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a negative volatility risk premium, but find four additional results. First, the nonpara-
metric risk-neutral volatility distribution is right-skewed. This is consistent with a
larger aversion towards unexpected positive volatility shocks. The right-skewness is
most pronounced when overall volatility is high. Secondly, our method also identi-
fies the joint risk-neutral return and volatility distribution and we find negative (still
risk-neutral) correlation. Third, while we confirm overall negative risk-neutral return
skewness, we also find that this skewness disappears in periods of decreasing volatility.
Finally, our method allows to assess the fit of parametric models. For example, concern-
ing the popular Heston (1993) model we show that it fails to describe simultaneously
the risk-neutral return and volatility distributions.
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1 Introduction

During the past decades, a considerable amount of financial research has been devoted to the
informational content of derivative prices. These prices depend on one or more underlying
financial factors and, therefore, price changes give information about the (risk-neutral)
stochastic evolution of these factors. This information is not only used in academic research
but also in the everyday practice of risk management, investment strategies, and monetary
policies. In this paper, we focus on the information revealed by option prices about risk-
neutral return and volatility distributions. There exists an extensive literature on inference
concerning the risk-neutral density of stock prices/returns. However, the present paper is
the first to study the information contained in plain vanilla option prices concerning the
joint density of volatility, jointly with returns, in a nonparametric way.

The risk-neutral density is also known as the state price density or the implied density.
The name “state price density” derives from the insight that the risk-neutral density de-
termines continuous Arrow-Debreu state prices. As option payoffs depend in a nonlinear
way on the underlying states, their prices can be used to extract risk-neutral return dis-
tributions in a nonparametric way. One popular device to extract this risk-neutral return
distribution from option prices is based on Breeden and Litzenberger (1978). That paper
shows that the risk-neutral return density can be obtained as the second derivative of the
call option pricing function with respect to the strike price. In practice, only a finite number
of options is available. Since the work of Rubinstein (1994) and Jackwerth and Rubinstein
(1996) numerous papers have appeared that provide different approaches to this problem.
For an overview we refer to Coutant, Jondeau, and Rockinger (1998), Jackwerth (1999),
and Panigirtzoglou and Skiadopoulos (2004). The before-mentioned methods aim to extract
the implied state price density at a given single point in time for a given horizon. Panigirt-
zoglou and Skiadopoulos (2004) investigates the dynamics of the implied distributions and
provides algorithms that make the results applicable to areas like option pricing and risk
management.

Using the above-mentioned methods, the evolution of risk-neutral return distributions
has been studied extensively. In particular, Jackwerth and Rubinstein (1996) shows that,
before the 1987 stock market crash, both the risk-neutral return distribution and the ob-
jective distribution are close to log-normal (over a 1-month horizon). However, after the
1987 crash the objective distribution still appears log-normal but the shape of the implied
distribution has changed considerably. Weinberg (2001) for US option data, Anagnou,
Bedendo, Hodges, and Tompkins (2002) for the UK option market, and Bliss and Panigirt-
zoglou (2004) using US and UK option data, find a typical post-crash shape of the implied
risk-neutral distribution. Bates (2000) gives three possible explanations for the change in
the risk-neutral distribution after the 1987 crash: a change in view on the underlying process
of the index, a change in aggregate risk aversion, and mispricing of (far) out-of-the-money
put options. This second explanation is considered in a number of papers that estimate
the risk aversion of a representative investor as implied by the risk-neutral return distribu-
tion and an estimated objective distribution. The resulting implied risk aversion function
seems to be inconsistent with financial theory. For example, the risk aversion functions
estimated in Jackwerth (2000) imply that investors are more risk averse at high and low
levels of wealth. Aı̈t-Sahalia and Lo (2000) find decreasing but non-monotonic implied risk
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aversion functions as wealth increases. Brown and Jackwerth (2001) calls the phenomenon
that implied risk aversion functions do not fit the requirements of economic theory even
“the pricing kernel puzzle”.

The above methods all consider risk-neutral return distributions only. At the same
time, they mostly recognize that risk-neutral volatility distributions are important as well
to test financial theory and for risk management. So far, the papers that study risk-neutral
volatility distributions use parametric methods, as for example in Pan (2002). Earlier
work of, for instance, Canina and Figlewski (1993) and Lamoureux and Lastrapes (1993)
investigates the informational content of Black-Scholes implied volatilities. Later studies
of, among others, Britten-Jones and Neuberger (2000) and Jiang and Tian (2005) examine
model-free measures of risk-neutral realized volatility. However, these studies mostly focus
on the expected value of future realized volatility while the focus of our study is on the
risk-neutral distribution of future spot volatility.

An obvious approach to nonparametric risk-neutral volatility distributions would be to
extend the Breeden and Litzenberger (1978) result to volatility derivatives. However, such
approach would be complicated by the fact that these volatility derivatives are not very
liquidly traded and that they usually have a pay-off scheme in terms of averages of Black-
Scholes implied volatilities and not (unobserved) spot volatility. In contrast, the present
paper extracts information on the joint risk-neutral density of returns and spot volatility
from plain vanilla option prices without making parametric assumptions. The main idea
relies on the fact that before maturity plain vanilla options have a value which depends
directly on spot volatility. More precisely, under the assumption that option prices depend
on moneyness, spot volatility, and time-to-maturity, we provide a nonparametric (and thus
model free) methodology that gives the empirical risk-neutral distribution of both asset
returns and spot volatilities over a given horizon. While the risk-neutral volatility distri-
butions are interesting per se for financial theory, they can also be used to test parametric
stochastic volatility models and to obtain nonparametric estimates of prices of derivatives
written on volatility, like variance swaps.

In particular, we document a number of interesting new facts about risk-neutral distri-
butions. First, it is well-known that risk-neutral volatility distribution is shifted to the right,
compared to the objective one. This is one consequence of negative volatility risk-premiums.
Next to reestablishing this result, we also find that the risk-neutral volatility distribution
is right-skewed. While a right-skewed risk-neutral volatility distribution is implied by sev-
eral well-known parametric models, we obtain this result in a fully nonparametric way.
Moreover, we establish that this skewnessis most pronounced in periods of high volatility.
A possible explanation could be a more extreme aversion (of the representative agent) to
positive volatility shocks when volatility is already high. Secondly, as our method identifies
in fact the joint risk-neutral return and volatility distribution, it allows us to study the
risk-neutral dependence of returns and volatility. Under the objective probability measure
negative return/volatility correlation is well established. This is sometimes alluded to as
the “leverage effect”. We find that also the risk-neutral correlation is negative. Thirdly,
we confirm overall negative skewness for the risk-neutral return distribution. However, we
additionally establish that this skewness disappears when volatilities are decreasing. More
precisely, the conditional risk-neutral distribution of returns given that future volatility is
below average exhibits no significant skewness. Apparently, decreasing volatility reduces
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the risk premium for crashes.
Next to the above empirical findings, our methodology can be used to assess the fit

provided by parametric (jump)diffusion models for asset prices and volatilities. A formal
comparison of competing specification is outside the scope of this paper, but we do show that
the popular Heston (1993) model is sufficiently flexible to describe the risk-neutral return
distributions accurately. However, it does so by severely overestimating the volatility of
volatility. As a result it fails in jointly describing both return and volatility distributions.
Obvious parametric alternatives would be models that incorporate jumps, possibly both
in asset prices and volatilities. Examples would be the models studied in Amin (1993),
Scott (1997), Andersen and Andreasen (2000), Kou (2002), and Pan (2002). In general
the quest for empirically validated parametric jump-diffusion models seems to be open. In
this respect note that the joint risk-neutral return volatility distribution estimated by our
method, Figure 10, indicates non-convex isodensity sets.

The rest of the paper is organized as follows. Section 2 presents our methodology for
obtaining the joint risk-neutral distribution of returns and volatilities. Sections 3.1 and 3.2
show how our approach relates to existing methods that yield nonparametric estimates of
risk-neutral return distributions. Moreover, Section 3.3 illustrates the scope of our method
in an hypothesized Heston (1993) world. In Section 4 our method is applied to S&P-500
data, which leads to the before-mentioned new insights concerning risk-neutral volatility
distributions. Section 5 concludes.

2 Nonparametric estimation of risk-neutral return/volatility
distributions

We present our methodology for extracting the conditional (given the current volatility
level) risk-neutral return and volatility distribution from plain vanilla option prices. Nowa-
days, nonparametric estimates of risk-neutral distributions are usually based on butterfly
spreads or on the second derivative of an estimated relation between option prices and strike
prices, see Breeden and Litzenberger (1978). Such approaches, by construction, only lead
to risk-neutral return distributions. In case derivatives whose pay-off depends on volatil-
ity were traded, analogous approaches could be used to derive the risk-neutral volatility
distribution. However, this is generally not feasible as such derivatives are not (liquidly)
traded. Our approach is based on the straightforward observation that standard plain
vanilla options have before maturity a value that does depend on both the asset’s price and
its volatility and, thus, can be considered an implicit derivative on spot volatility.

2.1 Identifying risk-neutral volatility distributions

Consider a financial market with an asset (index) whose price at time t is denoted by St.
We assume that, next to the asset’s price, there is a second underlying factor in the financial
market that we identify with (spot) volatility and we denote it by σt.

Fix a horizon ∆ > 0. The return1 of the asset over the interval (t, t + ∆] is written as
Rt:t+∆ = log St+∆/St. For expository reasons, we abstract from possible dividends in this

1All (excess) returns and interest rates are taken to be continuously compounded in this paper.
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section. It is well-known that interest rates only marginally affect plain vanilla option prices
and, therefore, we assume for that interest rates are constant at a fixed level r. The induced
excess return on the asset S is denoted by R̃t:t+∆ = Rt:t+∆ − r∆. Finally, the risk-neutral
distribution (joint for the price process S and the volatility process σ) is denoted by Q.

Let Ft denote all the information available in the financial market at time t. We are
interested in the risk-neutral, i.e., under Q, distribution of (St+∆, σt+∆) conditional on Ft.
Throughout the paper we assume that the risk-neutral process of prices and volatilities is
Markov and homogeneous with respect to the initial price level. Formally, we impose the
following.

Assumption 1 The conditional risk-neutral distribution of
(
R̃t:t+∆, σt+∆

)
given Ft, is

equal to the conditional distribution given σt, i.e., for all ∆ > 0,

LQ

([
R̃t:t+∆

σt+∆

]
|Ft

)
= LQ

([
R̃t:t+∆

σt+∆

]
|σt

)
. (2.1)

2

Assumption 1 is, for instance, satisfied in a standard continuous time stochastic volatility
model where, under the risk-neutral distribution,

dSt = rStdt + σtStdW1t, (2.2)
dσt = α(σt)dt + β(σt)dW2t, (2.3)

for some appropriate functions α and β and with W1 and W2 two, possibly correlated,
Brownian motions. Also, Assumption 1 does not rule out jumps: neither in the underlying
stock price, nor in the volatility process. For instance, W1 and W2 in (2.2) and (2.3) may
also be correlated Lévy processes.

Condition (2.1) stipulates that, for the risk-neutral distribution of returns and future
volatilities, the current volatility level is the only relevant state variable. Other state vari-
ables can easily be added from a theoretical point of view, as long as the curse of dimen-
sionality doesn’t hamper the nonparametric estimation in Section 2.2. In particular, we
assume that the current stock price level does not affect the conditional return distribution.
Differently stated, the price process is homogeneous with respect to its level, a property
studied in Renault (1997). In a model like (2.2)–(2.3) this amounts to saying that α and
β do not depend on the stock price level St. It does not exclude leverage, i.e., W1 and W2

may be correlated.
Theorem 2.1 below allows us to identify the joint risk-neutral distribution of (R̃t:t+∆, σt+∆),

conditional on the current volatility level σt from plain vanilla option prices. This result,
more precisely (2.8) below, is the main theoretical contribution of the present paper. Recall
that the relations (2.6)–(2.7) have already been used by, for example, Aı̈t-Sahalia and Lo
(1998), to identify the marginal risk neutral return distribution, that is,

∫
v q∆(z, v|σ)dv

in our notation. Theorem 2.1 is operationalized in the rest of this paper as follows: To
obtain the conditional risk-neutral return/volatility density at horizon ∆, i.e., q∆ in (2.6)–
(2.8) below, we first estimate nonparametrically the option price c. Subsequently, we solve
equations (2.6)–(2.8); see Section 2.2.
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Theorem 2.1 Under Assumption 1 the relative (with respect to the underlying value) op-
tion price cH is such that the time t price Ct(K,H) of a plain vanilla call with exercise
price K, maturity t + H, and moneyness

mt =
exp(−rH)K

St
, (2.4)

satisfies
Ct(K, t + H) = StcH(mt|σt). (2.5)

Moreover, the joint risk-neutral density q∆(z, v|σ) of (R̃t:t+∆, σt+∆), conditional on the
current volatility level σt = σ, satisfies

∫

z

∫

v>0
q∆(z, v|σ)dzdv = 1 and

∫

z

∫

v>0
exp(z)q∆(z, v|σ)dzdv = 1, (2.6)

∂2

∂m2
c∆(m|σ) =

1
m

∫

v>0
q∆(log m, v|σ)dv, (2.7)

and
cH(m|σ) =

∫

z

∫

v>0
exp(z)cH−∆(m exp(−z)|v)q∆(z, v|σ)dzdv, (2.8)

for all m > 0, H ≥ ∆, and σ > 0.

Proof: The first claim of the theorem is well-known and follows from

Ct(K, t + H) = EQ {exp(−rH)max {St+H −K, 0} |Ft}
= StEQ

{
max

{
exp(R̃t:t+H)− exp(−rH)K

St
, 0

}∣∣∣∣Ft

}

= St

∫

z>log m
(exp(z)−mt)

∫

v>0
qH(z, v|σt)dvdz (2.9)

= StcH(mt|σt),

where the third equality is a direct consequence of Assumption 1. This result implies that
option prices are homogeneous under our assumptions.

Relation (2.6) merely states that q is a risk-neutral density for the underlying stock
(recall that the argument z refers to a continuously compounded excess return). Moreover,
(2.7) is the well-known Breeden-Litzenberger result and follows from setting H = ∆ and
differentiating (2.9) twice with respect to moneyness.

To prove (2.8), observe that the time t price of an option with exercise price K and
maturity T also satisfies, for t ≤ t + ∆ ≤ t + H,

Ct(K, t + H) = EQ {exp(−r∆)Ct+∆(K, t + ∆ + (H −∆))| Ft} .

Using (2.5) to rewrite both Ct(K, t + H) and Ct+∆(K, t + ∆ + (H −∆)), we find

StcH(mt|σt) = EQ {exp(−r∆)St+∆cH−∆(mt+∆|σt+∆)| Ft} .

Observing

mt+∆ =
exp(−r(H −∆))K

St+∆
= mt exp(−R̃t:t+∆),

6



implies
cH(mt|σt) = EQ

{
exp(R̃t:t+∆)cH−∆(mt exp(−R̃t:t+∆)|σt+∆)

∣∣∣Ft

}
. (2.10)

Invoking the Markov property in Assumption 1 once more, we find that (2.10) can be
rewritten, for all H ≥ ∆, m > 0, and σ > 0 as (2.8). 2

As discussed above, the relations (2.6)–(2.8) can be used to obtain a nonparametric
estimate of the conditional risk-neutral return/volatility density. Observe that the key
point of Theorem 2.1 is the use of options with a maturity H that is strictly larger than
the horizon for the density of interest ∆. Indeed, Relation (2.8) is not informative for the
risk-neutral volatility density in case H = ∆ as c0(m|v) = max{1−m, 0} does not depend
on v.

2.2 Nonparametric estimation

In our setup, under Assumption 1, plain vanilla option prices (relative to the value of the
underlying) depend on moneyness mt, time-to-maturity T − t, and spot volatility σt. We
follow Aı̈t-Sahalia and Lo (1998) to come up with a nonparametric estimate of this relation,
i.e., an estimate of the relative option price cH . Once this estimate is available, we solve
the equations in Theorem 2.1) for the joint risk-neutral return and volatility density q∆.
Consistency of this density estimate is obtained when cH is estimated consistently. Obvi-
ously, the price and volatility process must satisfy regularity conditions for this consistency
to hold. In particular, returns and volatilities must be sufficiently stationary and mixing.
We refer to Aı̈t-Sahalia and Lo (1998) for details.

More precisely, given option prices Ct(K, T ), we rewrite (2.5) as

Ct(K, t + H)
St

= cH(mt|σt) = BSH (mt, IVH (mt|σt)) , (2.11)

with

BSH (m,σ) = Φ

(
ln(m) + σ2H/2

σ
√

H

)
−mΦ

(
ln(m)− σ2H/2

σ
√

H

)
.

Here BSH stands for the maturity-H Black-Scholes formula, normalized by the current
stock price level, and IV denotes the option’s implied volatility. In our setup, the implied
volatility depends on moneyness mt, time-to-maturity H, and current spot volatility σt.
The function IV , and hence the function cH , is estimated using standard nonparametric
kernel regression following Aı̈t-Sahalia and Lo (1998). As spot volatility levels σt are not
observed, we rely on daily realized volatilities to approximate these. This leads to an
estimate ĉH .

Subsequently, our estimate of the joint conditional (on the current volatility level σt = σ)
risk-neutral return and volatility density q∆ is obtained by solving the equations (2.6)–(2.8)
for q∆ using the estimated option price function ĉH . The equations (2.6)–(2.8) do not allow
for an explicit analytical solution and thus we actually solve a discrete approximation.
More precisely, we choose a grid −∞ < z0 < z1 < z2 < . . . < zN < ∞ for possible asset
excess returns and a grid 0 < v0 < v1 < . . . < vK < ∞ for possible spot volatility levels.
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Subsequently, (2.6) is discretized as

N∑

n=1

K∑

k=1

q̂∆

(
zn−1 + zn

2
,
vk−1 + vk

2

∣∣∣∣ vi

)
dzndvk = 1, (2.12)

N∑

n=1

K∑

k=1

exp
(

zn−1 + zn

2

)
q̂∆

(
zn−1 + zn

2
,
vk−1 + vk

2

∣∣∣∣ vi

)
dzndvk = 1, (2.13)

with dzn = zn − zn−1 and dvk = vk − vk−1 and for i = 0, . . . , K. Discretizing the log-
moneyness log(m) on the same grid as returns, Equation (2.7) leads to

ĉ∆

(
exp

(
zl−2+zl−1

2

)∣∣∣ vi

)
− 2ĉ∆

(
exp

(
zl−1+zl

2

)∣∣∣ vi

)
+ ĉ∆

(
exp

(
zl+zl+1

2

)∣∣∣ vi

)
)

(
exp

(
zl−1+zl

2

)
− exp

(
zl−2+zl−1

2

)) (
exp

(
zl+zl+1

2

)
− exp

(
zl−1+zl

2

)) (2.14)

= exp
(
−zl−1 + zl

2

) K∑

k=1

q̂∆

(
zl−1 + zl

2
,
vk−1 + vk

2

∣∣∣∣ vi

)
dvk,

for l = 1, . . . , N and i = 0, . . . ,K. We make sure that moneyness is discretized equally
spaced. Finally, Equation (2.8) is discretized as

ĉH

(
exp

(
zl−1 + zl

2

)∣∣∣∣ vi

)
(2.15)

=
N∑

n=1

K∑

k=1

exp
(

zn−1 + zn

2

)
ĉH−∆

(
exp

(
zl−1 + zl

2
− zn−1 + zn

2

)∣∣∣∣
vk−1 + vk

2

)

× q̂∆

(
zn−1 + zn

2
,
vk−1 + vk

2

∣∣∣∣ vi

)
dzndvk,

for l = 1, . . . , N , i = 0, . . . ,K, and a number of possible maturities H = H0, . . . , HP with
∆ = H0 < H1 < . . . < HP . Recall ĉ0(m|v) = max{1−m, 0}.

The equations (2.12)–(2.15) provide a linear system in the unknown quantities

q̂∆

(
zn−1 + zn

2
,
vk−1 + vk

2

∣∣∣∣ vi

)
, (2.16)

for n = 1, . . . , N , k = 1, . . . , K, and i = 0, . . . , K. This system is solved numerically by
means of a standard least-squares algorithm. To avoid arbitrage possibilities, we impose
that the probabilities in (2.16) are all positive. Consistency of the resulting estimate follows
from consistent estimation of the relative option pricing function cH under conditions that
parallel those of, e.g., Aı̈t-Sahalia and Lo (1998).

Since ĉH is a nonparametric estimate, the numerical integral approximation (2.15) quite
often leads to non-smooth densities. Therefore, (2.15) is complemented with a smoothness
condition on the solution q∆ in terms of the second derivative of q∆ with respect to both
returns and volatilities. Jackwerth and Rubinstein (1996) impose a similar condition but,
of course, with respect to returns only. The approximations (2.12)–(2.14) are imposed as
(linear) constraints in the penalized optimization.
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3 Relation with existing methods

The literature mainly presents two approaches to get nonparametric estimates of risk-
neutral return distributions: the method discussed in Jackwerth and Rubinstein (1996)
and the kernel-estimation based approach of Aı̈t-Sahalia and Lo (1998). The main differ-
ence between these two methods is that the first provides a different risk-neutral return
density for each different cross-section of option prices while the second results in a sin-
gle risk-neutral return distribution. With respect to the conditional information used to
determine the risk-neutral return distribution, we argue below that our method is effec-
tively in between these two approaches. More importantly, however, our method offers
the additional advantage of estimating the risk-neutral volatility distribution, including the
risk-neutral return-volatility dependence structure. For instance, our method applies to
the popular Heston (1993) stochastic volatility model, but without any parametric assump-
tions. Also, our method does not impose nor exclude jumps in prices and/or volatilities.
The present section discusses briefly the relation of our approach with both alternatives
mentioned above and the performance of our approach in a simulated Heston (1993) world
(Section 3.3).

3.1 Fully nonparametric methods

Jackwerth and Rubinstein (1996) use option prices observed at a given date to infer risk-
neutral probabilities of returns for a given future date. Essentially the (discrete) risk neutral
probability distribution of returns is determined such that all observed option prices today
are within the bid-ask bounds. In the notation of Section 2, this method provides an
estimate of LQ (Rt:t+∆|Ft) without any further restrictions on the conditioning information
set Ft. In particular, as noted in Aı̈t-Sahalia and Lo (1998), no time-consistency is imposed
in this method. As a result, the estimates of risk-neutral return probabilities will vary
over time. The method is thus fully nonparametric, but only few observations (i.e., only
options traded on a given day with a particular maturity) can be used in the estimation.
Our method builds on Assumption 1 which identifies the current spot volatility as the
only relevant state variable for predicting risk-neutral return distributions and imposes
time-consistency. As mentioned before, such assumption is common in most parametric
stochastic volatility models.

3.2 Kernel-estimation based methods

Aı̈t-Sahalia and Lo (1998) base their nonparametric risk-neutral return distributions on
the Breeden and Litzenberger (1978) result that the risk-neutral return distribution is
proportional to the second derivative of plain vanilla call prices with respect to the exercise
price. The functional relation between the option prices and relevant explanatory variables
is estimated using nonparametric kernel regression of Black-Scholes implied volatilities on
the futures price associated with the underlying asset, the exercise price, and time-to-
maturity. Aı̈t-Sahalia and Lo (1998) consider other (vectors of) explanatory variables as
well, but futures price, exercise price, and time-to-maturity come out as their preferred
choice. Next to moneyness and time-to-maturity, we add the current spot volatility level
σt as relevant state variable.
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With respect to our method, Aı̈t-Sahalia and Lo (1998) allows for time-varying volatility
where the current level of the stock price induces a certain volatility. However, in cases of
stochastic volatility as a separate state variable, the method does not lead to risk-neutral
return distributions conditional on a certain volatility level, but to unconditional (with
respect to volatility) return distributions. Since we consider spot volatility as a separate
state variable, much in line with the Heston (1993) model, we impose that options’ implied
volatilities depend on futures prices and exercise prices through moneyness alone (see, also,
Renault (1997)). Observe that in case of a stochastic volatility model, the Aı̈t-Sahalia and
Lo (1998) method will pick up of some of the stochastic volatility effects as stock prices
and volatilities are (negatively) correlated. This will be discussed in more detail in the next
section where we consider both our method and the Aı̈t-Sahalia and Lo (1998) method
in a theoretical Heston (1993) world. Simulation results for the Hull and White (1987)
stochastic volatility model and the Stein and Stein (1991) stochastic volatility model are
available upon request and comparable to the results reported below for the Heston (1993)
model.

3.3 Simulation: Risk-neutral volatility distributions in the Heston model

Heston (1993) presents a parametric stochastic volatility model which is especially useful
for calculating derivative prices due to the fact that the characteristic function of the risk-
neutral return distribution is known in analytical form. This latter property is a demonstra-
tion of the fact that the Heston (1993) model belongs to the class of affine jump-diffusions
(in the spirit of Duffie and Kan (1996)). The Heston (1993) model is given by the dynamics,
under the risk-neutral probability measure and with λt = (µ− r)/σt,

dSt = (µ− λtσt)Stdt + σtStdWS
t ,

dσ2
t = (κ + η)

(
κ

κ + η
σ2 − σ2

t

)
dt + σσσtdW σ

t , (3.1)

Cov
{
dWS

t , dW σ
t

}
= ρdt.

Under the objective probability measure, the dynamics are obtained by setting both the
stock risk premium λt and the volatility risk premium η to zero. For given parameters,
the risk-neutral return distribution is known in closed form as the inverse of its Fourier
transform, see Heston (1993). The risk-neutral conditional distribution of spot volatility
σt+∆, given σt, is also known in analytical form, see Cox, Ingersoll, and Ross (1985).
Moreover, the Heston (1993) model satisfies the Markov condition in Assumption 1.

In order to study the performance of our proposed method, we simulate five years
(1260 trading days) of daily S&P-500 data using the Pan (2002) parameters, i.e., in the
notation of (3.1): κ = 6.4, σ = 12.4%, σσ = 30.0%, ρ = −53%, and η = −3.1. Observe
that the Pan (2002) estimates refer to a period of low overall volatilities. The interest
rate is fixed at a constant annual level of 4.0%, the initial volatility level σ0 is set equal
to the unconditional mean σ = 12.4%, and the expected instantaneous return is fixed at
µ = 10.0%. All parameters are annualized. The diffusion (3.1) is simulated on a 2 minute
frequency using an Euler discretization. Using the simulated price levels and volatilities, we
calculate analytical option prices with the Heston (1993) formula. For each day we consider
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options with on average four different maturities and, for each maturity, forty different strike
prices are considered. The actual number of options available each day varies as we have
implemented a stylized option introduction scheme, in line with the methodology used by
most exchanges. We apply the method as described in Section 2 where we are interested in
the risk-neutral conditional return and volatility distribution over a period of one month,
i.e., we set ∆ = 1/12. Spot volatility levels are filtered using realized volatilities based on
a 10 minute frequency. Concerning option prices, we use these at a daily frequency only.
These choices are the same as in Section 4 below.

Figure 1 shows our estimated risk-neutral return distributions, conditional on various
initial volatility levels. The low level of σt = 8.8% corresponds to the first quartile of
the objective volatility distribution (as measured by intraday realized volatilities), while
the high level of σt = 14.5% corresponds to the third quartile. Recall that σt = 12.4%
corresponds to the (objective) average volatility. Moreover, we provide the Aı̈t-Sahalia and
Lo (1998) estimate, which is unconditional with respect to the initial spot volatility level.
It is provided as a benchmark and, indeed, lies in between our estimates for low and high
initial volatility and is close to the estimate conditional on an average initial volatility level.
Note, moreover, that in all cases the return distribution is somewhat left-skewed as induced
by the negative return/volatility correlation parameter ρ.

A possible issue in our methodology is the use of intraday realized volatilities instead
of (unobserved) actual spot volatilities. In this simulation exercise it is possible to study
the effect of using intraday realized volatilities. Figure 2 shows (1) the true marginal risk-
neutral return distributions, (2) the estimated marginal risk-neutral volatility distributions
in case we use actual (simulated) Heston spot-volatilities and (3) our estimate using intra-
day realized volatilities instead of spot-volatility levels. The graphs clearly show that the
effect of using intraday realized volatilities instead of the true underlying spot volatilities is
negligible. Moreover, we see that our estimate closely follows the true risk-neutral volatility
distribution. The graphs are conditional on an initial average volatility level σt = 12.4%.
For other initial volatility levels the results are comparable. Similarly, Figure 3 provides the
risk-neutral volatility density for the same cases. Once more, we observe that our method
succeeds in recovering the risk-neutral volatility distribution with some precision. This pre-
cision is due to the large number of observations that are available in this kind of analysis:
we use, over a period of time, all traded options with more than one month to maturity.
Unlike the risk-neutral return distributions, the effect of filtering spot volatilities is visible
in these graphs. This shows that there are some statistically significant biases in the filtered
volatilities. From a financial point of view, however, the differences are small, especially in
the tails of the distributions. As an aside, note that the Pan (2002) parameters imply some
right-skewness in the risk-neutral volatility distribution, although much less than we will
find empirically in Section 4.
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4 Empirical risk-neutral return and volatility distributions

This section provides risk-neutral return and volatility distribution estimates based on
S&P-500 data. Section 4.1 discusses the data we use in some detail. In Section 4.2 we
confirm negative risk-neutral return skewness and a negative volatility risk premium. Ad-
ditionally, we find positive risk-neutral volatility skewness especially when volatility is high.
Moreover, we see that (also risk-neutrally) returns and volatilities are negatively correlated.
Finally, that section shows that the Heston (1993) model calibrated to the risk-neutral re-
turn distribution significantly overestimates the risk-neutral volatility of volatility. As our
method also leads to risk-neutral return distributions conditional on future volatility levels,
Section 4.3 presents these results and shows that in situations of decreasing volatility the
negative return skewness disappears.

4.1 Data description

The empirical results in the present paper are based on European options traded on the
Chicago Board Options Exchange over the period July, 1999, – December, 2003. The
option data are extracted from the ABN-Amro Asset Management database and contain
daily closing quotes of SPX options for all trading days in the sample period. In addition,
the closing S&P-500 index levels are provided. Following Jackwerth and Rubinstein (1996),
dividend rates are calculated from the actual dividends paid out by the SPX stocks. The
methodology presented in Section 2 does not treat dividends explicitly but in the empirical
analysis index prices are replaced by index prices discounted by the dividend rate. Finally,
interpolated LIBOR rates are employed as a proxy for the risk free rate.

Following Bakshi, Cao, and Chen (1997), we only use options that satisfy a number of
criteria. More precisely, we restrict attention to calls and puts that

1. have time-to-expiration greater than six calendar days,

2. have a bid price greater than or equal to 0.05$,

3. have a bid-ask spread less than or equal to 1$,

4. have a Black-Scholes implied volatility greater than zero and less than or equal to
80% (annualized),

5. satisfy the arbitrage restriction,

Ct(T ) ≥ max
(
0, Ste

−q(T−t) −Ke−r(T−t)
)

,

for call options and a similar restriction for put options. In this formula Ct(T ) denotes
the call option price at time t for maturity T , St is the prevailing spot price, q
the dividend rate, K the option exercise price, and r the continuously compounded
intraday risk-free rate.

Table 1 provides descriptive statistics on the resulting set of options. From this table well-
known patterns in implied volatilities across strikes and maturities are recognized. The
volatility skew or smile is clearly present for all option categories. Unreported statistics on
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Calls days to expiration subtotal
moneyness <60 60–180 >180

ITM < 0.97 31.5% 27.4% 25.0%
12734 11877 4251 28862

ATM 0.97–1.03 22.1% 22.1% 22.7%
7949 6624 2350 16923

OTM > 1.03 13.6% 11.4% 24.8%
12902 12879 1837 27618

subtotal 33585 31380 8438 73403
Puts days to expiration subtotal

moneyness <60 60–180 >180
OTM < 0.97 32.3% 28.0% 24.6%

14304 13086 4334 31724
ATM 0.97–1.03 21.9% 21.9% 22.2%

7947 6603 2350 16900
ITM > 1.03 17.6% 14.7% 23.9%

9877 9824 1800 21501
subtotal 32128 29513 8484 70125

Table 1: Summary statistics on SPX call and put option implied volatilities. We report
average annualized implied volatilities of options on the S&P-500 index corresponding to the
last tick before 3:00 PM and the total number of observations for each maturity category.
The sample period is July 9, 1999, to November 27, 2003.
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return data show that in the sample period the annualized standard deviation of returns
equals 20.6%.

Following the literature, realized volatility is used as a proxy for (integrated) spot volatil-
ity. Continuously compounded returns over 10 minute intervals for the S&P-500 index are
constructed. From the series of 10-minute returns on day t the estimated spot variance is
calculated as

σ̂2
t =

1
n

n∑

i=1

{
log (St+iτ/St+(i−1)τ )

}2
, (4.1)

with τ representing a 10-minute trading period and n = 6.5 × 6 = 39 the number of
10-minutes trading periods on one trading day. Figure 4 shows the estimated intraday
volatilities over the complete sample period. The (annualized) volatility during the sample
period varies between 3.7% and 69.0% with an (objective) average of 18.0%. Figure 4 shows
that, after the turbulence in 2001 (September 11) and 2003 (start of Gulf War II), volatility
has decreased to relatively low levels in 2003. Figure 5 shows the (objective) histogram
of estimated volatilities. This figure confirms positive objective volatility skewness. In
Section 4.2 we will, just as for the Heston model, nonparametrically estimate risk-neutral
densities for three initial volatility levels: the average volatility level of 18.0%, the first
quartile of 11.8%, and the third quartile of 19.2%. Note that the third quartile and the
average volatility level are very close due to the strong volatility skewness.

4.2 Risk-neutral return and volatility densities

This section presents risk-neutral distributions for both returns and volatilities. Note that
these distributions are conditional on an initial spot volatility level, as implied by As-
sumption 1. The dependence between future returns and volatilities will be discussed in
Section 4.3. Figure 6 presents the risk-neutral excess return distribution as implied by
our data. The initial volatility level of σt = 18.0% corresponds to the average volatility
level as follows from the intraday realized volatilities. The low and high volatility levels of
σt = 11.8% and σt = 19.2% correspond to the 25% and 75% quantiles, respectively. Observe
that our volatility levels are higher than those in Pan (2002) as we consider the (much)
more volatile 1999–2003 period, while Pan (2002) covers the January, 1989, – December,
1996, period. The figure clearly confirms negative skewness in the risk-neutral return dis-
tribution for all initial volatility levels. Alternatively, while (risk-neutral) expected excess
returns are zero by definition, we see that the modes are slightly positive in all cases.

Our method also provides nonparametric risk-neutral volatility densities. For the same
initial volatility levels, these are presented in Figure 7. The expected risk-neutral future
spot volatility is, also using an initial average volatility level of σt = 18.0%, (much) larger
than this objective average. Therefore, the nonparametric results in Figure 7 confirm the
existence of a negative volatility risk premium. This negative volatility risk premium re-
sults in option values higher than they would be in case of idiosyncratic volatility risk. The
higher value is a compensation for unhedged volatility risk that option traders typically face
because they only delta hedge their short options positions, see also Bakshi and Kapadia
(2003). We also confirm that higher initial volatility leads to a right-shift in the future
volatility distribution of about the same size. In addition to these long-established facts,
Figure 7 depicts clear evidence of positive skewness in the risk-neutral volatility distribution.
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This positive skewness is most pronounced for average or above average initial volatility
levels. Another observation is that for higher initial volatility levels the risk-neutral prob-
ability of high future volatility remains significant. This indicates that, also risk-neutrally,
volatility is highly persistent. The large probabilities for high volatility states are necessary
to fit the prices of out-the-money put options in our sample. Otherwise stated, in order
to price out-of-the-money puts correctly we need significant probability mass in low return
and high volatility combinations. All these conclusions are consistent with a market aver-
sion towards high volatility levels and an even larger aversion towards unexpected positive
volatility shocks when volatility is already high to start with.

We can use our nonparametric technique to infer the accuracy of the popular Heston
(1993) model. To that extent, we choose parameter values such as to provide the best (in
least squares sense) fit of the estimated risk-neutral return distribution in Figure 6. This
leads, in the notation of Section 3.3, to κ+η = 1.47, κσ2 = 0.56, σσ = 1.12, and ρ = −38%.
Note that κ and σ2 cannot be identified separately from the risk-neutral return distribu-
tion alone. The resulting return distribution, conditional on an average initial volatility,
is depicted in Figure 8. It is clear that the Heston (1993) model is capable of providing
a very accurate description of risk-neutral return distribution for our sample. However, it
fails in describing simultaneously the risk-neutral volatility distribution.The induced risk-
neutral volatility distribution, using the same parameter values as above, is depicted in
Figure 9. From this figure we see that an accurate fit of the return distribution leads to
a severe overestimation of the risk-neutral volatility of volatility. Moreover, the Heston
(1993) volatility distribution does not provide the correct positive risk-neutral volatility
skewness that is apparent from the nonparametric estimates, despite the chosen negative
instantaneous correlation parameter. Correspondingly, an optimal fit of the risk-neutral
volatility distribution was determined. Not surprisingly, in that case the risk-neutral re-
turn distribution did not fit the observed one. The estimated volatility of volatility (σσ) was
indeed much lower (0.48), but still larger than values reported in the time series literature,
see for instance Eraker, Johannes, and Polson (2003). This suggests that more components
in the volatility process are necessary to describe asset return and volatility distributions
simultaneously. In parametric models this could be accomplished by, for instance, an addi-
tional Brownian component (see Chernov, Gallant, Ghysels, and Tauchen (2003)) or a jump
component (see Broadie, Chernov, and Johannes (2007)). Once more, these are possible
parametric adjustments, while our focus of interest is nonparametric estimates.

Our method also leads to joint risk-neutral return and volatility distributions which can
be used to study the risk-neutral return and volatility dependence. Figure 10 graphs this
joint estimate for an average initial volatility level of σt = 18.0%. The graph shows that
standard Gaussian and other elliptical distributions are unlikely to provide a good fit to the
bivariate distribution. Moreover, we note that the bivariate risk-neutral return/volatility
distribution exhibits negative dependence. While this leverage effect is well-known for
objective distributions, our method establishes this nonparametrically for risk-neutral dis-
tributions. In general, however, it is difficult to asses the financial significance of these
deviations from bivariate density plots. Therefore, we discuss in the next section risk-
neutral return distributions conditional on future volatility levels.

15



4.3 Conditional risk-neutral return distributions

In order to assess the risk-neutral dependence structure of returns and volatilities, Figure 11
presents the return distribution conditional on three future level of the spot volatility. In
line with previous parametric results, see, for instance, Bakshi, Cao, and Chen (1997), we
find once more evidence of negative risk-neutral correlation between (excess) returns and
volatility. This follows from the fact that higher future volatility levels in Figure 11 lead to
negative shifts in the return distribution. At the same time, our method provides evidence
that return distribution skewness depends on volatility changes. For a future volatility level
of 24.0%, which is close to the risk-neutral average spot volatility, the return distribution
is clearly skewed to the left. Left skewness of the risk-neutral return distribution is usually
associated with a significant crash risk premium. However, for low future volatility levels
the return distribution not only shifts to the right, but it loses its negative skewness and
even shows some slight positive skewness. Apparently the crash risk premium (the product
of both the price of crash risk and its likelihood) is higher when there is more uncertainty
in the market. To the best of our knowledge, this latter result has not been established
empirically before.

An obvious question is which parametric return/volatility models can produce joint
return/volatility densities as depicted in Figure 11. This figure seems to indicate different
behavior of the risk-neutral return distribution for moderate and high levels of volatility.
This could suggest using a regime switching model. Specification of such a parametric
model is outside the scope of this paper.

5 Conclusions

We present a nonparametric technique to infer risk-neutral return and volatility distribu-
tions from plain vanilla option prices. Using this technique and based on S&P-500 data, we
confirm negative skewness in the risk-neutral return distribution and negative volatility risk
premiums. It is important to note that we obtain these results without using a parametri-
cally specified model, which implies that we are less prone to possible misspecification bias.
At the same time, as we can assess the joint risk-neutral return and volatility distribution,
we find evidence of positive skewness in the risk-neutral volatility distribution, which seems
to increase with volatility levels. Moreover, conditionally on low future volatility levels,
the return distribution is no longer negatively skewed but shows some slight positive skew-
ness. These effects are consistent with volatility dependent risk premiums. Finally, our
nonparametric estimates confirm negative risk-neutral return and volatility correlation.
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Figure 1: Estimated risk-neutral excess return distribution over a horizon of one month
based on five years of simulated data in the Heston (1993) model with the Pan (2002)
parameters. The distributions are conditional on the initial volatility level σt. The dotted-
dashed, dashed, and dotted lines correspond to average, low (first quartile of unconditional
objective volatility distribution), and high (third quartile) initial volatility, respectively.
The solid line shows the (unconditional) Aı̈t-Sahalia and Lo (1998) estimate.
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Figure 2: Estimated risk-neutral excess return distribution over a horizon of one month
based on five years of simulated data in the Heston (1993) model with the Pan (2002)
parameters. The solid line denotes the estimate based on realized intraday volatilities. The
dotted line shows the estimate based on the actual spot volatilities. The dashed line shows
the theoretical risk-neutral excess return distribution. All distributions are conditional on
an average initial level of spot volatility σt = 12.4%.
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Figure 3: Estimated risk-neutral volatility distribution over a horizon of one month based
on five years of simulated data in the Heston (1993) model with the Pan (2002) parameters.
The solid line denotes the estimate based on realized intraday volatilities. The dotted line
shows the estimate based on the actual spot volatilities. The dashed line shows the theo-
retical risk-neutral volatility distribution. All distributions are conditional on an average
initial level of spot volatility σt = 12.4%.
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Figure 4: Estimated (realized) volatilities over the sample period July, 1999, until Decem-
ber, 2003, for the S&P500 index.
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Figure 5: Histogram of estimated (realized) volatilities over the sample period July, 1999,
until December, 2003for the S&P500 index. Modus is 13.6%, median is 14.7%, and average
is 18.0%. The first and third quartile are 11.8% and 19.2%, respectively.
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Figure 6: Estimated risk-neutral marginal excess return density over one month horizon
based on S&P-500 data as described in the main text for three initial spot volatility levels.
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Figure 7: Estimated risk-neutral marginal volatility density over one month horizon based
on S&P-500 data as described in the main text for three initial spot volatility levels.
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Figure 8: Risk-neutral return density from Heston (1993) models using parameters that fit
the nonparametric estimate best (in quadratic mean sense), for on an (objective) average
initial volatility level. See main text for details.
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Figure 9: Risk-neutral volatility density from Heston (1993) models using the same param-
eters as in Figure 8.
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Figure 10: Estimated bivariate risk-neutral excess return and volatility density over one
month horizon based on S&P500 data as described in the main text for an average initial
volatility level of 18.0%
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Figure 11: Risk-neutral conditional excess return distributions for an initial spot volatility
level of 18.0% and several future spot volatility levels. Returns and volatilities are over a
period of h = 1 month.
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