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1 Introduction

Housing represents the largest asset in household portfolios. For example, OECD (2021)

estimate that for the average US household, housing is 37% of total assets. Hence, a

relevant question is how an individual should consume and invest over her life-cycle in

the presence of housing. Furthermore, as has been recently demonstrated, house prices

drop following interest rate increases and lower expected future rents. This paper explores

optimal consumption and portfolio choice for a setting in which changes in interest rates

and future rents directly impact house prices.

We show that the individual prefers to be a home owner when young and a renter

when old. This motives the design of so-called reverse mortgage products which allow her

to convert home equity into cash and use the cash to rent back the house. We also show

that she invests significantly less pension wealth into fixed-income securities, compared to

conventional wisdom (Bodie, Merton, and Samuelson (1992)). For reasonable parameter

values, we find that she waits until age 45 to start investing pension wealth in bonds.

Finally, we show that the optimal mortgage constantly changes over her life-cycle. In

particular, it changes from fixed-rate to adjustable-rate as she grows older.

The individual divides, in each period, her income between housing consumption, non-

housing consumption, and savings. Her asset portfolio consists of cash, stocks, nominal

and inflation-linked bonds, and housing. Hence, she can hedge against her housing costs

by buying a house. We assume that the house price equals the expected discounted value

of future rent payments, inspired by the dividend discount model (Gordon and Shapiro

(1956) and Gordon (1959)). As a result, increases in real interest rates and decreases in

future rents directly lead to lower house prices. We derive closed-form expressions for

house prices, housing and non-housing consumption, and portfolio policies. A closed-form

expression has several key advantages: it shows the roles played by the model parameters

and it facilitates the implementation of the optimal policies.

A novel aspect of our model is that rent inflation rates and consumption inflation rates

are cointegrated. This implies that, in the short-run, the price per square foot of living

space can increase faster than the price of the consumption bundle. However, in the long-

run, the rent inflation rate equals the consumption inflation rate. A direct implication

of this cointegration is that the real rent inflation rate1 follows a mean reverting process

with a long-term mean of zero. We use Dutch data to provide empirical support for this

1The real rent inflation rate is defined as the difference between the rent inflation rate and the
consumption inflation rate.
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model implication. In particular, we find that the half-life of Dutch real rent inflation

shocks is approximately equal to 1.5 years. That is, we anticipate a positive or negative

Dutch real rent inflation rate to revert back to its mean of zero within 3 years. Another

model implication is that the real house price is high if real interest rates are low and/or

real rents are high. We find that, except for the post-financial crisis period 2009-2014,

Dutch data provides empirical support for this model implication.

Our three main findings are as follows. First, we find that without bequest motives,

the individual optimally decreases the degree of home ownership from 100% to 0%. When

she is young, she fully owns the house she lives in. As she grows older, she becomes both

a renter and a home owner. Close to the end of her life-cycle, she fully rents the house

she lives in. Thus, the optimal share of wealth invested in housing drastically decreases

with age, while optimal real housing consumption remains largely the same over her life-

cycle. This motivates the design of so-called reverse mortgage products which allow a

home owner to convert home equity into cash and use the cash to rent back the house.

By buying a reverse mortgage product, she can reduce the value of her housing portfolio

while, at same time, living in her home.

Second, we find that, compared to conventional wisdom (Bodie et al. (1992)), she

invests less financial wealth in inflation-linked bonds. This finding holds irrespective of

whether she has access to the housing market. In our benchmark case without housing, we

can explain the lower demand for inflation-linked bonds by the presence of human wealth,

which equals the discounted value of future labor earnings. Indeed, stable labor income

can be seen as a bond. As a result, she prefers to decrease her investments in inflation-

linked bonds; see also van Bilsen, Boelaars, and Bovenberg (2020). With housing, our

result is much stronger since now both stable labor income and stable future rents can be

seen as a bond. This observation causes her to invest substantially less financial wealth

in inflation-linked bonds. Note that our finding also implies that she invests significantly

less pension wealth2 in inflation-linked bonds.

Third, we find that the optimal mortgage changes constantly over the individual’s

life-cycle. We observe that, in the beginning of her life-cycle, the total mortgage amount

is equal to the value of her housing portfolio. That is, net housing wealth is zero. Hence,

when the individual is young, she does not repay her mortgage. Furthermore, the optimal

mortgage changes from fixed-rate to adjustable-rate as she grows older. Indeed, when the

individual is young, she already holds large investments in the bond-like assets human

wealth and gross housing wealth. Therefore, she goes short in inflation-linked bonds,

2Pension wealth is defined as the difference between financial wealth and net housing wealth.
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which can be seen as a fixed-rate mortgage. Later in life, when human wealth and gross

housing wealth are small, she goes short in cash, which can be viewed as an adjustable-

rate mortgage.

1.1 Related Literature

The question of how to consume and invest wealth over the life-cycle has been extensively

studied in different contexts since the seminal works of Mossin (1968), Merton (1969) and

Samuelson (1969). For example, many papers3 study how individuals should save and

invest in an environment with stochastic interest rates. However, only a limited number

of papers include interest rate risk in a model with housing (Campbell and Cocco (2003),

van Hemert (2010) and Campbell and Cocco (2015)). Campbell and Cocco do not explore

the impact of housing on households’ optimal consumption and portfolio choices. Rather,

they focus on how a household should choose between a fixed-rate and an adjustable-rate

mortgage (Campbell and Cocco (2003)) and on households’ mortgage default decisions

(Campbell and Cocco (2015)). Although van Hemert (2010) studies households’ asset

allocation decisions in the presence of housing and stochastic real interest rates, in his

setting, real interest rates do not directly impact house prices.4 Furthermore, he assumes

that the rent is a constant share of the house price.

A number of authors consider optimal consumption and portfolio choice with housing,

but without real interest rate and rental price risk; see, e.g., Sinai and Souleles (2005),

Cocco (2005), Yao and Zhang (2005), Stokey (2009), Corradin, Fillat, and Vergara-

Alert (2014) and Chetty, Sandor, and Szeidl (2017). These authors focus on the optimal

investment in risky stocks (Cocco (2005), Yao and Zhang (2005), Stokey (2009), Corradin

et al. (2014) and Chetty et al. (2017)) or on the rent-versus-buy decision (Yao and Zhang

(2005) and Sinai and Souleles (2005)). For example, Cocco (2005) and Yao and Zhang

(2005) predict that housing leads to lower investments in risky stocks, while Corradin

et al. (2014) find that the optimal stock investments depend on the expected growth

rates in house prices. Our focus is on the optimal bond investments in the presence of

housing.

Finally, we note that a handful papers explore optimal household behavior in a

realistically calibrated life-cycle model; see, e.g., Viceira (2001), Cocco, Gomes, and

3See, e.g., Campbell and Viceira (2001), Brennan and Xia (2002), Sangvinatsos and Wachter (2005),
Liu (2007) and Koijen, Nijman, and Werker (2010).

4van Hemert (2010) models house prices as a random walk with drift; see also, e.g., Flavin and
Nakagawa (2008).
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Maenhout (2005), Chai, Horneff, Maurer, and Mitchell (2011) and Hubener, Maurer,

and Mitchell (2016).5 These papers are successful in explaining several empirical facts

such as the hump-shaped equity allocation over the life-cycle as documented by, e.g.,

Ameriks and Zeldes (2004). Most authors use numerical or approximation techniques to

arrive at the optimal household decisions, while we present closed-form expressions.

Furthermore, they do not include housing in the model specification.

The remainder of the paper is structured as follows. Section 2 introduces the model.

In Section 3, we provide empirical support for two main modeling assumptions: the

cointegration between rent inflation rates and consumption inflation rates, and the

dependency of house prices on real interest rates and future expected rents. The

optimal policies are presented in Section 4. In Section 5, we discuss the main findings.

Finally, Section 6 concludes the paper. The proofs of the main theorems and the

technical details are delegated to Appendix A.

2 Model

This section presents our continuous-time consumption and portfolio choice model.

Denote by t adult age, which corresponds to effective age minus 20. For sake of

simplicity, we assume that the individual dies at the non-random adult age T > 0.

2.1 Preferences

We denote by h(t) and c(t) real housing consumption (i.e., number of square feet of living

space) and real non-housing consumption (i.e., number of consumption goods) at adult

age t, respectively. The individual has CRRA preferences over time and risk and Cobb-

Douglas preferences over real housing consumption and real non-housing consumption.

Hence, expected lifetime utility is given by

U = E0

[∫ T

0

e−δt
1

1− γ
(
h(t)ϕc(t)1−ϕ

)1−γ
dt

]
, (2.1)

where δ ≥ 0 denotes the subjective rate of time preference, γ > 0 corresponds to the

coefficient of relative risk aversion, 0 ≤ ϕ ≤ 1 is the Cobb-Douglas share parameter, and

E0 [·] represents the expectation conditional upon information available at adult age 0.

5See also, e.g., Gomes and Michaelides (2003), Horneff, Maurer, Mitchell, and Rogalla (2015), Horneff,
Maurer, and Mitchell (2019), Horneff, Maurer, and Mitchell (2020), Maurer, Mitchell, Rogalla, and
Schimetschek (2021) and Horneff, Maurer, and Mitchell (2022).
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2.2 State Variables

We consider an economy with four state variables: the real stock price S(t), the short-

term real interest rate r(t), the rent inflation rate πh(t), and the consumption inflation

rate π(t). The state variables πh(t) and π(t) denote the price inflation rates of real housing

consumption and real non-housing consumption, respectively. We assume that the real

stock price, the short-term real interest rate and the consumption inflation rate follow

the same dynamics as in Brennan and Xia (2002). That is, the short-term real interest

rate r(t) and the consumption inflation rate π(t) are described by an Ornstein-Uhlenbeck

process and the real stock price S(t) evolves according to a geometric Brownian motion.

Furthermore, we assume that the rent inflation rate πh(t) and the consumption inflation

rate π(t) are cointegrated. This captures the idea that the prices of housing consumption

and non-housing consumption cannot diverge away from each other by a large distance.

We model cointegration in a similar fashion as in Benzoni, Collin-Dufresne, and Goldstein

(2007) who assume that labor income and dividends are cointegrated. In our setting, this

means that the real rent inflation rate πh(t)−π(t) follows an Ornstein-Uhlenbeck process

with a long-term mean equal to zero. The dynamics of the state variables are thus

described by the following equations:

dS(t) = (r(t) + λSσS)S(t)dt+ σSS(t)dZS(t), (2.2)

dr(t) = κr (r̄ − r(t)) dt+ σrdZr(t), (2.3)

dπ(t) = κπ (π̄ − π(t)) dt+ σπdZπ(t), (2.4)

d (πh(t)− π(t)) = κh (0− [πh(t)− π(t)]) dt+ σhdZh(t). (2.5)

Here, r̄ ∈ R and π̄ ∈ R denote the expected short-term real interest rate in the long-run

and the expected consumption inflation rate in the long run, respectively, κr, κπ, κh ≥ 0

are mean reversion coefficients, λS ≥ 0 is the Sharpe ratio of the risky stock, Z(t) =

(ZS(t), Zr(t), Zπ(t), Zh(t)) represents a vector of standard Brownian motions, and σ =

(σS, σr, σπ, σh) ≥ 0 is a vector of diffusion coefficients.6 We summarize the (linear)

correlation coefficients between the Brownian increments in the correlation matrix ρ:

6For notational convenience, we often write a (column) vector in the form y = (y1, y2, . . . , yn), where
yi represents the ith element of y.
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ρ =


1 ρSr ρSπ ρSh

ρrS 1 ρrπ ρrh

ρπS ρπr 1 ρπh

ρhS ρhr ρhπ 1

 , (2.6)

where ρij ∈ [−1, 1] (i, j ∈ {S, r, π, h}, i 6= j) denotes the correlation coefficient between

dZi(t) and dZj(t).

The nominal rental price index Πh(t) (i.e., price per square foot of living space) and

the consumer price index Π(t) are defined as follows:

Πh(t) = exp

{∫ t

0

πh(s)ds

}
, (2.7)

Π(t) = exp

{∫ t

0

π(s)ds

}
. (2.8)

It follows that the relative change in the real rental price index Π̃h(t) = Πh(t)/Π(t) (i.e.,

price per square foot of living space in terms of real consumption goods) can diverge from

zero:

dΠ̃h(t)

Π̃h(t)
= (πh(t)− π(t)) dt. (2.9)

Hence, the price per square foot of living space can increase faster than the price of the

consumption bundle. However, from (2.5), we observe that, in the long-run, the change

of the real rental price index is zero. Hence, the prices of real housing consumption and

real non-housing consumption are cointegrated. That is, in the long-run, the price per

square foot of living space cannot grow faster than the price of the consumption bundle.

Denote by m(t) the real stochastic discount factor at adult age t. We use this factor

to determine the value (or price) of future real consumption goods in terms of current

real consumption goods. We assume that m(t) satisfies the following dynamics:

dm(t)

m(t)
= −r(t)dt+ φ>dZ(t). (2.10)

Here, > denotes the transpose sign, and φ = (φS, φr, φπ, φh) ∈ R4 is a vector of factor

loadings, which determines the vector of market prices of risk associated with the

6
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underlying state variables. More specifically, we can obtain the vector of market prices

of risk λ = (λS, λr, λπ, λh) from φ as follows:

λ = −ρφ. (2.11)

2.3 Asset Price Dynamics and Dynamic Budget Constraint

We assume that the individual can invests her total wealth, which consists of financial

wealth and human wealth, into four risky assets: a nominal bond with time to maturity

hN , an inflation-linked bond with time to maturity hI , a stock and a housing portfolio.

This section derives the bond price dynamics, the dynamics of the value of the housing

portfolio and the budget constraint. The stock price dynamics is given before (see (2.2)).

2.3.1 Bond Price Dynamics

Let PN (t, hN) and PI (t, hI) denote the real prices (i.e., in terms of real consumption

goods) at adult age t of a zero-coupon nominal bond with time to maturity hN and a

zero-coupon inflation-linked bond with time to maturity hI , respectively. Appendix A.1

derives the dynamics of PN (t, hN) and PI (t, hI). We find

dPN (t, hN) = (r(t)− λrσrBr (hN)− λπσπBπ (hN))PN (t, hN) dt

− PN (t, hN) [Br (hN)σrdZr(t) +Bπ (hN)σπdZπ(t)] ,
(2.12)

dPI (t, hI) = (r(t)− λrσrBr (hI))PI (t, hI) dt−Br (hI)σrPI (t, hI) dZr(t). (2.13)

Here, Br (h) =
(
1− e−κrh

)
/κr ∈ [0, h] and Bπ(h) =

(
1− e−κπh

)
/κπ ∈ [0, h] model the

sensitivity of a bond with time to maturity h to real interest rate changes and inflation

rate changes, respectively. Note that Br (h) and Bπ (h) converge to h as real interest

rates and inflation rates become less predictable (i.e., as κr and κπ go to zero).

2.3.2 Dynamics of Value of Housing Portfolio

Inspired by the dividend discount model (Gordon and Shapiro (1956) and Gordon (1959)),

we assume that the real house price is equal to the expected discounted value of all future

rents. Let Ph(t) be the real price (i.e., in terms of real consumption goods) at adult age

t of a house. Appendix A.2 shows that Ph(t) satisfies the following dynamics under the
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assumption that no maintenance is conducted on the house:

dPh(t) = −Π̃h(t)dt+
(
r(t)− λrσrB̂r(t) + λhσhB̂h(t)

)
Ph(t)dt

− B̂r(t)σrPh(t)dZr(t) + B̂h(t)σhPh(t)dZh(t),
(2.14)

with

B̂r(t) =
Π̃h(t)

∫∞
0
e−δhhBr(h)Ph(t, h)dh

Ph(t)
, (2.15)

B̂h(t) =
Π̃h(t)

∫∞
0
e−δhhBh(h)Ph(t, h)dh

Ph(t)
, (2.16)

Ph(t, h) = exp {−r(t)Br(h) + (πh(t)− π(t))Bh(h)− kh(h)} . (2.17)

Here, the expression of kh(h) is given in Appendix A.2 (see (A26)) and δh ≥ 0 models

the depreciation of the house. This parameter is high if maintenance costs are high (e.g.,

if the house is old). Equation (2.14) shows that the return on the house depends on

four terms. The first term on the right-hand side of (2.14) shows that the price of the

house declines because the house becomes older. The second term models the expected

financial return on the house. We observe that the individual collects two risk premiums:

−λrσrB̂r(t) and λhσhB̂h(t). The first risk premium, i.e., −λrσrB̂r(t), is due to the fact

that the house price is exposed to real interest rate risk. As can be seen from the third

term on the right-hand side of (2.14), B̂r(t) models the real interest rate sensitivity of the

house price. The second risk premium, i.e., λhσhB̂h(t), is due to the fact that the house

price is exposed to real rent inflation risk. As can be seen from the fourth term on the

right-hand side of (2.14), B̂h(t) models the sensitivity of the house price to unexpected

shocks in the real rent inflation rate πh(t)− π(t).

The individual does not directly invest in a house. Rather, she invests in a housing

portfolio that reinvests incoming rents in houses. Denote by Wh(t) the real value (i.e.,

in terms of real consumption goods) at adult age t of an account that only invests in

housing. Appendix A.2 shows that Wh(t) satisfies the following dynamics:

dWh(t)

Wh(t)
=
(
r(t)− λrσrB̂r(t) + λhσhB̂h(t)

)
dt−B̂r(t)σrdZr(t)+B̂h(t)σhdZh(t). (2.18)
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2.3.3 Dynamic Budget Constraint

Let ω(t) = (ωS(t), ωN(t), ωI(t), ωh(t)) be the vector of portfolio weights at adult age t.

Here, ωS(t), ωN(t), ωI(t), and ωh(t) denote the shares of total wealth invested in a risky

stock (with price dynamics (2.2)), a nominal bond with time to maturity hN (with price

dynamics (2.12)), an inflation-linked bond with time to maturity hI (with price dynamics

(2.13)), and a housing portfolio (with price dynamics (2.18)), respectively. As a result, the

share of total wealth invested in cash at adult age t is given by 1−ωS(t)−ωN(t)−ωI(t)−
ωh(t). Let W (t) denote the investor’s real total wealth (i.e., in terms of real consumption

goods) at adult age t which satisfies the following dynamic budget constraint:

dW (t) =
(
r(t) + ω(t)> [µ(t)− r(t)]

)
W (t)dt

+ ω(t)>Σ(t)W (t)dZ(t)−
(

Π̃h(t)h(t) + c(t)
)

dt.
(2.19)

Here,

µ(t)− r(t) =


λSσS

−λrσrBr (hN)− λπσπBπ (hN)

−λrσrBr (hI)

−λrσrB̂r(t) + λhσhB̂h(t)

 (2.20)

and

Σ(t) =


σS 0 0 0

0 −Br (hN)σr −Bπ (hN)σπ 0

0 −Br (hI)σr 0 0

0 −B̂r(t)σr 0 B̂h(t)σh

 . (2.21)

We note that the last term on the right-hand side of the dynamic budget constraint (2.19)

denotes the individual’s real spending (i.e., in terms of real consumption goods) at adult

age t on real housing consumption and real non-housing consumption. We also note that

the individual is a renter and has to pay for real housing consumption. However, by

investing in the housing portfolio, the individual reduces or eliminates real rental price

risk and, in fact, becomes a home owner.

9
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2.4 Individual’s Maximization Problem

The individual faces the following dynamic maximization problem:

max
h(t),c(t),ω(t)

E
[∫ T

0

e−δt
1

1− γ
(
h(t)ϕc(t)1−ϕ

)1−γ
dt

]
s.t. dW (t) =

(
r(t) + ω(t)> [µ(t)− r(t)]

)
W (t)dt

+ ω(t)>Σ(t)W (t)dZ(t)−
(

Π̃h(t)h(t) + c(t)
)

dt.

(2.22)

Section 4 analyzes and discusses the optimal policies over the individual’s life-cycle.

3 Empirical Support

As mentioned in Section 2, we assume that the prices of real housing consumption and

real non-housing consumption are cointegrated. That is, the relative change in the real

rental price index Π̃h(t) can diverge from zero, but, in the long-run, the price per square

foot of living space cannot grow faster than the price of the consumption bundle. Figure

1 shows the Dutch nominal rental price index Πh(t), the Dutch consumer price index

Π(t), the Dutch real rental price index Π̃h(t), and the relative change in the Dutch real

rental price index, i.e., dΠ̃h(t)/Π̃h(t). We use data from Statistics Netherlands. Our time

period runs from 1962 to 2021.

We observe from the right panel of Figure 1 that the relative change in the real rental

price index seems to follow a mean-reverting process. This provides empirical support

for our specification of dΠ̃h(t)/Π̃h(t); see (2.5). We now estimate the speed of mean

reversion κh and the volatility σh using maximum likelihood estimation (MLE). We find

the following estimated parameters: κ̂h = 0.443 and σ̂h = 0.0151. In Section 5, we

assume a half-life of the real rent inflation rate of 1.5 years which roughly corresponds to

κh = 0.443.

Another novel aspect of our model is that the real house price is equal to the expected

discounted value of all future rents. Equation (A18) in Appendix A.2 shows that the real

house price is high if the short-term real interest rate r(t) is low and/or the real rental

price index Π̃h(t) is high. Figure 2 shows the Dutch real house price index, the Dutch

real rental price index (see also Figure 1) and the Dutch short-term real interest rate.

We use data from Statistics Netherlands and the OECD. Our time period runs from

1995 to 2021. We define the short-term real interest rate to be the difference between

the short-term nominal interest rate and the inflation rate. We observe that real house

10
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Figure 1. Consumer Price Index, Nominal Rental Price Index, Real Rental Price Index
and Change in Real Rental Price Index The left panel shows the Dutch consumer price index,
the Dutch nominal rental price index and the Dutch real rental price index. The right panel shows the
change in the Dutch real rental price index (i.e., the real rent inflation rate). We use data from Statistics
Netherlands. Our time period runs from 1962 to 2021.

prices increase since 1995 except for the period 2009 to 2014 (post-financial crisis years).

At the same time, we observe a declining trend in the short-term real interest rate and

an increasing trend in real rents. Except for the post-financial crisis period 2009-2014,

Dutch data thus provides support for the model implication that decreasing real interest

rates and increasing real rents correspond to increasing real house prices.

4 Optimal Life-Cycle Policies

4.1 Optimal Consumption Choice

We are now ready to present the optimal real housing consumption and the optimal real

non-housing consumption.

Theorem 1 (optimal consumption choice) Consider an individual who solves the

maximization problem (2.22). Then the individual’s optimal real housing consumption

h∗(t) and the individual’s optimal real non-housing consumption c∗(t) are given by

h∗(t) = h∗(0)e−
δt
γ m(t)−

1
γ Π̃h(t)

− (1−ϕ)γ+ϕ
γ , (4.1)

c∗(t) =
1− ϕ
ϕ

h∗(t)Π̃h(t). (4.2)
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Figure 2. Real House Price Index, Real Rental Price Index and Real Interest Rate The
left panel shows the Dutch real house price index and the Dutch real rental price index. The right panel
shows the Dutch short-term real interest rate. We use data from Statistics Netherlands and the OECD.
Our time period runs from 1995 to 2021. The short-term real interest rate is equal to the difference
between the short-term nominal interest rate and the inflation rate.

Here, m(t) is the real stochastic discount factor and Π̃h(t) is the real rental price index.

The optimal real housing consumption at adult age 0, i.e., h∗(0), is chosen such that

the static budget constraint holds with equality.

Proof. See Appendix A.3.

We observe that both optimal real housing consumption and optimal real non-housing

consumption depend on the real stochastic discount factor m(t) and the real rental price

index Π̃h(t). If the economy worsens, i.e., the stochastic discount factor goes up, the

individual lowers optimal real housing consumption as well as optimal real non-housing

consumption. Indeed, the individual’s budget decreases due to bad economic times. If

the real rental price index increases, optimal real housing consumption decreases, while

optimal real non-housing consumption increases. Indeed, an increase in the real rental

price index means that real housing consumption becomes relatively more expensive and

real non-housing consumption becomes relatively cheaper.

4.2 Optimal Portfolio Choice

We are now ready to present the optimal portfolio choice.

Theorem 2 (optimal portfolio choice total wealth) Consider an individual who

solves the maximization problem (2.22). Then the individual’s optimal shares of total
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wealth invested in the risky assets are given by

ω∗S(t) = −1

γ

φS
σS
, (4.3)

ω∗N(t) =
1

γ

φπ
Bπ (hN)σπ

, (4.4)

ω∗I (t) =
1

γ

φr
Br (hI)σr

+

(
1− 1

γ

)
B̃r(t)

Br (hI)
− ω∗N(t)

Br(hN)

Br(hI)
− ω∗h(t)

B̂r(t)

Br(hI)
, (4.5)

ω∗h(t) = −1

γ

φh

B̂h (t)σh
+ ϕ

(
1− 1

γ

)
B̃h (t)

B̂h (t)
. (4.6)

Here,
(

1− 1
γ

)
B̃r(t) and ϕ

(
1− 1

γ

)
B̃h(t) represent the sensitivity of the optimal annuity

factor to unexpected changes in the real interest rate r(t) and unexpected changes in the

real rent inflation rate πh(t)− π(t), respectively. More specifically,(
1− 1

γ

)
B̃r(t) =

(
1− 1

γ

)∫ T−t

0

V ∗(t, v)

V ∗(t)
Br(h) dv, (4.7)

ϕ

(
1− 1

γ

)
B̃h(t) = ϕ

(
1− 1

γ

)∫ T−t

0

V ∗(t, v)

V ∗(t)
Bh(v) dv, (4.8)

where V ∗(t, v) = h∗(t)Π̃h(t) exp {−d∗(t, v)v} /ϕ with d∗(t, v) defined in (A43) and V ∗(t) =∫ T−t
0

V ∗(t, v) dv.

Proof. See Appendix A.3.

We denote by ω∗S(t) and ω∗N(t) the optimal shares of total wealth invested in the stock

and in the nominal bond with time to maturity hN , respectively. The individual invests

in the risky stock to pick up the equity risk premium λSσS ≥ 0 and she invests in the

nominal bond to profit from the inflation risk premium −λπσπBπ (hN) ≥ 0. This is a

standard result in the literature (see, e.g., Merton (1969)): under constant relative risk

aversion utility, the speculative portfolio demands do not change over the individual’s

life-cycle.

We denote by ω∗I (t) the optimal share of total wealth invested in the inflation-linked

bond with time to maturity hI . This share consists of four parts. The first part is

the speculative demand: the individual wants to profit from the real interest rate risk

premium −λrσrBr (hI) ≥ 0. The second part is the hedging demand. This terms arises

because the individual wants to hedge against a decline in the real interest rate. Its value

depends on the real interest rate duration of the optimal annuity factor (as defined in
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(4.7)): a large real interest rate duration implies a large hedging demand. The third and

fourth part arise because the individual is already partly hedged against real interest rate

risk through the nominal bond and the housing portfolio, respectively. The larger the

investment in the nominal bond and the housing portfolio are, the smaller the investment

in the inflation-linked bond will be.

We denote by ω∗h(t) the optimal share of total wealth invested in the housing

portfolio. This term consists of two parts: a speculative part and a hedging part. The

individual invests part of her total wealth to pick up the real rent inflation rate

premium λhσhB̂h (t) ≥ 0. This is not the only reason to invest in the housing portfolio:

the individual also wants to hedge against real rent inflation risk.

4.3 Impact of Human Wealth

So far, we ignored human wealth. This section explores the impact of human wealth

on the optimal portfolio weights. We define human wealth as the expected discounted

value of future earnings, which consists of labor income and social security. Like Bodie

et al. (1992), we assume that future earnings can be viewed as an asset. Furthermore,

we assume that labor income and social security payments are riskless. Denote by B̄r(t)

the duration at adult age t of human wealth which is defined as follows:

B̄r(t) =

∫ T−t

0

H(t, v)

H(t)
Br(h) dv, (4.9)

where H(t, v) is the value at adult age t of earnings received at time t + v and H(t) ≡∫ T−t
0

H(t, v) dv.

The individual invests her financial wealth – which equals total wealth minus human

wealth – in the financial market. When making the asset allocation decision, she takes

into account that she already owns an asset, i.e., future earnings. Denote by ω̃(t) =

(ω̃S(t), ω̃N(t), ω̃I(t), ω̃h(t)) a vector consisting of the shares of financial wealth invested in

the risky assets. We are now ready to present the following theorem.

Theorem 3 (optimal portfolio choice financial wealth) Consider an individual

who solves the maximization problem (2.22). Then the individual’s optimal shares of

financial wealth invested in the risky assets are given by

ω̃∗(t) = ω∗(t)
W (t)

F (t)
−
(

0, 0,
B̄r(t)

Br(hI)

H(t)

F (t)
, 0

)
. (4.10)
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Here, F (t) = W (t)−H(t) denotes financial wealth at adult age t and ω∗(t) is the optimal

portfolio weight vector as defined in Theorem 2.

Proof. See Appendix A.4.

The presence of human wealth has two effects on the optimal portfolio weights. First,

the bond-like asset human wealth diversifies stock return risk, real interest rate risk,

consumption inflation rate risk and real rent inflation rate risk. Hence, early in life, when

human wealth is large, the individual can afford to invest more in the risky assets. Second,

human wealth already provides a partly hedge against real interest rate risk. This causes

the optimal share of financial wealth invested in the inflation-linked bond to decrease.

5 Main Findings

5.1 Parameter Values

We illustrate our main findings for an individual who starts working at age 20, retires at

age 65 and passes away at age 85. Her yearly income after taxes is equal to 77,500 USD

at age 20, which roughly corresponds to the average annual US household income after

taxes in 2021 (US Bureau of Labor Statistics). We assume that the yearly increase in

net income equals the consumption inflation rate. After retirement, she receives a social

security payment which is 25% of last earned net income. This corresponds to the average

social security payment in the US in 2021 (United States Social Security Administration).

Her initial financial wealth is zero.

We summarize the values for the other parameters in Table 1. The parameter values

for the real interest rate process and consumption inflation rate process are in line with

Brennan and Xia (2002). We set the Cobb-Douglas share parameter ϕ equal to the

average US household spending on housing in 2021 (US Bureau of Labor Statistics). The

depreciation rate δh is set equal to the average house maintenance costs in the US in 2019

(American Housing Survey). The values for the relative risk aversion coefficient, time

preference rate, stock return volatility and equity risk premium are common choices in

the literature. We determine the market price of real rent inflation rate risk such that, at

age 20, the price of the house the individual lives in matches the value of the individual’s

housing portfolio. The half-life and the volatility of the real rent inflation rate follow

from maximum likelihood estimation (MLE); see Section 3 for more details. The time of

maturity of the nominal bond and the inflation-linked bond are set equal to 10 years and

30 years, respectively. Finally, we assume that ρ equals the identity matrix.
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Table 1. Parameter Values. This table summarizes the parameter values used in the
illustrations.

Preferences
Relative risk aversion γ 5
Time preference δ 4%
Cobb-Douglas share ϕ 0.35

Stock return dS(t) = (r(t) + λSσS)S(t)dt+ σSS(t)dZS(t)
Volatility σS 20%
Market price λS 0.2
Equity risk premium λSσS 4%

Real interest rate dr(t) = κr(r̄ − r(t))dt+ σrdZr(t)
Long-term mean r̄ 2%
Volatility σr 1%

Half-time (r̄ − r(t)) ln(0.5)
−κr 10 years

Market price λr -0.20

Consumption inflation dπ(t) = κπ(π̄ − π(t))dt+ σπdZπ(t)
Long-term mean π̄ 5%
Volatility σπ 1%

Half-time (π̄ − π(t)) ln(0.5)
−κπ 20 years

Market price λπ -0.10

Real rent inflation rate d(πh(t)− π(t)) = −κh(πh(t)− π(t))dt+ σhdZh(t)
Volatility σh 1.5%

Half-time πh(t)− π(t) ln(0.5)
−κh 1.5 years

Market price λh 0.24
Depreciation rate δh 0.6%

Time to maturity
Nominal bond hN 10 years
Inflation-linked bond hI 30 years

5.2 Home Ownership over the Life-Cycle

Our first finding is that the individual’s optimal degree of home ownership constantly

changes over her life-cycle. We first illustrate optimal median real housing consumption

(in square feet of living space) as a function of age; see the left panel of Figure 3. We

observe that optimal median real housing consumption increases over the individual’s

life-cycle. The share of the individual’s total consumption spend on housing is constant.
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In our example, this share is ϕ = 35%; see Table 1. However, the share of the individual’s

income spend on total consumption is not constant but depends on the parameter values

and the current state variables. We find that for our setting, the optimal median share of

income spend on total consumption increases with age. This explains why the individual’s

optimal median real housing consumption is higher for older ages. From a practical

viewpoint, it means that, in the median scenario, the individual moves to a bigger house

when she becomes older.

The right panel of Figure 3 compares the value of the individual’s optimal housing

portfolio (i.e., gross housing wealth) with the price of the house the individual lives in.

We can interpret the ratio between these two numbers as the individual’s optimal degree

of home ownership. As mentioned in Section 5.1, we choose the market price of real

rent inflation risk λh such that at the start of the individual’s life-cycle, the value of her

optimal housing portfolio matches the price of the house she lives in. Hence, at age 20,

the optimal degree of home ownership is 100%, i.e., she fully owns the house she lives in.

If she becomes older, she will be both owner and renter. Indeed, we observe that the value

of the individual’s optimal housing portfolio is smaller than the price of the house the

individual lives in, i.e., the optimal degree of home ownership is less than 100%. Towards

the end of her life-cycle, the individual fully rents the house she lives in. Our conclusion

is that without bequest motives, the individual optimally decreases the degree of home

ownership from 100% to 0%.

5.3 Preference for Reverse Mortgage Products

Our second finding is that the individual has a preference for so-called reverse mortgage

products. To illustrate our second finding, we consider the optimal median portfolio

strategy in terms of total wealth; see Figure 4. The figure considers two cases: no

possibility to invest in the housing portfolio (left panel) and possibility to invest in the

housing portfolio (right panel). Consistent with conventional wisdom (Merton (1969)),

the optimal shares of total wealth invested in the risky stock and the nominal bond are

constant over the life-cycle. Also, we see that the optimal median share of total wealth

invested in the inflation-linked bond decreases with age, which is also consistent with

conventional wisdom (Brennan and Xia (2002)). Indeed, when the individual becomes

older and her investment horizon shrinks, the hedging demand for the inflation-linked

bond becomes lower. If the individual has access to the housing market, then she will

decrease the optimal median share of total wealth invested in housing over her life-cycle
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Figure 3. Real Housing Consumption, House Price and Value of the Housing Portfolio The
left panel shows optimal median real housing consumption (in square feet of living space) as a function of
age. The right panel compares the value of the individual’s optimal housing portfolio (i.e., gross housing
wealth) with the price of the house the individual lives in. The parameter values are given in Section
5.1.

(see the right panel of Figure 4 and Section 5.2). At the same time, she will increase

optimal median real housing consumption as she gets older (see Figure 3). This motivates

the design of reverse mortgage products which allow home owners to convert home equity

into cash and use the cash to rent back the house. By buying a reverse mortgage product,

she can reduce the value of her housing portfolio (i.e., gross housing wealth) while staying

in her home. A reverse mortgage will thus not affect real housing consumption. Figure

5 confirms the preference for reverse mortgage products. This figure shows the optimal

median composition of total real wealth as a function of age. Indeed, as we can observe

in this figure, the value of the optimal housing portfolio decreases with age.

5.4 Less Demand for the Inflation-linked Bond

Our third finding is that, compared to conventional wisdom (Bodie et al. (1992)), the

individual linvests less in the inflation-linked bond. To illustrate this finding, we explore

the asset allocation of financial wealth. Hence, we include human wealth in our analysis.7

Figure 6 takes human wealth into account and shows the median optimal shares of total

wealth invested in the assets as a function of age. As in Figures 4 and 5, we consider

two cases: no possibility to invest in the housing portfolio (left panel) and possibility to

7Figures 4 and 5 assumed that human wealth was not present.
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Figure 4. Optimal Portfolio Strategy without Human Wealth The figure shows the median
optimal shares of total real wealth invested in the assets as a function of age. We consider two cases: no
possibility to invest in the housing portfolio (left panel) and possibility to invest in the housing portfolio
(right panel). The parameter values are given in Section 5.1.
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Figure 5. Optimal Composition of Total Real Wealth without Human Wealth The figure
shows the median optimal composition of total real wealth as a function of age. We consider two cases: no
possibility to invest in the housing portfolio (left panel) and possibility to invest in the housing portfolio
(right panel). The parameter values are given in Section 5.1.

invest in the housing portfolio (right panel). We observe that human wealth causes the

optimal share invested in the inflation-linked bond to decrease. This holds for both cases.

Without housing, we can explain the lower demand for the inflation-linked bond by the

presence of human wealth, which equals the discounted value of future labor earnings.

Indeed, stable labor income can be seen as a bond. As a result, she prefers to decrease
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her investments in the inflation-linked bond; see also van Bilsen et al. (2020). However,

with housing, our result is much stronger since now both stable labor income and stable

future rents can be seen as a bond. This observation causes her to invest substantially

less financial wealth in the inflation-linked bond. This finding is confirmed by Figure 5,

which shows the median optimal composition of total real wealth as a function of age.

Indeed, as we can observe in this figure, the size of the optimal inflation-linked bond

portfolio is low or even negative for many ages, especially for the case with housing.
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Figure 6. Optimal Portfolio Strategy with Human Wealth The figure shows the median optimal
shares of total real wealth invested in the assets as a function of age. We consider two cases: no possibility
to invest in the housing portfolio (left panel) and possibility to invest in the housing portfolio (right panel).
The parameter values are given in Section 5.1.

5.5 Optimal Mortgage: from Fixed-Rate to Adjustable-Rate

Our fourth finding is that the optimal mortgage changes constantly over the individual’s

life-cycle. Figure 8 shows the optimal mortgage. We can interpret the short positions in

cash and the inflation-linked bond (see Figure 6) as an adjustable-rate mortgage and a

fixed-rate mortgage, respectively. As can be seen in Figure 5, in the beginning of the life-

cycle, the total loan amount is larger than the value of the individual’s housing portfolio,

i.e., gross housing wealth. Therefore, we assume that the mortgage amount equals the

value of the housing portfolio as long as the total loan amount exceeds the value of

the housing portfolio. Hence, the individual does not repay her mortgage when young.

Indeed, as we observe in Figure 8, median net housing wealth, which equals median gross

housing wealth minus the median mortgage amount, is zero until age 64. Furthermore,
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Figure 7. Optimal Composition of Total Real Wealth with Human Wealth The figure shows
the median optimal composition of total real wealth as a function of age. We consider two cases: no
possibility to invest in the housing portfolio (left panel) and possibility to invest in the housing portfolio
(right panel). The parameter values are given in Section 5.1.

we observe that the optimal composition of the mortgage changes from fixed-rate to

adjustable-rate as the individual becomes older. Indeed, when the individual is young,

she already holds large investments in the bond-like assets human wealth and housing.

Therefore, she goes short in the inflation-linked bond when young.

5.6 Asset Allocation of Defined Contribution Wealth

Our last finding is that the presence of housing leads to a change in the optimal asset

allocation of defined contribution (DC) wealth. The individual uses her human wealth,

her defined contribution wealth and her net housing wealth8 to finance consumption in

retirement. The sum of DC wealth and net housing wealth is equal to financial wealth

F (t) = W (t)−H(t). Figure 9 shows how the individual should invest her DC wealth over

the life-cycle. We observe that, for most ages, the individual holds a short position in

cash to finance investments in stocks and nominal bonds.9 Furthermore, we observe that

the presence of a housing portfolio has a dramatic impact on the portfolio strategy. The

preference to invest in the inflation-linked bond almost completely vanishes. As already

pointed out in Section 5.5, the individual already holds large investments in the bond-like

8See Figure 8 for the development of median net housing wealth over her life-cycle.
9We note that the investor also holds a short position in cash and a short position in inflation-linked

bonds to finance housing investments; see Figure 8. However, we assume that these short positions are
not arranged through the DC pension plan.
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Figure 8. Optimal Mortgage The figure shows the optimal mortgage. The parameter values are
given in Section 5.1.

asset housing. This explains why we observe the reduction in the optimal share of DC

wealth invested in the inflation-linked bond in Figure 9. This is also confirmed by Figure

10, which shows the median optimal composition of DC wealth as a function of age.

6 Conclusion

This paper explored optimal consumption and portfolio decisions in the presence of risky

house prices. In our house price model, changes in real interest rates and future rents

directly impact house prices. Hence, it becomes important to model rent inflation rates.

We assume cointegration between rent inflation rates and consumption inflation rates.

This is not only a desirable property from theoretical perspective but also backed by

Dutch data. Our three main findings are as follows. First, we show that the individual

prefers to be a home owner when young and a renter when old. This motives the design of

so-called reverse mortgage products. Second, she invests significantly less pension wealth

in inflation-linked bonds, as compared to conventional wisdom. Finally, the optimal

mortgage changes from fixed-rate to adjustable-rate as the individual becomes older.

Two potential limitations of our setting are the following. First, the individual
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Figure 9. Optimal Portfolio Strategy of DC Wealth The figure shows the median optimal shares
of DC wealth invested in the assets as a function of age. We consider two cases: no possibility to invest in
housing portfolio (left panel) and possibility to invest in housing portfolio (right panel). The parameter
values are given in Section 5.1.
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Figure 10. Optimal Composition of DC Wealth The figure shows the median optimal composition
of DC wealth as a function of age. We consider two cases: no possibility to invest in housing portfolio
(left panel) and possibility to invest in housing portfolio (right panel). The parameter values are given
in Section 5.1.

continuously adjusts real housing consumption. This is not realistic due to high

transaction costs. However, it will not significantly affect our main findings. For

example, home ownership is the main reason why the individual invests less pension

wealth in inflation-linked bonds. Transaction costs do not play a major role in this

finding. Another potential limitation is that the current value of the individual’s
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housing portfolio is not necessarily equal to the current value of the house the

individual lives in. However, we can address this limitation by allowing the individual

to buy reverse mortgage products and to invest in a real estate portfolio.
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A Mathematical Proofs

A.1 Derivation of Bond Price Dynamics

This appendix derives the dynamics of the real price of a nominal bond and the dynamics

of the real price of an inflation-linked bond. We assume that the economy consists of

four state variables: the real interest rate r(t) (with dynamics (2.3)), the consumption

inflation rate π(t) (with dynamics (2.4)), the real stock price S(t) (with dynamics (2.2)),

and the rent inflation rate πh(t) (with dynamics (2.5)).

A.1.1 Nominal Bond Price Dynamics

We can obtain the real nominal bond price PN (t, hN) by computing the following

conditional expectation:

PN (t, hN) =
1

Π(t)
Et
[
m (t+ hN)

Π (t+ hN)

Π (t)

m (t)
· 1
]

=
1

Π(t)
Et
[
exp

{
−
∫ hN

0

(
r(t+ v) + π (t+ v) +

1

2
φ>ρφ

)
dv

+φ>
∫ hN

0

dZ(t+ v)

}]
.

(A1)

Here, Et [·] denotes the expectation conditional upon the information available at time t.

Equation (A1) shows that the aggregate real interest rate r̄ (t, hN) =
∫ hN
0

r(t + v)dv

and the aggregate consumption inflation rate π̄ (t, hN) =
∫ hN
0

π(t + v)dv play a key role

in determining the real nominal bond price. We find that the aggregate real interest rate
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r̄ (t, hN) is given by

r̄ (t, hN) =

∫ hN

0

r(t+ v)dv

=

∫ hN

0

(
e−κrvr(t) +

(
1− e−κrv

)
r̄
)

dv + σr

∫ hN

0

∫ v

0

e−κr(v−u)dZr(t+ u)dv

=

∫ hN

0

(
r(t) +

(
1− e−κrv

)
(r̄ − r(t))

)
dv+

σr

∫ hN

0

∫ hN

v

e−κr(hN−u)dudZr(t+ v)

=

∫ hN

0

(r(t) + κrBr(v) (r̄ − r(t))) dv

+ σr

∫ hN

0

1

κr

(
1− e−κr(hN−v)

)
dZr(t+ v)

=

∫ hN

0

Et [r(t+ v)] dv + σr

∫ hN

0

Br(hN − v)dZr(t+ v).

(A2)

The second equality in (A2) follows from the fact that

r(t+ v) = e−κrvr(t) +
(
1− e−κrv

)
r̄ + σr

∫ v

0

e−κr(v−u)dZr(t+ u)

= Et [r(t+ v)] + σr

∫ v

0

e−κr(v−u)dZr(t+ u).

(A3)

We can derive (A3) by repeated substitution. In a similar fashion, we find

π̄ (t, hN) =

∫ hN

0

Et [π(t+ v)] dv + σπ

∫ hN

0

Bπ(hN − v)dZπ(t+ v). (A4)

Substituting (A2) and (A4) into (A1) to eliminate
∫ hN
0

r(t+ v)dv and
∫ hN
0

π(t+ v)dv, we
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arrive at

Π(t)PN (t, hN) = exp

{
−
∫ hN

0

(
Et [r(t+ v) + π(t+ v)] +

1

2
φ>ρφ

)
dv

}
Et
[
exp

{∫ hN

0

(φr −Br(hN − v)σr) dZr(t+ v)

+

∫ hN

0

(φπ −Bπ(hN − v)σπ) dZπ(t+ v)

+

∫ hN

0

φSdZS(t+ v) +

∫ hN

0

φhdZh(t+ v)

}]
= exp

{
−
∫ hN

0

(
Et [r(t+ v) + π(t+ v)]− λrσrBr(v)− λπσπBπ(v)

−1

2
B2
r (v)σ2

r −
1

2
B2
π(v)σ2

π − ρrπBr(v)Bπ(v)σrσπ

)
dv

}
= exp

{
−
∫ hN

0

R(t, v)dv

}
.

(A5)

Here, the instantaneous nominal forward interest rate at adult age t for horizon v, i.e.,

R(t, v), is defined as follows:

R(t, v) = Et [r(t+ v) + π(t+ v)]− λrσrBr(v)− λπσπBπ(v)

− 1

2
B2
r (v)σ2

r −
1

2
B2
π(v)σ2

π − ρrπBr(v)Bπ(v)σrσπ.
(A6)

The log real nominal bond price is given by (this follows from (A5) and (A6))

logPN (t, hN) = −
∫ hN

0

(
r(t) + κrBr(v) (r̄ − r(t)) + π(t) + κπBπ(v) (π̄ − π(t))

− λrσrBr(v)− λπσπBπ(v)− 1

2
B2
r (v)σ2

r −
1

2
B2
π(v)σ2

π

− ρrπBr(v)Bπ(v)σrσπ

)
dv − log Π(t).

(A7)
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Solving the integral (A7), we arrive at10

logPN (t, hN) = −r(t)hN − (r̄ − r(t)) (hN −Br(hN))

− π(t)hN − (π̄ − π(t)) (hN −Bπ(hN))

+
λrσr
κr

(hN −Br(hN)) +
λπσπ
κπ

(hN −Bπ(hN))

+
1

2

σ2
r

κ2r

(
hN − 2Br(hN) +

1

2
Br(2hN)

)
+

1

2

σ2
π

κ2π

(
hN − 2Bπ(hN) +

1

2
Bπ(2hN)

)
− log Π(t)

+
ρrπσrσπ
κrκπ

(
hN −Br(hN)−Bπ(hN) +

1− e−(κr+κπ)hN
κr + κπ

)
= −r(t)Br(hN)− π(t)Bπ(hN)− kN (hN)− log Π(t).

(A8)

Here, kN (hN) is defined as follows:

kN (hN) =

(
r̄ − λrσr

κr
− 1

2

σ2
r

κ2r

)
(hN −Br(hN)) +

1

4κr
B2
r (hN)σ2

r

+

(
π̄ − λπσπ

κπ
− 1

2

σ2
π

κ2π

)
(hN −Bπ(hN)) +

1

4κπ
B2
π(hN)σ2

π

+
ρrπσrσπ
κrκπ

(
hN −Br(hN)−Bπ(hN) +

1− e−(κr+κπ)hN
κr + κπ

)
.

(A9)

To calculate how the real price of a nominal bond with a fixed maturity date t + hN

develops as time proceeds (i.e., t+ hN is fixed but t changes), we apply Itô’s lemma to

PN (t, hN) =
1

Π(t)
exp {−r(t)Br(hN)− π(t)Bπ(hN)− kN(hN)} . (A10)

10The first equality follows from B2
r (v) =

(
1− 2e−κrv + e−2κrv

)
/κ2r and the second equality follows

from B2
r (h) = (2Br(h)−Br(2h)) /κr.
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We find

dPN (t, hN)

PN (t, hN)
=
(
R(t, hN)− κrBr(hN) (r̄ − r(t))− κπBπ(hN) (π̄ − π(t))

+
1

2
B2
r (hN)σ2

r +
1

2
B2
π(hN)σ2

π + ρrπBr(hN)Bπ(hN)σrσπ

)
dt

−Br(hN)σrdZr(t)−Bπ(hN)σπdZπ(t)− π(t)dt

= (r(t)− λrσrBr(hN)− λπσπBπ(hN)) dt

−Br(hN)σrdZr(t)−Bπ(hN)σπdZπ(t).

(A11)

A.1.2 Inflation-linked Bond Price Dynamics

We can obtain the real inflation-linked bond price PI (t, hI) by computing the following

conditional expectation:

PI (t, hI) = Et
[
m (t+ hI)

m (t)

]
= Et

[
exp

{
−
∫ hI

0

(
r(t+ v) +

1

2
φ>ρφ

)
dv + φ>

∫ hI

0

dZ(t+ v)

}]
.

(A12)

Here, Et [·] denotes the expectation conditional upon the information available at time t.

Using (A2) and (A3), we find

logPI (t, hI) = −
∫ hI

0

(
r(t) + κBr(v) (r̄ − r(t))− λrσrBr(v)− 1

2
B2
r (v)σ2

r

)
dv. (A13)

Solving the integral (A13), we arrive at

logPI (t, hI) = −r(t)hI − (r̄ − r(t)) (hI −Br(hI)) +
λrσr
κr

(hI −Br(hI))

+
1

2

σ2
r

κ2r

(
hI − 2Br(hI) +

1

2
Br(2hI)

)
= −r(t)Br(hI)− kI (hI) .

(A14)

Here, kI (hI) is defined as follows:

kI (hI) =

(
r̄ − λrσr

κr
− 1

2

σ2
r

κ2r

)
(hI −Br(hI)) +

1

4κr
B2
r (hI)σ

2
r . (A15)

To calculate how the real price of an inflation-linked bond with a fixed maturity date
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t+hI develops as time proceeds (i.e., t+hI is fixed but t changes), we apply Itô’s lemma

to

PI (t, hI) = exp {−r(t)Br(hI)− kI(hI)} . (A16)

We find

dPI (t, hI)

PI (t, hI)
= (r(t)− λrσrBr(hI)) dt−Br(hI)σrdZr(t). (A17)

A.2 Dynamics of Value of Housing Portfolio

The real price of one unit of housing (a square foot), i.e., Ph(t), is equal to the expected

discounted value of all future rents. Hence,

Ph(t) = Et
[∫ ∞

t

e−δh(s−t)
m (s)

Π (s)

Π (t)

m (t)

Πh(s)

Π(t)
ds

]
= Π̃h(t)Et

[∫ ∞
t

e−δh(s−t)
Π̃h(s)

Π̃h(t)

m(s)

m(t)
ds

]

= Π̃h(t)Et
[∫ ∞

0

e−δhh exp

{
−
∫ h

0

(
r(t+ v)− π̃h(t+ v) +

1

2
φ>ρφ

)
dv

+φ>
∫ h

0

dZ(t+ v)

}
dh

]
.

(A18)

Here, Et [·] denotes the expectation conditional upon the information available at time t,

Π̃h(t) = Πh(t)/Π(t), δh models the depreciation of the house, and π̃h(t) = πh(t)− π(t).

Equation (A18) shows that
∫ h
0
r(t + v)dv and

∫ h
0
π̃(t + v)dv play a key role in

determining the real house price. We find that (compare with (A2))∫ h

0

r(t+ v)dv =

∫ h

0

Et [r(t+ v)] dv + σr

∫ h

0

Br(h− v)dZr(t+ v), (A19)∫ h

0

π̃h(t+ v)dv =

∫ h

0

Et [π̃h(t+ v)] dv + σh

∫ h

0

Bh(h− v)dZh(t+ v). (A20)

Substituting (A19) and (A20) into (A18) to eliminate
∫ h
0
r(t+ v)dv and

∫ h
0
π̃h(t+ v)dv,
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we arrive at

Ph(t)

Π̃h(t)
=

∫ ∞
0

e−δhh exp

{
−
∫ h

0

(
Et [r(t+ v)− π̃h(t+ v)] +

1

2
φ>ρφ

)
dv

}
Et
[
exp

{∫ h

0

(φr −Br(h− v)σr) dZr(t+ v)

+

∫ h

0

(φh +Bh(h− v)σh) dZh(t+ v)

+

∫ h

0

φπdZπ(t+ v) +

∫ h

0

φSdZS(t+ v)

}]
dh

=

∫ ∞
0

e−δhh exp

{
−
∫ h

0

(
Et [r(t+ v)− π̃h(t+ v)]

−λrσrBr(v) + λhσhBh(v)

−1

2
B2
r (v)σ2

r −
1

2
B2
h(v)σ2

h + ρrhBr(v)Bh(v)σrσh

)
dv

}
dh

=

∫ ∞
0

e−δhh exp

{
−
∫ h

0

Rh(t, v)dv

}
dh.

(A21)

Here, Rh(t, v) is defined as follows:

Rh(t, v) = Et [r(t+ v)− π̃h(t+ v)]− λrσrBr(v) + λhσhBh(v)

− 1

2
B2
r (v)σ2

r −
1

2
B2
h(v)σ2

h + ρrhBr(v)Bh(v)σrσh.
(A22)

Define

Ph(t, h) = exp

{
−
∫ h

0

Rh(t, v)dv

}
. (A23)

We find (this follows from (A22) and (A23))

logPh(t, h) = −
∫ h

0

(
r(t) + κrBr(v) (r̄ − r(t))− π̃h(t) + κhBh(v)π̃h(t)

− λrσrBr(v) + λhσhBh(v)− 1

2
B2
r (v)σ2

r −
1

2
B2
h(v)σ2

h

+ ρrhBr(v)Bh(v)σrσh

)
dv.

(A24)
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Solving the integral (A24), we arrive at

logPh(t, h) = −r(t)h− (r̄ − r(t)) (h−Br(h))

+ π̃h(t)h− π̃h(t) (h−Bh(h))

+
λrσr
κr

(h−Br(h))− λhσh
κh

(h−Bh(h))

+
1

2

σ2
r

κ2r

(
h− 2Br(h) +

1

2
Br(2h)

)
+

1

2

σ2
h

κ2h

(
h− 2Bh(h) +

1

2
Bh(2h)

)
− ρrhσrσh

κrκh

(
h−Br(h)−Bh(h) +

1− e−(κr+κh)h

κr + κh

)
= −r(t)Br(h) + π̃h(t)Bh(h)− kh (h) .

(A25)

Here, kh (h) is defined as follows:

kh (h) =

(
r̄ − λrσr

κr
− 1

2

σ2
r

κ2r

)
(h−Br(h)) +

1

4κr
B2
r (h)σ2

r

+

(
λhσh
κh
− 1

2

σ2
h

κ2h

)
(h−Bh(h)) +

1

4κh
B2
h(h)σ2

h

+
ρrhσrσh
κrκh

(
h−Br(h)−Bh(h) +

1− e−(κr+κh)h

κr + κh

)
.

(A26)

To calculate how Ph(t, h) develops as time proceeds (i.e., t+h is fixed but t changes), we

apply Itô’s lemma to

Ph(t, h) = exp {−r(t)Br(h) + π̃h(t)Bh(h)− kh(h)} . (A27)

We find

dPh(t, h)

Ph(t, h)
=
(
Rh(t, h)− κrBr(h) (r̄ − r(t))− κhBh(h)π̃h(t)

+
1

2
B2
r (h)σ2

r +
1

2
B2
h(h)σ2

h − ρrhBr(h)Bh(h)σrσh

)
dt

−Br(h)σrdZr(t) +Bh(h)σhdZh(t)

= (r(t)− π̃h(t)− λrσrBr(h) + λhσhBh(h)) dt

−Br(h)σrdZr(t) +Bh(h)σhdZh(t).

(A28)
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To calculate how the real house price Ph(t) develops as time proceeds, we apply Itô’s

lemma to

Ph(t) = Π̃h(t)

∫ ∞
0

e−δhhPh(t, h)dh. (A29)

We find

dPh(t)

Ph(t)
=
∂Ph(t)

∂t

1

Ph(t)
dt+ Π̃h(t)

∫ ∞
0

e−δhh
dPh(t, h)

Ph(t, h)

Ph(t, h)

Ph(t)
dh+

dΠ̃h(t)

Π̃h(t)

= −Π̃h(t)

Ph(t)
dt+

(
r(t)− λrσrB̂r(t) + λhσhB̂h(t)

)
dt

− B̂r(t)σrdZr(t) + B̂h(t)σhdZh(t),

(A30)

with

B̂r(t) =
Π̃h(t)

∫∞
0
e−δhhBr(h)Ph(t, h)dh

Ph(t)
, (A31)

B̂h(t) =
Π̃h(t)

∫∞
0
e−δhhBh(h)Ph(t, h)dh

Ph(t)
. (A32)

Denote by Wh(t) the real value at adult age t of an account that invests in housing only.

The real return on the housing portfolio consists of two parts: incoming rents and capital

gains/losses. Hence,

dWh(t)

Wh(t)
= Π̃h(t)

1

Ph(t)
dt+

dPh(t)

Ph(t)
. (A33)

The first on the right-hand side of (A33) denotes the real return from rents, while the

second term on the right-hand side of (A33) denotes the real return from capital

gains/losses. Using (A30), we arrive at

dWh(t)

Wh(t)
=
(
r(t)− λrσrB̂r(t) + λhσhB̂h(t)

)
dt− B̂r(t)σrdZr(t)+ B̂h(t)σhdZh(t). (A34)

A.3 Derivation of Optimal Life-cycle Policies

This appendix derives the optimal life-cycle policies. We assume that the economy

consists of four state variables: the real interest rate r(t) (with dynamics (2.3)), the

consumption inflation rate π(t) (with dynamics (2.4)), the real stock price S(t) (with
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dynamics (2.2)), and the rent inflation rate πh(t) (with dynamics (2.5)). We assume

that the investor has the opportunity to invest in four risky assets: a nominal bond

with fixed time to maturity hN , an inflation-linked bond with fixed time to maturity hI ,

a risky stock, and a housing portfolio. The dynamics of the bond prices and the housing

portfolio are derived in Appendices A.1 and A.2, respectively.

We start by deriving optimal real housing services h∗(t) and optimal real consumption

c∗(t). We can, by virtue of the martingale approach (Pliska (1986), Karatzas, Lehoczky,

and Shreve (1987), and Cox and Huang (1989, 1991)), transform the individual’s dynamic

maximization problem (2.22) into the following equivalent static variational problem:

max
h(t),c(t)

E
[∫ T

0

e−δt
1

1− γ
(
h(t)ϕc(t)1−ϕ

)1−γ
dt

]
s.t. E

[∫ T

0

(
m(t)Π̃h(t)h(t) +m(t)c(t)

)
dt

]
≤ W (0).

(A35)

Denote by L the Lagrangian which is given by

L = E
[∫ T

0

e−δt
1

1− γ
(
h(t)ϕc(t)1−ϕ

)1−γ
dt

]
+ y

(
W (0)− E

[∫ T

0

(
m(t)Π̃h(t)h(t) +m(t)c(t)

)
dt

])
.

(A36)

Here, y ≥ 0 denotes the Lagrange multiplier associated with the static budget constraint.

We find the following first-order optimality conditions:

e−δt
(
h∗(t)ϕc∗(t)1−ϕ

)−γ
ϕh∗(t)ϕ−1c∗(t)1−ϕ = ym(t)Π̃h(t), (A37)

e−δt
(
h∗(t)ϕc∗(t)1−ϕ

)−γ
(1− ϕ)c∗(t)−ϕh∗(t)ϕ = ym(t). (A38)

After solving the first-order optimality conditions, we obtain the following optimal real

housing services h∗(t) and optimal real consumption c∗(t):

h∗(t) = h∗(0)e−
δt
γ m(t)−

1
γ Π̃h(t)

− (1−ϕ)γ+ϕ
γ , (A39)

c∗(t) =
1− ϕ
ϕ

h∗(t)Π̃h(t). (A40)

Here, h∗(0) is determined such that the static budget constraint holds with equality.

A standard verification that the optimal solution to the Lagrangian equals the optimal

solution to the investor’s maximization problem (2.22) (see, e.g., Karatzas and Shreve
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(1998)) completes the proof.

Denote by V ∗(t) the market-consistent value at adult age t of current and future

optimal real housing services and optimal real consumption. We define V ∗(t) as follows

(the second equality follows from (A40)):

V ∗(t) =

∫ T−t

0

Et
[
m(t+ h)

m(t)
h∗(t+ h)Π̃h(t+ h) +

m(t+ h)

m(t)
c∗(t+ h)

]
dh

=
1

ϕ
h∗(t)Π̃h(t)

∫ T−t

0

Et

[
m(t+ h)

m(t)

h∗(t+ h)Π̃h(t+ h)

h∗(t)Π̃h(t)

]
dh

=
1

ϕ
h∗(t)Π̃h(t)A

∗(t),

(A41)

where A∗(t) denotes the optimal annuity factor at adult age t:

A∗(t) =

∫ T−t

0

Et

[
m(t+ h)

m(t)

h∗(t+ h)Π̃h(t+ h)

h∗(t)Π̃h(t)

]
dh =

∫ T−t

0

exp {−d∗(t, h)h} dh. (A42)

Here, d∗(t, h) represents the market-consistent discount rate at adult age t for horizon

h ≥ 0. Straightforward computations show that

d∗(t, h) =
1

h

[(
1− 1

γ

)∫ h

0

(
r(t) + κrBr(v) [r̄ − r(t)] +

1

2
φ>ρφ

)
dv

+ϕ

(
1− 1

γ

)∫ h

0

(π(t)− πh(t) + κhBh(v) [πh(t)− π(t)]) dv

+
δ

γ
h− 1

2

∫ h

0

ν(v)>ρν(v) dv

]
,

(A43)

where ν(v) =
(

1− 1
γ

)
(φr −Br(v)σr, φπ, φS, φh + ϕBh(v)σh). It follows that log V ∗(t)

evolves according to (this follows from (A39), (A42) and (A43))

d log V ∗(t) = d log h∗(t) + d log Π̃h(t) + d logA∗(t)

= (. . .) dt−
(

1

γ
φr +

(
1− 1

γ

)
B̃r(t)σr

)
dZr(t)−

1

γ
φπ dZπ(t)

− 1

γ
φS dZS(t)−

(
1

γ
φh − ϕ

(
1− 1

γ

)
B̃h(t)σh

)
dZh(t).

(A44)

Here,
(

1− 1
γ

)
B̃r(t) and ϕ

(
1− 1

γ

)
B̃h(t) represent the sensitivity of the annuity factor

to unexpected changes in the real interest rate r(t) and unexpected changes in the real
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rent inflation rate πh(t)− π(t), respectively. We define

B̃r(t) =

∫ T−t

0

V ∗(t, h)

V ∗(t)
Br(h) dh, (A45)

B̃h(t) =

∫ T−t

0

V ∗(t, h)

V ∗(t)
Bh(h) dh, (A46)

where V ∗(t, h) = h∗(t)Π̃h(t) exp {−d∗(t, h)h} /ϕ.

Log real total wealth evolves according to:

d logW (t) = (. . .) dt−
[
ωN(t)Br (hN) + ωI(t)Br (hI) + ωh(t)B̂r (t)

]
σrdZr(t)

− ωN(t)Bπ (hN)σπdZπ(t) + ωS(t)σSdZS(t) + ωh(t)B̂h (t)σhdZh(t).
(A47)

Comparing (A47) with (A44), we find

ω∗N(t) =
1

γ

φπ
Bπ (hN)σπ

, (A48)

ω∗I (t) =
1

γ

φr
Br (hI)σr

+

(
1− 1

γ

)
B̃r(t)

Br (hI)
− ω∗N(t)

Br(hN)

Br(hI)
− ω∗h(t)

B̂r(t)

Br(hI)
, (A49)

ω∗S(t) = −1

γ

φS
σS
, (A50)

ω∗h(t) = −1

γ

φh

B̂h (t)σh
+ ϕ

(
1− 1

γ

)
B̃h (t)

B̂h (t)
. (A51)

A.4 Impact of Human Wealth on Optimal Portfolio Weights

This appendix explores the impact of human wealth on the optimal portfolio weights.

We assume the same setting as in Appendix A.3. We define human wealth as follows:

H(t) =

∫ T−t

0

H(t, h) dh, (A52)

where

H(t, h) = Et
[
m(t+ h)

m(t)
O(t+ h)

]
(A53)

with O(t + h) outside income at adult age t + h (in real consumption units), which we

assume to be risk-free in real terms.
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Straightforward computations show

dH(t) =
(
r(t)− λrσrBH

r (t)
)
H(t) dt−BH

r (t)σrH(t) dZr(t)−O(t) dt, (A54)

where

BH
r (t) =

∫ T−t

0

H(t, h)

H(t)
Br(h) dh (A55)

denotes the duration of human wealth.

Real financial wealth F (t) evolves according to:

dF (t) = (. . .) dt−
[
ω̃N(t)Br (hN) + ω̃I(t)Br (hI) + ω̃h(t)B̂r (t)

]
σrF (t)dZr(t)

− ω̃N(t)Bπ (hN)σπF (t)dZπ(t) + ω̃S(t)σSF (t)dZS(t)

+ ω̃h(t)B̂h (t)σhF (t)dZh(t).

(A56)

Hence, total real wealth W (t) = F (t) +H(t) satisfies

dW (t) = dF (t) + dH(t)

= (. . .) dt−
[
ω̃N(t)Br (hN) + ω̃I(t)Br (hI) + ω̃h(t)B̂r (t)

]
σrF (t)dZr(t)

− ω̃N(t)Bπ (hN)σπF (t)dZπ(t) + ω̃S(t)σSF (t)dZS(t)

+ ω̃h(t)B̂h (t) σ̃hF (t)dZh(t)−DH(t)σrH(t)dZr(t).

(A57)

Comparing (2.19) with (A57), we arrive at the optimal shares of financial wealth invested

in the risky assets.
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