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1 Introduction

Empirical work on index returns and options find strong evidence for stochastic volatility, for instance,

Andersen, Benzoni, and Lund (2002) using the dataset S&P 500 returns for the period from 1953 to 1996,

Chernov, Gallant, Ghysels, and Tauchen (2003) using the dataset Dow Jones 30 returns for the period

from 1953 to 1999, and Bakshi, Cao, and Chen (1997) using a cross section of S&P 500 options for the

period from 1988 to 1991. Stochastic volatility can impact the optimal allocation of assets in a long-term

investment portfolio which typically has a horizon of several years or even decades. As volatility fluctuates,

long-term investors who focus on the fundamental value of their investments rather than short-term price

movements, may need to adjust their asset allocation to achieve their risk and return objectives. By

accounting for the fluctuating nature of volatility, long-term investors can make more informed decisions

about asset location within their portfolios.

One popular stochastic volatility model is the Heston model (Heston, 1993). The Heson model consists

of two stochastic differential equations, one for the underlying asset’s price and the other for its variance.

The variance process follows a square root mean reverting process, namely the CIR process. The model

helps capture the observed phenomena in financial markets such as volatility clustering, heavy tails and

the smile of implied volatilities, see Tankov (2003). It also gives closed-form option pricing formula, which

has a considerable computational advantage. Under the Heston model, perfect hedging by only trading

the risky asset and the risk-free asset is not possible. Liu and Pan (2003) introduce derivatives to hedge

the additional random source and assume that the risk premia are determined exogenously, then they

are able to derive closed-form solutions. In their study, the portfolio improvement from participating in

the derivatives market is considerable, in terms of the annualized, continuously compounded return in

certainty-equivalent wealth for an investor with relative risk aversion of three (CRRA). It becomes higher

when the market becomes more volatile. Moreover, this portfolio improvement is very sensitive to how

diffusive volatility risk is priced, stated by Liu and Pan (2003).

Regarding the diffusive volatility risk premium, Broadie, Chernov, and Johannes (2007) point out

that the evidence is inconclusive. First, theory provides no guidance regarding the sign of the diffusive

volatility risk premium. Additionally, the studies that formally estimate diffusive volatility risk premia

obtain conflicting results, because the estimates depend on the data set and the model specification used,

see for instance Chernov and Ghysels (2000), Pan (2002), Jones (2003), Eraker (2004). Particularly, Jones

(2003) show that the value as well as the sign of the estimates could differ when different data samples are

used.

Regarding the utility functions, CRRA utility functions are broadly used within the academic literature.

CRRA utility is defined over the level of the outcome being evaluated, hence it may be appropriate for
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an investor who is concerned with comparing outcomes on the basis of their level and spread but whose

risk aversion does not change with the overall level. For investors who evaluate outcomes relative to

some reference level, reference-dependent utility functions may be more suitable, stated in Warren (2019).

Investing with a reference level typically involves setting a specific financial goal or objective before the

investor starts investing. Within the framework of prospect theory, final and interim targets are usually

considered as reference levels, see for instance Blake, Wright, and Zhang (2013) and Donnelly, Khemka,

and Lim (2022). This helps create a focused investment strategy. Alternatively, the starting level can

be considered as a reference level. Touré-Tillery and Fishbach (2012) suggest that people seem to be

more motivated using the starting point as a reference level in the initial states of goal pursuit. Koop

and Johnson (2012) argue that minimum requirement could be established as a reference level and that

multiple reference levels could be included within the value function; Higgins and Liberman (2018) argue

that people may use many kinds of reference levels at different times. In addition, Larrick, Heath, and Wu

(2009) point out that goals induce risk taking and that specific, challenging goals lead to riskier strategies.

One reference-dependent utility function is SAHARA utility function. SAHARA stands for Symmetric

Asymptotic Hyperbolic Absolute Risk Aversion. This class of utility functions was introduced by Chen,

Pelsser, and Vellekoop (2011). It deviates from CRRA utility function in the functional form and consists

of three parameters, i.e. parameter of risk aversion, scale and threshold. We interpret the threshold in

the SAHARA utility function as the reference level. Nevertheless, CRRA utility function is a special case

of SAHARA utility function, namely, given positive wealth and the threshold being set at zero wealth,

the SAHARA utility function converges to the CRRA utility function (apart from an overall change of

scale), when the value of the scale parameter converges to zero. By allowing the scale parameter to take

small values, the SAHARA utility function can have potentially important implications for investment

behaviour1, such as locking-in certain gains, becoming overconfident when they have made gains and

taking extra risks when they have made losses, which CRRA utility function fails to describe.

This paper contributes to the literature on optimal investment with reference-dependent preferences

in a number of ways. We investigate the optimal dynamic investment strategies for long-term investors

under the Heston model when the investors have SAHARA type of risk preference. We find that, when

the reference level is imposed at zero wealth and the value of the scale parameter is small, the distribution

under SAHARA risk preference is similar to that under CRRA risk preference with the same risk aversion.

This enables us to analyse the impact of a positive reference level on the distribution of optimal terminal

wealth. In addition, the reference level is time-varying, and our interim target fund can be modelled as a

proportion of the future value of the initial fund under the risk-neutral measure throughout time. Compared

1See Mitchell and Utkus (2004) for a review of investment decision making in pension plans in a behavioural

context.
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to CRRA risk preference, the distribution of the optimal terminal wealth under SAHARA risk preference is

more concentrated around the reference level. Namely, under SAHARA risk preference, investors become

highly risk averse around the reference level, which introduces opportunity cost by limiting their ability

to invest in risky assets, especially when the financial market is favourable, but also prevent them from

making losses when the market is unfavourable. More importantly, this investment strategy leads to a

certainty-equivalent wealth which is less sensitive to the value of the diffusive volatility risk premium.

Another important issue we address is model mis-specification, as the true model is in general unknown

and model mis-specification can drastically affect the portfolio performance, see Branger, Schlag, and

Schneider (2008). We consider a particular model mis-specification where investors wrongly use a model

without stochastic volatility, namely the Black-Scholes model, while the true data are generated by the

Heston model. We explore the impact of model mis-specification on the outcomes and examine whether

it is likely to reduce the loss in the certainty-equivalent wealth of a utility-maximizing investor in case of

model mis-specification. We follow Harrison and Kreps (1979) and assume a no-arbitrage financial market

in both cases, which implies the existence of a pricing kernel in both financial markets. We utilize the

method of moments to match the variance of the pricing kernel relatives, and make use of SAHARA utility

function as well as the time-varying reference level. We find that the feature of being highly risk averse

around the reference level helps reduce the loss in the certainty-equivalent wealth when the market returns

deviate from the assumptions under which the investment strategies are derived.

The rest of the paper is organized as follows. Section 2 briefly introduces the models, i.e. the Black-

Scholes model and the Heston model. Section 3 introduces two classes of utility functions, i.e. the CRRA

utility function and the SAHARA utility function, and provides the problem setting and the solution to

the expected utility-maximization problem under these utility functions. Section 4 deals with model mis-

specification. Section 5 provides numerical implementations comparing results under CRRA and SAHARA

risk preferences, as well as the role of SAHARA risk preference in reducing the loss in the certainty-

equivalent wealth when investors use the Black-Scholes model with deterministic volatility instead of the

true model, i.e. the Heston model. Section 6 draws conclusions.

2 Models

2.1 Black-Scholes model

We assume a financial market in continuous time without transaction costs. The first model we consider

is the Black-Scholes model. The asset price dynamics for the bank account and the risky stock S are given
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by

dBt = rBtdt, B0 = 1,

dSt = µtStdt+ σtStdWt, S0 > 0,
(2.1)

where the parameters r, µt and σt represent the constant risk-free interest rate, the instantaneous rate of

return and the volatility of the stock, respectively. σt is a deterministic function of time. λt is the diffusive

volatility risk premium. Moreover, µt = r+ λtσt. Following Heston (1993) and Chen, Nguyen, and Stadje

(2018), the diffusive volatility risk premium is assumed to be proportional to the volatility of the risky

asset, i.e. λt = λσt and λ is a constant.

The pricing kernel is

Mt = M0e
−rte−

∫ t
0 λudWu− 1

2

∫ t
0 λ2

udu, (2.2)

where M0 = 1 and Mt is log-normally distributed.

Moreover,

E
[(

MT

Mt

)m ∣∣∣ Ft

]
= e−rm(T−t)e

1
2
m(m−1)

∫ T
t λ2

udu. (2.3)

The investor invests a proportion πt of the wealth, Xt, in the risky stock S and the rest in the bank

account B. The wealth process satisfies

dXt = Xt(r + πtλtσt)dt+ πtXtσtdWt. (2.4)

2.2 Heston stochastic volatility model

The second model we consider is the Heston model. Let the asset price for the stock S be given by

dSt = µtSt dt+
√
vtSt dWS,t, S0 > 0,

dvt = κ(v̄ − vt)dt+ δ
√
vt

(
ρ dWS,t +

√
1− ρ2 dW⊥

S,t

)
,

(2.5)

where WS and W⊥
S are two independent standard Brownian motions under measure P and they are called

the fundamental risk factors in the probability space (Ω,F ,P). ρ is between -1 and 1. κ > 0 determines

the speed of adjustment of the variance towards its theoretical mean v̄ > 0, and δ > 0 is the volatility of

the variance. Furthermore, Feller condition v0 > 0 and 2κv̄ ≥ δ2 guarantees that the value of vt is always

positive.

The diffusive-risk premium is assumed to be proportional to the standard deviation of the risky asset

variance and it is specified as
µt − r
√
vt

= λ1
√
vt. (2.6)
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The volatility risk premium is defined by λ2
√
vt. λ1 and λ2 are constants. We set

dW̃S,t = dWS,t +
µt − r
√
vt

dt = dWS,t + λ1
√
vtdt, (2.7)

and

dW̃⊥
S,t = dW⊥

S,t + λ2
√
vtdt, (2.8)

then the covariance between W̃S,t and W̃⊥
S,t is zero, and they are standard independent Brownian motions

under a new measure P̃ defined by

ζT :=
dP̃
dP

= e−λ1

∫ T
0

√
vudWS,u−λ2

∫ T
0

√
vudW⊥

S,u−
λ21+λ22

2

∫ T
0 vudu. (2.9)

We introduce

dWv,t := ρ dWS,t +
√
1− ρ2 dW⊥

S,t,

dW⊥
v,t :=

√
1− ρ2dWS,t − ρdW⊥

S,t,
(2.10)

Wv,t and W⊥
v,t are independent as they are normally distributed and their covariance is zero. Furthermore,

following Chen et al. (2018) we introduce these two quantities:

λ3 := ρλ1 +
√

1− ρ2λ2, λ4 :=
√
1− ρ2λ1 − ρλ2, (2.11)

Then ζT = ζ1,T ζ2,T , where

ζ1,T : = e−λ3

∫ T
0

√
vudWv,u−

λ23
2

∫ T
0 vudu,

ζ2,T : = e−λ4

∫ T
0

√
vudW⊥

v,u−
λ24
2

∫ T
0 vudu.

(2.12)

From the volatility process in (2.5) we have∫ T

t

√
vudWv,u =

1

δ

[
vT − vt − κv̄(T − t) + κ

∫ T

t
vudu

]
, (2.13)

therefore,

E[ζT ] = E[ζ1,T ] = e
λ3
δ
(κv̄T+v0)E

[
e
−λ3

δ
vT−

(
λ3κ
δ

+ 1
2
λ2
3

) ∫ T
0 vudu

]
= e

λ3
δ
(κv̄T+v0)h(1, v0, T ), (2.14)

where h(m, vt, T − t) = e−A(a,b,T−t)−B(a,b,T−t)vt is the Laplace transform of the couple (vT ,
∫ T
0 vsds) at

a = λ3
δ m and b = λ3κ

δ m + 1
2λ

2
3m − 1

2λ
2
4m(m − 1), see Kraft (2005). The expression for A(a, b, T − t) and

B(a, b, T − t) are included in Appendix. h(1, v0, T ) = e−
λ3
δ
(κv̄T+v0), then E[ζT ] = 1, hence the process ζT

is a density.

The pricing kernel in this market is

Mt := e−rtζt, M0 = 1. (2.15)
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Note that

E
[(

MT

Mt

)m ∣∣∣ Ft

]
=

(
e

(
−r+

λ3
δ
κv̄

)
(T−t)+

λ3
δ
vt

)m

h(m, vt, T − t), (2.16)

Under the EMM P̃, the asset price dynamics in (2.5) are as follows:

dSt = St(rdt+
√
vt dW̃S,t),

dvt = κ̃ (ṽ − vt) dt+ δ
√
vt

(
ρ dW̃S,t +

√
1− ρ2 dW̃⊥

S,t

)
,

(2.17)

where κ̃ = κ + δλ3, ṽ = κv̄
κ+δλ3

. Hence, the change of measure affects the speed of adjustment κ̃ and the

long term mean ṽ.

The option price can be expressed as Ot = g(t, St, vt). The discounted option price e−rtOt is a martin-

gale under measure P̃. Ito’s lemma on e−rtg(t, St, vt) under P̃ gives

dOt = rOtdt+ (gsSt + gvδρ)
√
vtdW̃S,t + gvδ

√
1− ρ2

√
vtdW̃

⊥
S,t. (2.18)

Let π1,t and π2,t be a proportion of the wealth invested in the stock and the option respectively, the rest

in the risk-free asset. The corresponding wealth process Xt with an initial wealth x0 satisfies

dXt = Xt

rdt+ θ1
√
vt(dWS,t + λ1

√
vtdt︸ ︷︷ ︸

dW̃S,t

) + θ2
√
vt(dW

⊥
S,t + λ2

√
vtdt︸ ︷︷ ︸

dW̃⊥
S,t

)

 , (2.19)

where

θ1,t = π1,t +
gSSt + gvδρ

Ot
π2,t, θ2,t =

gvδ
√

1− ρ2

Ot
π2,t. (2.20)

When δ → 0, the stock price process under measure P turns into a process similar to a geometric

Brownian motion but with a deterministically time-varying volatility such that σt →
√

v̄ + e−κt (v0 − v̄).

3 Utility maximization

We consider the following terminal wealth utility maximization problem:

max
(πt,ϕt)t∈[0,T ]

E [U(XT )] ,

s.t. E [MTXT ] = X0.

(3.1)

Following Cox and Huang (1989), the optimal terminal wealth in complete market is given by

X∗
T = I(ηMT ), (3.2)

where η is the Lagrangian multiplier and satisfies the budget constraint. I is the inverse function of the

first derivative of the utility function U ′.
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3.1 Utility functions

The utility functions we consider are the CRRA class of utility functions and the SAHARA class of utility

functions. The CRRA utility function is defined as follows:

U(x) =


x1−γ−1
1−γ γ ̸= 1 & γ ∈ R+

lnx γ = 1

, (3.3)

where γ denotes investors’ level of risk aversion, and x ∈ R+.

The SAHARA utility function has the following form, see Chen et al. (2011):

U(x) =


− 1

α2−1

(
(x− w0) +

√
β2 + (x− w0)2

)−α (
(x− w0) + α

√
β2 + (x− w0)2

)
α ̸= 1

1
2 ln

(
(x− w0) +

√
β2 + (x− w0)2

)
+ 1

2β
−2(x− w0)

(√
β2 + (x− w0)2 − (x− w0)

)
α = 1

,

(3.4)

where x ∈ R, for a certain scale parameter β > 0, risk aversion parameter α > 0 and threshold wealth

w0 ∈ R. In addition, the reference level at time t is indicated as wt. The I function is as follows:

I(y) =
(
U ′)−1

(y) = β sinh

(
− 1

α
ln y − lnβ

)
+ w0 =

1

2

(
y−

1
α − β2y

1
α

)
+ w0 (3.5)

with domain y ∈ R+. Under SAHARA risk preference, the optimal terminal wealth is given by

X∗
T =

1

2
(ηMT )

− 1
α − 1

2
β2(ηMT )

1
α + wT . (3.6)

The SAHARA utility function contains the CRRA utility function as a limiting case. Namely, under

SAHARA risk preference, when w0 = 0 and x > 0, let β → 0, then RRA(x) → α, and

U(x) →


2−α x1−α

1−α α ̸= 1 & α ∈ R+

1
2 lnx+ 1+2 ln 2

4 α = 1

, (3.7)

i.e. the SAHARA utility function converges to the CRRA utility function apart from an overall change of

scale.

3.2 Black-Scholes model

We characterise the optimal wealth strategy under the Black-Scholes model in the following theorem.

Theorem 1. In case of SAHARA risk preference under the Black-Scholes model, the optimal wealth at

time t ∈ [0, T ] is given by

X∗
t = e−r(T−t)+ 1

2α2

∫ T
t λ2

uduβ sinh

(
− 1

α
ln
(
ηMte

−r(T−t)+ 1
2

∫ T
t λ2

udu
)
− lnβ

)
+ wt, (3.8)
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where wt is the interim target and wt = wT e
−r(T−t). η can be found by equating X∗

0 = X0. The optimal

investment strategy in terms of wealth that should be invested in the risky asset at time t is

π∗
tX

∗
t =

λ

α

√(
e−r(T−t)+ 1

2α2

∫ T
t λ2

uduβ
)2

+ (X∗
t − wt)

2. (3.9)

Proof.

X∗
t = E

[
MT

Mt
X∗

T

∣∣∣ Ft

]
=

1

2
(ηMt)

− 1
αE

[(
MT

Mt

)1− 1
α
∣∣∣ Ft

]
− 1

2
β2(ηMt)

1
αE

[(
MT

Mt

)1+ 1
α
∣∣∣ Ft

]

+ wTE
[
MT

Mt

∣∣∣ Ft

]
=

1

2
ι1− 1

α
,t −

1

2
β2ι1+ 1

α
,t + wt

= e−r(T−t)+ 1
2α2

∫ T
t λ2

uduβ sinh

(
− 1

α
ln
(
ηMte

−r(T−t)+ 1
2

∫ T
t λ2

udu
)
− lnβ

)
+ wt,

(3.10)

where ι1+m,t := (ηMT )
m E

[(
MT
Mt

)1+m ∣∣∣ Ft

]
= (ηMt)

me−r(1+m)(T−t)+ 1
2
m(1+m)

∫ T
t λ2

udu.

Then,

dX∗
t

dMt
= − 1

α
e−r(T−t)+ 1

2α2

∫ T
t λ2

uduβ cosh

(
− 1

α
ln
(
ηMte

−r(T−t)+ 1
2

∫ T
t λ2

udu
)
− lnβ

)
dMt

Mt
,

π∗
tX

∗
t =

λ

α

√(
e−r(T−t)+ 1

2α2

∫ T
t λ2

uduβ
)2

+ (X∗
t − wt)

2.

(3.11)

Under CRRA risk preference with risk aversion parameter γ, the proportional wealth allocated to the

stock is constant, similar to the Merton ratio in Merton (1969). It is given as follows:

π∗
t =

λ

γ
. (3.12)

Its counterpart under SAHARA risk preference when X∗
t ̸= 0, can be written as

π∗
t =

λ

αt
, (3.13)

where αt =
αX∗

t√(
e−r(T−t)+ 1

2α2

∫ T
t λ2

uduβ
)2

+ (X∗
t − wt)

2

.

In case wt = 0 and X∗
t > 0, let β → 0, then αt → α. This is another way to view CRRA risk preference

as a special case of SAHARA risk preference. Note that at time T , αT =
αX∗

T√
β2 +

(
X∗

T − wT

)2 , which has

the same functional form as RRA of SAHARA utility function.

For illustrative purpose, we assume that X0 = 1, λt = 0.3 for all t ∈ [0, T ], and the investment horizon

T is 12 years. The risk-free rate r is 3%. The parameter α is fixed at 3. The reference level at time T is
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either wT = erT or wT = 1.5erT , then the corresponding interim reference level at time t is wt = ert and

wt = 1.5ert, respectively. The graph below plots the distribution of αt at time t = 1
2T as a function of

wealth.

Figure 1: αt with constant σ.

Figure 1 shows that, when wt > 0 (orange and pink lines), αt varies with wealth. In particular, the

value of αt increases significantly when the wealth level approaches the reference level wt, whether from

below or above, and reaches its highest level around wt. This indicates investors’ tendency of securing

the value of the accumulated wealth or minimising the risk of a significant loss relative to the reference

level. When the wealth level falls below or rises above the reference level, the value of αt decreases to zero

and α, respectively. This implies that investor will maintain a higher equity allocation with the aim of

eliminating the loss in the domain of loss, while with the aim of seeking for extra returns in the domain

of gain. Under SAHARA risk preference, investors experience losses more severely than equivalent gains,

because the distribution of αt is steeper in the domain of loss. When wt = 0 (green line), the value of αt

increases with wealth and converges to that of α. The smaller the value of β, the quicker the convergence.

Figure 1 also shows that, investors who set the reference level at a higher level, tend to be less risk averse

when the wealth level is below this level, while more risk averse when the wealth level is above it. This

implies that under SAHARA risk preference, when investors have a higher target, they accept more risks

in the domain of loss, and are more willing to protect the accumulated wealth in the domain of gain.
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3.3 Heston stochastic volatility model

We characterise the optimal wealth strategy under the Heston model in the following proposition.

Proposition 2. In case of SAHARA risk preference under the Heston model, the optimal wealth at time

t ∈ [0, T ] is given by

X∗
t =

1

2
ϵ1− 1

α
,t −

1

2
β2ϵ1+ 1

α
,t + ωt, (3.14)

where ϵ1+m,t := (ηMt)
m E

[(
MT
Mt

)1+m ∣∣∣ Ft

]
= (ηMt)

me

((
−r+

λ3
δ
κv̄

)
(T−t)+

λ3
δ
vt
)
(1+m)

h(1 + m, vt, T − t). η

can be found by setting X∗
0 = X0.

The optimal investment strategy at time t ∈ [0, T ] is given by

θ∗1.tX
∗
t = −λ1F (t, vt,Mt) + δρL(t, vt,Mt),

θ∗2,tX
∗
t = −λ2F (t, vt,Mt) + δ

√
1− ρ2L(t, vt,Mt),

π∗
2,t =

Ot

gvδ
√

1− ρ2
θ∗2,t,

π∗
1,t = θ∗1,t − (

gSSt

Ot
+

gvδρ

Ot
)π∗

2,t,

(3.15)

where am := λ3
δ m, bm := λ3κ

δ m+ 1
2λ

2
3m− 1

2λ
2
4m(m− 1) and Bm := B(am, bm, T − t);

F (t, vt,Mt) := − 1
α

(
1
2ϵ1− 1

α
,t +

1
2β

2ϵ1+ 1
α
,t

)
;

L(t, vt,Mt) :=
(
a1− 1

α
−B1− 1

α

)
1
2ϵ1− 1

α
,t −

(
a1+ 1

α
−B1+ 1

α

)
1
2β

2ϵ1+ 1
α
,t.

Under CRRA risk preference, the optimal investment strategy is given as follows, see Chen et al. (2018)

and (Liu & Pan, 2003):

θ∗1,t =
λ1

γ
−H(T − t)δρ, θ∗2,t =

λ2

γ
−H(T − t)δ

√
1− ρ2,

π∗
1,t =

λ1

γ
− λ2ρ

γ
√

1− ρ2
− π∗

2,t

gSSt

Ot
, π∗

2,t =

(
λ2

γδ
√
1− ρ2

+H(T − t)

)
Ot

gv
,

(3.16)

whereH(τ) := eχτ−1

2χ+(k1+χ)(eχτ−1)
1−γ
γ2 (λ2

1+λ2
2), k1 := κ+γ−1

γ (ρλ1+
√

1− ρ2λ2)δ, and χ :=
√
k21 +

γ−1
γ2 (λ2

1 + λ2
2)δ

2.

3.3.1 Index V

The VIX squared is defined to be the variance swap rate and it is computed as the conditional expectation

under a risk-neutral measure. Under the Heston model it is given as follows, see Zhang and Zhu (2006):

VIX2
t = EP̃

[
1

T − t

∫ T

t
vudu

∣∣∣ Ft

]
=

1− e−κ̃(T−t)

κ̃(T − t)
vt + ṽ

(
1− 1− e−κ̃(T−t)

κ̃(T − t)

)
. (3.17)

Denote VIX2
t by Vt, then

∂Vt

∂St
= 0,

∂Vt

∂vt
=

1− e−κ̃(T−t)

κ̃(T − t)
. (3.18)

This index is delta-neutral as it does not depend on the stock price. To simplify the calculation but

without loss of generality, we include this index in our portfolio.
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4 Model mis-specification

If investors use a wrong model, they might miscalculate for instance expected returns, volatilities, and

correlations among the assets. This can lead to an incorrect allocation of their assets to different risk

factors, potentially exposing their portfolio to more or less risk than intended, which can lead to losses

or missed opportunities. In this section we deal with a particular model mis-specification where investors

wrongly use the Black-Scholes model with deterministic volatility instead of the Heston model. We assume

a no-arbitrage financial market in both cases and that the investor matches the variance of the pricing

kernel relatives. Under the Heston model the variance of the pricing kernel relative is:

Var
[
MT

Mt

∣∣∣ Ft

]
=E

[(
MT

Mt

)2 ∣∣∣ Ft

]
−
(
E
[
MT

Mt

∣∣∣ Ft

])2

=e−2r(T−t)
(
e2λ3δ−1vt+2λ3δ−1κv̄(T−t)e−A(a,b,T−t)−B(a,b,T−t)vt − 1

)
,

(4.1)

where a = 2λ3δ
−1 and b = 2λ3δ

−1κ+ λ2
3 − λ2

4. Then,

e
∫ T
t λ2

udu = e2λ3δ−1vt+2λ3δ−1κv̄(T−t)−A(a,b,T−t)−vtB(a,b,T−t). (4.2)

The proportional wealth invested in the stock, πt, is given in equation (3.9) and equation (3.12) for

SAHARA risk preference and CRRA risk preference, respectively. Here we equate λ to λ1. The rest is

invested in the risk-free asset. The wealth process will be

dXt = Xt(r + πtλ1vt)dt+ πtXt
√
vtdWt. (4.3)

The indirect utility for the mis-specified model cannot be computed in closed-form, hence we have to resort

to Monte Carlo simulation.

5 Numerical analysis

In this section, we explore under the Heston model the investment strategies and the distribution of the

outcomes under CRRA and SAHARA risk preferences, as well as the impact of these types of risk preference

on the distribution of the terminal wealth when investors wrongly use the Black-Scholes model. Under

CRRA risk preference, the investor has risk aversion γ = 3. Under SAHARA risk preference, the investor

has risk aversion α = 3; the scale parameter is fixed at β = 0.1. Following Bakshi and Kapadia (2003)

and Liu and Pan (2003), we assume a negative value of the volatility risk premium. Important to note

that we will allow λ2 to vary in our analysis so as to get a better understanding of how different levels

of the diffusive volatility risk premium could affect the distribution of the outcomes. For the base-case

parameters we use similar values as in Chen et al. (2018):

r = 0.03, S0 = 100, κ = 1, v̄ = 1.5, v0 = 1, δ = 0.5, λ1 = 0.3, λ2 = −0.1, ρ = −0.4, T = 40, X0 = 1.
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5.1 Impact of β on θ

In this subsection, we explore the impact of the parameter β on the value of θ, i.e. θ1 and θ2. For this

purpose, we equate wT to zero. Figure 2 plots the distribution of θ as a function of β under CRRA and

SAHARA risk preferences on panel a, and that of θ as a function of the risk aversion on panel b.

Figure 2: Impact of β on θ at time 1
2
T .

(a) SAHARA α = 3, wT = 0 and CRRA γ = 3. (b) SAHARA β = 0.1, wT = 0 and CRRA.

Panel a shows that when β takes small values, the corresponding values of θ do not significantly differ

under these two types of risk preference. Panel b shows additionally that when β is 0.1 (small), there is

almost no difference between the values of the corresponding θ when the value of α and γ vary but stay

equal. Panel b also shows that for both risk preferences, the absolute value of θ increases when the investor

is less risk averse, i.e. when the risk aversion parameter α or γ takes smaller values.

5.2 Investment strategies

In this subsection we present the investment strategies under CRRA and SAHARA risk preferences at time

1
2T . In particular, we focus on the proportional asset allocation to the fundamental risk factors under the

Heston model, θ, and that to the stock under the Black-Scholes model. The results are displayed in Figure

3.
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Figure 3: Investment strategies at time 1
2
T .

(a) CRRA γ = 3. (b) SAHARA α = 3, β = 0.1, wT = 0.

(c) SAHARA α = 3, β = 0.1, wT = erT . (d) SAHARA α = 3, β = 0.1, wT = 1.5erT .

Panel a shows that under CRRA risk preference, the proportional asset allocation to the fundamental

risk factors or the stock does not vary with wealth. It is interesting to note that the value of θ1 under

the Heston model is similar to that of the asset allocation to the stock under the Black-Scholes model. By

analysing equation (3.12) and equation (3.16), we see that this occurs particularly when δ takes small values,

i.e. when the market is not very volatile. Panel b shows that given positive wealth, the investment strategy

under SAHARA risk preference when the value of β is 0.1 and the reference level is set at zero wealth, is

similar to that under CRRA risk preference with the same risk aversion. Panel c and d show that, under

SAHARA risk preference when the reference level is positive, the wealth allocation to the fundamental risk

factors θ is the least in absolute value around the reference level, which can be interpreted as locking-in the

wealth at the reference level; its absolute value increases when the wealth level rises above or falls below
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the reference level, and this occurs to a lesser extent in the former case than in the latter case, which can

be interpreted as becoming overconfident when investors have made gains, while taking extra risks when

they have made losses, respectively. The wealth allocation to the stock under the Black-Scholes model

closely matches θ1 under the Heston model.

5.3 Distribution of outcomes

In this subsection we provide the distribution of outcomes under these risk preferences under the Heston

model, as well as that when investors wrongly use the Black-Scholes model. For the results, we run 100,000

simulations with one time step per month.

Figure 4: Distribution of terminal wealth under the Heston model part 1.

(a) CRRA γ = 3. (b) SAHARA α = 3, β = 0.1, wT = 0.
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Figure 5: Distribution of terminal wealth under the Heston model part 2.

(a) SAHARA α = 3, β = 0.1.

Panel a of Figure 4 shows that the distribution of the terminal wealth is widely spread under the CRRA

risk preference with risk aversion γ being 3, since there is no inherent mechanism for focusing on a desired

target. Panel b of Figure 4 shows that similar results can be generated under the SAHARA risk preference

with the same risk aversion, the value of β being small and the reference level being set at zero wealth. By

contrast, Figure 5 shows that under SAHARA risk preference, when the reference level wT is set at erT

or 1.5erT , a peak is formed around the reference level. This gives a certain degree of certainty regarding

the level of the terminal wealth. To study the distribution of the outcomes, several tail-probabilities are

presented below in Table 1.

Table 1: Tail-probabilities of the distribution at time T under the Heston model when λ2 = −0.1.

γ = 3 α = 3 α = 3 α = 3

β = 0.1 β = 0.1 β = 0.1

wT = 0 wT = erT wT = 1.5erT

P(XT ≥ erT ) 98.35% 98.33% 99.56% 99.91%

P(XT ≥ 1.5erT ) 95.04% 95.00% 3.25% 10.11%

P(XT ≥ 2erT ) 90.31% 90.23% 0.22% 0

As expected, the distributions shown in Figure 4 have similar tail-probabilities. Under SAHARA risk

preference, by increasing the reference level wT to erT , approximately 99% of the outcomes are in the range
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of erT and 2erT , instead of 8% under CRRA risk preference. This leads to a significant increase in the

certainty of the terminal wealth actually realised. By increasing the reference level wT further to 1.5erT , the

probability of the terminal wealth being not below 1.5erT increases by around 7%. Similar results emerge

when the reference level is set at a higher level. In short, with the dynamic target-based strategy under

SAHARA risk preference, the likelihood of achieving the desired target can be significantly improved. It is

worth mentioning that a high reference level could lead to negative wealth under SAHARA risk preference,

nevertheless, the risk of achieving negative wealth can be eliminated by imposing a minimum requirement

for the terminal wealth.

Next, we compare the distributions for these types of risk preference under the Heston model to that

under the Black-Scholes model. The results are presented in Figure 6.

Figure 6: Distribution of terminal wealth when λ2 is -0.1.

(a) CRRA γ = 3. (b) SAHARA α = 3, β = 0.1, wT = 0

(c) SAHARA α = 3, β = 0.1, wT = erT . (d) SAHARA α = 3, β = 0.1, wT = 1.5erT .
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For these types of risk preference under the Black-Scholes model, the distributions retain much re-

semblance of their counterparts under the Heston model, except that the mode of the distribution moves

slightly to the left, which is mainly the effect of not-having the advantage of the risk and return tradeoff

through investing in derivatives as well as the small absolute value of λ2. To further study the effect of

model mis-specification on the distribution, several tail-probabilities under the Black-Scholes model are

provided in Table 2.

Table 2: Tail-probabilities of the distribution at time T under the Black-Scholes model.

γ = 3 α = 3 α = 3 α = 3

β = 0.1 β = 0.1 β = 0.1

wT = 0 wT = erT wT = 1.5erT

P(XT ≥ erT ) 97.69% 97.69% 99.03% 99.75%

P(XT ≥ 1.5erT ) 92.82% 92.82% 0.06% 2.42%

P(XT ≥ 2erT ) 86.00% 86.01% 0 0

Compared to the results in Table 1, all these probabilities decrease, though the changes are not sub-

stantial. Under the Black-Scholes model, the CRRA risk preference with γ being 3 and the SAHARA

risk preference with α being 3, β being 0.1 and wT being 0 lead to similar tail-probabilities, and there is

no strong concentration of outcomes about a particular value. Under SAHARA risk preference, when the

reference level wT is erT or 1.5erT , most of the outcomes are in the range of erT and 1.5erT .

We further evaluate the impact of the value of λ2 on the distribution of optimal wealth by setting

λ2 = −0.3. The results are summarized in Figure 7 and in Table 3. Figure 7 plots the distribution of the

terminal wealth when λ2 is -0.3 and Table 3 provides several tail-probabilities.
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Figure 7: Distribution of terminal wealth when λ2 is -0.3.

(a) CRRA γ = 3. (b) SAHARA α = 3, β = 0.1, wT = 0

(c) SAHARA α = 3, β = 0.1, wT = erT . (d) SAHARA α = 3, β = 0.1, wT = 1.5erT .

Table 3: Tail-probabilities of the distribution at time T under the Heston model when λ2 = −0.3.

γ = 3 α = 3 α = 3 α = 3

β = 0.1 β = 0.1 β = 0.1

wT = 0 wT = erT wT = 1.5erT

P(XT ≥ erT ) 99.86% 99.85% 100% 100%

P(XT ≥ 1.5erT ) 99.56% 99.54% 72.70% 93.15%

P(XT ≥ 2erT ) 99.11% 99.04% 46.49% 1.65%

Figure 7 shows that, under the Heston model when λ2 is decreased from -0.1 to -0.3, the mode of the

distribution moves to the right and the distribution gives a more dispersed range of outcomes. In addition,
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the distribution under SAHARA risk preference with a positive reference level is more positioned to the

right of the reference level. Thus, a higher absolute value of λ2 leads to a higher mean level of the terminal

wealth, but also to a significant increase in the uncertainty of the terminal wealth. We notice that among

these types of risk preference, the spread of the distribution is on a much smaller scale under the SAHARA

risk preference when the reference level at time T is set at erT or 1.5erT . We also notice that by increasing

the reference level from erT to 1.5erT , approximately 98% instead of approximately 53% of the outcomes is

between erT and 2erT , which implies that the distribution is more concentrated around the reference level

when the reference level at time T is 1.5erT rather than when it is erT .

Table 4: Certainty-equivalent wealth.

λ2 = −0.3 λ2 = −0.1 λ2 = 0

γ = 3 α = 3 α = 3 α = 3 γ = 3 α = 3 α = 3 α = 3 γ = 3 α = 3 α = 3 α = 3

β = 0.1 β = 0.1 β = 0.1 β = 0.1 β = 0.1 β = 0.1 β = 0.1 β = 0.1 β = 0.1

wT = 0 wT = erT wT = 1.5erT wT = 0 wT = erT wT = 1.5erT wT = 0 wT = erT wT = 1.5erT

Heston 26.35 25.62 4.29 4.93 9.69 9.65 3.50 4.52 8.45 8.48 3.46 4.39

BS 8.42 8.42 3.42 4.37 8.42 8.42 3.43 4.37 8.42 8.42 3.43 4.37

Table 4 presents the certainty-equivalent wealth for different values of λ2. When λ2 is 0, the certainty-

equivalent wealth under the Heston is slightly higher than that under the Black-Shcoles models, which

implies that there is a benefit in derivative investments even when the diffusive volatility risk premium

is zero. This is comparable with one of the findings of Liu and Pan (2003) who examine the certainty-

equivalent wealth under the Heston model with access to as well as no access to the derivatives. In the

latter case the market is incomplete. Under the SAHARA risk preference with a positive reference level, the

certainty equivalent wealth is close to the reference level. When λ2 is -0.3 or -0.1, the certainty equivalent

wealth under the Heston model increases for these types of risk preference. A large increase is observed

under the CRRA risk preference and the SAHARA risk preference with the reference level being set at

zero wealth, while a slight increase under the SAHARA risk preference when the reference level at time

T is erT or 1.5erT . In contrast, the value of λ2 barely affects the certainty-equivalent wealth under the

Black-Scholes model. This confirms the benefit in derivative investments. It also shows that this benefit

strongly depends on the volatility risk premium.
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Figure 8: Distribution of certainty-equivalent wealth against λ2.

To provide a quantitative assessment of the portfolio improvement due to the value of λ2, we use

the base-case parameters described earlier and vary the value of λ2 from 0 to -0.5. Figure 8 plots the

distribution of the certainty-equivalent wealth against λ2 under the Heston model. We see that the certainty

equivalent-wealth under CRRA risk preference decreases greatly with λ2 (< 0), hence it is very sensitive

to how volatility risk is priced. Our results also show that under SAHARA risk preference, the certainty

equivalent-wealth decreases slightly with λ2 (< 0) when the reference level at time T is erT , and the

distribution is almost flat when the reference level at time T is 1.5erT . Compared to CRRA risk preference,

the certainty-equivalent wealth under the SAHARA risk preference with these positive reference levels are

much less sensitive to the value of the diffusive volatility risk premium. Therefore, the dynamic target-

based investment strategy under SAHARA risk preference leads to a more robust certainty-equivalent

wealth when the value of the volatility risk premium varies. With this investment strategy, the loss in

the certainty-equivalent wealth could be largely reduced when investors ignore the stochastic nature of the

volatility in the Heston model but use the Black-Scholes model instead.

6 Conclusion

We investigate the impact of stochastic volatility on the investment strategies and the distribution of the

terminal wealth under CRRA and SAHARA risk preferences. We find that the outcomes generated under

the SAHARA risk preference with the value of the parameter β being small and the reference level being

set at zero wealth, are similar to that under CRRA risk preference with the same risk aversion. We also

21



find that the dynamic target-based strategy under SAHARA risk preference leads to a distribution of the

terminal wealth that is more concentrated around the reference level. Compared to CRRA risk preference,

the certainty-equivalent wealth under the SAHARA risk preference with a positive reference level is less

sensitive to the value of the diffusive volatility risk premium. When investors ignore the stochastic nature

of the volatility in the Heston model and use the Black-Scholes model instead, the distribution of the

terminal wealth can be concentrated around the reference level, when investors match the variance of the

pricing kernel relatives and set a positive reference level under SAHARA risk preference. Furthermore,

the portfolio improvement in terms of certainty-equivalent wealth through investing in derivatives greatly

depends on the value of the volatility risk premium under CRRA risk preference, while this dependence

is much less under SAHARA risk preference with a positive reference level. Therefore, the target-based

investment strategy under SAHARA risk preference leads to a more robust certainty-equivalent wealth

which is less sensitive to the value of diffusive volatility risk premium. This is especially useful when there

is no common agreement on a reasonable value for the diffusive volatility risk premium. With this strategy,

the loss in the certainty-equivalent wealth could be reduced when investors wrongly use the Black-Scholes

model instead of the Heston model.
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Appendix

A(a, b, T − t) & B(a, b, T − t)

Assume that dvt = κ(v̄ − vt)dt + δ
√
vt dWt, where Wt is a standard Brownian motion. Then, given Ft,

the conditional Laplace transform of the couple (vt,
∫ T
t vsds) at (a, b) is well-defined if

a ≥ −κ+
√
κ2 + 2βδ2

δ2
and b ≥ − κ2

2δ2
, (A.1)

and is given by

E
[
e−avT−b

∫ T
t vsds

∣∣∣ Ft

]
= e−A(a,b,T−t)−vtB(a,b,T−t), (A.2)

where A and B are defined as

A(a, b, τ) := −2κv̄

δ2
ln

(
2χe

(χ+κ)τ
2

(δ2a+ κ)(eχτ − 1) + χ(eχτ + 1)

)
(A.3)

and

B(a, b, τ) :=
a (χ+ κ+ eχτ (χ− κ)) + 2b(eχτ − 1)

(δ2a+ κ)(eχτ − 1) + χ(eχτ + 1)
(A.4)

with χ :=
√
κ2 + 2bδ2, τ = T − t, see Lemma A.4 in Chen et al. (2018) or Proposition 5.1 in Kraft (2005).
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