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Abstract—Dynamic portfolio optimization is a crucial but
complex task due to financial market dynamics and the difficulty
of disentangling noise from substantial changes in stock prices.
In most existing methods, portfolios are re-optimized, hence
re-balanced, at pre-specified time periods, return properties of
each asset are dynamically computed, and portfolio weights
are optimized according to an objective function. We propose
a novel algorithm for dynamic portfolio optimization with a
two-step signaling mechanism for re-balancing the portfolio
including the optimization of re-balancing points and portfolio
weights. The first step signals portfolio re-balancing only if
there is a substantial price change in one or more of the
portfolio constituents. These substantial price changes are defined
according to directional change (DC) methods. DC methods
create an intrinsic time series for each asset according to whether
or not the change in the asset price exceeds a threshold level,
hence removing part of the noise in asset prices. The second
signaling mechanism uses genetic algorithms (GA) to assess if
re-balancing is indeed profitable at each point indicated by the
first signaling mechanism. The genetic algorithm is set up such
that it simultaneously optimizes the weights of the re-balanced
portfolio. For GA, we input the asset price summaries retrieved
from DC methods to ensure that the GA can learn from the
relatively less noisy data compared to observed asset prices.
We show that the GA fit function can be set up to include
several conventional trading strategies. As a first step, we apply
the proposed method to a portfolio of 30 assets including 29
Exchange Traded Funds (ETF) and one risk-free asset where
daily prices are observed during the period between 2 January
2018 and 30 December 2021. Second, we apply the method to
100 individual stocks for the same time period. We compare the
obtained portfolio results with benchmarks, such as the simple
buy and hold strategy of the S&P 500 index, the naive 1/N
portfolio, and a minimum variance portfolio in terms of standard
portfolio evaluation methods including the Sharpe ratio.

Index Terms—Directional changes, financial portfolio optimiza-
tion, genetic algorithms.

I. INTRODUCTION

Portfolio optimization is one of the major tasks for indi-
viduals or institutions aiming to maintain good financial per-
formance. There are several modeling techniques proposed in
the literature for portfolio optimization, the most conventional
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ones being based on Markowitz mean-variance optimization
[1]. Optimizing a portfolio of a typically large number of
assets is a difficult process. Obtained portfolio results, such
as realized returns, are often unstable due to reasons in-
cluding numerical problems in estimating dynamic variance-
covariance matrices, or more general dynamics of financial
markets. We propose dynamic portfolio optimization using
Directional Changes (DC) [2] as an alternative to conventional
portfolio optimization based on returns obtained in fixed
time intervals such as trading days. In addition, we base the
dynamic portfolio optimization on novel genetic algorithms
(GA) [3] for directional changes.

DC methods are proposed to summarize substantial price
changes in an asset. A time series price curve is transformed
into an intrinsic time curve that records upward or downward
price changes that exceed a threshold level [2], [4], [5]. Price
movements are then summarized as upward and downward
trends where these trends usually continue for a period, defined
by an overshoot (OS) event. In this setting, a change in the
direction of an asset price gives a natural indication to buy or
sell the asset in anticipation of future price trends. The use of a
threshold to determine substantial price changes indicates that
the noise in prices is partially removed, hence the obtained
trading signals are more reliable compared to those obtained
from observed returns [6]. Several studies analyzed this aspect
and used confirmed price change points indicated by DCs
to make investment decisions [6], [7]. The literature so far
has focused on investments in a single asset. We extend this
literature by considering a portfolio of assets.

Despite their advantages, DC methods even for a single
asset lead to complex information, and DC signals are not
necessarily accurate in forecasting price movements such as
the OS event. GAs have been applied to portfolio optimization
of (observed) time series [8]–[14] and extended to obtain buy
and sell signals based on the intrinsic time series obtained
from DCs [3], [6], [15], [16]. The use of GAs for DCs have
been shown to be profitable for several assets. However, the
literature on the use of GAs for DCs focuses on obtaining
buy or sell signals on a single asset at a time, potentially
due to DCs so far being applied to individual assets. We
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extend this literature to a more realistic case of portfolio
optimization using DCs and GAs, where buy and sell decisions
of a large number of assets have to be determined together
with the weights allocated to each asset. To our knowledge,
we provide the first study to consider the use of DCs for
multiple assets in a portfolio optimization setting. Portfolio
optimization is a multi-objective problem aiming to maximize
returns and minimize risk. We simplify this multi-objective
problem, derive it as an unconstrained optimization problem
and solve it using genetic algorithms.

DC-based portfolio optimization has two main challenges,
namely the synchronization of asset-specific DCs and the
definition of a portfolio re-balancing method. The DC-based
portfolio optimization requires the synchronization of the
intrinsic time series since DC creates intrinsic time series for
individual assets. There are potential return benefits from re-
balancing a portfolio as soon as the expected return properties
of any one of its component assets change. We, therefore,
propose to obtain this joint intrinsic time series as the union of
individual intrinsic time series. The latter challenge, portfolio
re-balancing, occurs since DCs give information on the poten-
tial direction of the asset price, but not a clear indication of the
amount of increase or decrease in prices. DC summaries can
be used to obtain such information [17], but the performance
of the methods has only been analyzed for individual assets.
Furthermore, forecasts or portfolio decisions based solely on
DCs can be sub-optimal since each DC is not necessarily
followed by an OS event [16].

Our proposal is a two-step mechanism for portfolio re-
balancing. In the first step, the proposed portfolio DC method
gives an indication to re-balance the portfolio when at least
one asset price has changed direction. In the second step,
the GA signals whether the DC signal should be followed
given the properties of the DC. Once a time point is chosen
as a re-balancing point, the portfolio weights are obtained
using Markowitz portfolio optimization without short-selling.
We apply the proposed method to a portfolio consisting of
prices of 30 assets - 29 Exchange Traded Funds (ETF) and
one risk-free asset - and a set of 100 stocks included in the
S&P index for the period between 2 January 2018 and 30
December 2021. We compare the obtained portfolio results
with benchmarks, such as a simple buy and hold strategy of
the S&P 500 index, the naı̈ve 1/N portfolio, and minimum
variance portfolios in terms of the standard portfolio evaluation
methods including the Sharpe ratio. We show that the proposed
method compares well with the baselines, especially in some
periods. The performance of the proposed strategy, however,
depends on the chosen DC threshold as well as the number of
assets.

II. DIRECTIONAL CHANGE REPRESENTATION OF
MULTIPLE TIME SERIES

A. Directional Changes and Intrinsic Time Series Represen-
tation

Directional Change (DC) models are proposed to obtain an
intrinsic time series that summarize market price movements

of a financial instrument as upturn or downturn changes [2].
This intrinsic time series is identified by a change in the price
given a pre-defined threshold value θ. If the absolute value of
the price change exceeds the threshold at a given time period,
this time period is labeled as a DC time point in the intrinsic
time series. DC events can be either a downturn or an upturn
event. A downturn DC event is defined as an event where the
absolute price change between the current price pt and the last
high price ph is lower than a fixed threshold θ :

pt ≤ ph(1− θ), (1)

and an upturn DC event is defined as an event where the
absolute price change between the current market price pt and
the last low price pl is higher than a fixed threshold θ:

pt ≥ pl(1 + θ). (2)

A DC event is followed by an overshoot (OS) until an opposite,
upward, or downward DC event occurs. A downward trend
is defined as a downturn event followed by a downward
overshoot, and an upward trend is defined as an upturn event
followed by an upward overshoot. Thus the observed time
series is converted to an intrinsic time series composed of
DC and OS events, where a threshold θ determines this
transformation [4], [6].

The summary of the obtained intrinsic time series together
with the DC and OS events can be based on several metrics
[2]. In this paper, we focus on the following metrics that will
be used for portfolio construction. Let t = 1, . . . , T denote the
time intervals during which prices are observed, pn,t denote
the price level of asset n = 1, . . . , N at time t = 1, . . . , T .
Furthermore, let rn,t = 100 × ln(pn,t − pn,t−1) denote the
percentage returns of asset n at time t. Starting from an initial
directional change point DCn,k−1, directional changes of each
asset are defined with respect to the earlier directional change
point as the reference point. For k = 1, . . . ,Kn directional
change points with Kn < T , each directional change and the
sign of the directional change can be calculated iteratively.
Specifically, if DCn,k−1 is a downward directional change
(DDC), the next directional change is an upward directional
change (UDC) with the following timing:

DCn,k = argmin
t≥DCn,k−1

(
pn,t ≥ pn,DCn,k−1

(1 + θ)
)
, (3)

pn,h = pDCn,k
, (4)

EDCn,k = UDC, (5)

where pn,h denotes the latest ‘high price’ in the market, and
‘event’ (EDC) indicates the sign of the directional change at
every time period. If DCn,k−1 is an upward DC, the next
directional change is a DDC with the following timing:

DCn,k = argmin
t≥DCn,k−1

(
pn,t ≤ pn,DCn,k−1

(1− θ)
)
, (6)

pn,l = pn,DCn,k
, (7)

EDCn,k = DDC, (8)
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where pn,l denotes the latest ‘low price’ in the market and
DCn,0 can be initialized as an upward DC point at the
beginning of the sample.

The relevant summary metrics reported for each asset n are
the average time of a DCn (TDCn), the average time of an OSn

(TOSn) after a confirmed directional change, and the average
ratio of OS event length over the average ratio of DC event
length (TOSn/TDCn), number of directional changes (#DCn,
Kn), number of upward directional changes (#UDCn), number
of downward directional changes (#DDCn) [17]:

TDCn =
1

Kn

Kn∑
k=1

(DCn,k − DCn,k−1) , (9)

TOSn =
1

Kn

Kn∑
k=1

(OSn,k − DCn,k) , (10)

TOSn/TDCn =
1

Kn

Kn∑
k=1

OSn,k − DCn,k

DCn,k − DCn,k−1
, (11)

#DCn = Kn, (12)

#UDCn =
1

Kn

Kn∑
k=1

I[EDCkn = UDCn], (13)

#DDCn = #DCn −#UDCn, (14)

where I[.] is an indicator function which takes the value of 1
if its argument is true, and the value of 0 otherwise.

The total number of DC events for a given θ, #DCn,
measures the variation of DC events for asset n. Based on
the same θ, a time period with a lower #DC value will have
less volatility than another time period of the same length. We
note that the threshold parameter θ can be defined differently
for each stock as an extension of the methodology.

B. Joint DC Representations of Multiple Assets
The defined DC approach in Section II-A creates an intrinsic

time series for a single asset while a joint intrinsic time
series for multiple assets requires a synchronization of the
intrinsic time series. In the multivariate DC setting, a change
in overshoot returns for one or more of the assets can indicate
a substantial change in overall portfolio returns. We, therefore,
define a portfolio DC point, PDCk, as a point that at least one
asset has a confirmed directional change:

PDCk = argmin
t≥PDCk−1

∃n s.t. DCn,k = t , (15)

where k = 1, . . . ,K and PDC0 is initialized at time 0, similar
to the DC approach for individual assets. By this definition,
the number of observations K of the joint intrinsic time series
has the following properties:

K ≥ max
n

Kn, K ≤ min

(
T,

N∑
n=1

Kn

)
. (16)

From the directional changes we obtain the OS events for
each stock at each directional change point k:

OSn,k =

{
OSn,k if PDCk ∈ DCn,

OSn,k−1 otherwise, (17)

Fig. 1. DC representations of two artificially generated asset prices.

where DCn = {DCn,1, . . . ,DCn,Kn} is the set of DC points
for asset n. I.e. the estimated overshoot event is only applied
to assets that had an individual confirmed directional change at
the time of the joint directional change. The remaining assets
which do not have a directional change at time k are assumed
to follow the direction they had at time k − 1.

An example of DC representations of a single asset is given
in Figure 1, where we illustrate four confirmed DCs and three
OS events. Our proposal of portfolio rebalancing is based on
such DC representations of each asset where a portfolio re-
balancing signal is given at every point that one or more of
the assets has a confirmed directional change in this figure.

III. PORTFOLIO OPTIMIZATION WITH DIRECTIONAL
CHANGES AND GENETIC ALGORITHMS

In this section, we introduce two portfolio optimization
methods using DCs and GAs. We first present our proposal to
join intrinsic time series of multiple assets. Second, we present
the proposed GA for portfolio optimization.

A. Portfolio Optimization using joint DCs

The literature considers several measures to summarize
the intrinsic time series created by DCs, as summarized in
Section II. For portfolio optimization, we need additional
measures that represent the relative profitability and return of
each asset. The standard measures for these are the expected
return and the variance-covariance matrix estimates. Since the
DC method creates a new intrinsic time series, these measures
cannot be applied directly to the DC time series. We propose
to use the following metrics for the returns and volatilities
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from the DC-generated intrinsic time series:

r̂n,UDC =

(
pOSn,k

− pOSn,k−1

)
I(EDCn,k = UDC)∑K

k=2 I(EDCn,k = UDC)
, (18)

r̂n,DDC =

(
pOSn,k

− pOSn,k−1

)
I(EDCn,k = DDC)∑K

k=2 I(EDCn,k = DDC)
, (19)

ŝn =
1

K − 1

K∑
k=2

(
pOSn,k

− pOSn,k−1

)2
, (20)

where pOSn,k
is defined as the price at the end of the OS period

following the kth directional change for asset n. In other
words, the expected return and risk properties are based on
the historical OS events following each confirmed DC point.

Equations (18) and (19) represent the return properties
of upward and downward DCs separately. These separate
definitions allow a more flexible portfolio optimization than
assuming the same average return under the two cases. Since
the DC is designed to separate two directions, it is intuitive to
also obtain return estimates for the two directions separately.

B. Genetic Algorithms for DC-based Portfolio Optimization

Genetic algorithms [18], [19] are robust iterative optimiza-
tion methods that are based on a population of structures. GAs
consider many structures as potential candidate solutions to
the optimization problem, cover a large search space through
sampling, and thus increase the probability of convergence
to a global optimum compared to alternative and more local
optimization methods. GAs have been applied to a wide
range of problems including problems with uncertainty and
problems that are not easily reduced to a precise mathematical
formulation [20], and have been applied to different portfolio
optimization problems [21]–[24].

The search within a defined GA is carried out through a
set of potential solutions until the most superior ones come
to dominate. GAs have been applied for obtaining trading
signals and in general for portfolio optimization successfully
[8]–[14]. More recently, GAs have been applied to DC models
for obtaining trading signals [16], but to our knowledge, their
application to directional-change implied portfolio optimiza-
tion does not exist.

The design of a GA has three categories, namely the chro-
mosome representation, fit function, and genetic operations of
selection, crossover, and mutation. Chromosome representa-
tions can be binary representations that take the values of 0 or
1 to indicate whether the asset is included in the final portfolio
[25]. The disadvantage of this setting is that the weights of
each asset are not optimized directly with the defined GA.
Alternatively, chromosomes are defined to represent the weight
of each asset in the portfolio [26] and GAs have been extended
to obtain solutions to this constrained optimization problem
where the portfolio weights sum up to 1 [27], [28].

We define the real-valued chromosomes of the GA as
vectors of size N where the portfolio weights are obtained
as a transformation of variables from GA chromosomes:

ωn = softmax(δn), δn for n = 1, . . . , N, (21)

where δn is unconstrained.
The chromosome definition in (21) corresponds to portfolio

optimization without short-selling since ωn ∈ [0, 1] and the
variable transformation mitigates the problem of constrained
optimization since ωn ∈ (0, 1) and

∑N
n=1 ωn = 1. This

setting does not allow for exact values of 0 or 1 in portfolio
optimization, but the weights can get arbitrarily close to 0,
indicating that an asset is almost excluded from the portfolio.

The outlined GA algorithm constitutes the second step of
the proposed two-step portfolio re-balancing and optimization
method. In the first step, the proposed portfolio DC method
gives an indication to re-balance the portfolio when at least one
asset price has changed direction and the fitness function value
is positive. In the second step, the GA signals the appropriate
portfolio weights for each asset.

The fitness function of the GA is based on a return-risk
metric we define for the whole portfolio:

PR(ω1, . . . , ωN ) =

∑N
n=1 ωnr̂n∑N
n=1 ω

2
nŝn

, (22)

where r̂n and ŝn are intrinsic time series quasi-indicators of
risk and return defined in (18)-(20). The intuition for this
metric is akin to a Sharpe ratio where the metric increases
with expected returns and decreases with volatility indicators
of the assets, accounting for their weights in the portfolio. The
GA then optimizes new weights according to the improvement
in PR(ω1, . . . , ωN ) compared to the last optimized weights.

We apply the proposed GA with rank selection, 80 genera-
tions, a population size of 40, 4 solutions selected as parents,
single-point crossover with 80% probability, random mutation
with 30% probability, and lower and upper bounds set as 0
and 5, respectively. Chromosome sizes are real-valued, with
size equal to the number of assets in the application (30 or
100). GAs are performed with 20 runs for ETF returns and 10
runs for stock returns, and the best one is selected. The GAs
were implemented using PyGAD version 2.18.1 [29].

IV. APPLICATION TO DAILY ETF DATA

In this section, we apply the proposed method to daily ETF
data and present the results of the obtained portfolio compared
to the benchmarks. We use the mutual fund database of the
Center for Research in Security Prices (CRSP). The return
data is the daily total returns for the ETFs for the time period
of January 2005 - December 2021. CRSP separates the ETFs
into several style codes. For our analysis, we chose the largest
equity ETFs in terms of average net asset values for the time
period under consideration within each style category provided
by CRSP. The final list of selected ETFs is available upon
request. Finally, the risk-free rate is taken from the Fama-
French factor database of Keneth French, accessed through
Wharton Research Data Services.

A. Joint DC Representation of CRSP Data

We first summarize the DC representations of each asset and
the proposed joint DC representation of all assets. We apply
the DC algorithm with, θ = 0.04 (GA 004) and θ = 0.05 (GA
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005). We choose two similar threshold values to study the
sensitivity of the proposed methodology. Since we are using
daily data, very small thresholds (e.g. θ = 0.01) lead to almost
one DC per time period (and no associated overshoot), while
larger thresholds (e.g. θ = 0.1) lead to large time-windows
without any DC. We select a moving window size equal to
the time between the first observation and the first time all
intrinsic times series had at least one confirmed DC.

Table I provides summaries of DC representations of a
selection of assets constituting the portfolio for the two DC
threshold values. The number of observations in the intrinsic
time series through DCs is much smaller than the number of
observations in the full sample. This indicates that the first step
of our method limits substantially the number of portfolio re-
balancing points compared to, e.g. re-balancing the portfolio
at each time period, and only takes place when there is a
change of θ in at least one of the asset prices. In addition,
the intrinsic time series across different stocks have different
properties such as the average time to OS. We finally note
that the joint intrinsic time series for the 30 assets has in total
1881 confirmed DCs for θ = 0.04 and 1109 confirmed DCs
for θ = 0.05 and these numbers correspond to the number
of times a portfolio would be re-balanced using the proposed
method.

TABLE I
SUMMARY OF DC REPRESENTATIONS FOR A SELECTION OF ASSETS

EFRP EFRL EFRE EFRX . . . VIPERs
Share Class

θ = 0.04
#DC 256 414 229 274 . . . 176
TOS 11.4 6.8 12.6 10.6 . . . 17.3

θ = 0.05
#DC 188 336 178 218 . . . 124
TOS 15.3 8.4 16.0 13.0 . . . 25.5
TOS/TDC 3.4 2.7 3.2 2.9 . . . 5.1

B. Portfolio Investment Results

The optimization of the GA for each DC converged without
reaching the maximum number of generations. An analysis
of the obtained weights shows that the optimization has a
tendency to set non-zero weights to a small number of assets,
usually including the one responsible for the confirmed DC
that triggered portfolio re-balancing. For θ = 0.05, 1023 out
of 1109 portfolio weights are above 0.9 and for θ = 0.04,
1666 out of 1881 optimized portfolio weights are above 0.9.

We compare our GA portfolio strategy to three other strate-
gies. The first comparison is to a buy-and-hold portfolio that is
invested in the S&P 500 index. The reason for this comparison
is that this strategy is the default recommendation for most re-
tail investors, so it is a natural benchmark. The second strategy
consists of a naive 1/N portfolio, i.e., the weights are equal
for all assets in the portfolio. It has been shown that this naive
diversification strategy is hard to beat by a mean-variance
optimizing strategy [30] and potential reasons for the good
performance of the naive diversification strategy are discussed

[31]. In this estimation strategy, we re-balance our portfolio
to 1/N at the end of each month in our analysis. Finally, we
compare the GA strategy to a Markowitz-type strategy [1].
However, instead of a mean-variance optimization, we use a
minimum variance strategy in our comparison since expected
return estimations for the mean-variance optimization using
simple historical means are unreliable [32] and the common
practice is a minimum variance approach [33]. As an estimator
of the covariance matrix, we use the procedure of [34]. As re-
balancing points, we use our GA re-balancing days.

TABLE II
PORTFOLIO RESULTS THROUGH ROLLING WINDOWS

Exc. Ret. Std. Dev. Sharpe Ratio ẑJK
S&P 500 0.081 0.209 0.387 -15.970
1/N 0.113 0.147 0.768 2.760
Min. Var. 0.109 0.111 0.983 0.856
GA 004 0.027 0.217 0.124 -
GA 005 0.108 0.172 0.627 -

The investment strategies we consider take the PDC points
defined as Section II as portfolio re-balancing points. For
each one of these portfolio re-balancing points, the portfo-
lio strategies require the calculation of quasi-indicators of
risk and return, as defined in (18)-(20), based on historical
data. Based on the portfolio optimization at each PDC point
k = 1, . . . ,K − 1, the portfolio is held until the next PDC
point k + 1 for k = 1, . . . ,K − 2. The last portfolio is held
until the end of the time period T . The returns of the portfolio
holding periods are then stored as realized returns.

Table II presents the standard portfolio evaluation measures,
the mean, variance and Sharpe Ratio of these realized returns.
As we can see, three strategies, namely 1/n, Min. Var., and
GA 005, which are based on an active re-balancing of the
portfolio improve the performance compared to the buy and
hold strategy in the S&P 500 index. However, the GA 004
strategy underperforms and achieves the lowest Sharpe ratio.
The larger excess returns, i.e., the average return above the
risk-free rate, for the 1/N, Min. Var., and GA 005 strategies
are accompanied by a lower standard deviation. This results in
larger Sharpe ratios for all three strategies. However, although
the GA 005 strategy beats the passive holding of the S&P
500, it does not beat the 1/N or Min. Var. strategy. A test
for statistical significance in performance when comparing
the Sharpe Ratios of the benchmark strategies to the GA005
strategy can be found in the last column of Table II. To test
if the Sharpe-Ratios of portfolio i and n are significantly
different, [35], and the correction given in [36], show that

ẑJK =
σ̂nµ̂i − σ̂iµ̂n√

ϑ̂
, (23)

is asymptotically standard normal where

ϑ̂ =
1

T

(
2(σ̂2

i σ̂
2
n − σ̂iσ̂nσ̂i,n) +

µ̂2
i σ̂

2
n + µ̂2

nσ̂
2
i

2
−

µ̂iµ̂nσ̂
2
i,n

σ̂iσ̂n

)
.

(24)
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Fig. 2. Portfolio results through rolling windows with GA 005.
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Fig. 3. Portfolio results through rolling windows with GA 004.

In Table II we present test statistics of the three benchmark
strategies against the best-performing GA strategy, in this
case, GA 005. We see that the GA 005 strategy significantly
outperforms the S&P 500 strategy, underperforms the 1/N
strategy, and is not significantly different from the minimum
variance strategy.

Figure 2 presents cumulative realized returns for the GA
005 strategy and the benchmarks. For each strategy, we start
an initial investment of 100 units and plot the evolution of
the portfolio value over time. We see that the 1/N, the Min.
Var., and GA 005 portfolio values start to diverge from the
S&P 500 around 2015. The GA strategy shows periods of
better performance than the 1/N, e.g., around 2016 and 2018.
However, it is more prone to large corrections than the 1/N or
the Min. Var strategy. This property results in a lower average
return, but especially in a larger standard deviation, which
explains the lower Sharpe ratio when compared to 1/N and
Min. Var. We note that despite similar performances in some

periods, our portfolio strategy leads to very sparse weights
compared to 1/N: For θ = 0.05, 1023 out of 1109 portfolio
weights are above 0.9, and for θ = 0.04, 1666 out of 1881
optimized portfolio weights are above 0.9. In the majority of
cases, portfolios allocate a high weight to a single asset while
a 1/N portfolio always diversifies across assets.

Figure 3 shows the same results and comparisons for the GA
004 strategy. Note that this lower threshold implies that there is
a higher number of confirmed DC points in each asset, leading
to more frequent portfolio rebalancing. The results of the GA
004 strategy are worse than those of GA 005 especially in
cumulative. We see that the underperformance of the GA 004
portfolio starts around 2012 and generates a realized portfolio
value that stays consistently below the benchmark values.

The main takeaway from this analysis is that it is possible to
construct a portfolio strategy that, although underperforming
1/N, can rival it in terms of outcomes. Note that our algorithm
is trained on daily data and as such could be missing important
intraday information. Moreover, it could be the case that a
portfolio containing a collection of ETFs does not provide
the method with as many advantageous trading signals as a
rather larger collection of single stocks. Compared to single
stocks, ETF in itself is already a diversified investment vehicle
that averages information across several assets. Finally, we
note that the use of the same value for θ for all assets is a
restriction that can impact the results since our results show
large variations in performance for close values.

V. APPLICATION TO DAILY STOCK RETURN DATA

We next investigate the properties of the proposed methods
in comparison to alternatives in a relatively large collection
of single stocks. We use the stock return database of CRSP.
The return data is the daily total returns for the time period of
January 2005 - December 2021. Our stock selection proceeds
as follows. We identify all stocks contained in the S&P 500
index for the totality of the time period of our analysis using
the information provided by CRSP. After that, we compute the
average market value of equity for the time period for each
stock by multiplying the shares outstanding by the stock price.
Finally, we select the 100 stocks with the largest average value.
A list of all companies selected is available upon request.

TABLE III
PORTFOLIO RESULTS THROUGH ROLLING WINDOWS

Exc. Ret. Std. Dev. Sharpe Ratio ẑJK
S&P 500 0.073 0.261 0.279 -1.535
1/N 0.138 0.209 0.659 -1.140
Min. Var. 0.128 0.157 0.817 -0.407
GA 003 0.164 0.328 0.499 -
GA 004 0.291 0.324 0.899 -
GA 005 0.247 0.304 0.815 -
GA 006 0.234 0.290 0.809 -
GA 008 0.155 0.255 0.607 -

A. Portfolio Investment Results

We follow the same procedure described in Section IV-B
for the evaluation of the portfolio strategies when the asset
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Fig. 4. Portfolio results through rolling windows with GA 003.

menu consists of 100 single stocks. The results of this exercise
are given in Table III. The values of the test statistic are
reported against the best performing GA model in terms of
Sharpe Ratio, in this case, GA004. The Figures 4-6 depicts the
cumulative returns of the GA strategies against the benchmark
portfolios for varying values of the θ parameter. We show the
results for GA003 and GA008 in Figures 4 and 6, respectively.
Figure 5 shows the results for the best-performing model.
The two other strategies show comparable returns as the one
for GA004. Three things immediately stand out from the
results: First, the best-performing GA strategy is no longer
outperformed by any of the benchmarks. Second, the GA
strategies are able to achieve an enormous return, however,
at the cost of an equally large portfolio variance. Third, we
see that the selection of the θ parameter has a crucial effect on
the portfolio performance. A value that is too low, GA 003,
has an equally deteriorating effect on the Sharpe Ratio as a
value that is too high, GA 008.

This analysis shows that the performance of the portfolio
strategy improves considerably when applied to an asset menu
that consists of single stocks instead of ETFs. The reason for
this is that the ETF is already a diversified portfolio, which
eliminates the idiosyncratic risk component in the stock. By
using stocks, the algorithm is able to identify DC events that
are not averaged away in the diversified return series of the
ETF. We note two points of caution. The data we analyze,
stock return series from CRSP, are informative about the
realized returns an investor can achieve, but this information
does not take into account the market microstructure issues
when actually trading on capital markets. Furthermore, trading
in real markets incurs costs that are not accounted for in the
analysis. Both of these issues present a direction for future
research to refine the algorithm.

VI. CONCLUSION AND FUTURE WORK

We propose a novel two-step algorithm for dynamic port-
folio optimization using directional changes and genetic al-
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Fig. 5. Portfolio results through rolling windows with GA 004.
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Fig. 6. Portfolio results through rolling windows with GA 008.

gorithms. The first step of the algorithm signals portfolio re-
balancing only if there is a substantial price change in one or
more of the portfolio constituents using DCs. The second step
uses a GA to optimize portfolio weights at each point indicated
by the first signaling mechanism. We apply the proposed
method to a portfolio of 29 Exchange Traded Funds and the
risk-free asset, and to a collection of 100 stocks contained in
the S&P 500 index for the period between 2 January 2018 and
30 December 2021. We present the results of this application in
comparison to several benchmarks and we report the effects of
increasing the number of assets and the choice of the threshold
parameter in the DC method. We find that the choice of the
DC threshold parameter has a crucial effect on the portfolio
performance. Furthermore, our method performs considerably
better when applying it to an asset universe that is more diverse
and has a higher number of assets.

The proposed method can be extended in two directions.
First, we consider a single threshold for every asset calculating
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DCs. Recent methods to accommodate for multiple thresholds
for a single asset [16] which can be extended to the multiple
asset framework. Furthermore, the GA design can affect trad-
ing signals substantially [8]. We propose a relatively simple
GA for portfolio optimization. Other GA designs, such as
constrained optimization of parameters [28], can be used to
directly estimate portfolio weights instead of the transformed
parameters we propose. Finally, the algorithm can be refined
to account for trading frictions.
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