Γ⊗ Γ)−1 vec(V ) (24)

Next, we consider the annually compounded rates of return Ỹt = exp(Yt)−1 where Y is a vector
of annually compounded returns. Let DΣ represent the diagonal matrix with the diagonal elements
of Σ. Using well-known properties of the lognormal distribution and (20), we find as t→∞,

E
[
Ỹt

]
→ exp

(
µ+

1

2
DΣ

)
− 1 (25)

Var
[
Ỹt

]
→ exp (DΣ − 1) exp (2µ+DΣ) (26)

Equations (25)-(26) refer to the limiting distribution of continuously compounded returns over a
single period t. Expressions for the cumulative mean arithmetic return 1

t

∑t
s=1 Ỹs easily follow from

the central limit theorem.
7Equation (24) differs from the incorrect equation (54) in Draper (2014), which is based on (A4) on p.253 in

Banerjee et al. (1993). This equation is inappropriate here since it contains cross-covariances. In fact, our (23) is
similar to (A3) in Banerjee et al. (1993).
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The geometric mean return Y G
t is a cumulative return that depends as follows on the mean

realized continuously compounded return Ȳt := 1
t

∑t
s=1 Ys:

1 + Y G
t =

(
t∏

s=1

(
1 + Ỹs

))1/t

=

(
t∏

s=1

exp (Ys)

)1/t

= exp

(
1

t

t∑
s=1

Ys

)
= exp

(
Ȳt
)

Thus, the gross return 1 + Y G
t follows a lognormal distribution LN (µ,DΣ/t) with

E
[
1 + Y G

t

]
= exp

(
µ+

DΣ

2t

)
Var

[
1 + Y G

t

]
=

(
exp

(
DΣ

t

)
− 1

)
exp

(
2µ+

DΣ

t

)
As such, Y G

t converges to a degenerate distribution Y G with full probability mass at

E
[
Y G
]

= exp (µ)− 1. (27)

When optimizing parameter sets in the stationary model (10), the expressions in (22), (24)–(27)
enable us to restrict the unconditional, i.e., long-run, means and covariances of the variables.

4 Restrictions on the term structure

In Section 3, the time series model in (10) led to relatively straightforward expressions for the mean
and covariance of the variables in Y . In this section, we derive more complicated, though closed-
form, expressions for the cross-sectional expressions of some characteristics of the unconditional, i.e.
long-run, term structure, R(τ) in (19).

Referring to the functions A(τ) and B(τ) in (13) and (14), Duffee (2002, p.408) states: ‘The
functions A(τ) and B(τ) can be calculated numerically by solving a series of ordinary differential
equations (ODEs).’ Compared to numerical evaluations, the closed-form expressions we derive
below are superior in terms of speed and accuracy. In a similar setting, Dai and Singleton (2002)
also derive closed-form expressions for A(τ) and B(τ). Nonetheless, their result contains a matrix
exponential and the trace of a complicated matrix product. As a consequence, the link to the
underlying parameters is less obvious in their expressions.
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Let us start with a straightforward restriction. Since the price of unexpected inflation risk equals
zero (see p.5), the long-run instantaneous real interest rate is the difference between the long-run
nominal interest rate δ0R in (4) and the long-run instantaneous inflation δ0π in (2):

δ0r = δ0R − δ0π. (28)

A nonnegative long-run instantaneous real interest rate is thus equivalent to δ0R ≥ δ0π.
It is straightforward from (13)–(16) that

Ä(τ) =
(
B(τ)− Λ̃0

)′
Ḃ(τ) Ä(0) = Λ̃′0δ1R (29)

B̈(τ) = −MḂ(τ) B̈(0) = Mδ1R (30)
...
A(τ) =

(
B(τ)− Λ̃0

)′
B̈(τ) + Ḃ(τ)′Ḃ(τ)

...
A(0) =

(
−M ′Λ̃0 + δ1R

)′
δ1R (31)

We must have limτ→∞ |B(τ)| < ∞ to ensure limτ→∞ P(|yt(τ)| <∞) = 1. This corresponds to
positive eigenvalues of M . Equivalently, the leading principal minors are positive

|Mi| > 0 i = 1, . . . , k (32)

where Mi is the upper-left i× i sub-matrix.
Expressions for the term structureR(τ) at τ = 0 follow most easily from a Taylor series expansion

of the integrand Ȧ(s) in (13) around τ = 0:

R(τ) = −1

τ
A(τ)

= −1

τ

ˆ τ

0
Ȧ(s)ds

= −1

τ

ˆ τ

0

(
Ȧ(0) + Ä(0)s+

1

2

...
A(0)s2 +O(s3)

)
ds

=
1

τ

ˆ τ

0

(
δ0R − Λ̃′0δ1Rs−

1

2

(
−M ′Λ̃0 + δ1R

)′
δ1Rs

2 +O(s3)

)
ds

= δ0R −
1

2
Λ̃′0δ1Rτ +

1

6

(
M ′Λ̃0 − δ1R

)′
δ1Rτ

2 +O(τ3)

Therefore,

R(0) = δ0R (33)

Ṙ(0) = −1

2
Λ̃′0δ1R (34)

R̈(0) =
1

3

(
M ′Λ̃0 − δ1R

)′
δ1R (35)

Next, we find closed-form expressions for A(τ), Ȧ(τ), and B(τ) and R(τ) with τ > 0. In Ap-
pendix B, we show that we can discardM with complex eigenvalues because the corresponding term
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structure has components with an oscillating pattern. In addition, we assume that M is diagonal-
izable since (i) this simplifies derivations significantly, (ii) we did not encounter non-diagonalizable
(defective) M in the likelihood optimization when optimizing over K and Λ̃1, and (iii) the class
of defective matrices has measure zero in the class of matrices. Nonetheless, the Jordan matrix
decomposition can extend the results to defective matrices.

Let Dλ denote a diagonal matrix with diagonal elements of the vector λ. For a diagonalizable
matrix M with eigenvalue vector λ and eigenvalue decomposition M = V DλV

−1:

M−1 exp (−Mτ) δ1R = M−1V Dexp(−λτ)V
−1δ1R

= V D−1
λ Dexp(−λτ)V

−1δ1R

=

k∑
i=1

bie
−λiτ

where

V =
[
v1 . . . vk

]
V −1 =

v
−1
1
...

v−1
k

 bi =
1

λi

(
viv
−1
i

)
δ1R i = 1, . . . , k (36)

This gives for (14) the analytical expression

B(τ) = b0 +
k∑
i=1

bie
−λiτ (37)

where b0 = −M−1δ1R. By substituting (37) in (15), we may find

Ȧ(τ) =

(
1

2
B(τ)− Λ̃0

)′
B(τ)− δ0R

=

(
1

2

[
b0 +

k∑
i=1

bie
−λiτ

]
− Λ̃0

)′(
b0 +

k∑
i=1

bie
−λiτ

)
− δ0R

=

(
1

2
b0 − Λ̃0

)′
b0 − δ0R +

(
b0 − Λ̃0

)′ k∑
i=1

bie
−λiτ +

1

2

k∑
i=1

e−λiτb′i

k∑
j=1

bje
−λjτ

= a
(1)
0 +

k∑
i=1

a(1)
i e−λiτ +

k∑
j=1

a
(1)
ij e
−(λi+λj)τ

 (38)

where for i, j ∈ {1, . . . , k}

a
(1)
0 =

(
1

2
b0 − Λ̃0

)′
b0 − δ0R a

(1)
i =

(
b0 − Λ̃0

)′
bi a

(1)
ij =

1

2
b′ibj
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By integrating (38) and using A(0) = 0 (see (13)),

A(τ) = a
(1)
0 τ +

k∑
i=1

a(1)
i

λi

(
1− e−λiτ

)
+

k∑
j=1

a
(1)
ij

λi + λj

(
1− e−(λi+λj)τ

)
= a0 + a

(1)
0 τ +

k∑
i=1

aie−λiτ +
k∑
j=1

aije
−(λi+λj)τ

 (39)

where for i, j ∈ {1, . . . , k}

a0 =

k∑
i=1

a(1)
i

λi
+

k∑
j=1

a
(1)
ij

λi + λj

 ai = −
a

(1)
i

λi
aij = −

a
(1)
ij

λi + λj

Substitution of (39) in (19) gives for the unconditional term structure:8

R(τ) = −a(1)
0 −

1

τ

a0 +
k∑
i=1

aie−λiτ +
k∑
j=1

aije
−(λi+λj)τ


 (40)

The slope of the unconditional term structure is:

Ṙ(τ) = −1

τ

R(τ) + a
(1)
0 +

k∑
i=1

a(1)
i e−λiτ +

k∑
j=1

a
(1)
ij e
−(λi+λj)τ


 (41)

The expressions in (40) and (41) enable us to restrict the level and the slope of the term structure
at certain τ .

To facilitate an easier optimization of the likelihood function, we optimize over M =
(
K + Λ̃1

)′
instead of Λ̃1. Then, we can impose that M has k distinct positive eigenvalues and each eigenvector
vi of M has a positive first entry. The optimal (continuous) likelihood function is unaffected when
matrices with identical real eigenvalues are excluded because the class of matrices with k distinct
real eigenvalues λi and vi(1) 6= 0 is dense in the class of matrices with real eigenvalues. Similarly,
the sign restriction does not restrict the optimal likelihood since vi and −vi are both eigenvectors
of M .

Therefore, an appropriate k-dimensional matrix M has a unique representation M = V DλV
−1

with (i = 1, . . . , k)

0 < λ1 < . . . < λk V =
[
v1 . . . vk

]
vi(1) > 0 ‖vi‖ = 1

8Indeed, UFRlog := limτ→∞R(τ) = −a(1)
0 = δ0R +

(
Λ̃0 − 1

2
b0

)′
b0 which corresponds to (17).
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To deal with the inequality constraints on λi, the auxiliary parameters λ̃i = log (λi − λi−1) with
λ0 = 0 are useful in the optimization since each λ̃i is unrestricted and λj =

∑j
i=1 exp

(
λ̃i

)
. The

vectors vi represent directions, which are efficiently captured by a polar coordinate system.
For the two-dimensional case (k = 2), one can verify that distinct real eigenvalues are equivalent

to the condition
tr (M)2 > 4 det (M) (42)

5 Estimation results

We estimate the model in Section 2 with k = 2 and certain restrictions on the variables. The
optimal parameter set is compared with other parameter sets: the estimated set in Draper (2014),
and two calibrations of this set. We use the same time series in Van den Goorbergh et al. (2011)
to facilitate a fair comparison with Draper (2014). This dataset contains quarterly time series for
inflation, stock returns, and swap yields with maturities of 3 months, 1, 2, 3, 5, and 10 years. We
have updated this dataset with 2014 data.9

We follow Draper (2014) by deriving the latent state variables in Xt from the two-year and
five-year yields. More specifically, we assume that both yields yt(2) and yt(5) are measured without
error (ξ2,t = ξ5,t ≡ 0) such that the state vector Xt ∈ R2 at each time t follows uniquely from (12):10[

−2yt (2)
−5yt (5)

]
=

[
A(2)
A(5)

]
+

[
B(2)′

B(5)′

]
Xt

where A(τ) ∈ R is the intercept, and B(τ) ∈ R2 captures time variation in the risk premiums.
The functions A and B depend on the model parameters. The optimal set of these parameters

maximizes the sum of the loglikelihoods of the observed series in (10) and (12).11 That is, the
likelihood of the time series of inflation, stock returns, and the term structure. The likelihood of
the term structure is based on the measurement errors ξ̂τ,t (residuals) of the three-month, one-year,
three-year, and ten-year yields. Since the yields with 2 and 5 years to maturity are measured
without error, they completely determine the two-dimensional state Xt at each time t. The state
in turn determines in (10) the errors at the other maturities.

Rather than optimizing the parameter set without any constraint and calibrating the model
afterwards, we add the constraints in Table 1 to the optimization procedure. The constraints force
us to reconsider the optimization procedure of Goffe et al. (1994) as employed in Draper (2014).
This procedure iterates over potentially optimal sets of parameters, and should reduce the likelihood

9I thank Peter Vlaar for providing the dataset. A detailed data description is in Appendix C.
10This differs from the Kalman procedure described in Appendix C of Koijen et al. (2010). However, Table 5 in

their paper shows a zero measurement error for the one-year and five-year interest rates. As such, Koijen et al. (2010)
employ a similar procedure as in Draper (2014).

11When feasible, Duffee and Stanton (2012) advocate a maximum likelihood approach in favor of the efficient
method of moments due to the finite-sample properties of the estimators.
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Table 1: Restrictions, ts = term structure
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of finding a local, non-global, optimum. The latter is highly relevant for our large scale optimization
with 23 parameters.12

As the method of Goffe et al. (1994) cannot deal with restrictions, we rewrote both variable
restrictions of the equality form a′x = b (long-run inflation at 2%, and UFR at 4.2%) in such a
way that one parameter is uniquely determined by the other parameters. The substitutions ensure
that one free parameter is dropped for each restriction. The remaining parameter set is without
any restriction of the equality form a′x = b. A candidate parameter set x which violates any of the
restrictions in the inequality form a′x ≤ b or a′x ≥ b is simply discarded.

In addition to the substitutions introduced above, we supplement the optimization algorithm of
Goffe et al. (1994) with a constrained interior point optimization routine.

Table 2 presents the estimates and the loglikelihood of four different parameter sets:

(i) the maximum likelihood estimate in Draper (2014), which is based on the sample 1973-2013.

(ii) the calibrated parameter set in Draper (2014).

(iii) the calibrated parameter set of DNB based on Draper (2014), and employed for the 2015Q2
feasibility study for Dutch pension funds.

(iv) our maximum likelihood estimate using the full sample 1973-2014 subject to the restrictions
in Table 1.

Taking account of the wide standard errors of the estimates (i) and (iv), the different parameter
estimates are close to each other.13 Nonetheless, the parameter sets differ in a number of ways.
The constraint of a nonnegative real interest rate at τ = 0 is binding for estimate (iv) since
δ0r = δ0R − π0 = 0 in (28). The other parameter estimates correspond to a strictly positive
instantaneous real interest rate. Notably, the likelihood LL2013 of our optimal estimate (iv) exceeds
the loglikelihood of the estimate (i) from Draper (2014). This is surprising as our sample includes
2014 while LL2013 is based on the sample 1973-2013. Apparently, the optimization algorithm in
Draper (2014) found a local optimum.

Table 3 reports the UFR and the long-run statistics of each parameter set. It turns out that
the relatively small difference in parameters have a large impact on (a) the equity risk premium,
as measured by RS − R(0), and (b) the term structure, as measured by UFRlog, R(τ), and RB(τ)
with τ > 0.

First, the equity premium is mainly explained by differences in ηS − δ0R. By (4) and (5), a
high ηS results in a high E

[
RS
]
in estimate (ii). In estimate (iv), a low ηS and a low δ0R imply

a low E
[
RS
]
and a low E[R(0)], respectively. Second, following (33) and (34), the relatively large

differences in the estimates of δ0R and Λ0 explain differences in levels, slopes and curvatures of
the term structure. This translates into large differences of the UFR, R(τ), and B(τ), particularly

12Koijen et al. (2010) do not refer to a specific optimization procedure, though the same large number of parameters
is estimated.

13The standard errors of (i) slightly differ from Draper (2014) because that paper approximates the derivatives
numerically with a relative step length of 0.01. Our smaller relative step length of 10−6 gives more accurate estimates.
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(i) (ii) (iii) (iv)
Par Estimate Std. error Estimate Estimate Estimate Std. error
Instantaneous expected inflation πt = δ0π + δ′1πXt

δ0π 1.81% (3.19%) 1.98% 2.00% 1.98% (4.05%)
δ1π(1) -0.63% (0.12%) -0.63% -0.63% -0.60% (0.20%)
δ1π(2) 0.14% (0.41%) 0.14% 0.14% 0.27% (0.41%)

Instantaneous nominal interest rate Rt(0) = δ0R + δ′1RXt + ηt(0)

δ0R 2.40% (6.94%) 2.40% 2.40% 1.98% (10.40%)
δ1R(1) -1.48% (0.35%) -1.48% -1.48% -1.44% (0.38%)
δ1R(2) 0.53% (0.96%) 0.53% 0.53% 0.56% (0.97%)

State variables nominal term structure dXt = −KXtdt+ Σ′XdZt
K(1,1) 7.63% (14.63%) 7.63% 7.63% 6.15% (17.06%)
K(2,1) -19.00% (20.71%) -19.00% -19.00% -22.23% (20.13%)
K(2,2) 35.25% (19.54%) 35.25% 35.25% 31.90% (21.85%)

Realized inflation process dΠt
Πt

= πtdt+ σ′ΠdZt
σΠ(1) 0.02% (0.07%) 0.02% 0.02% 0.02% (0.08%)
σΠ(2)(10−4) -0.568 (6.30) -0.568 -0.568 -1.93 (6.47)
σΠ(3) 0.61% (0.04%) 0.61% 0.61% 0.61% (0.04%)

Stock return process dSt
St

= (Rt(0) + ηS)dt+ σ′SdZt
ηS 4.52% (3.68%) 6.57% 4.52% 4.20% (3.77%)
σS(1) -0.53% (1.44%) -0.53% -0.53% -0.54% (1.44%)
σS(2) -0.76% (1.53%) -0.76% -0.76% -0.78% (1.54%)
σS(3) -2.11% (1.51%) -2.11% -2.11% -2.23% (1.46%)
σS(4) 16.59% (0.96%) 17.69% 16.59% 16.39% (0.93%)

Prices of risk Λt = Λ0 + Λ1Xt

Λ0(1) 0.403 (0.337) 0.242 0.280 0.187 (0.513)
Λ0(2) 0.039 (0.294) 0.039 0.027 0.137 (0.624)
Λ1(1,1) 0.149 (0.231) 0.149 0.149 0.142 (0.184)
Λ1(1,2) -0.381 (0.052) -0.381 -0.381 -0.355 (0.037)
Λ1(2,1) 0.089 (0.178) 0.089 0.089 0.144 (0.192)
Λ1(2,2) -0.083 (0.233) -0.083 -0.083 -0.100 (0.211)
LL2013 6525.6 6450.7 6471.0 6549.2
LL2014 6696.7 6619.6 6640.5 6720.4

Table 2: Parameters and standard errors of (i) max. likelihood estimate 2013 in Draper (2014), (ii) calibrated
estimate in Draper (2014), (iii) calibrated DNB parameter set, and (iv) max. likelihood estimate 2014 with the
restrictions in Table 1. Standard errors are determined using the outer product gradient estimator of the likelihood
function, which is only feasible at a max. likelihood estimate. The parameter symbols are identical to Koijen et al.
(2010). LLy refers to the loglikelihood with the sample ending at year y.14
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Figure 1: Nominal term structure of the parameter sets with the corresponding levels of UFRlog. (i) max.
likelihood estimate 2013 in Draper (2014), (ii) calibrated estimate in Draper (2014), (iii) calibrated DNB
parameter set, and (iv) max. likelihood estimate 2014.

for large τ . The long-run standard deviations (volatilities) of the different parameter estimates are
remarkably similar.

Figure 1 shows the four term structures together with the corresponding asymptotic level,
UFRlog. The latter is appropriate here since R(τ) is also a continuously compounded yield (see
(12) and (19)). The term structure of the parameter sets (ii) and (iii) starts to exceed the corre-
sponding UFR around τ = 20 and τ = 30, respectively. This indicates a decreasing term structure
at some (large) maturity τ , which is at odds with the empirical evidence of a higher risk premium
at longer horizons.14 Nonetheless, the overshooting remains small in both cases.

6 Conclusions

This paper provides closed-form expressions for certain characteristics of the VAR(1)-representation
of a continuous-time affine term structure model such as the models in Dai and Singleton (2002)
and Koijen et al. (2010). We provide analytical expressions for the long-run, i.e., unconditional,
expectations and variances of inflation, stock returns, bond portfolio returns, and nominal yields.
In addition, we derived closed-form expressions for some other characteristics of the term structure.

The analytical expressions are useful in the following ways. First, the expressions are essential
when maximizing a likelihood function with constraints on long-run expectations or covariances. The

14This is not to say that in practice, the forward rate may decrease for large maturities.
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(i) (ii) (iii) (iv)
an

nu
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co
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de
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tu
rn
s

(18)UFR 6.43% 3.80% 4.18% 4.20%
ar
it
hm

et
ic

m
ea
n

(25)

π 1.84% 2.01% 2.03% 2.01%
RS 7.22% 9.44% 7.22% 6.44%
R(0) 2.48% 2.48% 2.48% 2.05%
RB(5) 4.48% 3.70% 3.86% 3.17%

ar
it
hm

et
ic

st
.d
ev

(26)

π 1.59% 1.59% 1.59% 1.45%
RS 18.43% 20.01% 18.43% 18.10%
R(0) 3.29% 3.29% 3.29% 3.29%
RB(5) 5.96% 5.91% 5.92% 6.16%

ge
om

et
ri
c

m
ea
n

(27)

π 1.83% 2.00% 2.02% 2.00%
RS 5.67% 7.65% 5.67% 4.93%
R(0) 2.43% 2.43% 2.43% 2.00%
R(5) 3.50% 3.06% 3.16% 2.50%
R(30) 5.36% 3.96% 4.20% 3.86%
RB(5) 4.31% 3.53% 3.69% 2.99%
RB(30) 6.33% 4.22% 4.54% 4.55%

co
nt
in
uo

us
ly

co
m
po

un
de

d
re
tu
rn
s (17)UFRlog 6.23% 3.73% 4.09% 4.11%

m
ea
n

(22)

π 1.81% 1.98% 2.00% 1.98%
RS 5.51% 7.37% 5.51% 4.81%
R(0) 2.40% 2.40% 2.40% 1.98%
RB(5) 4.22% 3.47% 3.63% 2.94%

st
.d
ev

(v
ol
at
ili
ty
)

(24)

π 1.56% 1.56% 1.56% 1.42%
RS 17.06% 18.14% 17.06% 16.89%
R(0) 3.21% 3.21% 3.21% 3.22%
RB(5) 5.70% 5.70% 5.70% 5.97%

Table 3: Long-run statistics of inflation π, stock return RS , nominal interest rate R(τ), and bond portfolio
return RB(τ). The bond portfolios have a constant maturity. The parameter sets are as follows: (i) max.
likelihood estimate 2013 in Draper (2014), (ii) calibrated estimate in Draper (2014), (iii) calibrated DNB
parameter set, and (iv) max. likelihood estimate 2014 with the restrictions in Table 1.
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analytical expressions obviates calibrations which necessarily involve some arbitrariness. Second,
the analytical expressions enable an ex-post analysis of different parameter sets in terms of long-run
values for expectations, covariances, and the term structure, without any need for simulation.

To illustrate our results, we estimated a parameter set with an additional year of data, and
improved the optimization method. While our optimal parameter set is very similar to previous
sets in terms of long-run standard deviations, it differs substantially in the long-run expectation
and the term structure. This indicates that a thorough long-run analysis is crucial when evaluating
a parameter set for a long-run scenario analysis.

Appendix

A Discretization

We discretize the multivariate Ornstein-Uhlenbeck process in (9). The expressions in (11) refer to
the case with diagonalizable Θ1. Here, we find expressions that hold for any Θ1, including non-
diagonalizable (defective) Θ1. This may happen when K(1,1) = K(2,2) in K. To the best of our
knowledge, this extension is unknown in the literature.

By applying Ito’s lemma to the process f(t,Υt) = e−Θ1tΥt in (9), one may find

d (exp (−Θ1t) Υt) = exp (−Θ1t) (Θ0dt+ σΥdZt) .

Therefore,

exp (−Θ1t) Υt

= exp (−Θ1 (t− h)) Υt−h +

ˆ t

u=t−h
d (exp (−Θ1u) Υu)

=

ˆ h−t

v=−t
exp (Θ1v) Θ0dv + exp (Θ1 (h− t)) Υt−h +

ˆ h−t

v=−t
exp (Θ1v)σΥdZu

Some rewriting gives

Υt = [exp (Θ1h)− I] Θ−1
1 Θ0 + exp (Θ1h) Υt−h +

ˆ h

v=0
exp (Θ1v)σΥdZv (43)

It follows from the Jordan matrix decomposition Θ1 = UJU−1 that for (10):

γ = U [exp (Jh)− I] J−1U−1Θ0 (44)

Γ = U exp (Jh)U−1 (45)

Next, we derive the disturbance covariance V from the integral in (43). We have for an nb × nb
Jordan block Jb of an n× n Jordan matrix J
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exp (Jb) = eλb
∑nb−1

d=0 M̃ (d) Jb =


λb 1

λb
. . .
. . . 1

λb


where each M̃ (d) is an nb × nb matrix with nonzero entries on the dth superdiagonal:

M̃
(d)
ij =

{
1

(j−i)! if j = i+ d

0 else

This extends to the Jordan matrix J as

exp (J) = exp (D)
∑nB

d=0M
(d) (46)

where D is a diagonal matrix with the same diagonal as J , nB = maxb (nb) − 1, and each M (d) is
an n× n matrix with nonzero entries on the dth superdiagonal:

M
(d)
ij =

{
1
k! if j = i+ d and (i, j) is in a Jordan block of J

0 else

Applying (46) to the Jordan matrix decomposition Θ1 = UJU−1 gives for the disturbance covariance
in (43):

V =

ˆ h

v=0
exp (Θ1v)σΥσ

′
Υ exp

(
Θ′1v

)
dv

=

ˆ h

v=0
U exp (Jv)U−1σΥ

(
U−1σΥ

)′
exp

(
J ′v
)

dvU ′

= U

ˆ h

v=0
exp (Dv)

(
nB∑
a=0

M (a)

)
U−1σΥ

(
U−1σΥ

)′( nB∑
b=0

M (b)

)′
exp (Dv) dvU ′

= UWU ′ (47)

where

W =

nB∑
a=0

nB∑
b=0

W (a,b)

W (a,b) =

ˆ h

v=0
exp (Dv)M (a,b) exp (Dv) dv

M (a,b) = M (a)U−1σΥ

(
M (b)U−1σΥ

)′
18



The entries of W (a,b) are

W
(a,b)
ij =

{
M

(a,b)
ij h if Dii +Djj = 0

M
(a,b)
ij (Dii +Djj)

−1 [exp ([Dii +Djj ]h)− In×n] else

A diagonalizable matrix corresponds to J = D and nB = 0. Then, the expressions for γ, Γ and V
in (11) coincide with (44), (45) and (47), respectively.

B Complex eigenvalues

Things are slightly different if M ∈ Rk×k has complex eigenvalues. We consider k = 2 and M with
eigenvalues λ1 = a+ bi and λ2 = a− bi (b 6= 0 and a, b ∈ R). We show that although the complex
terms cancel out, the term structure R(τ) contains an oscillating component which is undesirable
from an empirical perspective. It is easy to extend the analysis to k > 2.

To rule out an oscillating term structure, we restrict the estimation of M to real eigenvalues.
This restriction is important as for instance in the two-dimensional case the complex eigenvalue set
{(a+ bi, a− bi) : a, b ∈ R} has the same measure as the real eigenvalue set {(a, b) : a, b ∈ R}.

Letting Mvj = λjvj (j = 1, 2) gives Re(Mv1) = Re(Mv2), Im(Mv1) = −Im(Mv2) and
V −1V = I2×2. Hence, we may write for p,q,u,v ∈ R2

v1 = u + vi v−1
1 = p′ + q′i

v2 = u− vi v−1
2 = p′ − q′i.

This implies for the vector b1 in (36)

b1 =
1

λ1

(
v1v

−1
1

)
δ1R

=
1

a+ bi
(u + vi)

(
p′ + q′i

)
δ1R

=
a− bi
a2 + b2

(
up′ − vq′ +

(
uq′ + vp′

)
i
)
δ1R

=
[(
up′ − vq′

)
a+

(
uq′ + vp′

)
b+

{
−
(
up′ − vq′

)
b+

(
uq′ + vp′

)
a
}
i
] δ1R

a2 + b2

= f + gi

where

f =
[(
up′ − vq′

)
a+

(
uq′ + vp′

)
b
] δ1R

a2 + b2

g =
[
−
(
up′ − vq′

)
b+

(
uq′ + vp′

)
a
] δ1R

a2 + b2
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Considering vj = u±vi, v−1
j = p′±q′i, and λj = a± bi for j = 1, 2, only b, q, and v have different

signs for b1 and b2. Therefore,

b2 =
[(
up′ − vq′

)
a+

(
uq′ + vp′

)
b+

((
up′ − vq′

)
b−

(
uq′ + vp′

)
a
)
i
] δ1R

a2 + b2

= f − gi

This gives

b1e
−λ1τ + b2e

−λ2τ = e−aτ
[
(f + gi) e−bτi + (f − gi) ebτi

]
= e−aτ [(f + gi) (cos (bτ)− i sin (bτ)) + (f − gi) (cos (bτ) + i sin (bτ))]

= 2e−aτ [f cos (bτ) + g sin (bτ)]

Equation (37) becomes
B(τ) = b0 + 2e−aτ [f cos (bτ) + g sin (bτ)] (48)

where b0 = −M−1δ1R. That is, B(τ) is a real-valued oscillating function around exp(−aτ).
Substituting (48) into (15) gives after some algebra,

Ȧ(τ) = −
(
b0 + 2e−aτ (f cos (bτ) + g sin (bτ))

)′
Λ0

+
1

2

(
b0 + 2e−aτ (f cos (bτ) + g sin (bτ))

)′ (
b0 + 2e−aτ (f cos (bτ) + g sin (bτ))

)
− δ0R

=

(
1

2
b0 − Λ̃0

)′
b0 − δ0R + 2

(
b0 − Λ̃0

)′
e−aτ (f cos (bτ) + g sin (bτ))

+ 2e−2aτ
(
f ′f cos2 (bτ) + 2f ′g cos (bτ) sin (bτ) + g′g sin2 (bτ)

)
=

(
1

2
b0 − Λ̃0

)′
b0 − δ0R + 2

(
b0 − Λ̃0

)′
e−aτ (f cos (bτ) + g sin (bτ))

+ 2e−2aτ

(
f ′f

2
[1 + cos (2bτ)] + f ′g sin (2bτ) +

g′g

2
[1− cos (2bτ)]

)
=

(
1

2
b0 − Λ̃0

)′
b0 − δ0R + 2

(
b0 − Λ̃0

)′
e−aτ [f cos (bτ) + g sin (bτ)]

+ e−2aτ
[
f ′f + g′g +

(
f ′f − g′g

)
cos (2bτ) + 2f ′g sin (2bτ)

]
Therefore,

Ȧ(τ) = a
(1)
0 +

5∑
j=1

a
(1c)
j hj(τ) (49)

where

a
(1)
0 =

(
1

2
b0 − Λ̃0

)′
b0 − δ0R

20



a
(1c)
1 = 2

(
b0 − Λ̃0

)′
f h1 (τ) = exp (−at) cos (bτ)

a
(1c)
2 = 2

(
b0 − Λ̃0

)′
g h2 (τ) = exp (−at) sin (bτ)

a
(1c)
3 = f ′f + g′g h3 (τ) = exp (−2at)

a
(1c)
4 = f ′f − g′g h4 (τ) = exp (−2at) cos (2bτ)

a
(1c)
5 = 2f ′g h5 (τ) = exp (−2at) sin (2bτ)

Because M is positive definite, we have without loss of generality a, b > 0. Using the identities15

ˆ τ

t=0
exp (−at) cos (bt) dt =

a

a2 + b2
+

exp (−aτ)

a2 + b2
[b sin (bτ)− a cos (bτ)]

ˆ τ

t=0
exp (−at) sin (bt) dt =

b

a2 + b2
− exp (−aτ)

a2 + b2
[a sin (bτ) + b cos (bτ)]

and integrating (49) leads to another real-valued oscillating function:

A(τ) = a
(1)
0 τ +

5∑
j=1

a
(1c)
j kj(τ) (50)

where

k1 (τ) =
1

a2 + b2
[a+ exp (−aτ) (b sin (bτ)− a cos (bτ))]

k2 (τ) =
1

a2 + b2
[b− exp (−aτ) (a sin (bτ) + b cos (bτ))]

k3 (τ) =
1

2a
(1− exp (−2aτ))

k4 (τ) =
1

2 (a2 + b2)
[a+ exp (−2aτ) (b sin (2bτ)− a cos (2bτ))]

k5 (τ) =
1

2 (a2 + b2)
[b− exp (−2aτ) (a sin (2bτ) + b cos (2bτ))]

Again A(0) = 0 as kj(0) = 0 for j ∈ {1, . . . , 5}. We obtain from (50) an explicit expression for the
unconditional term structure R(τ) = −A(τ)/τ :

R(τ) = −a(1)
0 −

1

τ

5∑
j=1

a
(1c)
j kj(τ) (51)

15Both equations are easily verified by differentiating both hand sides and requiring that the expressions are zero
at τ = 0.
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Figure 2: Oscillating term structure with parameters as in (53). The matrix M has complex eigenvalues.

with derivative

Ṙ(τ) = −1

τ

R(τ) + a
(1)
0 +

5∑
j=1

a
(1c)
j k̇j(τ)

 (52)

The expressions in (51) and (52) are more complicated than (40) and (41) which represent the case
of two (possibly distinct) real eigenvalues. More important, the term structure R(τ) in (51) exhibits
oscillations in τ if b 6= 0. This motivates us to restrict the estimation of M to matrices with real
positive eigenvalues.

As as example, Figure 2 shows the implied term structure for

M =

[
− 1

10 1
−1

4
1
5

]
δ0R = 0.025 δ1R = 1

100

[
1
1

]
Λ̃0 = 1

5

[
1
1

]
(53)

The eigenvalues of M are 0.05 ± 0.477i and the term structure does indeed have an oscillating
pattern.

C Data

Following Draper (2014) we use the following time series from Van den Goorbergh et al. (2011):

• Inflation: From 1999 on, the Harmonized Index of Consumer Prices for the euro area from
the European Central Bank data website16 is used. Before then, German (Western German

16http://sdw.ecb.europa.eu

22

http://sdw.ecb.europa.eu


until 1990) consumer price index figures published by the International Financial Statistics of
the International Monetary Fund are included.

• Yields: Six yields are used in estimation: yields with a three-month, one-year, two-year,
three-year, five-year, and ten-year maturity.

– Short nominal yields: three-month money market rates are taken from the Bundesbank.17

For the period 1973:I to 1990:II, end-of-quarter money market rates reported by Frankfurt
banks are taken, whereas thereafter three-month Frankfurt Interbank Offered Rates are
included.

– Long nominal yields: From 1987:IV on, zero-coupon rates are constructed from swap
rates published by De Nederlandsche Bank.18 For the period 1973:I to 1987:III, zero
coupon yields with maturities of one to 15 years (from the Bundesbank website) based
on government bonds were used as well (15-year rates start in June 1986). No adjustments
were made to correct for possible differences in the credit risk of swaps, on the one hand,
and German bonds, on the other. The biggest difference in yield between the two term
structures (for the two-year yield) in 1987:IV was only 12 basis points.

• Stock returns: MSCI index from FactSet. Returns are in euros (Deutschmark before 1999)
and hedged for US dollar exposure.

References

Banerjee, A., Dolado, J. J., Galbraith, J. W., and Hendry, D. (1993). Co-integration, error correc-
tion, and the econometric analysis of non-stationary data. OUP Catalogue.

Cochrane, J. H. (2005). Time series for macroeconomics and finance.

Dai, Q. and Singleton, K. J. (2002). Expectation puzzles, time-varying risk premia, and affine
models of the term structure. Journal of Financial Economics, 63(3):415–441.

Draper, N. (2014). A financial market model for the netherlands. CPB Background Document.

Duffee, G. R. (2002). Term premia and interest rate forecasts in affine models. The Journal of
Finance, 57(1):405–443.

Duffee, G. R. and Stanton, R. H. (2012). Estimation of dynamic term structure models. The
Quarterly Journal of Finance, 2(02).

Duffie, D. and Kan, R. (1996). A yield-factor model of interest rates. Mathematical finance,
6(4):379–406.
17www.bundesbank.de
18www.dnb.nl

23

http://www.bundesbank.de
http://www.dnb.nl


Goffe, W. L., Ferrier, G. D., and Rogers, J. (1994). Global optimization of statistical functions with
simulated annealing. Journal of Econometrics, 60(1-2):65–99.

Gürkaynak, R. S. and Wright, J. H. (2012). Macroeconomics and the term structure. Journal of
Economic Literature, 50(2):331–367.

Koijen, R. S., Nijman, T. E., and Werker, B. J. (2010). When can life cycle investors benefit from
time-varying bond risk premia? Review of Financial Studies, 23(2):741–780.

Langejan, T., Gelauff, G., Nijman, T., Sleijpen, O., and Steenbeek, O. (2014). Advies commissie
parameters. Technical report, SZW.

Sangvinatsos, A. and Wachter, J. A. (2005). Does the failure of the expectations hypothesis matter
for long-term investors? The Journal of Finance, 60(1):179–230.

Van den Goorbergh, R., Molenaar, R., Steenbeek, O. W., and Vlaar, P. (2011). Risk models with
jumps and time-varying second moments.

24


	Document1
	restrictionsKNWmodel
	Introduction
	The model*koijen2010can and *Draper2014 contain further details and references on the derivations in this section.
	Mean and covarianceThe main derivations in this section are based on *cochrane2005.
	Restrictions on the term structure
	Estimation results
	Conclusions
	Discretization
	Complex eigenvalues
	Data


