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1 Introduction

The question of how to optimally save and invest total wealth over the life-cycle has

been extensively studied in different contexts since the seminal works of Merton (1969)

and Samuelson (1969). Human wealth constitutes the largest part of total wealth. For

example, Lustig, van Nieuwerburgh, and Verdelhan (2013) estimate that for the average

US household, human wealth is 90% of total wealth; see also Mayers (1972) and

Jorgenson and Fraumeni (1989). Furthermore, labor income is not risk-less as has been

vividly demonstrated by the recent COVID-19 crisis.1 Hence, it is of great importance

to understand how risky human wealth affects optimal savings and portfolio decisions.

This paper extends the literature by analyzing this question for an individual with

reference-dependent preferences.

Bodie, Merton, and Samuelson (1992) show that in a setting where labor income is

risk-less and CRRA preferences apply, the optimal share of pension wealth invested in

the risky stock decreases, on average, with age. Intuitively, bond-like human wealth

diversifies stock return risk. Hence, early in life, when human wealth is large, the

individual can afford to take more stock return risk. A number of authors (see, e.g.,

Viceira (2001), Cocco, Gomes, and Maenhout (2005) and Benzoni, Collin-Dufresne, and

Goldstein (2007)) explore the role of non-tradable risky labor income for optimal

behavior. They find that non-tradable risky labor income may provide an explanation

for the hump-shaped equity allocation over the life-cycle as commonly observed in

empirical studies (see, e.g., Ameriks and Zeldes (2004)). These authors derive optimal

policies assuming standard preferences such as CRRA utility or Epstein-Zin utility.

Furthermore, they mainly focus on implications for optimal investment behavior and, to

a lesser extent, on implications for optimal savings behavior.

The experimental and empirical literature has shown substantial deviations from

standard preferences. One prominent finding is that people tend to evaluate outcomes

relative to a reference level; see the classical works of Kahneman and Tversky (1979)

and Tversky and Kahneman (1992). Several papers explore the savings and investment

implications of reference-dependent preferences.2 Most of these authors consider a

setting where the individual faces stock return risk but does not earn labor income. But

1The unemployment rate in the US increased from 3.5% in February 2020 to 14.7% in April 2020. In
August 2021, the unemployment rate was 5.2%, which is still considerably higher than in the three years
prior to the COVID-19 crisis.

2See, e.g., Berkelaar, Kouwenberg, and Post (2004), Gomes (2005), Jin and Zhou (2008), He and Zhou
(2011), He and Zhou (2016), Curatola (2017), Guasoni, Huberman, and Ren (2020), and Van Bilsen,
Laeven, and Nijman (2020).
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how does uncertainty in labor income affect the individual’s optimal savings and

portfolio behavior? To the best of our knowledge, we are the first to explore the joint

impact of reference-dependent preferences and non-tradable risky labor income on

optimal savings and portfolio decisions.

We assume that the individual derives utility from the difference between consumption

and a reference level. Furthermore, the individual’s reference level may depend on own

past consumption choices, own past labor income and the past consumption choices of

the individual’s neighbors. As our model involves market incompleteness and behavioral

preferences, we cannot use standard solution methods. Therefore, we develop a non-

trivial solution technique to determine the optimal policies and the shadow price of labor

income risk. Our solution technique is inspired by the works of He and Pearson (1991),

Schroder and Skiadas (2002), and Van Bilsen et al. (2020). We can even apply our

solution technique in a setting where the individual is loss-averse.

Our three main findings are as follows. First, we find that the impact of a current

permanent labor income shock on both the current optimal savings rate and the current

optimal portfolio share is more pronounced under reference-dependent preferences than

under CRRA preferences. The excess sensitivity, i.e., over-responsiveness, of the current

optimal savings rate is due to a strong preference for consumption smoothing and the

endogeneity of the reference level. An implication of the preference for consumption

smoothing is that a permanent labor income shock affects consumption not only during

the working phase but also during the retirement phase. Hence, after a permanent drop

in labor income, the individual decreases the optimal savings rate, so that less pension

wealth is available for retirement consumption.3 An implication of the endogeneity of

the reference level is that the individual has a strong preference to protect current

consumption. As a result, the individual absorbs a permanent drop in current labor

income by reducing the current optimal savings rate.

We even find that in a wide range of economic scenarios, the individual does not save

at all and withdraws pension wealth already before retirement. Thus, an institutional

setting in which individuals cannot easily unlock pension wealth before retirement can

be quite costly in welfare terms. For example, in the US, an individual cannot easily

withdraw pension wealth from her 401(k) plan or IRA before age 60, while after losing

3We note that a permanent drop in labor income has two counteracting effects on human wealth: a
direct effect and an indirect effect. It impacts human wealth directly through a decrease in permanent
labor income and indirectly through a decrease in the shadow price of labor income risk. For our
parameter values, we find that the net effect is that human wealth decreases following a permanent drop
in labor income.
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her job, it might be optimal to do so. We find that the welfare loss associated with CRRA

preferences in which the savings rate is not excessively sensitive can be as large as 30%.

We can explain the excess sensitivity of the current optimal portfolio share by a time-

varying relative risk aversion. After a permanent drop in labor income, the individual

reduces the optimal portfolio share not only because her human wealth decreases – which

implies less diversification of stock return risk – but also because she becomes more risk

averse. Indeed, a drop in income makes her worried whether she will have sufficient

pension wealth to finance future reference levels. Hence, her optimal response is to move

investments away from risky stocks towards risk-less assets.

Our second main finding is that the optimal response of the current savings rate

and the current portfolio share to a permanent labor income shock varies heavily with

the ratio of consumption to the reference level. In case the ratio of consumption to

the reference level is low, which often applies to low income individuals, the individual

drastically reduces the optimal savings rate and the optimal portfolio share following a

permanent drop in labor income. Intuitively, as consumption is close to the reference

level, the individual has a strong preference to protect current consumption. Hence, the

individual limits the impact of a permanent drop in labor income on consumption by

reducing the optimal savings rate and by investing less in the risky stock. We note that

under CRRA preferences, the optimal response of the current savings rate and the current

portfolio share do not directly depend on the ratio between the individual’s consumption

level and the individual’s reference level.

Our third main finding is that the optimal policies are more conservative compared to

the case with risk-less labor income and CRRA preferences. Both non-tradable risky labor

income and reference-dependent preferences affect the optimal portfolio share. Consistent

with existing literature (see, e.g., Viceira (2001)), non-tradable risky labor income causes

the optimal share of pension wealth invested in the risky stock to decrease. An endogenous

reference level has two additional counteracting effects on the optimal portfolio share. On

the one hand, the endogeneity of the reference level leads to a riskier investment strategy.

Indeed, since a drop in labor income affects not only consumption levels but also reference

levels, the impact of a labor income shock on utility – which depends on the difference

between a consumption level and a reference level – is limited. This fact allows the

individual to take more investment risk. On the other hand, the individual needs to

reserve a substantial part of her pension wealth to make sure that future consumption

levels exceed future reference levels with high probability. For a typical range of parameter

values, we find that the net effect is that reference dependence leads to a reduction in the
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optimal share of pension wealth invested in the risky stock. As a result of the conservative

optimal portfolio strategy, the optimal consumption level is typically lower as compared

to standard CRRA preferences with risk-less labor income. Indeed, the individual benefits

less from the expected excess return on the risky stock.

We also test the excess sensitivity of the current optimal savings rate and the

heterogeneous response of optimal savings rate using monthly data on total

expenditures and incomes.4 Our dataset provides support for these two main

implications. In particular, we find that the optimal savings rate of a low-income

individual exhibits a higher degree of excess sensitivity than the optimal savings rate of

a high-income individual.

Finally, we explore our main findings for the case in which labor income shocks are

less permanent. We develop a continuous-time labor income process with non-permanent

labor income shocks. We find that both the optimal savings rate and the optimal portfolio

share remain excessively sensitive. What is new is that the optimal savings rate rapidly

converges back to the savings rate before the labor income shock. This result is due to the

gradual absorption of shocks and the temporary nature of income shocks. Indeed, after

some time, income is restored to its old level, while optimal consumption is relatively low.

A similar response applies, more or less, to the optimal portfolio share. The portfolio

share converges to its old level after some time. Indeed, once the income shock is over,

the individual becomes less risk averse and can afford to take more investment risk.

The remainder of the paper is structured as follows. Section 2 introduces the model

specification. In Section 3, we present the non-trivial solution technique and the optimal

policies. The main implications are discussed in Section 4. This section also relates our

findings to empirical analysis. Section 5 explores whether our main findings remain valid

in case labor income shocks are less permanent. Finally, Section 6 concludes the paper.

2 Model

This section presents our continuous-time model. Denote by t adult age, which

corresponds to the individual’s age minus the age at which the individual starts

working. For sake of simplicity, we assume that the individual retires at the

(non-random) adult age TR > 0 and dies at the (non-random) adult age TD > 0.

4It is beyond the scope of this paper to test all model implications.
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2.1 Preferences

Denote by c(t) and h(t) the individual’s consumption choice and the individual’s

endogenous reference level at adult age t, respectively. The individual derives utility

from the difference between consumption and a reference level. Hence, expected lifetime

utility is given by

U = E0

[∫ TD

0

e−δtu (c(t)− h(t)) dt

]
, (2.1)

where E0 [·] represents the expectation conditional upon information available at time 0,

δ ≥ 0 denotes the subjective rate of time preference, and u (·) represents the instantaneous

utility function satisfying the usual conditions. We give an example specification of u (·)
in Section 4.

We assume that the reference level satisfies the dynamics:

dh(t) = (βc(t)− α(t)h(t)) dt. (2.2)

We allow the depreciation parameter α(t) to be a deterministic function of adult age t,

so that, for example, the rate of depreciation during the working phase can differ from

the rate of depreciation during the retirement phase. The preference parameter β ≥ 0

models the impact of current consumption c(t) on the individual’s current reference level

h(t). Our reference level specification (2.2) is in line with the specification considered

by, e.g., Constantinides (1990), Detemple and Zapatero (1991), Gomes and Michaelides

(2003), Munk (2008), and Van Bilsen et al. (2020).

Finally, in the appendix we consider an even more general reference level specification

that depends not only on own past consumption but also on individual past labor income

and on past consumption of the individual’s neighbors. A reference level specification in

which the reference level depends on other people’s consumption captures the idea that

the individual wants to catch up with the Joneses; see, e.g., Abel (1990), Campbell and

Cochrane (1999), and Chen (2017).

2.2 State Variables and Financial Market

We consider an economy with two state variables: non-tradable risky labor income Y (t)

and the stock price S(t). We assume that the dynamics of individual labor income are

driven by a single standard Brownian motion ZY (t). In Section 4, we give an example
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specification of the dynamics for Y (t).5

We assume that the individual can invest her pension (or financial) wealth F (t) into

two assets: a risky stock and a risk-less asset. We assume the following dynamics for the

stock price S(t) and the price of the risk-less asset B(t):

dS(t) = (r + λSσS)S(t)dt+ σSS(t)dZS(t), (2.3)

dB(t) = rB(t)dt. (2.4)

Here, λS ∈ R denotes the market price of stock return risk, σS > 0 models the stock

return volatility, ZS(t) is a standard Brownian motion, and r ∈ R denotes the risk-less

interest rate. We allow the Brownian increments dZS(t) and dZY (t) to be correlated, and

denote the correlation coefficient between dZS(t) and dZY (t) by ρSY ∈ [−1,+1].

2.3 Dynamic Budget Constraint

Let us denote by ω(t) the share of pension wealth F (t) invested in the risky stock at

adult age t. The individual’s dynamic budget constraint is now given by

dF (t) = (r + ω(t)λSσS)F (t)dt+ ω(t)σSF (t)dZS(t) + (Y (t)− c(t))dt. (2.5)

We observe from (2.5) that pension wealth grows because of two reasons: investment

results (see the first two terms on the right-hand side of (2.5)) and new savings Y (t)−c(t).

2.4 Dynamic Maximization Problem

The individual faces the following dynamic maximization problem:

max
c(t),ω(t)

E0

[∫ TD

0

e−δtu (c(t)− h(t)) dt

]
s.t.

dh(t) = (βc(t)− α(t)h(t)) dt

dF (t) = (r + ω(t)λSσS)F (t)dt+ ω(t)σSF (t)dZS(t) + (Y (t)− c(t))dt.

(2.6)

5We note that if t ≥ TR, then Y (t) represents the social security payment from the government at
adult age t. We assume that the size of the social security payment is determined at the retirement age
TR and is a function of the history of individual labor income Y (s), s ∈ [0, TR]. In what follows, we refer
to Y (t) simply as individual labor income at t.
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To solve (2.6), we need to define the stochastic discount factor m(t). We can show that

m(t) satisfies the following dynamics (see, e.g., He and Pearson (1991)):

dm(t) = −rm(t)dt+ φ>(t)m(t)dZ(t). (2.7)

Here, > denotes the transpose sign, Z(t) ≡ (ZS(t), ZY (t)), and φ(t) is a vector of factor

loadings. We can determine φ(t) from the vector of prices of risk λ(t) ≡ (λS, λY (t)) where

λY (t) denotes the shadow price of labor income risk. We have the following relationship:

φ(t) = −

[
1 ρSY

ρSY 1

]−1

λ(t). (2.8)

By the principle of no arbitrage, λS = (µS − r) /σS. However, as labor income risk is

non-tradable, every value of λY (t) is consistent with the principle of no arbitrage. Section

3 explains how we endogenously determine λY (t).

3 Optimal Life-Cycle Policies

The financial market as defined in Section 2.2 is incomplete, because the number of

risk sources (i.e., stock return risk and labor income risk) is larger than the number

of risky assets (i.e., stock). He and Pearson (1991) show how to determine the optimal

consumption and portfolio policies in an incomplete financial market using the martingale

method. The idea is as follows. First, given the shadow price of labor income risk λY (t),

we determine the optimal consumption policy by transforming the individual’s dynamic

maximization problem (2.6) into a dual maximization problem; see Section 3.1 for more

details. Then, we endogenously determine ω(t) and λY (t) such that changes in tradable

total wealth match changes in the value of future optimal consumption. Hence, λY (t) is

chosen such that the individual does not want to hedge non-tradable uncertainty (i.e., the

individual’s demand for consumption plans that are not marketed is zero). Let us denote

the optimal portfolio strategy by ω∗(t) and the optimal shadow price of labor income risk

by λ∗Y (t). Next, we substitute the just found λ∗Y (t) in the optimal consumption policy.

For more details, we refer the reader to Appendices A, B and C.
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3.1 A Dual Maximization Problem

As indicated at the beginning of this section, we first need to determine the optimal

consumption policy under the assumption that the value of the shadow price of labor

income risk λY (t) is known. However, even if we assume the value of λY (t) to be known,

the individual’s dynamic maximization problem (2.6) is difficult to solve. Appendix A

shows that (2.6) is equivalent to a dual maximization problem which is easier to solve.

Denote by ĉ(t) ≡ c(t)−h(t) the individual’s dual consumption choice at adult age t. The

dual problem is now defined as follows:

max
ĉ(t)

E0

[∫ TD

0

e−δtu (ĉ(t)) dt

]
s.t. E0

[∫ TD

0

m̂(t)

m̂(0)
ĉ(t)dt

]
≤ F (0)− f(0)h(0)

1 + βf(0)
+ E0

[∫ TD

0

m̂(t)

m̂(0)
Ŷ (t)dt

]
,

(3.1)

where m̂(t) ≡ m(t) (1 + βf(t)) and

Ŷ (t) ≡ Y (t)

1 + βf(t)
(3.2)

are the dual stochastic discount factor and dual individual labor income at adult age t,

respectively. Here, f(t) is defined as follows:

f(t) ≡ Et
[∫ TD

t

m(s)

m(t)
e−

∫ s
t (α(u)−β)duds

]
. (3.3)

We observe that a solution exists if and only if the right-hand side of the static budget

constraint in (3.1) is larger than zero. By substituting the expressions of m̂(t) and Ŷ (t)

into the static budget constraint, we find that a solution exists if and only if

F (0) +H(0) ≥ f(0)h(0), (3.4)

with

H(t) ≡ Y (t)Et
[∫ TD

t

m(s)

m(t)

Y (s)

Y (t)
ds

]
(3.5)

denoting human wealth at adult age t. Condition (3.4) states that the sum of initial

pension wealth F (0) and initial human wealth H(0) should be larger than the amount of

money needed to finance the baseline consumption stream, which is attained when dual

8
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consumption ĉ(t) = 0 for every adult age t.

Given λY (t), we solve the dual problem (3.1). Let us denote the dual optimal

consumption choice by ĉ ∗∗(t). Then the (primal) optimal consumption choice is given

by (see Schroder and Skiadas (2002))

c∗∗(t) = ĉ ∗∗(t) + ĥ∗∗(t), (3.6)

where the optimal reference level is specified as follows:

ĥ∗∗(t) = e−
∫ t
0 α(u)duh(0) + β

∫ t

0

e−
∫ t
s (α(u)−β)duĉ ∗∗(s)ds. (3.7)

3.2 Optimal Consumption Choice

We are now ready to present the optimal consumption choice.

Theorem 1 (optimal consumption choice) Consider an individual who solves the

maximization problem (2.6). Assume that condition (3.4) holds true. Let λ∗Y (t) be the

optimal (endogenous) shadow price of labor income risk. Then the optimal consumption

choice at adult age t is given by

c∗(t) = h∗(t) + (u′)−1

(
eδty

m̂∗(t)

m̂∗(0)

)
. (3.8)

Here,

h∗(t) = e−
∫ t
0 α(u)duh(0) + β

∫ t

0

e−
∫ t
s α(u)duc∗(s)ds (3.9)

and m̂∗(t) is the dual stochastic discount factor associated with the optimal shadow price

of labor income risk λ∗Y (t).

The Lagrange multiplier y is chosen such that the static budget constraint holds with

equality.

Proof. See Appendix B.1.

In Appendix C, we describe how to numerically determine the optimal shadow price

of labor income risk λ∗Y (t). Equation (A81) in Appendix C reveals that the optimal

shadow price of labor income risk is, under some mild conditions, proportional to the

ratio between dual human wealth and dual total wealth (i.e., discounted value of dual
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future consumption ĉ(s), with s > t). This result is consistent with Sangvinatsos and

Wachter (2005) and de Jong (2008) who find that under standard CRRA preferences, the

shadow price of labor income risk is proportional to the ratio between human wealth and

total wealth.

3.3 Optimal Portfolio Choice

The following theorem summarizes the optimal portfolio choice.

Theorem 2 (optimal portfolio choice) Consider an individual who solves the

maximization problem (2.6). Assume that condition (3.4) holds true. Let

φ∗(t) = −

[
1 ρSY

ρSY 1

]−1

×

[
λS

λ∗Y (t)

]
(3.10)

be the vector of optimal factor loadings. And let F (t) be the individual’s pension wealth

at adult age t. Then the optimal portfolio choice at adult age t is given by

ω∗(t) = (1 + βf(t))
∂F̂ (t)

∂m̂(t)

φ∗S(t)

σS

m̂∗(t)

F (t)
, (3.11)

where

F̂ (t) =
F (t)− f(t)h(t)

1 + βf(t)
(3.12)

and m̂∗(t) is the dual stochastic discount factor associated with the optimal shadow price

of labor income risk λ∗Y (t).

Proof. See Appendix B.2.

3.4 Loss Aversion

We derived the optimal consumption choice (see Theorem 1) under the assumption that

the instantaneous utility function u(c(t) − θ(t)) is continuously differentiable. This

assumption does not allow for loss aversion. However, in case the individual’s

instantaneous utility function includes loss aversion, we can still obtain analytical

results. More specifically, let us assume that the instantaneous utility function is

10
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specified as follows:

u (c(t)− θ(t)) =

(c(t)− θ(t))γG , if c(t) ≥ θ(t);

−κ (θ(t)− c(t))γL , if c(t) < θ(t).
(3.13)

Here, γG ∈ (0, 1) and γL > 0 denote the curvature parameters for gains and losses,

respectively, and κ ≥ 1 stands for the loss aversion parameter. Van Bilsen et al. (2020)

show in a setting without human wealth risk how a loss-averse individual should save

and invest her total wealth. We can combine the techniques of the present paper with

those developed by Van Bilsen et al. (2020) to obtain the optimal policies in a setting

with human wealth risk and where preferences are described by (3.13).6

In what follows, we do not consider (3.13) but a utility specification in which the

individual cannot consume below the reference level. We note that the main implications

as discussed in Section 4 will remain valid in case the individual’s preferences are described

by (3.13). Indeed, while loss aversion allows the individual to consume below the reference

level in severe economic scenarios, our main implications are driven by the inclusion of

an endogenous reference level in the utility specification.

4 Main Implications

4.1 Setting

We consider an individual who starts working at age 25, retires at age 65 and passes away

at age 85. Each period, the individual decides what share of labor income to consume

and how much to invest in the risk-less asset and the risky stock.

We specify individual labor income Y (t) as follows (t ≤ TR):

Y (t) = Y (0) exp

{∫ t

0

µY (s)ds+ σY

∫ t

0

e−κ(t−s)dZY (s)

}
. (4.1)

Here, µY (t) ∈ R represents the growth rate of median labor income, σY ≥ 0 denotes

(instantaneous) labor income volatility, ZY (t) is a standard Brownian motion, and κ ≥ 0

models the impact of the labor income shock σY dZY (t) on future median labor income.

6The derivations are available upon request. The main idea is to split the individual’s dual
maximization problem into two separate problems: a gain part problem and a loss part problem. The
next step is to solve the gain part problem as well as the loss part problem. In the final step, we determine
the global maximum of the dual problem by comparing the two local maxima.
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We allow κ to be different from zero to capture the idea that labor income shocks can

be permanent or transitory; see, e.g., Caroll (1997). If κ = 0, then labor income shocks

are permanent, while if κ = ∞, then labor income shocks are transitory. Figure 12 in

Section 5 illustrates the impact of a labor income shock on future median labor income for

various values of κ. Moreover, we allow the growth rate of median labor income µY (t) to

be time-dependent to capture the idea that the drift of the labor income process typically

depends on age; see, e.g., Cocco et al. (2005). Finally, we note that after retirement, Y (t)

represents the social security payment from the government at adult age t.

We assume the following parameter values for the financial market and the labor

income process. The risk-less interest rate r and the mean stock return µS are set at

1% and 5%, respectively. We assume that the stock return volatility σS is equal to 20%.

These parameter values roughly coincide with the ones reported by Gomes, Kotlikoff,

and Viceira (2008). Initial salary Y (0) is equal to $68,000 per year which corresponds to

the average household income in the US in 2019. During retirement, the individual does

not receive labor income. In line with Viceira (2001), we set labor income volatility σY

equal to 10%.7 Moreover, we assume that the growth rate of median labor income is 0%

(i.e., µY (t) = 0 for every t) and that, in this section, labor income shocks are permanent

(i.e., κ = 0).8 Initial pension wealth F (0) is zero.

We assume that the instantaneous utility function is given by the familiar form

u
(
c(t)− h(t)

)
=

1

1− γ
(
c(t)− h(t)

)1−γ
. (4.2)

Here, γ > 0 is a preference parameter. We report our results for the following values

of the individual’s preference parameters. The parameter that models the curvature of

the utility function, i.e., γ, is equal to 5. We set the parameters that characterize the

reference level, i.e., α(t) = α and β, equal to 0.1 and 0.2, respectively. The subjective rate

of time preference δ equals 4%. Our main implications remain qualitatively unchanged if

we vary the values of the parameters within reasonable limits.

4.2 Optimal Consumption Choice

This section illustrates the individual’s optimal consumption choice. We assume that the

individual faces non-tradable labor income risk. Furthermore, she derives utility from

the difference between consumption and an endogenous reference level.

7Viceira’s estimate of σY is based on Chamberlain and Hirano (1999) and Caroll and Samwick (1997).
8Section 5 explores the impact of different values of κ on the optimal policies.
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4.2.1 Excess Sensitivity of Current Optimal Savings Rate

This section analyzes the implications of both a stock return shock and a permanent labor

income shock for optimal consumption and the optimal savings rate. But first we need

to explore how total wealth responds to a shock. Indeed, total wealth finances optimal

consumption. The impact of a shock on total wealth is not immediately clear as a shock

also affects total wealth indirectly through its effect on the shadow price of labor income

risk; see the last paragraph of Section 3.2 for more details on this subject matter.

A negative stock return shock obviously leads to a lower amount of pension wealth.

Furthermore, we find that a negative stock return shock leads to a decrease in human

wealth. Indeed, a lower stock price implies a higher shadow price of labor income risk,

which in turn implies a lower discounted value of future labor income; see Figure 1(a).9

Hence, a stock price decline is extra bad news: both pension wealth and human wealth

decrease. We note that even in the absence of correlation between stock return shocks

and labor income shocks, human wealth decreases following a stock price decline.

Clearly, a permanent drop in labor income leaves current pension wealth unaffected.

Moreover, we find that a permanent drop in labor income has two counteracting effects

on human wealth. On the one hand, human wealth decreases since expected labor income

is smaller. On the other hand, human wealth increases since the shadow price of labor

income risk is lower; see Figure 1(b). We find that for a wide range of parameter values,

the first effect dominates the second effect. Hence, human wealth decreases following a

negative permanent shock in labor income.

From our analysis above, it becomes clear that both a negative stock return shock

and a negative permanent labor income shock lead to a reduction in the individual’s total

wealth. As a result, the individual needs to adjust future median optimal consumption

levels downwards following a negative shock. As illustrated by Figures 2 and 3, we

find that optimal consumption responds sluggishly to both shocks. Intuitively, with an

endogenous reference level, consumption reductions in the far future are felt less heavily

than consumption reductions in the near future. The dashed lines show the case in which

the individual has standard CRRA preferences. In that case, a shock affects all future

median consumption levels to the same extent.

A number of authors (see, e.g., Van Bilsen et al. (2020)) have already shown that in

the presence an endogenous reference level, individuals adjust consumption gradually in

9Since the shadow price of labor income risk is – under some mild conditions – proportional to the
ratio between dual human wealth and dual total wealth, a reduction in dual pension wealth leads to a
higher shadow price of labor income risk.
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(a) Impact of Stock Return Shock
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Figure 1. Impact of Shocks on Median Shadow Price of Labor Income Risk The figure shows
how the median shadow price of labor income risk λY (t) changes following a 50% drop in the stock price
at age 40 (left panel) and following a 20% permanent drop in labor income at age 40 (right panel). The
parameter values are given in Section 4.1.
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Figure 2. Impact of a Stock Return Shock on Future Median Optimal Consumption The
figure shows the impact of a 50% drop in the stock price at age 40 on future median optimal consumption.
The dashed line illustrates the case in which the individual has standard CRRA preferences and does
not face non-tradable labor income risk. Both cases experience the same relative decline in total wealth.
The parameter values are given in Section 4.1.
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Figure 3. Impact of a Labor Income Shock on Future Median Optimal Consumption The
figure shows the impact of a 20% permanent drop in labor income at age 40 on future median optimal
consumption. The dashed line illustrates the case in which the individual has standard CRRA preferences
and faces non-tradable labor income risk. Both cases experience the same relative decline in total wealth.
The parameter values are given in Section 4.1.

response to a stock return shock. What is new is that with non-tradable labor income

risk, individuals adjust consumption gradually following both a stock return shock and

a labor income shock. With CRRA utility, we do not observe this gradual adjustment of

consumption to shocks; see the dashed line in Figure 2 and the dashed line in Figure 3.

A direct implication of the downward adjustment of median optimal consumption to

negative shocks is that the current optimal savings rate, i.e., the optimal share of labor

income saved, responds differently to a stock return shock than to a labor income shock;

see Figure 4(a). As the individual has a preference for consumption smoothing, she

prefers that a stock price decline – which leads to a reduction in pension wealth – affects

consumption not only during the retirement phase but also during the working phase.

Therefore, she increases the optimal savings rate after a drop in the current stock price;

see the solid line in Figure 4(a). We note that the increase in the current optimal savings

rate is lower as compared to the increase in the current savings rate under standard

CRRA preferences. Indeed, with an endogenous reference level, the individual prefers to

protect current consumption.
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As illustrated by the dash-dotted line in Figure 4(a), we find that after a permanent

drop in current labor income, the current optimal savings rate decreases. We can

decompose the optimal response of the current savings rate into two parts. The first

part is due to a preference for consumption smoothing, as illustrated by the dark gray

area in Figure 4(b). In other words, a labor income shock affects consumption not only

during the working phase but also during the retirement phase. To transfer part of the

current labor income shock to the retirement phase, the individual reduces the optimal

savings rate, so that less pension wealth is available for retirement consumption. The

second part is due to an endogenous reference level, as illustrated by the light gray area

in Figure 4(b). Indeed, since the individual prefers to protect current consumption, she

reduces the optimal savings rate. In our setting, we find that the impact due to an

endogenous reference level is larger than the impact due to a preference for consumption

smoothing. We conclude that the current optimal savings rate is excessively sensitive,

i.e., over-responsive, to a permanent labor income shock. This is our first main finding.
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(a) Change in Optimal Savings Rate
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(b) Decomposition of Current Optimal Response

Figure 4. Impact of Shocks on Optimal Savings Rate The left panel of this figure shows how the
median optimal savings rate responds following a negative stock return shock (solid line) and following a
negative labor income shock (dash-dotted line) at age 40. The right panel decomposes, for various values
of β, the optimal response of the current savings rate into two parts. The first part is due to a preference
for consumption smoothing (dark gray area), while the second part is due to an endogenous reference
level (light gray area). In the right panel, we assume that α(t) = α = β. The remaining parameter
values are given in Section 4.1.

Figure 5 shows the new level of the optimal savings rate for a wide rage of labor income

shocks. We assume that the old level of the optimal savings rate is equal to 18%. We find

that in a wide range of economic scenarios, i.e., scenarios in which labor income shocks
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are larger than 29%, the individual does not save at all and withdraws pension wealth

already before retirement; this is indicated by the gray area in Figure 5. As illustrated by

Figure 4(b), the preference for dissaving is larger under reference-dependent preferences

than under CRRA preferences.
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Figure 5. New Savings Rate for a Wide Range of Labor Income Shocks The figure shows
the new optimal savings rate for a wide range of labor income shocks. We assume that the old optimal
savings rate is equal to 18%. Furthermore, the ratio of consumption to the reference level and the ratio
of pension wealth to human wealth are assumed to be equal to 2 and 1, respectively. The gray area
indicates the economic scenarios in which the optimal savings is negative, i.e., the individual withdraws
pension wealth already before retirement. The parameter values are given in Section 4.1.

4.2.2 Heterogeneity in Optimal Response of Savings Rate

The optimal response of the current savings rate heavily varies with the ratio of

consumption to the reference level. This is our second main finding. We illustrate this

finding by Figure 6. Note that the ratio of consumption to the reference level can be

seen as a proxy for income. Indeed, the closer current consumption is to the reference

level, the lower the individual’s income level typically will be. We find that in case the

ratio of consumption to the reference level is small, the optimal savings rate is heavily

reduced following a permanent drop in current labor income; see Figure 6. Intuitively,

as consumption is very close to the reference level, the individual has a strong need to
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protect current consumption. Hence, after a permanent labor income shock, she prefers

to maintain, more or less, the same optimal savings rate. Also note that under CRRA

preferences, the optimal response of the savings rate is independent of the ratio between

the individual’s consumption level and the individual’s reference level, as this ratio does

not appear in a CRRA preference specification.
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Figure 6. Heterogeneity in Optimal Savings Rate The figure shows the optimal response (in
percentage points) of the current savings rate to a negative permanent labor income shock as a function
of the ratio of consumption to the reference level. The parameter values are given in Section 4.1.

The optimal response of the savings rate varies not only with the ratio of consumption

to the reference level but also with the ratio of human wealth to pension wealth. We find

that in case human wealth is small compared to pension wealth, the individual heavily

adjusts the optimal savings rate. Intuitively, if a worker’s human wealth is low compared

to pension wealth, then a permanent drop in current labor income affects total wealth

only to a limited extent, so that there is no need to adjust current consumption. Such

a worker fully absorbs the labor income shock by reducing the optimal savings rate. We

note that the ratio of human wealth to pension wealth can be seen a proxy for age.

Indeed, old workers typically have a low ratio of human wealth to pension wealth, while

this ratio is much larger for young workers.
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4.2.3 Conservative Optimal Consumption Choice

The presence of both non-tradable labor income risk and reference-dependent

preferences lead to a conservative optimal portfolio strategy; see Section 4.3.3. As a

result of the conservative optimal portfolio strategy, the optimal consumption level is

typically lower as compared to standard CRRA preferences with risk-less labor income.

Indeed, the individual benefits less from the expected excess return on the risky stock.

Figure 7 illustrates the median optimal consumption choice for the case with

reference-dependent preferences and non-tradable labor income risk and for the case

with standard CRRA preferences and risk-less labor income. We observe that up to age

55, optimal consumption is (substantially) lower. The underlying conservative optimal

portfolio strategy explains this observation.
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Figure 7. Conservative Median Optimal Consumption Choice The figure illustrates the median
optimal consumption choice for the case with reference-dependent preferences and non-tradable labor
income risk (solid line) and for the case with standard CRRA preferences and risk-less labor income
(dash-dotted line). Both cases have the same total initial wealth. The parameter values are given in
Section 4.1.
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4.3 Optimal Portfolio Choice

This section illustrates the individual’s optimal portfolio choice. As in Section 3.2, the

individual faces non-tradable labor income risk and derives utility from the difference

between consumption and an endogenous reference level.

4.3.1 Excess Sensitivity of the Current Optimal Portfolio Share

This section analyzes the implications of both a stock return shock and a permanent

labor income shock for the optimal share of pension wealth invested in the risky stock

(i.e., portfolio share). In case of non-tradable risky labor income and

reference-dependent preferences, the impact of a stock return shock and a labor income

shock on the optimal portfolio share is not immediately clear. It is obvious that a

negative stock return shock leads to a lower amount of pension wealth. However,

human wealth also decreases following a drop in the stock price. Indeed, as illustrated

by Figure 1(a), the shadow price of labor income risk goes up after a negative stock

return shock. As both pension wealth and human wealth decrease, it is not directly

clear how the individual should adjust the optimal share of pension wealth invested in

the stock. We find that the impact of a stock return shock is typically much larger on

pension wealth than on human wealth. Hence, in our benchmark case – in which the

individual aims for a constant exposure of total wealth to stock return risk – the

individual increases the optimal share of pension wealth invested in the stock following

a decline in the stock price; see the dashed line in Figure 8(a). Under

reference-dependent preferences, a negative stock return shock leads to an increase in

the individual’s relative risk aversion. Indeed, a relatively larger part of total wealth

needs to be invested in the risk-less asset to guarantee that future consumption levels

exceed future reference levels. This reason dampens the impact of a negative stock

return shock on the optimal portfolio share. Therefore, we find that the impact of a

stock return shock on the optimal portfolio share is more pronounced under CRRA

preferences than under reference-dependent preferences; see Figure 8(a).

As mentioned in Section 3.2, a negative permanent labor income shock has two

counteracting effects on human wealth: a direct effect and an indirect effect. It impacts

human wealth directly through its effect on future labor income and indirectly through

its effect on the shadow price of labor income risk; see Figure 1(b). We find that the net

effect is that human wealth decreases following a permanent decline in labor income. As

a result, in our benchmark case – in which the individual aims for a constant exposure
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of total wealth to stock return risk – the individual decreases the optimal share of

pension wealth invested in the stock following a negative labor income shock; see the

dashed line in Figure 8(b). Under reference-dependent preferences, relative risk aversion

increases following a negative permanent labor income shock. Indeed, the individual’s

current consumption gets closer to the individual’s reference level. This is the second

reason, which is not present under CRRA preferences, why the individual reduces the

optimal portfolio share. We conclude that not only the optimal savings rate but also the

optimal portfolio share is excessively sensitive to labor income shocks; see Figure 8(b).
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Figure 8. Impact of Shocks on Optimal Portfolio Share The figure shows how the optimal
share of pension wealth invested in the risky stock changes as a result of a shock at age 40. The left
panel shows the optimal response to a 50% decline in the stock price while the right panel illustrates
the optimal response to a 20% permanent decline in labor income. The dashed lines illustrate the case
in which the individual has standard CRRA preferences and faces non-tradable labor income risk. The
parameter values are given in Section 4.1.

4.3.2 Heterogeneity in Optimal Response of Portfolio Share

Both the optimal response of the savings rate and the optimal response of the portfolio

share vary with the ratio of consumption to the reference level. We illustrate this

finding in Figure 9. However, a major difference between Figure 6 – which illustrates

the heterogeneity in the optimal savings rate – and Figure 9 is that the optimal

portfolio share will almost never drop below zero, while this is not the case for the

optimal savings rate.

Figure 9 illustrates how the optimal response of the portfolio share varies with the

ratio of consumption to the reference level. We find that in case the ratio of consumption
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to the reference level is high, the optimal portfolio share is relatively insensitive to a

permanent drop in current labor income. Intuitively, as the individual’s consumption

is high compared to the reference level, a permanent drop in labor income affects her

relative risk aversion only to a limited extent. Hence, there is less need to de-risk. Under

CRRA preferences, we do not observe this behavior, as relative risk aversion is constant.
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Figure 9. Heterogeneity in Optimal Portfolio Share The figure shows the optimal response (in
percentage points) of the current optimal portfolio share to a negative permanent labor income shock as
a function of the ratio of consumption to the reference level. The parameter values are given in Section
4.1.

We also find that the optimal response of the portfolio share varies with the ratio

of human wealth to pension wealth. In particular, in case the ratio of human wealth

to pension wealth is relatively small, the individual barely adjusts the optimal portfolio

share. Intuitively, if a worker’s human wealth is small compared to a worker’s pension

wealth, then a drop in current labor income affects total wealth only to a limited extent,

so that there is no reason to significantly adjust the optimal portfolio share.

4.3.3 Conservative Optimal Portfolio Choice

In a setting with non-tradable labor income risk and reference-dependent preferences,

the individual still applies a life-cycle portfolio strategy: the optimal share of pension
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wealth invested in the stock decreases, on average, with age. This is consistent with

conventional wisdom (see, e.g., Bodie et al. (1992)). However, for our parameter values,

the optimal portfolio strategy is more conservative compared to the case with risk-less

labor income and CRRA preferences; see Figure 10. This finding holds true even if there

is no correlation between stock return shocks and labor income return shocks.10
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Figure 10. Conservative Optimal Portfolio Share The figure shows the median optimal share of
pension wealth invested in the risky stock as a function of age. The dashed line illustrates the case in
which the individual has standard CRRA preferences and does not face non-tradable labor income risk.
The parameter values are given in Section 4.1.

Both non-tradable risky labor income and reference-dependent preferences affect the

optimal portfolio strategy. Figure 11(a) illustrates the impact of non-tradable risky labor

income on the optimal portfolio strategy. We find that non-tradable risky labor income

causes the optimal portfolio share to decrease, especially at young ages. Indeed, due

to a positive shadow price of labor income risk, human wealth, which is equal to the

discounted value of future labor income, becomes smaller. The individual has thus a

lower implicit portfolio holding of the non-tradable asset human wealth. As a result,

10The impact of the correlation coefficient on the optimal portfolio strategy is twofold. First, a higher
ρSY means that human wealth carries more stock return risk, so that the individual’s willingness to
invest in the risky stock decreases. Second, a higher ρSY leads, in our setting, to a higher shadow price
of labor income risk, which causes human wealth to decrease. This in turn leads to a reduction of the
optimal portfolio share.
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the individual should invest less in risky stocks to achieve the optimal exposure of total

wealth to stock return risk. We find that in our setting, the median portfolio strategy at

age 40 decreases by 25 percent.

The presence of a reference level has two additional counteracting effects on the

optimal portfolio choice as illustrated by Figure 11(b). The first effect, which is

illustrated by the solid line in Figure 11(b), is due to the presence of a reference level.

This fact implies that the individual needs to reserve part of her pension wealth to

guarantee that future consumption levels exceed future reference levels. As a result, the

optimal portfolio share decreases. The second effect, which is illustrated by the

dash-dotted line in Figure 11(b), is due to the endogeneity of the reference level. This

fact allows the individual to take more investment risk. Indeed, a negative stock return

shock leads to lower future consumption levels as well as lower future reference levels.

As the impact of a given stock return shock on utility is limited compared to CRRA

preferences, the individual can afford to take more investment risk. We observe that, in

our parameter setting, the first effect is much stronger than the second effect:

reference-dependent preferences lead to a conservative investment strategy.
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(a) Impact of Non-Tradable Labor Income

30 35 40 45 50 55 60 65 70 75 80

-100

-50

0

50

(b) Impact of Reference-Dependence

Figure 11. Impact of Non-Tradable Risky Labor Income and Reference-Dependent
Preferences The left panel shows the impact of non-tradable risky labor income on the optimal portfolio
share, while the right panel illustrates the impact of reference-dependent preferences on the optimal share.
The parameter values are given in Section 4.1.
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4.4 Welfare Costs

This section computes the welfare costs associated with standard CRRA preferences.

Our setting is as follows. An individual with references-dependent preferences who faces

non-tradable labor income risk delegates her consumption and portfolio decisions to a

professional asset manager. However, this asset manager offers strategies that are

exclusively based on standard CRRA preferences. Each strategy offered by the asset

manager corresponds to a value of the relative risk aversion coefficient. The individual

is smart and chooses the value of the relative risk aversion coefficient such that the

difference between the individual’s optimal utility (i.e., the utility associated with the

optimal policies) and the sub-optimal utility (i.e., the utility associated with standard

CRRA preferences) is minimized. Table 1 reports our results. We observe that a

strategy in which the savings rate does not respond excessively sensitive to a labor

income shock can be quite costly in welfare terms. For our benchmark setting (i.e.,

α(t) = α = 0.2 and β = 0.1), we find a minimum welfare loss of 35%.

Table 1. Welfare Costs The table reports the minimum welfare losses associated with standard
CRRA preferences in which the savings rate does not respond excessively sensitive to a labor income
shock. We compute the minimum welfare loss for different optimal values of α(t) = α and β. We
measure welfare losses in terms of the relative decline in certainty equivalent consumption. The remaining
parameter values are given in Section 4.1.

true parameters α and β
α β minimum welfare loss (in %)

0.1 0.2 35.08
0.05 0.1 38.04
0.2 0.3 30.13
0.3 0.4 26.04
0.4 0.5 23.52

4.5 Relating Our Findings to Empirical Analysis

We can test the main implications of our model with reference-dependent preferences and

non-tradable risky labor income using data on savings behavior and portfolio holdings.

This section shows that we find support for some of our main implications in the data.

It is beyond the scope of this paper to carry out a full empirical analysis.
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4.5.1 Testable Implications

Our first main implication is that both the optimal savings rate and the optimal

portfolio choice are excessively sensitive with respect to permanent labor income shocks;

see Sections 4.2.1 and 4.3.1. The excess sensitivity of the optimal savings rate, i.e., the

current optimal savings rate over -responds to a current income shock, implies that

optimal consumption is excessively smooth, i.e., current optimal consumption

under -responds to a current income shock; see Figure 3. We can test the excess

smoothness of consumption by regressing changes in current (log) income on changes in

current (log) consumption:

∆ log c(t) = β∆ log Y (t− 1) + ε(t), (4.3)

where ∆ log c(t) denotes the change in the log total consumption between adult age t− 1

and adult age t, ∆ log Y (t−1) represents the change in the log income level between adult

age t− 2 and adult age t− 1, and ε(t) is the error term. If 0 ≤ β < 1, then consumption

under -responds to a current income shock.11 In a similar fashion, we can test the excess

sensitivity of the current optimal portfolio share by relating income shocks to changes in

investment behavior.

Our second main implication is that the optimal response of the savings rate and the

portfolio share to a current income shock heavily varies with the ratio of consumption

to the reference level; see Sections 4.2.2 and 4.3.2. We can test this model implication

using panel data on savings decisions, portfolio holdings, income levels, current

consumption levels and current reference levels. Our hypothesis is that in case current

consumption is close to the current reference level, the savings rate and the portfolio

share will heavily respond to a permanent income shock, while in case consumption is

far away from the current reference level, individuals barely adjust savings rates and

portfolio shares following a permanent income shock. As we do not have data on

reference levels, in the empirical analysis that follows, we use the income level as a

proxy for the ratio between consumption and the reference level. Indeed, a high income

typically corresponds to a large ratio of consumption to reference level, while a low

income is typically associated with a low ratio of consumption to reference level.

Our third main implication is that an individual with reference-dependent preferences

who faces non-tradable labor income risk implements a conservative consumption strategy

as well as a conservative investment strategy; see Sections 4.2.3 and 4.3.3. We can test this

11We have verified in simulations that 0 ≤ β < 1.
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model finding using data on consumption decisions and portfolio holdings and compare

the empirical findings with what the standard theory (Bodie et al. (1992)) predicts.

Existing empirical evidence already suggests that people are reluctant to invest in risky

stocks (see, e.g., Haliassos and Bertaut (1995)).

In the remainder of this section, we test whether consumption is excessively smooth

and whether the excess smoothness of consumption varies with ratio between consumption

and the reference level.

4.5.2 Data Description

We obtain data from the US Bureau of Labor Statistics. It collects data on expenditures,

incomes and demographic characteristics of consumers in the United States. We construct

a panel data set to provide support for some of our main implications, using monthly

data on total consumption and income levels (before taxes) for 15,381 unique individuals.

Our dataset runs from January 2020 to August 2021 (20 periods). We use this dataset to

explore whether we find support for two of our main implications: the excess smoothness

of the optimal consumption choice and the heterogeneity of the optimal response of the

consumption choice.

4.5.3 Results

We run regression model (4.4) to explore whether consumption is excessively smooth. To

explore whether we find evidence for the heterogeneity of the optimal response of the

consumption choice, we divide the data set into three categories:

1. low incomes (monthly income is lower 2053 dollars);

2. middle incomes (monthly income is between 2053 dollars and 3902 dollars);

3. and high incomes (monthly income is higher than 3902 dollars).

We run the regression model (4.4) for each category. The model predicts that the β-

coefficient in (4.4) varies with the income level. Table 2 reports our results.

Table 2 provides support for the finding that consumption is excessively smooth (all

β-estimates are between 0 and 1) and for the finding that the optimal response of the

consumption level depends on income. Indeed, we observe that the optimal consumption

of a low-income individual responds less strong to an income shock compared to the

optimal consumption of a high-income individual. Thus, the optimal savings rate of

27

Electronic copy available at: https://ssrn.com/abstract=4253761



Table 2. Regression Results The table reports the estimate of the β-coefficient. We compute the
β-estimate for three categories: low incomes, middle incomes and high incomes.

category estimate of β 95% confidence interval β-estimate

low incomes 0.0270 [0.0211;0.0333]
middle incomes 0.1200 [0.0259;0.2141]
high incomes 0.2159 [0.1368;0.2951]

a low-income individual exhibits a higher degree of excess sensitivity than the optimal

savings rate of a high-income individual. This is consistent with our finding; see also

Figure 6.

As indicated by Table 2, current consumption of a low-income individual heavily

under -responds to a current income shock. Our model predicts that consumption in

the far future is more sensitive to a current income shock than consumption close to

today; see Figure 3. We can test this additional implication by regressing changes in

current income on changes in future consumption. More specifically, we run the following

regression model:

n∑
i=0

∆ log c(t+ i) = βn∆ log Y (t− 1) + ε(t). (4.4)

If βn increases with n, a labor income shock will have a bigger impact on total expenditures

in the far future compared to the near future. Table 3 provides our results.

Table 3. Regression Results The table reports the estimate of the βn-coefficient. We compute the
βn-estimate for low incomes.

Periods ahead estimate of βn
Immediate (n = 0) 0.0270
Beginning of second quarter (n = 3) 0.0621
Beginning of third quarter (n = 6) 0.2043

We clearly see that the estimate of βn increases with n: low-income individuals postpone

reductions in total consumption following a current labor income shock.
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5 Different Types of Labor Income Shocks

5.1 Labor Income Process

So far we have assumed that labor income shocks are permanent, i.e., κ = 0. This section

explores our main findings for the case in which labor income shocks are less permanent.12

More specifically, we consider the case κ = 0.25. Figure 12 shows how median income

behaves following a 20% decline in labor income at age 40 for different types of labor

income shocks. In case κ = 0.25, we observe that at age 60, the individual’s labor income

is roughly equal to labor income before the shock.

25 30 35 40 45 50 55 60

40

45

50

55

60

65

70

75

80

Figure 12. Impact of Different Types of Labor Income Shocks on Future Median
Consumption The figure shows the impact of a 20% drop in labor income at age 40 on future median
income for various values of κ. The remaining parameter values are given in Section 4.1.

12We can easily extend our numerical method to the case κ > 0. While the value of κ affects how
labor income evolves over time, it essentially does not affect the numerical determination of the optimal
policies and the shadow price of labor income risk. Indeed, the optimal strategy is a function of the
current state variables (dual) labor income and the (dual) stochastic discount factor.
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5.2 Optimal Consumption Choice

Figure 13 illustrates the relative change in median consumption as a result of a 20%

decline in labor income at age 40. If we compare the case κ = 0.25 (less permanent labor

income shock) with the case κ = 0 (permanent labor income shock), we observe that the

relative change in median consumption is smaller. Indeed, in case labor income shocks

are less permanent, the impact of a labor income shock on the individual’s total wealth

will be smaller. Furthermore, in both cases, we observe that the individual gradually

absorbs a labor income shock. Indeed, with an endogenous reference level, it is optimal

to postpone reductions in consumption.
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Figure 13. Impact of a Labor Income Shock on Future Median Optimal Consumption The
figure shows the impact of a 20% drop in labor income at age 40 on future median optimal consumption.
We assume that κ = 0.25 (less permanent labor income shock) and κ = 0 (permanent labor income
shock). The remaining parameter values are given in Section 4.1.

Next, we analyze how the optimal savings rate responds to labor income shocks.

Figure 14 illustrates the optimal response of the median savings rate following a 20%

drop in labor income at age 40. We observe the after the labor income shock, the

individual immediately decreases the optimal savings rate. Indeed, the individual wants

to protect current consumption. Furthermore, she wants to transfer part of the labor

income shock to the retirement phase. We also observe this behavior in case κ = 0
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(permanent labor income shock). What is new is that the optimal savings rate rapidly

converges back to the savings rate before the shock. After some time, the individual even

saves more. This result is due to the gradual absorption of shocks and the temporary

nature of income shocks. Indeed, after some time, income is restored to its old level,

while optimal consumption is relatively low; see Figure 12 and the solid line in Figure

13. We conclude that less permanent income shocks still have a substantial impact on

the current optimal savings rate.
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Figure 14. Impact of Labor Income Shock on Optimal Savings Rate The figure shows how
the median optimal savings rate responds following a 20% drop in labor income at age 40. We assume
that κ = 0.25 (less permanent labor income shock) and κ = 0 (permanent labor income shock). The
remaining parameter values are given in Section 4.1.

5.3 Optimal Portfolio Choice

This section explores the impact of a labor income shock on the optimal portfolio share.

Figure 15 illustrates the optimal response of the median portfolio share following a 20%

drop in labor income at age 40. Comparing the case κ = 0.25 (less permanent labor

income shock) with the case κ = 0 (permanent labor income shock), we observe that the

change in the optimal portfolio share is smaller. Indeed, when labor income shocks are

less permanent, the impact of a shock on total wealth is smaller, so that the individual
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has a weaker preference to de-risk. Furthermore, we observe that in the median scenario,

the optimal portfolio share even goes up after some years. As income is restored to its

old level and optimal consumption is relatively small, the individual can afford to take

more investment risk.

30 40 50 60 70 80

-20

-15

-10

-5

0

5

10

15

20

Figure 15. Impact of Labor Income Shock on Optimal Portfolio Share The figure shows how
the optimal share of pension wealth invested in the risky stock changes as a result of a 20% decline
in labor income at age 40. We assume that κ = 0.25 (less permanent labor income shock) and κ = 0
(permanent labor income shock). The remaining parameter values are given in Section 4.1.

6 Conclusion

We have explored the joint impact of reference-dependent preferences and non-tradable

risky labor income on optimal savings and portfolio decisions. To analyze the optimal

policies and to determine the shadow price of labor income risk, we have developed a non-

trivial solution procedure. We have shown the following results. First, we have shown

that both the current optimal savings rate and the current optimal portfolio share are

excessively sensitive to labor income shocks. We find that in a wide rage of economic

scenarios, the individual does not save at all and withdraws pension wealth already before

retirement. Second, the optimal response of the savings rate and the portfolio share to a
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permanent labor income shock vary heavily with the ratio of consumption to the reference

level. Third, we find that the optimal policies are more conservative compared to the

case with risk-less labor income and CRRA preferences. Both non-tradable risky labor

income and reference-dependent preferences contribute to this finding.
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A Dual Formulation

In what follows, we assume a rich specification of the reference level. More specifically,

the reference level depends not only on own consumption but also on individual labor

income Y (t) and consumption of the individual’s neighbor C̄(t) which is exogenously

given. We assume that the reference level can de decomposed as follows:

h(t) = hc(t) + hC̄(t) + hY (t). (A1)

Here, hc(t), hC̄(t) and hY (t) satisfies the dynamics:

dhc(t) = (βcc(t)− αc(t)h(t)) dt, (A2)

dhC̄(t) =
(
βC̄C̄(t)− αC̄(t)hC̄(t)

)
dt, (A3)

dhY (t) = (βY Y (t)− αY (t)hY (t)) dt. (A4)

The results in the main text arise as a special case when we assume β = βc and α(t) =

αc(t).

By Itô’s Lemma, we find that the reference level h(t) satisfies

dh(t) =
(
βcc(t) + βC̄C̄(t) + βY Y (t)− α(t)h(t)

)
dt, (A5)

where

α(t) ≡ αc(t)
hc(t)

h(t)
+ αC̄(t)

hC̄(t)

h(t)
+ αY (t)

hY (t)

h(t)
(A6)

models the rate at which the individual’s reference level h(t) depreciates.

In line with the permanent income hypothesis (see Hall (1978)), we assume that

changes in consumption of the individual’s neighbor are unpredictable. More specifically,

we assume that C̄(t) is given by

C̄(t) = C̄(0) exp

{∫ t

0

µC̄ds+ σC̄

∫ t

0

dZC̄(s)

}
. (A7)

Here, µC̄ ∈ R models the expected growth of C̄(t), σC̄ ≥ 0 represents volatility, and ZC̄(t)

is a standard Brownian motion.

We now can, by virtue of the martingale approach (Pliska (1986), Karatzas, Lehoczky,

and Shreve (1987), and Cox and Huang (1989, 1991)), transform the individual’s dynamic
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maximization problem into the following equivalent problem:

max
c(t)

E0

[∫ TD

0

e−δtu (c(t)− h(t)) dt

]
s.t. E0

[∫ TD

0

m(t) (c(t)− Y (t)) dt

]
≤ F (0),

dh(t) =
(
βcc(t) + βC̄C̄(t) + βY Y (t)− α(t)h(t)

)
dt,

(A8)

with α(t), C̄(t), Y (t) and m(t) defined in (A6), (A7), (4.1) and (2.7).

Inspired by Schroder and Skiadas (2002) and Van Bilsen et al. (2020), we apply

the following transformation. Let us denote by ĉ(t) = c(t) − h(t) the individual’s dual

consumption choice at adult age t. By substituting c(t) = h(t) + ĉ(t) into (A8), we find

that (A8) is equivalent to:

max
ĉ(t)

E0

[∫ TD

0

e−δtu (ĉ(t)) dt

]
s.t. E0

[∫ TD

0

m(t) (h(t) + ĉ(t)− Y (t)) dt

]
≤ F (0),

dh(t) =
(
βcĉ(t) + βC̄C̄(t) + βY Y (t)− (α(t)− βc)h(t)

)
dt.

(A9)

By repeated substitution, we are able to derive the analytical form of the reference level.

More specifically, we find

h(t) = e−
∫ t
0 (αc(u)−βc)duhc(0) + βc

∫ t

0

e−
∫ t
s (αc(u)−βc)duĉ(s)ds

+

[
βc

∫ t

0

e−
∫ s
0 αC̄(u)du−

∫ t
s (αc(u)−βc)duds+ e−

∫ t
0 αC̄(u)du

]
hC̄(0)

+ βC̄

∫ t

0

[
βc

∫ t

s

e−
∫ v
s αC̄(u)du−

∫ t
v (αc(u)−βc)dudv + e−

∫ t
s αC̄(u)du

]
C̄(s)ds

+

[
βc

∫ t

0

e−
∫ s
0 αY (u)du−

∫ t
s (αc(u)−βc)duds+ e−

∫ t
0 αY (u)du

]
hY (0)

+ βY

∫ t

0

[
βc

∫ t

s

e−
∫ v
s αY (u)du−

∫ t
v (αc(u)−βc)dudv + e−

∫ t
s αY (u)du

]
Y (s)ds.

(A10)

Substitution of (A10) into the static budget constraint in (A9) results in the following
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new static budget constraint:

F (0) ≥ E0

[∫ TD

0

{fc(0)hc(0) + fC̄(0)hC̄(0) + fY (0)hY (0) +m(t) (1 + βcfc(t)) ĉ(t)

+βC̄fC̄(t)C̄(t)m(t)− Y (t)m(t) (1− βY fY (t))
}

dt

]
.

(A11)

Here,

fc(t) ≡ Et
[∫ TD

t

m(s)

m(t)
e−

∫ s
t (αc(u)−βc)duds

]
, (A12)

fC̄(t) ≡ Et
[∫ TD

t

m(s)

m(t)

{
βc

∫ s

t

e−
∫ v
t αC̄(u)du−

∫ s
v (αc(u)−βc)dudv

+e−
∫ s
t αC̄(u)du

}
ds
]
,

(A13)

fY (t) ≡ Et
[∫ TD

t

m(s)

m(t)

{
βc

∫ s

t

e−
∫ v
t αY (u)du−

∫ s
v (αc(u)−βc)dudv

+e−
∫ s
t αY (u)du

}
ds
]
.

(A14)

We denote by m̂(t), Ŷ (t) and F̂ (t) the dual counterparts of the pricing kernel, individual

labor income and pension wealth, respectively. These variables are defined as follows:

m̂(t) ≡ m(t) (1 + βcfc(t)) , (A15)

Ŷ (t) ≡ Y (t) (1− βY fY (t))− βC̄fC̄(t)C̄(t)

1 + βcfc(t)
, (A16)

F̂ (t) ≡ F (t)− fc(t)hc(t)− fC̄(t)hC̄(t)− fY (t)hY (t)

1 + βcfc(t)
. (A17)

We can now write the new static budget constraint (A11) in familiar form as:

E0

[∫ TD

0

m̂(t)

m̂(0)

(
ĉ(t)− Ŷ (t)

)
dt

]
≤ F̂ (0). (A18)

Hence, the individual maximizes the following static dual maximization problem:

max
ĉ(t)

E0

[∫ TD

0

e−δtu (ĉ(t)) dt

]
s.t. E0

[∫ TD

0

m̂(t)

m̂(0)

(
ĉ(t)− Ŷ (t)

)
dt

]
≤ F̂ (0).

(A19)
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Problem (A19) is typically easier to solve than the original individual’s dynamic

maximization problem (2.6). We note that the dual pricing kernel

m̂(t) ≡ m(t) (1 + βcfc(t)) satisfies the following dynamics:

dm̂(t)

m̂(t)
= −r̂(t)dt+ φ̂(t)>dZ(t), (A20)

with φ̂(t) = φ(t) and

r̂(t) ≡ βc +
r − αc(t)βcfc(t)

1 + βcfc(t)
. (A21)

B Derivation of Optimal Policies

B.1 Derivation of Optimal Consumption Choice

Let us first assume that the financial market is complete (i.e., aggregate consumption risk

and individual labor income risk are tradable), so that φ(t) is uniquely determined. We

now determine the individual’s optimal consumption choice given this assumption. The

Lagrangian L is given by

L = E0

[∫ TD

0

e−δtu (ĉ(t)) dt

]
+ y

(
F̂ (0)− E0

[∫ TD

0

m̂(t)

m̂(0)

(
ĉ(t)− Ŷ (t)

)
dt

])
. (A1)

Here, y ≥ 0 denotes the Lagrange multiplier associated with the static budget constraint.

For every t, the individual maximizes e−δtu (ĉ(t)) − ym̂(t)ĉ(t)/m̂(0). We find that the

optimal consumption in the complete market case is given by

ĉ +(t) = (u′)−1

(
eδty

m̂(t)

m̂(0)

)
. (A2)

Let us now assume that the market is incomplete (i.e., aggregate consumption risk and

individual labor income risk are not tradable), so that φ(t) is not uniquely determined.

In line with, e.g., He and Pearson (1991), we determine the vector of factor loadings such

that changes in dual total wealth match changes in the value of future dual consumption;

see Appendices B.2 and C for more details. We denote the vector of factor loadings that

satisfies this condition by φ∗(t). The pricing kernel implied by φ∗(t) is denoted by m∗(t).
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It now follows that

ĉ ∗(t) = (u′)−1

(
eδty

m̂∗(t)

m̂∗(0)

)
(A3)

not only maximizes the individual’s static maximization problem (A19) but also can be

replicated in our financial market as defined in Section 2.2.

The optimal (primal) consumption choice is given by

c∗(t) = h∗(t) + ĉ ∗(t), (A4)

with the optimal reference level h∗(t) defined as follows:

h∗(t) = e−
∫ t
0 (αc(u)−βc)duhc(0) + βc

∫ t

0

e−
∫ t
s (αc(u)−βc)duĉ ∗(s)ds

+

[
βc

∫ t

0

e−
∫ s
0 αC̄(u)du−

∫ t
s (αc(u)−βc)duds+ e−

∫ t
0 αC̄(u)du

]
hC̄(0)

+ βC̄

∫ t

0

[
βc

∫ t

s

e−
∫ v
s αC̄(u)du−

∫ t
v (αc(u)−βc)dudv + e−

∫ t
s αC̄(u)du

]
C̄(s)ds

+

[
βc

∫ t

0

e−
∫ s
0 αY (u)du−

∫ t
s (αc(u)−βc)duds+ e−

∫ t
0 αY (u)du

]
hY (0)

+ βY

∫ t

0

[
βc

∫ t

s

e−
∫ v
s αY (u)du−

∫ t
v (αc(u)−βc)dudv + e−

∫ t
s αY (u)du

]
Y (s)ds.

(A5)

B.2 Derivation of Optimal Portfolio Choice and Optimal Vector

of Factor Loadings

We determine the dual portfolio strategy ω̂(t) and the vector of dual factor loadings

φ̂(t) = −ρ−1λ̂(t) such that changes in dual total wealth dŴ (t) match changes in the

value of future optimal dual consumption dV̂ (t) where the value of future optimal dual

consumption is defined as follows:

V̂ (t) ≡ Et
[∫ TD

t

m̂(s)

m̂(t)
(u′)−1

(
eδsy

m̂(s)

m̂(0)

)
ds

]
= fV̂ (t, Ŷ (t), m̂(t)). (A6)

We note that the individual’s dual total wealth Ŵ (t) is the sum of the individual’s dual

pension wealth F̂ (t) and the individual’s dual human wealth Ĥ(t), where Ĥ(t) is defined
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as follows:

Ĥ(t) ≡ Et
[∫ TD

t

m̂(s)

m̂(t)
Ŷ (s)ds

]
= fĤ

(
t, Ŷ (t), m̂(t)

)
. (A7)

Hence, to derive the dynamics of Ŵ (t), we first need to derive the dynamics of F̂ (t) and

Ĥ(t). By Itô’s Lemma, we find

dĤ(t) = (. . .) dt+

(
∂Ĥ(t)

∂Ŷ (t)

∂Ŷ (t)

∂C̄(t)
σC̄C̄(t) +

∂Ĥ(t)

∂m̂(t)
φ̂C̄(t)m̂(t)

)
dZC̄(t)

+

(
∂Ĥ(t)

∂Ŷ (t)

∂Ŷ (t)

∂Y (t)
σY Y (t) +

∂Ĥ(t)

∂m̂(t)
φ̂Y (t)m̂(t)

)
dZY (t)

+
∂Ĥ(t)

∂m̂(t)
φ̂S(t)dZS(t).

(A8)

Here,

φ̂S(t) = −λ̂S − ρ−1
2,1λ̂C̄(t)− ρ−1

3,1λ̂Y (t), (A9)

φ̂C̄(t) = −ρ−1
1,2λ̂S − λ̂C̄(t)− ρ−1

3,2λ̂Y (t), (A10)

φ̂Y (t) = −ρ−1
1,3λ̂S − ρ−1

2,3λ̂C̄(t)− λ̂Y (t), (A11)

with ρ−1
i,j the (i, j)th element of ρ−1. Note that λ̂S = λS = (µS − r)/σS.

The individual’s dual pension wealth F̂ (t) evolves as follows:

dF̂ (t) = (. . .) dt+ ω̂(t)σSF̂ (t)dZS(t), (A12)

where ω̂(t) represents the share of dual pension wealth invested in the risky stock.

Thus,

dŴ (t) = dF̂ (t) + dĤ(t)

= (. . .) dt+

(
∂Ĥ(t)

∂Ŷ (t)

∂Ŷ (t)

∂C̄(t)
σC̄C̄(t) +

∂Ĥ(t)

∂m̂(t)
φ̂C̄(t)m̂(t)

)
dZC̄(t)

+

(
∂Ĥ(t)

∂Ŷ (t)

∂Ŷ (t)

∂Y (t)
σY Y (t) +

∂Ĥ(t)

∂m̂(t)
φ̂Y (t)m̂(t)

)
dZY (t)

+

(
ω̂(t)σSF̂ (t) +

∂Ĥ(t)

∂m̂(t)
φ̂S(t)

)
dZS(t).

(A13)
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By Itô’s Lemma, we also find

dV̂ (t) = (. . .) dt+

(
∂V̂ (t)

∂Ŷ (t)

∂Ŷ (t)

∂C̄(t)
σC̄C̄(t) +

∂V̂ (t)

∂m̂(t)
φ̂C̄(t)m̂(t)

)
dZC̄(t)

+

(
∂V̂ (t)

∂Ŷ (t)

∂Ŷ (t)

∂Y (t)
σY Y (t) +

∂V̂ (t)

∂m̂(t)
φ̂Y (t)m̂(t)

)
dZY (t)

+
∂V̂ (t)

∂m̂(t)
φ̂S(t)m̂(t)dZS(t).

(A14)

Solving dV̂ (t) = dŴ (t), we find that the optimal dual portfolio strategy and the optimal

dual factor loadings should satisfy

ω̂∗(t)σSF̂ (t) =
∂F̂ (t)

∂m̂(t)
φ̂∗S(t)m̂(t), (A15)

φ̂∗C̄(t) =

(
∂Ĥ(t)

∂C̄(t)
− ∂V̂ (t)

∂C̄(t)

)(
∂V̂ (t)

∂m̂(t)
− ∂Ĥ(t)

∂m̂(t)

)−1
σC̄C̄(t)

m̂(t)
, (A16)

φ̂∗Y (t) =

(
∂Ĥ(t)

∂Y (t)
− ∂V̂ (t)

∂Y (t)

)(
∂V̂ (t)

∂m̂(t)
− ∂Ĥ(t)

∂m̂(t)

)−1
σY Y (t)

m̂(t)
. (A17)

Appendix C describes how to numerically determine ω̂∗(t), λ̂∗
C̄

(t) and λ̂∗Y (t).

Note that F (t) = fc(t)hc(t) + fC̄(t)hC̄(t) + fY (t)hY (t) + F̂ (t) (1 + βcfc(t)). Hence, by

Itô’s Lemma,

dF (t) = (. . .) dt+ (1 + βcfc(t)) ω̂(t)σSF̂ (t)dZS(t). (A18)

Comparing (A18) with the dynamic budget constraint

dF (t) = (. . .) dt+ ω(t)σSF (t)dZS(t), (A19)

we find that the optimal portfolio strategy ω∗(t) is given by

ω∗(t) = ω̂∗(t) (1 + βcfc(t))
F̂ (t)

F (t)
. (A20)
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C Numerical Method

Appendix B.2 shows that the dual portfolio strategy and the dual factor loadings are

determined such that the changes in the value of future dual consumption match the

changes in dual total wealth. This appendix illustrates how we implement this

numerically. We assume that the instantaneous utility function is given by

u(ĉ(t)) =
1

1− γ
ĉ(t)1−γ. (A1)

We need to determine the dual portfolio strategy ω̂(t), the dual market price of aggregate

consumption risk λ̂C̄(t) and the dual market price of labor income risk λ̂Y (t). Note that

the dual market price of stock return risk λ̂S is exogenously given (i.e., λ̂S = λS =

(µS − r) /σS).

Let us denote by TR the number of working periods (e.g., TR = 40) and by TD the

total number of periods (e.g., TD = 60). We assume that the individual receives dual

labor income at the beginning of a period. Dual consumption also takes places at the

beginning of a period. When we refer to a variable X(t), its value is always known at the

beginning of period t.

C.1 Algorithm

We now describe the algorithm to compute ω̂∗(t), λ̂∗
C̄

(t) and λ̂∗Y (t) for every

t ∈ {1, . . . , TD − 1}. First, we construct a grid of

Ŷ1(t) ≡ Y (t) (1− βY fY (t)) /(1 + βcfc(t)), Ŷ2(t) ≡ −βC̄fC̄(t)/C̄(t)(1 + βcfc(t)) and

m̂(t).13 Although m̂(t) is determined endogenously, we can still construct a grid of m̂(t)

(we should define the smallest and largest grid point such that most realizations of m̂(t)

lie between these lower and upper bounds). We denote by Ŷ i
1 (t), Ŷ j

2 (t) and m̂k(t) the

ith grid point of Ŷ1(t), the jth grid point of Ŷ2(t) and the kth grid point of m̂(t),

respectively. The corresponding optimal dual portfolio strategy and optimal dual

market prices of risk are denoted by ω̂∗i,j,k(t), λ̂∗i,j,k
C̄

(t) and λ̂∗i,j,kY (t). In the remainder,

we use bold face to indicate that a value of a variable is not known given current

information {Ŷ i
1 (t), Ŷ j

2 (t), m̂k(t)}.
13Note that Ŷ (t) = Ŷ1(t) + Ŷ2(t).
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C.1.1 Last Period of the Retirement Phase

During retirement, labor income is zero. Hence, Ŷ1(t) = 0 for all t ∈ {TR + 1, . . . , TD − 1}.
In the retirement phase, current information is thus represented by

{
Ŷ j

2 (t), m̂k(t)
}

.

For every combination
{
Ŷ j

2 (TD − 1), m̂k(TD − 1)
}

, we determine ω̂∗j,k(TD − 1),

λ̂∗j,k
C̄

(TD − 1) and λ̂∗j,kY (TD − 1). To do so, we need to derive the change in dual human

wealth, the change in the value of future dual consumption and the change in dual

pension wealth. We start by deriving the change in dual human wealth.

We find that Ĥj,k(TD − 1) = Ŷ j
2 (TD − 1) + ETD−1

[
m̂(TD)

m̂k(TD−1)
Ŷ2(TD)

]
and Ĥ(TD) =

Ŷ2(TD). Hence,

Ĥj,k(TD − 1) = Ŷ j
2 (TD − 1) + Ŷ j

2 (TD − 1)ETD−1

[
m̂(TD)

m̂k(TD − 1)

Ŷ2(TD)

Ŷ j
2 (TD − 1)

]
= Ŷ j

2 (TD − 1) + Ŷ j
2 (TD − 1)e

−r̂(TD−1)+µ
Ŷ2

(TD−1)+ 1
2
σ2
C̄
−σC̄ λ̂

j,k

C̄
(TD−1)

,

(A2)

with µŶ2
(t) ≡ µC̄ + d log fC̄(t)/dt− d log (1 + βcfc(t)) /dt. Furthermore, we find that

Ĥ(TD) = Ŷ j
2 (TD − 1)e

µ
Ŷ2

(TD−1)+σC̄εC̄(TD)
. (A3)

Here, εC̄(TD) is the unexpected aggregate consumption shock between the beginning of

period TD − 1 and the beginning of period TD. Hence, dual human wealth changes as

follows:

∆Ĥ(TD) = Ĥ(TD)− Ĥj,k(TD − 1)

= Ŷ j
2 (TD − 1)

{
e
µ
Ŷ2

(TD−1)+σC̄εC̄(TD)

−e−r̂(TD−1)+µ
Ŷ2

(TD−1)+ 1
2
σ2
C̄
−σC̄ λ̂

j,k

C̄
(TD−1) − 1

}
≈ Ŷ j

2 (TD − 1)
{
r̂(TD − 1) + σC̄ λ̂

j,k

C̄
(TD − 1) + σC̄εC̄(TD)− 1

}
.

(A4)

Here, we have used the approximations ex ≈ 1+x and e−
1
2
σ2+σε ≈ 1+σε with ε ∼ N(0, 1).

We now derive the change in the value of future dual consumption. We find

V̂ (TD) = ĉ(TD), (A5)

V̂ j,k(TD − 1) = ĉ k(TD − 1) + ETD−1

[
m̂(TD)

m̂k(TD − 1)
ĉ(TD)

]
. (A6)
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Here,

ĉ k(TD − 1) =

(
eδ(TD−2)y

m̂k(TD − 1)

m̂(1)

)− 1
γ

. (A7)

Hence,

V̂ (TD) = ĉ k(TD − 1)e−
δ
γ

+ 1
γ (r̂(TD−1)+ 1

2
φ̂>j,k(TD−1)ρφ̂j,k(TD−1))

× e−
1
γ (φ̂j,kS (TD−1)εS(TD)+φ̂j,k

C̄
(TD−1)εC̄(TD)+φ̂j,kY (TD−1)εY (TD)),

(A8)

and

V̂ j,k(TD − 1) = ĉ k(TD − 1)

(
1 + ETD−1

[
e−

δ
γ

(
m̂(TD)

m̂k(TD − 1)

)1− 1
γ

])

= ĉ k(TD − 1)

{
e−

δ
γ
− γ−1

γ (r̂(TD−1)+ 1
2
φ̂>j,k(TD−1)ρφ̂j,k(TD−1))

× e
1
2( γ−1

γ )
2
φ̂>j,k(TD−1)ρφ̂j,k(TD−1)

}
+ ĉ k(TD − 1).

(A9)

The change in the value of future dual consumption is thus given by

∆V̂ (TD) = V̂ (TD)− V̂ j,k(TD − 1)

≈ ĉ k(TD − 1)

(
r̂(TD − 1) +

1

γ
φ̂>j,k(TD − 1)ρφ̂j,k(TD − 1)

− φ̂j,kS (TD − 1)

γ
εS(TD)−

φ̂j,k
C̄

(TD − 1)

γ
εC̄(TD)

− φ̂j,kY (TD − 1)

γ
εY (TD)

)
− ĉ k(TD − 1).

(A10)

We finally derive the change in dual pension wealth. We find

F̂ (TD) = Ŷ j
2 (TD − 1)− ĉ k(TD − 1)

+ F̂ j,k(TD − 1)er̂(TD−1)+ω̂j,k(TD−1)λSσS− 1
2
ω̂j,k(TD−1)2σ2

S+ω̂j,k(TD−1)σSεS(TD),
(A11)

with

F̂ j,k(TD − 1) = ĉ k(TD − 1)− Ŷ j
2 (TD − 1). (A12)
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Hence,

∆F̂ (TD) = F̂ (TD)− F̂ j,k(TD − 1)

≈ Ŷ j
2 (TD − 1)− ĉ k(TD − 1)

+ F̂ j,k(TD − 1)
(
r̂(TD − 1) + ω̂j,k(TD − 1)λSσS

+ω̂j,k(TD − 1)σSεS(TD)
)
.

(A13)

Using the condition ∆V̂ (TD) = ∆Ĥ(TD) + ∆F̂ (TD), we arrive at

ω̂∗j,k(TD − 1) = − ĉ k(TD − 1)

F̂ j,k(TD − 1)

φ̂j,kS (TD − 1)

γσS
, (A14)

φ̂∗j,k
C̄

(TD − 1) = −σC̄γŶ
j(TD − 1)

ĉ k(TD − 1)
, (A15)

φ̂∗j,kY (TD − 1) = 0. (A16)

Note that for all t

φ̂j,kS (t) = −λ̂S − ρ−1
1,2λ̂

j,k

C̄
(t)− ρ−1

1,3λ̂
j,k
Y (t), (A17)

λ̂j,k
C̄

(t) = −ρ2,1φ̂
j,k
S (t)− φ̂j,k

C̄
(t)− ρ2,3φ̂

j,k
Y (t) (A18)

λ̂j,kY (t) = −ρ3,1φ̂
j,k
S (t)− ρ3,2φ̂

j,k

C̄
(t)− φ̂j,kY (t). (A19)

Hence,

φ̂j,kS (TD − 1) =
−λ̂S + ρ−1

1,2

(
φ̂j,k
C̄

(TD − 1) + ρ2,3φ̂
j,k
Y (TD − 1)

)
1− ρ−1

1,2ρ2,1 − ρ−1
1,3ρ3,1

+
ρ−1

1,3

(
φ̂j,kY (TD − 1) + ρ3,2φ̂

j,k

C̄
(TD − 1)

)
1− ρ−1

1,2ρ2,1 − ρ−1
1,3ρ3,1

.

(A20)
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C.1.2 Remaining Periods of the Retirement Phase

We now determine ω̂∗j,k(t), λ̂∗j,k
C̄

(t) and λ̂∗j,kY (t) for all t ∈ {TR, . . . , TD − 2}. We start by

deriving the change in dual human wealth. We find

Ĥ(t+ 1) = Et+1

[
TD−t−1∑
l=0

m̂(t+ 1 + l)

m̂(t+ 1)
Ŷ2(t+ 1 + l)

]
, (A21)

Ĥj,k(t) = Ŷ j
2 (t) + Et

[
TD−t−1∑
l=0

m̂(t+ l + 1)

m̂k(t)
Ŷ2(t+ l + 1)

]

= Ŷ j
2 (t) + Et

{
m̂(t+ 1)

m̂k(t)
Et+1

[
TD−t−1∑
l=0

m̂(t+ l + 1)

m̂(t+ 1)
Ŷ2(t+ l + 1)

]}
,

= Ŷ j
2 (t) + Et

[
m̂(t+ 1)

m̂k(t)
Ĥ(t+ 1)

]
.

(A22)

In the previous step, we have determined Ĥ(t + 1). Using OLS regression, we now

determine the coefficients ηH0 (t+ 1), ηH1 (t+ 1) and ηH2 (t+ 1) such that

log
(
−Ĥ(t+ 1)

)
≈ ηH0 (t+1)+ηH1 (t+1) log

(
−Ŷ2(t+ 1)

)
+ηH2 (t+1) log m̂(t+1). (A23)

Hence,

Ĥj,k(t) = Ŷ j
2 (t)− eηH0 (t+1)

(
−Ŷ j

2 (t)
)ηH1 (t+1) (

m̂k(t)
)ηH2 (t+1)

× Et

(Ŷ2(t+ 1)

Ŷ j
2 (t)

)ηH1 (t+1)(
m̂(t+ 1)

m̂k(t)

)ηH2 (t+1)+1
 . (A24)

We now find that

∆Ĥ(t+ 1) ≈ −eηH0 (t+1)
(
−Ŷ j

2 (t)
)ηH1 (t+1) (

m̂k(t)
)ηH2 (t+1)

×
{
. . .+

(
ηH1 (t+ 1)σC̄ + ηH2 (t+ 1)φ̂j,k

C̄
(t)
)
εC̄(t+ 1)

+ ηH2 (t+ 1)φ̂j,kS (t)εS(t+ 1)
}
− Ŷ j

2 (t).

(A25)
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We now derive the change in the value of future dual consumption. We find

V̂ (t+ 1) = Et+1

[
TD−t−1∑
l=0

m̂(t+ 1 + l)

m̂(t+ 1)
ĉ(t+ 1 + l)

]
, (A26)

V̂ j,k(t) = ĉ k(t) + Et

[
TD−t−1∑
l=0

m̂(t+ 1 + l)

m̂k(t)
ĉ(t+ 1 + l)

]
.

= ĉ k(t) + Et

{
m̂(t+ 1)

m̂k(t)
Et+1

[
TD−t−1∑
l=0

m̂(t+ 1 + l)

m̂(t+ 1)
ĉ(t+ l + 1)

]}
,

= ĉ k(t) + Et
[
m̂(t+ 1)

m̂k(t)
V̂ (t+ 1)

]
,

(A27)

with

ĉ k(t) =

(
eδ(t−1)y

m̂k(t)

m̂(1)

)− 1
γ

. (A28)

In the previous step, we have determined V̂ (t + 1). Using OLS regression, we now

determine the coefficients ηV0 (t+ 1), ηV1 (t+ 1) and ηV2 (t+ 1) such that

log V̂ (t+ 1) ≈ ηV0 (t+ 1) + ηV1 (t+ 1) log
(
−Ŷ2(t+ 1)

)
+ ηV2 (t+ 1) log m̂(t+ 1). (A29)

Hence,

V̂ j,k(t) = ĉ k(t) + eη
V
0 (t+1)

(
−Ŷ j

2 (t)
)ηV1 (t+1) (

m̂k(t)
)ηV2 (t+1)

× Et

(Ŷ2(t+ 1)

Ŷ j
2 (t)

)ηV1 (t+1)(
m̂(t+ 1)

m̂k(t)

)ηV2 (t+1)+1
 . (A30)

We now find that

∆V̂ (t+ 1) ≈ eη
V
0 (t+1)

(
−Ŷ j

2 (t)
)ηV1 (t+1) (

m̂k(t)
)ηV2 (t+1)

×
{
. . .+

(
ηV1 (t+ 1)σC̄ + ηV2 (t+ 1)φ̂j,k

C̄
(t)
)
εC̄(t+ 1)

+ ηV2 (t+ 1)φ̂j,kS (t)εS(t+ 1)
}
− ĉ k(t).

(A31)
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We finally derive the change in dual pension wealth. We find

∆F̂ (t+ 1) ≈ Ŷ j
2 (t)− ĉ k(t) + F̂ j,k(t)

(
r̂(t) + ω̂j,k(t)λSσS + ω̂j,k(t)σSεS(t+ 1)

)
. (A32)

Here,

F̂ j,k(t) = eη
V
0 (t+1)

(
−Ŷ j

2 (t)
)ηV1 (t+1) (

m̂k(t)
)ηV2 (t+1)

+ eη
H
0 (t+1)

(
−Ŷ j

2 (t)
)ηH1 (t+1) (

m̂k(t)
)ηH2 (t+1)

.

(A33)

Using the condition ∆V̂ (t+ 1) = ∆Ĥ (t+ 1) + ∆F̂ (t+ 1), we arrive at

ω̂∗j,k(t) = ηV2 (t+ 1)φ̂j,kS (t)
Ṽ j,k(t)

σSF̂ j,k(t)
− ηH2 (t+ 1)φ̂j,kS (t)

H̃j,k(t)

σSF̂ j,k(t)
, (A34)

φ̂∗j,k
C̄

(t) = σC̄
ηV1 (t+ 1)Ṽ j,k(t)− ηH1 (t+ 1)H̃j,k(t)

ηH2 (t+ 1)H̃j,k(t)− ηV2 (t+ 1)Ṽ j,k(t)
, (A35)

φ̂∗j,kY (t) = 0, (A36)

with

H̃j,k(t) ≡ −eηH0 (t+1)
(
−Ŷ j

2 (t)
)ηH1 (t+1) (

m̂k(t)
)ηH2 (t+1)

, (A37)

Ṽ j,k(t) ≡ eη
V
0 (t+1)

(
−Ŷ j

2 (t)
)ηV1 (t+1) (

m̂k(t)
)ηV2 (t+1)

. (A38)

C.1.3 Last Period of the Working Phase

Now we determine for every combination
{
Ŷ i

1 (TR − 1), Ŷ j
2 (TR − 1), m̂k(TR − 1)

}
,

ω̂∗i,j,k(TR − 1), λ̂∗i,j,k
C̄

(TR − 1) and λ̂∗i,j,kY (TR − 1). To do so, we need to derive the change

in dual human wealth, the change in the value of future dual consumption and the

change in dual pension wealth. We start by deriving the change in dual human wealth.

We find that Ĥ i,j,k
1 (TR − 1) = Ŷ i

1 (TR − 1) + ETR−1

[
m̂(TR)

m̂k(TR−1)
Ŷ1(TR)

]
and Ĥ1(TR) =

Ŷ1(TR). Hence,

Ĥ i,j,k
1 (TR − 1) = Ŷ i

1 (TR − 1) + Ŷ i
1 (TR − 1)ETR−1

[
m̂(TR)

m̂k(TR − 1)

Ŷ1(TR)

Ŷ i
1 (TR − 1)

]
= Ŷ i

1 (TR − 1) + Ŷ i
1 (TR − 1)e

−r̂(TR−1)+µ
Ŷ1

(TR−1)+ 1
2
σ2
Y −σY λ̂

i,j,k
Y (TR−1)

,

(A39)
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with µŶ1
(t) ≡ µY + d log (1− βY fY (t)) /dt− d log (1 + βcfc(t)) /dt. Furthermore, we find

that

Ĥ1(TR) = Ŷ i
1 (TR − 1)e

µ
Ŷ1

(TR−1)+σY εY (TR)
. (A40)

Here, εY (TR) is the unexpected non-tradable labor income shock between the beginning

of period TR − 1 and the beginning of period TR. The first part of dual human wealth

changes as follows:

∆Ĥ1(TR) = Ĥ1(TR)− Ĥ i,j,k
1 (TR − 1)

= Ŷ i
1 (TR − 1)

{
e
µ
Ŷ1

(TR−1)+σY εY (TR)

−e−r̂(TR−1)+µ
Ŷ1

(TR−1)+ 1
2
σ2
Y −σY λ̂

i,j,k
Y (TR−1) − 1

}
≈ Ŷ i

1 (TR − 1)
{
r̂(TR − 1) + σY λ̂

i,j,k
Y (TR − 1) + σY εY (TR)− 1

}
.

(A41)

Here, we have used the approximations ex ≈ 1+x and e−
1
2
σ2+σε ≈ 1+σε with ε ∼ N(0, 1).

We now derive the second part of dual human wealth. We find

Ĥ2(TR) = ETR

[
TD−TR∑
l=0

m̂(TR + l)

m̂(TR)
Ŷ2(TR + l)

]
, (A42)

Ĥ i,j,k
2 (TR − 1) = Ŷ j

2 (TR − 1) + ETR−1

[
TD−TR∑
l=0

m̂(TR + l)

m̂k(TR − 1)
Ŷ2(TR + l)

]

= Ŷ j
2 (TR − 1) + ETR−1

{
m̂(TR)

m̂k(TR − 1)

ETR

[
TD−TR∑
l=0

m̂(TR + l)

m̂(TR)
Ŷ2(TR + l)

]}
,

= Ŷ j
2 (TR − 1) + ETR−1

[
m̂(t+ 1)

m̂k(TR − 1)
Ĥ2(TR)

]
.

(A43)

In the previous step, we have determined Ĥ2(TR) = Ĥ(TR). Using OLS regression, we

now determine the coefficients ηH2
0 (TR), ηH2

1 (TR) and ηH2
2 (TR) such that

log
(
−Ĥ2(TR)

)
≈ ηH2

0 (TR) + ηH2
1 (TR) log

(
−Ŷ2(TR)

)
+ ηH2

2 (TR) log m̂(TR). (A44)
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Hence,

Ĥ i,j,k
2 (TR − 1) = Ŷ j

2 (TR − 1)

− eη
H2
0 (TR)

(
−Ŷ j

2 (TR − 1)
)ηH2

1 (TR) (
m̂k(TR − 1)

)ηH2
2 (TR)

× ETR−1

( Ŷ2(TR)

Ŷ j
2 (TR − 1)

)η
H2
1 (TR)(

m̂(TR)

m̂k(TR − 1)

)ηH2
2 (TR)+1

 .
(A45)

We now find that

∆Ĥ2(TR) ≈ −eη
H2
0 (TR)

(
−Ŷ j

2 (TR − 1)
)ηH2

1 (TR) (
m̂k(TR − 1)

)ηH2
2 (TR)

×
{
. . .+

(
ηH2

1 (TR)σC̄ + ηH2
2 (TR)φ̂i,j,k

C̄
(TR − 1)

)
εC̄(TR)

+ ηH2
2 (TR)φ̂i,j,kY (TR − 1)εY (TR) + ηH2

2 (TR)φ̂i,j,kS (TR − 1)εS(TR)
}

− Ŷ j
2 (TR − 1).

(A46)

We now derive the change in the value of future dual consumption. We find

V̂ (TR) = ETR

[
TD−TR∑
l=0

m̂(TR + l)

m̂(TR)
ĉ(TR + l)

]
, (A47)

V̂ i,j,k(TR − 1) = ĉ k(TR − 1) + ETR−1

[
TD−TR∑
l=0

m̂(TR + l)

m̂k(TR − 1)
ĉ(TR + l)

]
.

= ĉ k(TR − 1) + ETR−1

{
m̂(TR)

m̂k(TR − 1)

ETR

[
TD−TR∑
l=0

m̂(TR + l)

m̂(TR)
ĉ(TR + l)

]}
,

= ĉ k(TR − 1) + ETR−1

[
m̂(TR)

m̂k(TR − 1)
V̂ (TR)

]
,

(A48)

with

ĉ k(TR − 1) =

(
eδ(TR−2)y

m̂k(TR − 1)

m̂(1)

)− 1
γ

. (A49)

In the previous step, we have determined V̂ (TR). Using OLS regression, we now
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determine the coefficients ηV0 (TR), ηV1 (TR) and ηV2 (TR) such that

log V̂ (TR) ≈ ηV0 (TR) + ηV1 (TR) log
(
−Ŷ2(TR)

)
+ ηV2 (TR) log m̂(TR). (A50)

Hence,

V̂ i,j,k(TR − 1) = ĉ k(TR − 1) + eη
V
0 (TR)

(
−Ŷ j

2 (TR − 1)
)ηV1 (TR) (

m̂k(TR − 1)
)ηV2 (TR)

× ETR−1

( Ŷ2(TR)

Ŷ j
2 (TR − 1)

)ηV1 (TR)(
m̂(TR)

m̂k(TR − 1)

)ηV2 (TR)+1
 . (A51)

We now find that

∆V̂ (TR) ≈ eη
V
0 (TR)

(
−Ŷ j

2 (TR − 1)
)ηV1 (TR) (

m̂k(TR − 1)
)ηV2 (TR)

×
{
. . .+

(
ηV1 (TR)σC̄ + ηV2 (TR)φ̂i,j,k

C̄
(TR − 1)

)
εC̄(TR)

+ ηV2 (TR)φ̂i,j,kY (TR − 1)εY (TR) + ηV2 (TR)φ̂i,j,kS (TR − 1)εS(TR)
}

− ĉ k(TR − 1).

(A52)

We finally derive the change in optimal dual pension wealth. We find

∆F̂ (TR) ≈ Ŷ i
1 (TR − 1) + Ŷ j

2 (TR − 1)− ĉ k(TR − 1)

+ F̂ i,j,k(TR − 1)
(
r̂(TR − 1) + ω̂i,j,k(TR − 1)λSσS

+ω̂i,j,k(TR − 1)σSεS(TR)
)
.

(A53)

Here,

F̂ i,j,k(TR − 1) = eη
V
0 (TR)

(
−Ŷ j

2 (TR − 1)
)ηV1 (TR) (

m̂k(TR − 1)
)ηV2 (TR)

+ eη
H2
0 (TR)

(
−Ŷ j

2 (TR − 1)
)ηH2

1 (TR) (
m̂k(TR − 1)

)ηH2
2 (TR)

− Ŷ i
1 (TR − 1).

(A54)
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Using the condition ∆V̂ (TR) = ∆Ĥ1(TR) + ∆Ĥ2(TR) + ∆F̂ (TR), we arrive at

ω̂∗i,j,k(TR − 1) = ηV2 (TR)φ̂i,j,kS (TR − 1)
Ṽ i,j,k(TR − 1)

σSF̂ i,j,k(TR − 1)

− ηH2
2 (TR)φ̂i,j,kS (TR − 1)

H̃ i,j,k
2 (TR − 1)

σSF̂ i,j,k(TR − 1)
,

(A55)

φ̂∗i,j,k
C̄

(TR − 1) = σC̄
ηV1 (TR)Ṽ i,j,k(TR − 1)− ηH2

1 (TR)H̃ i,j,k
2 (TR − 1)

ηH2
2 (TR)H̃ i,j,k

2 (TR − 1)− ηV2 (TR)Ṽ i,j,k(TR − 1)
, (A56)

φ̂∗i,j,kY (TR − 1) =
σY Ŷ

i
1 (TR − 1)

Ṽ i,j,k(TR − 1)ηV2 (TR)− H̃ i,j,k
2 (TR − 1)ηH2

2 (TR)
, (A57)

with

H̃ i,j,k
2 (TR − 1) ≡ −eη

H2
0 (TR)

(
−Ŷ j

2 (TR − 1)
)ηH2

1 (TR) (
m̂k(TR − 1)

)ηH2
2 (TR)

, (A58)

Ṽ i,j,k(TR − 1) ≡ eη
V
0 (TR)

(
−Ŷ j

2 (TR − 1)
)ηV1 (TR) (

m̂k(TR − 1)
)ηV2 (TR)

. (A59)

C.1.4 Remaining Periods of the Working Phase

We now determine ω̂∗i,j,k(t), λ̂∗i,j,k
C̄

(t) and λ̂∗i,j,kY (t) for all t ∈ {1, . . . , TR − 2}. We start

by deriving the change in the first and second part of dual human wealth. We find

Ĥ1(t+ 1) = Et+1

[
TR−t−1∑
l=0

m̂(t+ 1 + l)

m̂(t+ 1)
Ŷ1(t+ 1 + l)

]
, (A60)

Ĥ i,j,k
1 (t) = Ŷ i

1 (t) + Et

[
TR−t−1∑
l=0

m̂(t+ l + 1)

m̂k(t)
Ŷ1(t+ l + 1)

]

= Ŷ i
1 (t) + Et

{
m̂(t+ 1)

m̂k(t)
Et+1

[
TR−t−1∑
l=0

m̂(t+ l + 1)

m̂(t+ 1)
Ŷ1(t+ l + 1)

]}
,

= Ŷ i
1 (t) + Et

[
m̂(t+ 1)

m̂k(t)
Ĥ1(t+ 1)

]
,

(A61)
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and

Ĥ2(t+ 1) = Et+1

[
TD−t−1∑
l=0

m̂(t+ 1 + l)

m̂(t+ 1)
Ŷ2(t+ 1 + l)

]
, (A62)

Ĥ i,j,k
2 (t) = Ŷ j

2 (t) + Et

[
TD−t−1∑
l=0

m̂(t+ l + 1)

m̂k(t)
Ŷ2(t+ l + 1)

]

= Ŷ j
2 (t) + Et

{
m̂(t+ 1)

m̂k(t)
Et+1

[
TD−t−1∑
l=0

m̂(t+ l + 1)

m̂(t+ 1)
Ŷ2(t+ l + 1)

]}

= Ŷ j
2 (t) + Et

[
m̂(t+ 1)

m̂k(t)
Ĥ2(t+ 1)

]
.

(A63)

In the previous step, we have determined Ĥ1(t+1) and Ĥ2(t+1). Using OLS regression,

we now determine the coefficients ηH1
0 (t+ 1), ηH2

0 (t+ 1), ηH1
1 (t+ 1), ηH2

1 (t+ 1), ηH1
2 (t+ 1),

ηH2
2 (t+ 1), ηH1

3 (t+ 1) and ηH2
3 (t+ 1) such that

log
(
Ĥ1(t+ 1)

)
≈ηH1

0 (t+ 1) + ηH1
1 (t+ 1) log

(
−Ŷ2(t+ 1)

)
+ ηH1

2 (t+ 1) log m̂(t+ 1) + ηH1
3 (t+ 1) log Ŷ1(t+ 1),

(A64)

log
(
−Ĥ2(t+ 1)

)
≈ηH2

0 (t+ 1) + ηH2
1 (t+ 1) log

(
−Ŷ2(t+ 1)

)
+ ηH2

2 (t+ 1) log m̂(t+ 1) + ηH2
3 (t+ 1) log Ŷ1(t+ 1).

(A65)

Hence,

Ĥ i,j,k
1 (t) = Ŷ i

1 (t) + eη
H1
0 (t+1)

(
−Ŷ j

2 (t)
)ηH1

1 (t+1) (
m̂k(t)

)ηH1
2 (t+1)

(
Ŷ i

1 (t)
)ηH1

3 (t+1)

× Et

(Ŷ2(t+ 1)

Ŷ j
2 (t)

)η
H1
1 (t+1)(

m̂(t+ 1)

m̂k(t)

)ηH1
2 (t+1)+1

(
Ŷ1(t+ 1)

Ŷ i
1 (t)

)η
H1
3 (t+1)

,

Ĥ i,j,k
2 (t) = Ŷ j

2 (t)− eη
H2
0 (t+1)

(
−Ŷ j

2 (t)
)ηH2

1 (t+1) (
m̂k(t)

)ηH2
2 (t+1)

(
Ŷ i

1 (t)
)ηH2

3 (t+1)

× Et

(Ŷ2(t+ 1)

Ŷ j
2 (t)

)η
H2
1 (t+1)(

m̂(t+ 1)

m̂k(t)

)ηH2
2 (t+1)+1

(
Ŷ1(t+ 1)

Ŷ i
1 (t)

)η
H2
3 (t+1)

 .
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We now find that

∆Ĥ1(t+ 1) ≈ eη
H1
0 (t+1)

(
−Ŷ j

2 (t)
)ηH1

1 (t+1) (
m̂k(t)

)ηH1
2 (t+1)

(
Ŷ i

1 (t)
)ηH1

3 (t+1)

×
{
. . .+

(
ηH1

1 (t+ 1)σC̄ + ηH1
2 (t+ 1)φ̂i,j,k

C̄
(t)
)
εC̄(t+ 1)

+
(
ηH1

3 (t+ 1)σY + ηH1
2 (t+ 1)φ̂i,j,kY (t)

)
εY (t+ 1)

+ ηH1
2 (t+ 1)φ̂i,j,kS (t)εS(t+ 1)

}
− Ŷ i

1 (t),

(A66)

∆Ĥ2(t+ 1) ≈ −eη
H2
0 (t+1)

(
−Ŷ j

2 (t)
)ηH2

1 (t+1) (
m̂k(t)

)ηH2
2 (t+1)

(
Ŷ i

1 (t)
)ηH2

3 (t+1)

×
{
. . .+

(
ηH2

1 (t+ 1)σC̄ + ηH2
2 (t+ 1)φ̂i,j,k

C̄
(t)
)
εC̄(t+ 1)

+
(
ηH2

3 (t+ 1)σY + ηH2
2 (t+ 1)φ̂i,j,kY (t)

)
εY (t+ 1)

+ ηH2
2 (t+ 1)φ̂i,j,kS (t)εS(t+ 1)

}
− Ŷ j

2 (t).

(A67)

We now derive the change in the value of future dual consumption. We find

V̂ (t+ 1) = Et+1

[
TD−t−1∑
l=0

m̂(t+ 1 + l)

m̂(t+ 1)
ĉ(t+ 1 + l)

]
, (A68)

V̂ i,j,k(t) = ĉ k(t) + Et

[
TD−t−1∑
l=0

m̂(t+ 1 + l)

m̂k(t)
ĉ(t+ 1 + l)

]
.

= ĉ k(t) + Et

{
m̂(t+ 1)

m̂k(t)
Et+1

[
TD−t−1∑
l=0

m̂(t+ 1 + l)

m̂(t+ 1)
ĉ(t+ l + 1)

]}
,

= ĉ k(t) + Et
[
m̂(t+ 1)

m̂k(t)
V̂ (t+ 1)

]
,

(A69)

with

ĉ k(t) =

(
eδ(t−1)y

m̂k(t)

m̂(1)

)− 1
γ

. (A70)

In the previous step, we have determined V̂ (t + 1). Using OLS regression, we now

determine the coefficients ηV0 (t+ 1), ηV1 (t+ 1), ηV2 (t+ 1) and ηV3 (t+ 1) such that

log
(
V̂ (t+ 1)

)
≈ηV0 (t+ 1) + ηV1 (t+ 1) log

(
−Ŷ2(t+ 1)

)
+ ηV2 (t+ 1) log m̂(t+ 1) + ηV3 (t+ 1) log Ŷ1(t+ 1).

(A71)
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Hence,

V̂ i,j,k(t) = ĉ k(t) + eη
V
0 (t+1)

(
−Ŷ j

2 (t)
)ηV1 (t+1) (

m̂k(t)
)ηV2 (t+1)

(
Ŷ i

1 (t)
)ηV3 (t+1)

× Et

(Ŷ2(t+ 1)

Ŷ j
2 (t)

)ηV1 (t+1)(
m̂(t+ 1)

m̂k(t)

)ηV2 (t+1)+1
(
Ŷ1(t+ 1)

Ŷ i
1 (t)

)ηV3 (t+1)
 .

We now find that

∆V̂ (t+ 1) ≈ eη
V
0 (t+1)

(
−Ŷ j

2 (t)
)ηV1 (t+1) (

m̂k(t)
)ηV2 (t+1)

(
Ŷ i

1 (t)
)ηV3 (t+1)

×
{
. . .+

(
ηV1 (t+ 1)σC̄ + ηV2 (t+ 1)φ̂i,j,k

C̄
(t)
)
εC̄(t+ 1)

×
{
. . .+

(
ηV3 (t+ 1)σY + ηV2 (t+ 1)φ̂i,j,kY (t)

)
εY (t+ 1)

+ ηV2 (t+ 1)φ̂i,j,kS (t)εS(t+ 1)
}
− ĉ k(t).

(A72)

We finally derive the change in dual pension wealth. We find

∆F̂ (t+ 1) ≈ Ŷ i
1 (t) + Ŷ j

2 (t)− ĉ k(t)

+ F̂ i,j,k(t)
(
r̂(t) + ω̂i,j,k(t)λSσS + ω̂i,j,k(t)σSεS(t+ 1)

)
.

(A73)

Here,

F̂ i,j,k(t) = eη
V
0 (t+1)

(
−Ŷ j

2 (t)
)ηV1 (t+1) (

m̂k(t)
)ηV2 (t+1)

(
Ŷ i

1 (t)
)ηV3 (t+1)

+ eη
H2
0 (t+1)

(
−Ŷ j

2 (t)
)ηH2

1 (t+1) (
m̂k(t)

)ηH2
2 (t+1)

(
Ŷ i

1 (t)
)ηH2

3 (t+1)

− eη
H1
0 (t+1)

(
−Ŷ j

2 (t)
)ηH1

1 (t+1) (
m̂k(t)

)ηH1
2 (t+1)

(
Ŷ i

1 (t)
)ηH1

3 (t+1)

.

(A74)
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Using the condition ∆V̂ (t+ 1) = ∆Ĥ1(t+ 1) + ∆Ĥ2(t+ 1) + ∆F̂ (t+ 1), we arrive at

ω̂∗i,j,k(t) = ηV2 (t+ 1)φ̂i,j,kS (t)
Ṽ i,j,k(t)

σSF̂ i,j,k(t)
− ηH1

2 (t+ 1)φ̂i,j,kS (t)
H̃ i,j,k

1 (t)

σSF̂ i,j,k(t)

− ηH2
2 (t+ 1)φ̂i,j,kS (t)

H̃ i,j,k
2 (t)

σSF̂ i,j,k(t)
,

(A75)

φ̂∗i,j,k
C̄

(t) = σC̄
ηV1 (t+ 1)Ṽ i,j,k(t)− ηH1

1 (t+ 1)H̃ i,j,k
1 (t)− ηH2

1 (t+ 1)H̃ i,j,k
2 (t)

ηH1
2 (t+ 1)H̃ i,j,k

1 (t) + ηH2
2 (t+ 1)H̃ i,j,k

2 (t)− ηV2 (t+ 1)Ṽ i,j,k(t)
, (A76)

φ̂∗i,j,kY (t) = σY
ηV3 (t+ 1)Ṽ i,j,k(t)− ηH1

3 (t+ 1)H̃ i,j,k
1 (t)− ηH2

3 (t+ 1)H̃ i,j,k
2 (t)

ηH1
2 (t+ 1)H̃ i,j,k

1 (t) + ηH2
2 (t+ 1)H̃ i,j,k

2 (t)− ηV2 (t+ 1)Ṽ i,j,k(t)
, (A77)

with

H̃ i,j,k
1 (t) ≡ eη

H1
0 (t+1)

(
−Ŷ j

2 (t)
)ηH1

1 (t+1) (
m̂k(t)

)ηH1
2 (t+1)

(
Ŷ i

1 (t)
)ηH1

3 (t+1)

, (A78)

H̃ i,j,k
2 (t) ≡ −eη

H2
0 (t+1)

(
−Ŷ j

2 (t)
)ηH2

1 (t+1) (
m̂k(t)

)ηH2
2 (t+1)

(
Ŷ i

1 (t)
)ηH2

3 (t+1)

, (A79)

Ṽ i,j,k(t) ≡ eη
V
0 (t+1)

(
−Ŷ j

2 (t)
)ηV1 (t+1) (

m̂k(t)
)ηV2 (t+1)

(
Ŷ i

1 (t)
)ηV3 (t+1)

. (A80)

We note that in applications ηV3 (t + 1), ηH2
3 (t + 1), ηH1

2 (t + 1) and ηH2
2 (t + 1) are

approximately equal to zero. Under these conditions, we thus find that

φ̂∗i,j,kY (t) = σY
ηH1

3 (t+ 1)H̃ i,j,k
1 (t)

ηV2 (t+ 1)Ṽ i,j,k(t)
, (A81)

which reduces to −λ̂∗i,j,kY (t) if ρ3,1 = ρ3,2 = 0.
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