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A B S T R A C T

This paper examines continuous-time models for the S&P 100 index and its constituents. We
find that the jump process of the typical stock looks significantly different than that of the index.
Most importantly, the average size of a jump in the returns of the typical stock is positive, while
it is negative for the index. Furthermore, the estimates of the parameters for the stochastic
processes exhibit pronounced heterogeneity in the cross-section of stocks. For example, we find
that the jump size in returns decreases for larger companies. Finally, we find that a jump in
the index is not necessarily accompanied by a large number of contemporaneous jumps in its
constituent’s stocks. Indeed, we find index jump days on which only one index constituent also
jumps. As a consequence, we show that index jumps can be classified as induced by either
synchronous price movements of individual stocks or macroeconomic events.

1. Introduction

This paper analyzes continuous-time jump-diffusion models for single stock returns. In particular, we are interested in the
uestion of how the dynamics for index constituents differ from those of the index itself, and how a jump in the index interacts with
umps in the constituents. By answering these questions, we contribute to the understanding of return dynamics in stock markets.

The analysis of the statistical properties of stock returns is one of the main topics of interest in empirical finance research. There
s a large body of literature that focuses on continuous-time models designed to capture essential features of stock price movements,
ncluding time-varying variance and jumps, i.e., sudden large movements in prices. Testing these continuous-time models has been
t the center of many empirical studies. Starting with models with stochastic volatility (see, e.g. Jacquier et al., 1994, 2004) the
iterature has evolved to models with jump components in returns (see, e.g. Bakshi et al., 1997 and Pan, 2002) and jumps in returns
nd in volatility (see, among others, Eraker et al., 2003, Eraker, 2004, and Broadie et al., 2007). More recently, it has been shown that
o further improve the ability of a model to consistently reproduce stylized facts in the data, it seems helpful to include non-affine
erms in the variance process. The non-affine variance components in the process facilitate a faster moving variance and pick up
art of what otherwise would be captured by a jump component in returns. Examples of papers from this strand of the literature
re (Christoffersen et al., 2010), Chourdakis and Dotsis (2011), Mijatovic and Schneider (2014), and Ignatieva et al. (2015).

In our analysis, we employ several different model specifications. Starting from the simple stochastic volatility models (denoted
y SV), we then add jumps in returns (SVJ), or, alternatively, add jumps in the return as well as in the variance process. The jumps
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in variance are either correlated (SVCJ) or independent of jumps in returns (SVIJ). In addition to affine model structures for the
variance process, we also consider a non-affine setup (SVCJ-POLY) as well.

Empirical investigations of stochastic models for asset price dynamics have focused on the major equity market indices like the
S&P 500 or the NASDAQ 100. From the literature, one can identify certain characteristics of these models that can be regarded as
stylized facts. First, models with just a stochastic volatility component, but without jumps, appear to be significantly mis-specified.
Second, when jumps are included in the model, they turn out to be rare, negative, and large in absolute value. Third, there is a
negative correlation between the innovations in the return and the variance process. Fourth, non-affine specifications tend to have
the best performance. Since all these findings were made exclusively for indices, it is an important question if they also remain valid
for individual stocks. Answering this question represents the major motivation for our paper.

In the first step of our analysis, we compare the parameters of the aforementioned models for the S&P 100 index with those of the
individual constituent stocks. The models are estimated via the Markov Chain Monte Carlo (MCMC) approach used, e.g., in Eraker
et al. (2003). At the center of our study lies the analysis of index versus single stock jumps. For this reason, we take an additional step
and run a simulation study on the jump models to gain insights on how to properly identify jump days for the different assets. The
simulation study provides us with a posterior jump probability that allows us to, given the model, cleanly differentiate between jump
and non-jump days. In the main body of our study, we analyze the relationship between index jumps and jumps in the constituent
stocks.

Our first set of results shows that the jump process for the ‘typical’ (i.e., average) individual stock is significantly different from
that for the S&P 100. One known stylized fact for stock indices is that jump sizes are large and negative. Contrary to this, we
find that jumps in individual stock prices are in many cases on average positive. This result is found across the whole set of index
constituents as well as for the typical stock across several sectors so that it is not specific to a certain subset of stocks we consider
in our analysis. Although jumps are still somewhat rare, the frequency of jumps in prices is more than five times as high for the
representative stock as for the index.

Furthermore, the correlation between the returns on the typical individual stocks and the associated volatility changes is
estimated to be much less negative than for the index. This last result is, of course, derived under the physical probability measure,
but is nevertheless related to empirical findings concerning the pricing of options on indices and individual stocks. As shown
by Bollen and Whaley (2004) the implied volatility curves for stock market indices tend to be negatively sloped and much steeper
than those for the component stocks. Bakshi et al. (2003), Dennis and Mayhew (2002), Dennis et al. (2006) also provide evidence
for structural differences in the pricing of index and individual stock options. In line with these results from empirical option pricing
research, our findings support the notion that one cannot simply extend the results from the analyses of major equity indices to
single stocks.

The second set of results demonstrates the considerable heterogeneity in the cross-section of index constituents. To give a first
indication, we find, e.g., jump intensities that vary between 12 and 32 jumps per year and expected jump sizes that go from −0.6%
to 2.8% per day. To investigate the relations between model parameters and company characteristics we regress the parameters on
the four company-specific factors given in Fama and French (2015). We find large effects of, e.g., the size factor on the parameters
controlling the jump process in returns. To give one example, we see that a one standard deviation increase in size decreases the
jump intensity for the average firm by about 10%.

The main contribution of our empirical analysis concerns the behavior of the individual stocks on days when the index exhibits
a jump. Surprisingly, we find index jump days where relatively few stocks also exhibit jumps. We find days (like February 24, 1994,
or January 4, 2000) where the number of jumping stocks is even just equal to one. On the other extreme, the highest number of such
contemporaneous stock jumps is 72 on October 13, 1989, and 61 observed on February 27, 2007. These findings immediately raise
the question of whether the models estimated for the index and the individual stocks are compatible. The solution to this apparent
‘puzzle’ can be found via a detailed analysis of the mechanics of the models employed in our study. A jump is considered likely (in
terms of posterior probability) if the price move of an asset on a given day is large relative to the conditional variance. The index
as a diversified portfolio of stocks then naturally jumps on days when most of the component stocks exhibit large returns (but not
necessarily jumps) in the same direction. Since the average conditional variance of the stocks in our sample is fairly stable around
index jump days, at least some of these jumps must be caused by a synchronous movement of the individual stocks, generating
the large and negative return in the index, which is then identified as a jump. We label these jumps as ’synchronicity jumps’. The
remaining jumps, which we call ’macro-driven jumps’, are more interesting from an economic point of view. They are characterized
by a large number of stocks or sectors exhibiting high jump probabilities simultaneously, and we can clearly link these jumps to
important macroeconomic events.

A further surprising result of our analysis is that the models featuring jumps do not identify an unusually large number of jumps
during the time of the financial crisis in 2008. This is indeed surprising since 13 of the 20 largest daily absolute returns in our
sample occur during exactly that period. We show that the small number of jumps identified by the models can be explained by
the fact that during the financial crisis conditional volatility is consistently high, and the large absolute returns during this period
lie within the bounds given by two conditional diffusive standard deviations around the mean. This implies that these large returns
can basically be generated also by a pure stochastic volatility model without jumps.

An important overall conclusion we draw from our analysis concerning the ‘right’ model for the index itself and its constituents
is the following: Even if a pure stochastic volatility model could sufficiently represent the dynamics of the index constituents (single
stocks), there would still be strong evidence for jumps in the index, so that here a jump model would appear to be the most
appropriate choice.

A study that is related to our paper in terms of analyzing the properties of individual stock returns is Maheu and McCurdy (2004),
who estimate the parameters of a discrete-time GARCH model with jumps via maximum likelihood for a rather small set of selected
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stocks. They attribute jumps to corporate news events and show that this hypothesis is supported by the data. In contrast to their
approach, we consider a richer set of models by considering an SV, an SVJ, and an SVCJ model, and investigate these models for the
large cross-section of stocks constituting the S&P 100 index. Jiang and Yao (2013) employ a methodology developed in Barndorff-
Nielsen and Shephard (2004) and analyze a long time series of stock returns to decompose price changes into a continuous and a
jump part. Their focus is on cross-sectional return predictability characteristics like size and book-to-market, and their results show
that a large part of this predictability is due to differences in the jump part of returns. Şerban et al. (2008) propose a model where
stock returns are driven by a market factor, a ’common idiosyncratic’ component, and a factor which is truly idiosyncratic to the
respective stock. Their findings indicate that the common factor in idiosyncratic volatility is relevant for option pricing. A more
recent strand of literature examines co-jumps between stock returns. Examples can be found in Caporin et al. (2017) and Gilder
et al. (2014). While these papers investigate the relationship between single stocks, our paper focuses on the relationship between
the index and its constituents. Finally, Buraschi et al. (2014) come up with findings, which are similar to ours to a certain degree
(although their result relates to the risk-neutral and not the physical distribution), based on an equilibrium model with differences
in beliefs.

The remainder of the paper is structured as follows. In Section 2 we present the model and describe our estimation approach.
The results are then discussed in Section 3. Section 4 concludes.

2. Model and estimation approach

2.1. Model

Our model specification follows (Ignatieva et al., 2015). Their approach provides a flexible model structure, which allows for
affine and non-affine variance specifications as well as jumps both in prices and in the conditional volatility process. The logarithm
of the stock price (𝑌 ) and the conditional variance (𝑉 ) are assumed to follow the continuous-time processes

𝑑𝑌𝑡 = 𝜇 𝑑𝑡 +
√

𝑉 𝑡 𝑑𝑊
𝑦
𝑡 + 𝑑
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⎜
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⎛
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⎝
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𝑡

∑
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𝜉𝑣𝑗
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⎟

⎟
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(2)

here 𝑑𝑊 𝑦
𝑡 and 𝑑𝑊 𝑣

𝑡 denote Brownian increments with correlation 𝐸(𝑑𝑊 𝑦
𝑡 𝑑𝑊

𝑣
𝑡 ) = 𝜌 𝑑𝑡. The fact that there is an (empirically

mostly negative) correlation between returns and variance innovations is often called the ’leverage effect’. The term 𝜇 represents
the mean diffusive return, and the terms ∑𝑁𝑡

𝑗=1 𝜉
𝑦
𝑗 and ∑𝑁𝑡

𝑗=1 𝜉
𝑣
𝑗 denote the jump component modeled as a compound Poisson process.

The symbols 𝜉𝑦 and 𝜉𝑣 denote jump sizes in returns and variance, respectively. These jump sizes are allowed to be correlated. In
more detail, the jump size in variance follows an exponential distribution with parameter 𝜇−1

𝑣 , i.e., 𝜉𝑣𝑡 ∼ 𝐸𝑥𝑝(𝜇−1
𝑣 ) with expected

value and standard deviation equal to 𝜇𝑣. Conditional on 𝜉𝑣𝑡 , the jump size in the log price at time 𝑡 follows a normal distribution
with mean 𝜇𝑦+𝜌𝑗𝜉𝑣𝑡 and variance 𝜎2

𝑦 , i.e., 𝜉𝑦𝑡 |𝜉
𝑣
𝑡 ∼ 𝑁

(

𝜇𝑦 + 𝜌𝑗𝜉𝑣𝑡 , 𝜎
2
𝑦

)

. The parameter 𝜌𝑗 captures the sensitivity of the jumps in returns
to the jumps in variance. The terms 𝑁𝑦

𝑡 and 𝑁𝑣
𝑡 denote Poisson processes with jump intensity 𝜆𝑦 and 𝜆𝑣, respectively.

We use multiple restricted versions of the setup in Eq. (2) which were also used in the prior literature to model equity return
dynamics. We use four affine models, analyzed, e.g. in Eraker et al. (2003), which all use the restriction 𝛼1 = 𝛼3 = 0 and 𝑏 = 0.5.
The additional restriction 𝜆𝑦 = 𝜆𝑣 = 0 results in the stochastic volatility (SV) model of Heston (1993). The stochastic volatility model
with jumps in returns (SVJ) considered by Bates (1996) is obtained by setting 𝜆𝑣 = 0. The two versions of models with jumps in
returns are given by the stochastic volatility model with correlated jumps (SVCJ) (𝜆𝑦 = 𝜆𝑣), and the stochastic volatility model with
independent jumps (SVIJ) (𝜌𝑗 = 0). Finally, to investigate the performance of non-affine models we employ the best performing
setup in Ignatieva et al. (2015) by setting 𝜆𝑦 = 𝜆𝑣 and 𝑏 = 1.5. We denote this model as ‘‘POLY-SVCJ’’.

We estimate each model independently for the index and its constituents. In doing so, we follow the procedure undertaken
in practical applications when fitting asset returns to a model. This procedure allows us to investigate differences in the return
processes between the index and its constituents without imposing structural relations. Such structural relations are, e.g., assumed
in Bégin et al. (2020), Elkamhi and Ornthanalai (2010), or (Gourier, 2016). These papers assume that the constituents are linked
to the index via the drift term, i.e., the risk premium. This allows the decomposition of both the risk premium into a diffusive and
a jump component and total risk into a systematic and an idiosyncratic part.

We do not consider this type of specification in our analysis, since an investigation of the different components of the risk
premium is beyond the scope of our paper. Our modeling choice can be seen as an unrestricted version of the above models, and as
such, we are unable to identify the components of the risk premium in the stock returns, but we can uncover the relation between
index and stock jumps we are interested in. In addition to this, the identification of the different components of the risk premium
would make it necessary to combine options and stock return data, which would make the estimation problem substantially more
complex. Furthermore, we would like to point out that the notion of a jump that we adhere to in our paper is one of jumps as large
and infrequent events, in contrast to a more microstructure-oriented interpretation of jumps, with jumps typically being much more
frequent and smaller in magnitude. These types of phenomena which would then more appropriately modeled via Lévy processes.
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To estimate the models we consider in this paper, we use an Euler discretization scheme and set the time interval to 𝛥 = 1 (day).
In our empirical analysis we will assume that one year has 252 (trading) days. Denoting the log return of the asset 𝑌𝑡 − 𝑌𝑡−1 by 𝑅𝑡,
we can write the discretized version of the system in (1) and (2) as

𝑅𝑡 = 𝜇 +
√

𝑉𝑡−1𝜀
𝑦
𝑡 + 𝜉

𝑦
𝑡 𝐽

𝑦
𝑡 (3)

𝑉𝑡 = 𝑉𝑡−1 + 𝛼0 + 𝛼1
1
𝑉𝑡−1

+ 𝛼2𝑉𝑡−1 + 𝛼3𝑉
2
𝑡−1 + 𝜎𝑣𝑉 𝑏

𝑡−1𝜀
𝑣
𝑡 + 𝜉

𝑣
𝑡 𝐽

𝑣
𝑡 ,

where shocks to returns and volatility, 𝜀𝑦𝑡 = 𝑊 𝑦
𝑡 − 𝑊 𝑦

𝑡−1 and 𝜀𝑣𝑡 = 𝑊 𝑣
𝑡 − 𝑊 𝑣

𝑡−1, follow a bivariate normal distribution with zero
expectation, unit variance, and correlation 𝜌. In the Euler discretization scheme, we follow Eraker et al. (2003) and assume at
most one jump per day. 𝐽 𝑦𝑡 and 𝐽 𝑣𝑡 thus represents an indicator equal to one in the case of a jump in returns or variance and zero
otherwise. In case of a model that assumes contemporaneous jumps in returns and volatility this indicator is of course the same for
𝑅 and 𝑉 . The jump sizes retain the distributional assumptions described above.

For technical details concerning the above discretization schemes the reader is referred to the papers by Jones (2003b), Eraker
et al. (2003), Jones (2003a), Ait-Sahalia (1996), and Conley et al. (1997).

2.2. Estimation approach

The underlying model setup includes latent variables such as volatilities, jump times, and jump sizes. Each of these latent states
is treated as a parameter to be estimated in a Bayesian context. This leads to a high dimensional posterior distribution, which is
not equal to a known statistical distribution. We therefore rely on Markov Chain Monte Carlo (MCMC) techniques to compute the
posterior moments.

In a nutshell, MCMC allows us to draw from a high dimensional distribution by breaking it down into draws from a series of
lower dimensional conditional distributions.2 We are thus able to construct a Markov Chain that converges to the desired posterior
distribution. After convergence, we draw 𝑁 times from that posterior to perform Monte Carlo integration.3 In the following, we
provide a brief overview of the algorithm by for the SVCJ model, since it exhibits the most complex structure. For more details on
the sampling algorithm we refer to Ignatieva et al. (2015).

According to Bayes’ Theorem, the posterior distribution of the parameters and the latent states is proportional to the likelihood
times the prior distribution

𝑝(𝜣,𝑽 , 𝝃𝑦, 𝝃𝑣,𝑱 |𝑹) ∝ 𝑝(𝑹|𝑽 , 𝝃𝑦, 𝝃𝑣,𝑱 ,𝜣)𝑝(𝑽 , 𝝃𝑦, 𝝃𝑣,𝑱 ,𝜣),

where 𝜣 = (𝜇, 𝛼(𝑉𝑡), 𝛾(𝑉𝑡), 𝜌, 𝜇𝑦, 𝜎𝑦, 𝜌𝑗 , 𝜇𝑣, 𝜆)⊤ denotes the vector of model parameters, with 𝛼(𝑉𝑡) and 𝛾(𝑉𝑡) representing the parameters
of the drift and the diffusion component of the variance dynamics, respectively.

The time series of state variables is collected into {𝑽 , 𝝃𝑦, 𝝃𝑣,𝑱}, and 𝑹 denotes the time series of observed returns. Note that our
odel specifications allow us to give the prior a hierarchical structure. Therefore,

𝑝(𝑽 , 𝝃𝑦, 𝝃𝑣,𝑱 ,𝜣) = 𝑝(𝑽 |𝝃𝑣,𝑱 ,𝜣)𝑝(𝝃𝑦|𝝃𝑣,𝜣)𝑝(𝝃𝑣|𝜣)𝑝(𝑱 |𝜣)𝑝(𝜣).

iven our model framework, the only component of this prior distribution not determined by the model is 𝑝(𝜣). We use the same
et of independent conjugate priors as described in Ignatieva et al. (2015). Given the Markov property of the model, we can rewrite
he remaining components of the posterior distribution as follows:

𝑝(𝑹|𝑽 , 𝝃𝑦, 𝝃𝑣,𝑱 ,𝜣) =
𝑇
∏

𝑡=1
𝑝(𝑅𝑡|𝑉𝑡, 𝑉𝑡−1, 𝜉

𝑦
𝑡 , 𝜉

𝑣
𝑡 ,𝜣)

𝑝(𝑽 |𝝃𝑣,𝑱 ,𝜣) ∝
𝑇
∏

𝑡=1
𝑝(𝑉𝑡|𝑉𝑡−1, 𝜉

𝑣
𝑡 𝐽𝑡,𝜣)

𝑝(𝝃𝑦|𝝃𝑣,𝜣) =
𝑇
∏

𝑡=1
𝑝(𝜉𝑦𝑡 |𝜉

𝑣
𝑡 ,𝜣)

𝑝(𝝃𝑣|𝜣) =
𝑇
∏

𝑡=1
𝑝(𝜉𝑣𝑡 |𝜣)

𝑝(𝑱 |𝜣) =
𝑇
∏

𝑡=1
𝑝(𝐽𝑡|𝜣)

2 For a detailed discussion of this algorithm in a financial econometrics context, see Johannes and Polson (2006).
3 In our analysis we use a burn-in period of 600,000 and then draw 1.4 million times from the posterior distribution. This large number of draws is necessary

o ensure convergence in the estimation of the models with a non-affine specification of the variance process. For the standard affine models convergence is
btained already after a much smaller number of draws.
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The MCMC sampler then samples iteratively through the following complete conditional distributions:

Parameters ∶ 𝑝(𝜣𝑖|𝜣−𝑖,𝑱 , 𝝃𝑦, 𝝃𝑣,𝑽 ,𝑹), 𝑖 = 1,… , 𝐾
Jump times ∶ 𝑝(𝐽𝑡|𝜣,𝑱−𝑡, 𝝃𝑦, 𝝃𝑣,𝑽 ,𝑹), 𝑡 = 1,… , 𝑇
Jump sizes ∶ 𝑝(𝜉𝑦𝑡 |𝜣,𝑱 , 𝝃

𝑦
−𝑡, 𝝃

𝑣,𝑽 ,𝑹), 𝑡 = 1,… , 𝑇
𝑝(𝜉𝑣𝑡 |𝜣,𝑱 , 𝝃

𝑣
−𝑡, 𝝃

𝑦,𝑽 ,𝑹), 𝑡 = 1,… , 𝑇
Volatility ∶ 𝑝(𝑉𝑡|𝜣, 𝑉𝑡+1, 𝑉𝑡−1,𝑱 , 𝝃𝑣, 𝝃𝑦, 𝑅𝑡+1, 𝑅𝑡), 𝑡 = 1,… , 𝑇 .

Here, we denote the 𝑖th element of a vector by a subscript 𝑖, e.g., 𝜣𝑖. The vector consisting of all elements except the 𝑖th one is
denoted by a subscript −𝑖, i.e., 𝜣−𝑖 is a vector containing all elements of 𝜣 except for element 𝑖.

By relying on conjugate priors for the model parameters, we are able to use a Gibbs step for updating all parameters, jump times,
and jump sizes. The only parameters not having a recognizably complete conditional distribution are the variances, denoted by 𝑉𝑡
above. The complete conditional distribution for 𝑉𝑡 is given by

𝑝(𝑉𝑡|𝜣, 𝑉𝑡+1, 𝑉𝑡−1,𝑱 , 𝝃𝑣, 𝝃𝑦, 𝑅𝑡+1, 𝑅𝑡)

= 𝑝(𝑅𝑡+1, 𝑉𝑡+1|𝜣, 𝑉𝑡,𝑱 , 𝝃𝑦, 𝝃𝑣)𝑝(𝑉𝑡|𝜣, 𝑅𝑡, 𝑉𝑡−1,𝑱 , 𝝃𝑦, 𝝃𝑣),

where the two factors of the product on the right-hand side denote a bivariate and a univariate normal distribution, respectively.
The Metropolis–Hastings step proposes a new variance 𝑉 (𝑔)

𝑡 in iteration 𝑔 by drawing from 𝑝(𝑉𝑡|𝜣, 𝑅𝑡, 𝑉𝑡−1,𝑱 , 𝝃𝑦, 𝝃𝑣) and accepting
that draw with probability

min

{

𝑝(𝑅𝑡+1, 𝑉𝑡+1|𝜣, 𝑉
(𝑔)
𝑡 ,𝑱 , 𝝃𝑦, 𝝃𝑣)

𝑝(𝑅𝑡+1, 𝑉𝑡+1|𝜣, 𝑉
(𝑔−1)
𝑡 ,𝑱 , 𝝃𝑦, 𝝃𝑣)

,1
}

. (4)

Since the proposal distribution is conditioned on 𝑅𝑡 we use information in the data for the draw of the candidate. This is an important
difference to the algorithm proposed in Eraker et al. (2003), who use a random walk Metropolis step. Expression (4) shows that the
acceptance probability takes information from 𝑅𝑡+1 and 𝑉𝑡+1 into account.

3. Empirical analysis

3.1. Data

Our stock return data for the period from 1980 to 2014 are obtained from the Center for Research in Security Prices (CRSP)
database. We use the index constituents file from Compustat to identify the companies included in the S&P 100 index on any given
day in the sample. Although the launch date for the S&P 100 index is June 15, 1983, Compustat only provides information on index
constituents beginning in September 1989. Therefore, we begin our analysis of index jump days from that date.

We find a total of 205 companies included in the S&P 100 index at least one point in time. We match these company names
with the return information provided by CRSP via the cusip identifier. Using this identifier we are able to unambiguously match
201 out of the 205 companies, and it is these 201 companies that we ultimately use in our analysis. On a daily basis, we can match
between 92 to 99 stocks with the 94 to 100 stocks listed in the index by Compustat. This indicates that we are able to almost
perfectly replicate the index constituents with our sample. Table A.1 in the appendix shows the list of companies included in our
analysis, together with descriptive statistics on their returns as well as information on the estimation period and the period they
were included in the index.

3.2. Model choice

The first question of interest is which model best describes the return dynamics of the index and its constituents. There are three
issues of importance in this context. First, are jump components as important for single stocks as for the index? Second, if the answer
is yes, how do jump distributions for index constituents look like in comparison to the index? Third, which is the preferred variance
specification? To answer these questions we need to rank the models with respect to their performance.

Since we use a Bayesian estimation method, the natural metric to use would be Bayes’ factor. However, for high-dimensional
problems like ours, this is computationally prohibitive.4 We, therefore, use the Deviance Information Criterion (DIC) proposed
in Spiegelhalter et al. (2002). The main idea is, as in all information criteria, to reward model fit and penalize complexity. It is
particularly suited for our purpose, since it takes the hierarchical structure into account, i.e., the fact that not all model parameters
can be chosen freely. This method for model comparison has been used in the finance literature by, e.g., Berg et al. (2004)
and Ignatieva et al. (2015).

The estimation results can be found in Tables 1 and 2. The numbers in the panel labeled ‘‘DIC Ranking’’ show the frequency
with which the given model ranks first, second, and so on up to fifth across the index and its constituents. For example, the SVIJ
model is ranked first, second, and third 114, 78, and 10 times, respectively.

A clear pattern emerges from the results in the table. First, the SV model is performing worst by far. Its highest ranking is fourth
(out of five models), and even this only happens on five occasions. This results in an average model ranking of 4.975. We, therefore,

4 Eraker et al. (2003) show how to compute the statistic for nested affine models. However, we also include a non-affine model in our analysis and are
herefore not able to use the procedure proposed in their paper.
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Table 1
Parameter estimates (Affine models).

A: SV Model B: SVJ Model

Index Individual Stocks Index Individual Stocks

Mean Std. Err. Avg. 2.5% 97.5% Mean Std. Err. Avg. 2.5% 97.5%

𝜇 0.0305 0.0087 0.0281 −0.0365 0.0930 0.0325 0.0087 0.0175 −0.0803 0.0829
𝛼0 0.0264 0.0027 0.1376 0.0367 0.3759 0.0219 0.0025 0.0657 0.0097 0.1699
𝛼1 −0.0216 0.0026 −0.0299 −0.0941 −0.006 −0.0181 0.0023 −0.0180 −0.0500 −0.0016
𝜎𝑣 0.1791 0.0082 0.3722 0.2043 0.6507 0.1625 0.0081 0.2322 0.1322 0.3577
𝜌 −0.5899 0.0322 −0.2673 −0.5127 −0.0574 −0.6418 0.0297 −0.3476 −0.6194 −0.0650
𝜇𝑌 – – – – – −2.3672 0.8727 0.7901 −1.1148 3.3742
𝜎𝑌 – – – – – 2.7602 0.6041 5.3834 1.7476 14.3364
𝜆 – – – – – 0.0051 0.0021 0.0360 0.0057 0.1026

DIC Ranking DIC Ranking

1: 0 2: 0 3: 0 4: 5 5: 197 1: 3 2: 14 3: 94 4: 91 5: 0

C: SVCJ Model D: SVIJ Model

Index Individual Stocks Index Individual Stocks

Mean Std. Err. Avg. 2.5% 97.5% Mean Std. Err. Avg. 2.5% 97.5%

𝜇 0.0365 0.0087 0.0238 −0.0736 0.0837 0.0391 0.0090 0.0221 −0.0983 0.0931
𝛼0 0.0215 0.0025 0.0605 0.0059 0.2540 0.0212 0.0023 0.0346 0.0028 0.1320
𝛼1 −0.0266 0.0030 −0.0259 −0.1321 −0.0043 −0.0257 0.0030 −0.0236 −0.0934 −0.0035
𝜎𝑣 0.1450 0.0084 0.2113 0.1228 0.3432 0.1448 0.0086 0.1753 0.1039 0.2845
𝜌 −0.6597 0.0333 −0.3763 −0.6310 −0.0878 −0.6852 0.0329 −0.4023 −0.6669 −0.0454
𝜇𝑌 −2.4269 0.5475 0.6106 −1.4616 2.9216 −0.9278 0.3851 0.7480 −0.6010 2.7665
𝜎𝑌 2.1621 0.4693 5.7855 2.1613 12.7180 1.6617 0.2690 4.7770 1.6917 11.6893
𝜆 0.0057 0.0015 0.0267 0.0045 0.0753 0.0140 0.0063 0.0476 0.0086 0.1293
𝜆𝑉 – – – – – 0.0038 0.0016 0.0246 0.0042 0.0711
𝜇𝑉 1.8524 0.4195 1.8190 0.5047 9.0287 2.4146 0.5457 2.8703 0.6702 11.9699
𝜌𝐽 −0.0010 0.0164 −0.0005 −0.0134 0.0239 – – – – –

DIC Ranking DIC Ranking

1: 13 2: 75 3: 65 4: 49 5: 0 1: 114 2: 78 3: 10 4: 0 5: 0

NOTE: The table shows parameter estimates and the Deviance Information Criterion (DIC) developed in Spiegelhalter et al. (2002) for the SV, SVJ, SVCJ, and
SVIJ model. For the index, we show the posterior mean and standard error. For the individual stocks, we present the cross-sectional average and the 2.5% and
97.5% quantile. For the DIC we show the number of times that the model was ranked 1–5 for the index and each constituent. Descriptive statistics for the stocks
in our sample are shown in Table A.1 of the appendix.

obtain strong evidence that the results of the prior literature, namely that jump models outperform pure volatility models, also hold
for single stocks.

The second conclusion is that non-affine model specifications do not result in a considerably better model fit. We see that the
OLY-SVCJ model ranks second in terms of average model ranking. However, we see that it also ranks fifth five times, i.e., it is
ven beaten by the SV model in these cases. On the other hand, none of the affine jump models are beaten by the SV model.

The third and final conclusion from the results is that jumps in volatility play an important role in describing the return dynamics.
urning to the performance of the SVJ model, we see that it mainly ranks third or fourth, resulting in an average ranking of
.351. Models including jumps in variance clearly outperform the SVJ model. In particular, the SVIJ model exhibits the best overall
erformance with an average model ranking of 1.485 and never being ranked below third. Given these results, we are going to
ocus on the SVIJ model as the best-performing specification in the following discussion.

.3. Model parameters

The parameter estimates for all models considered can be found in Tables 1 and 2. However, in the following, we will restrict
he discussion to the SVIJ model for the reasons given above.

The first observation is that basically all empirical studies show, the correlation between diffusive price changes and diffusive
olatility changes is strongly negative for the index with a value of roughly −0.69. For the typical stock, however, 𝜌 is much less

negative with a cross-sectional average of the estimates of around −0.4 and 95% percent of the estimates ranging between −0.67
nd −0.05. Although we do not analyze options data in this paper, this result for 𝜌 provides support (under the P-measure) for the
inding that implied volatility smiles for individual stocks tend to be much flatter than those for the major equity indices around
he world (see, e.g. Bollen and Whaley, 2004).

Not surprisingly, the parameter estimates for the individual stocks vary widely. The parameter 𝛼0 has a mean of 0.0212 for
he index, whereas the central 95% of the estimates for the single stocks range between 0.0346 to 0.132. For 𝛼1, this interval
anges from −0.0934 to −0.0035, with the value for the index being −0.0257. These parameter values imply large differences in
he long-run mean and the speed of mean reversion between the index and the single stocks. For the long-run mean of volatility
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Table 2
Parameter estimates and priors (POLY-SVCJ model).

A: Parameter Estimates B: Priors

Index Individual Stocks

Mean Std. Err. Avg. 2.5% 97.5%

𝜇 0.0507 0.0093 0.0136 −0.1221 0.0986 N(0,1)
𝛼0 0.0080 0.0024 −0.0613 −0.3741 0.0484 N(0,1)
𝛼1 −0.0012 0.0003 0.0685 −0.0221 0.5374 N(0,1)
𝛼2 −0.0130 0.0053 0.0268 −0.0314 0.1319 N(0,1)
𝛼3 0.0041 0.0016 −0.0022 −0.0193 0.0028 N(0,1)
𝜎𝑣 0.1241 0.0064 0.0824 0.0541 0.1460 𝜔2 ∼ IG(2,200)
𝜌 −0.7450 0.0359 −0.3330 −0.5124 −0.1131 𝜓|𝜔2 ∼ 𝑁(1,1∕2𝜔2)
𝜇𝑌 −0.8747 0.2321 0.5873 −0.6883 2.2823 N(0,100)
𝜎𝑌 1.5740 0.1577 3.3410 1.5896 8.8201 IG(𝛼, 𝛽)
𝜆 0.0223 0.0051 0.0685 0.0178 0.1686 U(0,0.5)
𝜆𝑉 – – – – – U(0,0.5)
𝜇𝑉 0.3912 0.0682 0.2862 0.0112 0.8195 G(10,0.1)
𝜌𝑗 −0.0030 0.0539 −0.0057 −0.0977 0.0423 N(0,4)

DIC Ranking

1: 72 2: 35 3: 33 4: 57 5: 5

NOTE: Panel A of the table shows parameter estimates and the Deviance Information Criterion (DIC) developed in
Spiegelhalter et al. (2002) for the POLY-SVCJ model. For the index, we show the posterior mean and standard error. For
the individual stocks, we present the cross-sectional average and the 2.5% and 97.5% quantile. For the DIC we show the
number of times that the model was ranked 1-5 for the index and each constituent. Panel B of the table shows the prior
distributions for the parameters. 𝑁(𝜇, 𝜎2) denotes a normal distribution, 𝐼𝐺(𝛼, 𝛽) denotes an inverse gamma distribution,
𝐺(𝛼, 𝛽) denotes a gamma distribution, and U(l,u) denotes a uniform distribution. We follow Jacquier et al. (2004) and
parameterize the priors for 𝜌 and 𝜎𝑣 by defining 𝜓 = 𝜌𝜎𝑣 and 𝜔 = 𝜎2

𝑣 (1−𝜌2) and setting a prior for 𝜓 and 𝜔2. Descriptive
statistics for the stocks in our sample are shown in Table A.1 of the appendix.

we have an approximate average value of 35% annually for the single stocks versus 17.5% for the index. Finally, since even the
maximum estimate for an individual 𝛼1 is negative (not shown in the table), we have mean reverting variance processes for all
assets.

The more interesting part of the model relates to the jump component. The first of the key parameters here is the mean jump
size in returns. A stylized fact from empirical research is that this quantity is negative and large in absolute value for the major
equity indices around the world. This is confirmed in our analysis since 𝜇𝑦 for the S&P 100 is estimated at −0.9278 with a standard
rror of 0.385, i.e., it is strongly significantly different from zero. In contrast to this, the typical stock exhibits a positive expected
ump size (0.748) with a very large cross-sectional variation, as indicated by 2.5%- and 97.5%-quantiles equal to −0.601 and 2.77,
respectively.

Looking deeper into the results for the single stocks, we find examples of both significantly positive and significantly negative
jump sizes, which is again evidence for the wide variation in the characteristics of the stochastic processes for the stocks in our
sample. These findings clearly show that the estimation results for the index cannot be generalized to individual stocks and that
there is no ‘law’ that jump sizes can only be negative in the context of the SVIJ model. As one might expect, the estimated standard
deviation of the jump size 𝜎𝑦 is much smaller for the index (1.67) than for the average stock (4.78), but also the cross-sectional
dispersion is substantial, with 95% of the estimates between rough 1.7 and 11.7.

Another key parameter of a jump process is the intensity, or loosely speaking, the probability of a jump over the next time interval
(here, one day). Since the SVIJ model features independent jump processes for returns and variance, we have two intensities. Again,
the differences between the stocks and the index are striking. For the S&P 100, the intensity for jumps in returns is estimated at
0.014 corresponding to an expected number of roughly 0.014 ⋅ 252 ≈ 3.5 jumps per year. For the average stock, this intensity is
estimated to be about 3.5 times higher (0.0476). Again there is pronounced cross-sectional variation across the individual stocks
with a 2.5%-quantile of 2.17 jumps per year, while the stock representing the 97.5%-quantile would, on average, exhibit 32.6 jumps
annually. For the jumps in variance, we observe a similar pattern, albeit with lower intensity levels. For the index, we estimate about
0.95 jumps per year, whereas the typical stock variance jumps about 6.2 times per year with the quantile variation ranging from
1.05 to 17.9 annual jumps.

Finally, we find that the jump sizes in variance are slightly larger for the typical stock than for the index with a value of 2.87
and 2.41, respectively. Also here we observe a large cross-sectional variation for the index constituents with values ranging from
0.67 to 11.97.

Another way of visualizing structural differences in the parameter estimates for index and single stocks is to use box plots as
shown in Fig. 1. The plots show the estimated jump parameters. We see in that all jump parameters exhibit a huge variation across
stocks. In particular, however, we observe that the estimated parameters for the index are always located outside the inter-quartile

range for the constituent stocks, indicating that the index cannot simply be regarded as just the typical stock.
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Fig. 1. Parameter Box Plots (SVIJ Model).
The figure shows the box plots for the parameters of the SVIJ model. From top to bottom, the plots show the estimates for the jump intensity 𝜆, the expected
jump size in return 𝜇𝑌 , the standard deviation of the jump size in return 𝜎𝑌 , and the expected jump size in variance 𝜇𝑉 for the individual stocks. The green
ots indicate the corresponding estimates for the index.

.4. Relation between parameters and firm characteristics

To gain further insight into the sources of the cross-sectional variation of the model parameters, we investigate their relation to
irm characteristics.5 The most natural selection of characteristics for our analysis is those which are commonly used as the basis
or sorts to create risk factors.

We, therefore, focus on the four firm-specific characteristics suggested by Fama and French (2015), i.e, the market value of equity
MV), the market to book ratio (MB), profitability represented by annual revenues minus costs (PR), and investment expressed via
he growth rate of total assets (INV). All data are taken from Compustat.

We take the time-series average of the characteristics for each firm and then cross-sectionally standardize each characteristic to
ave zero mean and unit variance. We then estimate the following regression for each parameter via OLS:

𝜃𝑘,𝑖 = 𝛽𝑘,0 + 𝛽𝑘,1𝑀𝑉𝑖 + 𝛽𝑘,2𝑀𝐵𝑖 + 𝛽𝑘,3𝑃𝑅𝑖 + 𝛽𝑘,4𝐼𝑁𝑖 + 𝜀𝑖, (5)

here 𝜃𝑘,𝑖 is the estimate of parameter 𝑘 for firm 𝑖 and the right-hand side variables are defined above.
The estimation results are presented in Table 3. The results which are most interesting for our purpose relate to the impact of

irm characteristics on the jump components of the model.
Starting with the average jump size in returns 𝜇𝑦, we find that size, profitability, and investment have a significant impact. Given

he strongly significantly negative coefficient of around −0.2, we see that a one standard deviation increase in firm size reduces
he average jump size by around 30% relative to the cross-sectional average of around 0.75 shown in Table 1 for the SVIJ model.
t the same time, more profitable firms tend to have larger average jump sizes, with a positive and significant coefficient estimate
f around 0.07. This translates into roughly a 10% increase relative to the unconditional average from Table 1. Finally, the more
nvestment-intensive a firm, the lower the average jump size, and also this coefficient is strongly significant.

5 We thank an anonymous referee for suggesting this analysis.
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Table 3
Regression of parameters on firm characteristics.

Constant 𝑀𝑉 𝑀𝐵 𝑃𝑅 𝐼𝑁𝑉

𝜇
0.022 0.011 0.010 0.004 −0.003
(0.000) (0.000) (0.002) (0.247) (0.253)

𝛼0
0.035 −0.000 −0.001 −0.006 0.001
(0.000) (0.898) (0.910) (0.001) (0.426)

𝛼1
−0.024 −0.001 0.000 0.004 −0.001
(0.000) (0.738) (0.923) (0.002) (0.394)

𝜎𝑉
0.175 −0.012 −0.004 0.019 −0.005
(0.000) (0.002) (0.498) (0.097) (0.455)

𝜌
−0.402 −0.010 0.001 −0.044 0.010
(0.000) (0.307) (0.953) (0.000) (0.261)

𝜇𝑦
0.748 −0.222 0.073 0.335 −0.111
(0.000) (0.000) (0.238) (0.000) (0.017)

𝜎𝑦
4.777 −0.671 0.117 0.816 −0.019
(0.000) (0.000) (0.483) (0.000) (0.901)

𝜆
0.048 −0.003 −0.003 −0.001 0.001
(0.000) (0.021) (0.139) (0.701) (0.747)

𝜆𝑣
0.025 −0.005 0.002 0.003 −0.001
(0.000) (0.000) (0.316) (0.021) (0.443)

𝜇𝑣
2.870 0.050 −0.497 −0.290 0.038
(0.000) (0.756) (0.001) (0.008) (0.740)

NOTE: The table shows parameter estimates for the regression of model parameters on firm characteristics. The
firm characteristics are those which are used in Fama and French (2015) as the basis for sorts to generate risk
factors. We compute the average value for the characteristic over time for each index constituent and normalize
the factor by deducting the mean and dividing by the standard deviation. Estimation is performed using OLS
with standard errors robustified for heteroskedasticity. The numbers in parentheses are 𝑝-values.

Analogous to the average jump size, we also find opposing impacts for size and profitability when it comes to the standard
deviation 𝜎𝑦 of the jump size in returns. While the coefficients for the other two characteristics are not significant, size again comes
up with a negative estimate, i.e., larger firms tend to have lower standard deviations in return jumps, while for profitability we find
the opposite.

Concerning the intensity 𝜆 of jumps in returns, we observe that larger companies exhibit statistically significantly lower values for
this parameter. The coefficient of −0.0003 implies that an increase in one standard deviation of firm size by one standard deviation
decreases the intensity by about -6%, given a cross-sectional average jump intensity for the SVIJ model of around 0.048, as shown
in Table 1. This result makes sense economically since we think of larger firms as being better protected against sudden economic
shocks, be it, e.g., due to their more diversified business activities or their better access to funding also in bad times. In both cases,
we would expect there to be on average fewer jumps for larger firms, and this is what we find in the data. Interestingly, size is the
only significant variable here, we do not find a significant impact of either book to market, profitability, or investment.

For the jump intensity in variance 𝜆𝑣 we find that larger companies have lower intensities, while for more profitable firms,
this parameter tends to be larger. The regression coefficients imply that a one standard deviation in size increase lowers 𝜆𝑣 by
about 20% relative to its unconditional cross-sectional average (−0.005∕0.0246 ≈ 0.2), while a one standard deviation increase in
profitability leads to an increase in 𝜆𝑣 of about 12% (−0.003∕0.0246 ≈ 0.12). Also here, book to market and investment do not
exhibit a significant impact.

Concerning the parameter 𝜇𝑣 of the exponential distribution for the size of variance jumps, we find that here, in contrast to the
other jump-related parameters, size does not play an important role. It is rather book to market and profitability, which help to
explain the cross-sectional variation in this parameter. Both characteristics feature a negative sign, i.e., with a one standard deviation
increase in either book to market or profitability, 𝜇𝑣 decreases. This in turn means that both the average size of variance jumps and
their dispersion decrease.

Overall, we can see that the jump-related parameters are often systematically related to firm characteristics. Despite the lack of
significance in the case of 𝜇𝑣, size seems to be the most important driver of the cross-sectional variation.

3.5. When (and why) does the index jump?

3.5.1. Simulation results
We conduct a simulation study to demonstrate that our estimation method is able to correctly identify jump days in the data

and to determine the appropriate threshold for the posterior jump probability used to separate jump from non-jump days.
We simulate 1,000 paths based on the SVIJ model. We generate two simulation results for each model, one based on the estimated

parameters for the index and on the average parameter estimates from the single stock estimation, respectively (see Table 1).
This ensures that we understand how sensitive the estimation procedure of posterior jump probabilities is with respect to different
parameter values. We apply the Euler discretization scheme presented above in Eq. (3) to simulate 4,000 days per path.
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Table 4
Posterior jump probabilities on jump vs. non-jump days (SVIJ model).

Index Single Stocks

Non-jump days Jump days Non-jump days Jump days

Mean 0.0145 0.1630 0.0416 0.2984
Median 0.0094 0.0224 0.0278 0.0913
𝑄99 0.1002 1.0000 0.2952 1.0000
𝑄95 0.0365 0.9691 0.1112 0.9980
𝑄05 0.0035 0.0051 0.0119 0.0174
𝑄01 0.0023 0.0033 0.0079 0.0115

NOTE: The table shows descriptive statistics for the posterior jump probabilities estimated by the MCMC algorithm
for the SVIJ model for non-jump and jump days. We simulate 1,000 price paths based on the estimated parameters
for the S&P 100 index and based on the cross-sectional average of the parameter estimates for the single stocks.
A day is labeled a jump day in the simulation when the draw from the uniform distribution over the interval
[0,1] is less than or equal to 𝜆𝛥𝑡, where 𝜆 is the estimated intensity for the Poisson process driving jumps (see
Tables 1 and 2), and 𝛥𝑡 is 1 day.

The setup of our simulation study is chosen on the basis of two important results documented in the literature. First, Eraker
et al. (2003) show that the MCMC estimation method is able to correctly recover the model parameters. Second, Jones (2003a)
shows that the Euler discretization at a daily frequency is a good approximation for the continuous time setup. A very interesting
and novel result (to the best of our knowledge) is that we show how well the estimation setup is able to identify jump days given
the underlying model.

The results of our simulation study can be found in Table 4. We see a clear difference in the results for the posterior jump
probabilities on jump and non-jump days for both the index and the typical constituent stock. The most important lesson we learn
from these results is that the posterior jump probabilities for a jump day range from 0 to 100%, whereas on non-jump days we
observe an upper bound for the probability of around 10% for the index and 28% for the typical single stock. Based on these results
we set the threshold for the posterior jump probabilities to 10% for the index and at 30% for the typical stock.

3.5.2. Jump day analysis
The issue at the core of our analysis is to study index jumps in detail. In this section, we will discuss three main results. First,

jumps are identified relative to the level of return variance. Second, we identify two distinct types of index jumps that we label
‘synchronicity jumps’ and ‘macro jumps’. Third, we show that the two types of jumps differ with respect to the economic environment
in which they occur. As stated above, all analyses refer to the SVIJ model.

The first step in this exercise is to identify the days when the index jumps. Given our simulation results, we select those days
as jump days where the posterior probability for a jump is greater than 15%. Note that this threshold is rather conservative in the
sense that the probability of identifying false jump days is low, given the underlying model. This will become important later on
when we identify two different types of index jumps.

In our sample, we observe 53 jump days (see Table 5). Not surprisingly, on jump days, the index return is mostly negative and
large in absolute terms. We observe only three jump days with a positive return.

One surprising result from Table 5 is that we do not observe an increase in the frequency of jump events during the financial
crisis, since there is only one index return jump day in 2008, and these values are absolutely comparable to other years. At the
same time, 13 of the 20 largest absolute index returns shown in Table 6 occurred during the year 2008. Intuitively, we would of
course expect these large daily returns to contain a jump component, but Table 6 provides intuition on why this is not the case. As
can be seen, most days with large absolute returns and a low posterior jump probability also feature a high conditional volatility.
For example, the returns of about -6% on October 7 and November 19 of 2008 are within the bounds of two conditional standard
deviations around the mean. This means that also a pure stochastic volatility model would be able to generate these movements
with a sufficiently high probability.

This explanation, however, is not applicable to all observations in Table 6. For example, we observe large positive returns on
October 13 and 28 of 2008. On both days, the index gained more than 10%, a return that is outside the bounds induced by the
diffusive volatility component, but no jump was identified. This is an example of a situation where we are not able to rule out false
negatives when identifying jump days, as discussed above.

The main takeaway from Table 6 is that, given our model framework, jump days are not identified only by large index returns,
but that the index return has to be rather seen relative to the value of the conditional variance process. When the variance is small,
even a relatively modest index return is potentially identified as a jump.

The next question arising naturally is how individual stocks behave on index jump days. A prior would certainly be that many
individual stocks also exhibit jumps on those days. We identify jump events for single stocks by setting the posterior jump probability
to 30%, as indicated by our simulation study. Unexpectedly, our results show that we find days when the index jumps, but only a
very small number of stocks also jump. For example, in Table 5 we see that on January 4, 2000, only one stock jumps where the
index exhibits a posterior jump probability of over 28%, which constitutes a very high value as indicated by our simulation exercise.
On the other hand, we observe 72 stocks jumping on October 13, 1989, where the posterior jump probability for the index is 1.

To understand why there are such different jump patterns, Table 7 presents the five index jump days with the largest and smallest
number of stocks jumping, respectively. For those days with only a few stocks jumping, we see that is even possible that only one
stock out of roughly 100 features a discontinuous price movement.
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Table 5
Index jump days (SVIJ model).

Date Return Jump Prob. # Jum. Prim. Man. Transp. Trade Fin. Serv. PA

13/10/1989 −6.53 99.99 72.00 79.60 73.04 65.45 53.86 60.44 66.70 92.03
16/10/1989 3.20 29.92 26.00 68.39 21.47 29.20 37.19 21.30 4.54 54.20
18/12/1989 −1.85 15.54 6.00 25.47 5.05 5.27 4.31 20.99 15.97 23.24
12/01/1990 −2.53 18.12 4.00 7.22 7.19 8.51 8.92 4.82 18.43 12.47
22/01/1990 −3.00 41.22 9.00 18.54 10.57 11.81 6.27 10.66 5.24 32.10
10/05/1991 −2.22 17.29 3.00 8.09 5.28 7.72 8.34 5.95 4.21 30.17
15/11/1991 −4.32 99.70 27.00 13.57 26.60 24.16 30.38 23.93 31.25 39.90
20/04/1992 −1.49 17.09 1.00 5.98 3.81 4.22 16.22 3.50 5.08 2.49
16/02/1993 −2.29 61.01 8.00 9.75 10.98 8.98 16.75 9.72 8.88 20.26
08/03/1993 2.20 18.07 6.00 7.23 8.32 9.95 10.45 17.53 6.00 16.68
21/05/1993 −1.62 23.03 1.00 7.19 3.38 3.48 5.99 5.07 2.92 3.50
18/06/1993 −1.39 17.67 4.00 5.35 7.39 3.32 6.31 5.08 3.36 2.06
04/02/1994 −2.36 99.05 10.00 11.18 11.42 12.60 4.66 9.37 23.61 48.37
24/02/1994 −1.38 39.14 1.00 12.09 3.95 4.72 5.41 4.96 1.39 16.14
22/11/1994 −1.89 26.01 9.00 12.33 11.99 4.06 5.46 12.33 20.46 4.34
18/05/1995 −1.65 27.06 4.00 11.23 7.69 5.31 5.34 2.87 7.16 5.20
08/03/1996 −3.17 86.21 11.00 10.47 11.64 10.71 6.12 31.90 4.17 42.56
08/04/1996 −1.82 32.04 4.00 18.70 4.16 19.43 5.14 11.74 2.04 2.90
02/05/1996 −1.62 17.79 2.00 15.44 3.32 5.75 5.71 20.70 4.11 2.45
05/07/1996 −2.32 21.25 7.00 11.39 4.49 25.10 4.32 19.73 2.92 5.07
15/07/1996 −2.83 21.34 10.00 21.37 9.78 10.43 18.67 5.08 10.87 13.30
27/10/1997 −7.09 43.76 56.00 55.68 48.01 48.32 50.22 36.87 46.88 12.45
04/08/1998 −3.76 15.05 4.00 11.11 6.75 12.04 5.68 6.68 21.68 22.33
31/08/1998 −7.52 16.08 15.00 12.00 15.29 15.10 20.70 8.72 27.42 7.47
20/07/1999 −2.50 22.97 1.00 11.52 4.35 3.51 5.00 5.49 12.43 4.50
04/01/2000 −3.85 28.57 1.00 7.14 4.66 6.27 5.10 6.98 3.76 7.02
14/04/2000 −6.01 18.66 6.00 17.92 8.48 8.41 7.67 11.99 14.37 4.67
17/09/2001 −5.42 27.84 27.00 8.66 27.73 22.77 25.08 20.90 16.01 12.52
24/03/2003 −3.73 18.70 5.00 7.75 10.66 8.70 12.35 11.46 12.02 15.16
20/01/2006 −1.91 56.07 9.00 28.87 7.04 6.13 4.02 20.69 15.91 98.71
27/11/2006 −1.25 26.09 6.00 5.68 7.44 2.27 7.02 19.04 18.34 2.82
25/01/2007 −1.29 60.78 4.00 8.33 4.83 4.81 23.37 9.37 6.74 4.05
27/02/2007 −3.63 99.60 61.00 27.96 41.31 49.32 46.93 46.91 25.02 18.23
13/03/2007 −2.04 26.13 8.00 4.84 8.74 4.84 19.58 31.06 3.43 3.87
10/05/2007 −1.41 22.14 5.00 8.27 6.88 3.29 1.89 14.36 1.00 6.95
09/08/2007 −3.22 15.61 10.00 7.59 13.63 8.75 5.91 14.77 5.32 16.21
19/10/2007 −2.54 17.89 5.00 43.97 9.74 5.74 4.32 6.28 2.26 6.65
06/06/2008 −3.16 25.74 6.00 5.24 12.09 11.41 6.48 7.06 4.63 11.57
30/10/2009 −2.81 15.12 5.00 14.40 6.13 5.91 3.29 15.40 5.82 8.12
04/02/2010 −3.04 43.87 15.00 22.32 15.40 14.27 14.47 21.07 7.25 31.18
11/08/2010 −2.69 31.90 7.00 10.47 14.49 11.46 4.86 14.22 2.17 11.67
19/10/2010 −1.55 25.91 1.00 7.18 5.29 3.63 3.39 5.14 27.83 4.84
04/11/2010 1.94 18.79 13.00 35.47 12.23 3.96 11.64 22.79 3.62 27.78
28/01/2011 −1.74 16.62 7.00 5.86 7.01 18.02 31.95 6.28 28.19 4.68
22/02/2011 −1.86 20.67 8.00 7.03 5.27 10.25 2.90 26.50 15.70 11.08
16/03/2011 −2.23 17.22 4.00 7.98 5.68 8.69 10.62 7.55 23.14 9.15
01/06/2011 −2.21 22.66 11.00 9.23 14.16 11.74 4.18 19.50 4.39 11.60
07/11/2012 −2.63 43.30 18.00 24.77 10.75 19.19 2.81 46.22 8.25 8.76
25/02/2013 −1.75 17.64 9.00 16.42 9.22 6.28 15.14 21.74 2.13 21.55
20/06/2013 −2.46 34.38 16.00 15.53 15.69 20.47 19.88 7.68 11.53 21.07
03/02/2014 −2.23 15.22 11.00 9.79 11.12 19.06 7.16 10.51 17.32 14.96
10/04/2014 −2.04 41.61 12.00 14.45 11.29 10.03 8.36 26.00 9.14 5.74
31/07/2014 −2.07 62.25 18.00 7.71 18.44 24.91 8.19 26.48 6.05 8.28

NOTE: The table reports the return and the jump probability for the S&P 100 index for the days when the SVIJ model identifies an index
jump. ‘‘# Jum.’’ denotes the number of stocks exhibiting a jump probability of more than 30 on those days. The following columns present
the average posterior jump probabilities for the stocks belonging to the respective sector based on 2-digit SIC codes (see siccode.com).
Prim. denotes the primary sector, containing firms from the SIC industries ‘‘Agriculture, Forestry, Fishing’’ as well as ‘‘Mining’’. Man.
denotes that manufacturing sector, containing the firms from ‘‘Construction’’ and ‘‘Manufacturing’’. Transp. is short for the SIC sector
‘‘Transport and Public Utilities’’. Trade aggregates the SIC industries ‘‘Wholesale Trade’’ and ‘‘Retail Trade’’. Fin. is short for ‘‘Finance,
Insurance and Real Estate’’, Serv. is the service industry (with the same name in the SIC classification scheme), and PA is short for the
SIC industry ‘‘Public Administration’’.

What do these findings imply in terms of how we should interpret the occurrence of an index jump on these days? Obviously,
given the small number of stocks jumping simultaneously, there is no additivity in the sense that an index jump is the sum of jumps
in individual stock prices. On the other hand, the index return has to be equal to the weighted sum of individual stock returns.
The hypothesis, therefore, is that, to a very large extent, index jumps are generated by diffusive price movements in the individual
stocks, which happen to occur in the same direction to a very large degree.
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Table 6
Posterior jump probabilities and return bounds implied by diffusive volatility (SVIJ model).

Date Return Jump Prob. UB LB

13/10/1989 −6.5273 0.9999 1.7388 −1.6606
27/10/1997 −7.0927 0.4376 3.8312 −3.7530
31/08/1998 −7.5165 0.1608 4.6915 −4.6133
14/04/2000 −6.0088 0.1866 3.9368 −3.8586
29/09/2008 −9.1862 0.0281 8.0448 −7.9666
07/10/2008 −5.9769 0.0182 8.1067 −8.0285
09/10/2008 −7.9154 0.0219 8.3175 −8.2393
13/10/2008 10.6551 0.0137 8.6374 −8.5592
15/10/2008 −8.7550 0.0238 8.2877 −8.2095
22/10/2008 −5.9697 0.0187 7.9616 −7.8834
28/10/2008 10.2961 0.0137 7.9055 −7.8273
13/11/2008 6.3306 0.0118 7.2032 −7.1250
19/11/2008 −6.0350 0.0210 6.9160 −6.8378
20/11/2008 −6.6214 0.0239 7.0423 −6.9641
21/11/2008 6.0205 0.0118 7.1527 −7.0745
24/11/2008 5.8915 0.0118 6.8991 −6.8209
01/12/2008 −8.9448 0.0575 6.2871 −6.2089
10/03/2009 6.0499 0.0174 5.3066 −5.2284
23/03/2009 6.7381 0.0324 4.5939 −4.5157
08/08/2011 −6.4430 0.0506 5.2347 −5.1565

NOTE: This table shows the 20 largest daily absolute returns for the S&P 100 index in our sample period. We
show the return, the posterior jump probability (‘‘Prob.’’), and the upper and lower bound of the interval around
𝜇 generated by the diffusive volatility, 𝑈𝐵 and 𝐿𝐵 using the results of the SVIJ model. The bounds are computed
as 𝑈𝐵 = 𝜇 + 2

√

𝑉𝑡−1 and 𝐿𝐵 = 𝜇 − 2
√

𝑉𝑡−1, where 𝑉𝑡 is the conditional return variance on day 𝑡 and 𝜇 denotes
the expected return.

Table 7
Index jump days with largest and smallest number of stocks jumping (SVIJ model).
Date Return Jump Prob. # Jump. Stocks Prim. Man. Transp. Trade Fin. Serv. PA

Panel A: Jump days with lowest number of stocks jumping
21/05/1993 −1.62 23.03 1 7.19 3.38 3.48 5.99 5.07 2.92 3.50
24/02/1994 −1.38 39.14 1 12.09 3.95 4.72 5.41 4.96 1.39 16.14
20/07/1999 −2.50 22.97 1 11.52 4.35 3.51 5.00 5.49 12.43 4.50
04/01/2000 −3.85 28.57 1 7.14 4.66 6.27 5.10 6.98 3.76 7.02
19/10/2010 −1.55 25.91 1 7.18 5.29 3.63 3.39 5.14 27.83 4.84

Panel B: Jump days with largest number of stocks jumping
13/10/1989 −6.53 99.99 72 79.60 73.04 65.45 53.86 60.44 66.70 92.03
27/02/2007 −3.63 99.60 61 27.96 41.31 49.32 46.93 46.91 25.02 18.23
27/10/1997 −7.09 43.76 56 55.68 48.01 48.32 50.22 36.87 46.88 12.45
15/11/1991 −4.32 99.70 27 13.57 26.60 24.16 30.38 23.93 31.25 39.90
17/09/2001 −5.42 27.84 27 8.66 27.73 22.77 25.08 20.90 16.01 12.52

NOTE: The table reports the return and the jump probability for the S&P 100 index for the five index jump days in the SVIJ model with the largest and the
smallest number of single stocks jumping, respectively. ‘‘# Jump. Stocks’’ denotes the number of stocks exhibiting a jump probability of more than 30% on
those days. The following columns present the average posterior jump probabilities for the stocks belonging to the respective sector based on 2-digit SIC codes
(see siccode.com). Prim. denotes the primary sector, containing firms from the SIC industries ‘‘Agriculture, Forestry, Fishing’’ as well as ‘‘Mining’’. Man. denotes
that manufacturing sector, containing the firms from ‘‘Construction’’ and ‘‘Manufacturing’’. Transp. is short for the SIC sector ‘‘Transport and Public Utilities’’.
Trade aggregates the SIC industries ‘‘Wholesale Trade’’ and ‘‘Retail Trade’’. Fin. is short for ‘‘Finance, Insurance and Real Estate’’, Serv. is the service industry
(with the same name in the SIC classification scheme), and PA is short for the SIC industry ‘‘Public Administration’’.

This reasoning can be verified by the results in Table 8, which show that in all of the five days in Panel A the overwhelming
ajority of stocks exhibit returns with the same signs on index jump days. So why is it that the individual stocks do not also jump

n these days? A look at the average conditional variance of stock returns on and one day before the index jump days in Table 9
onfirms the intuition that individual stock return volatility is much higher than index volatility so that it is more likely for stocks
o have large returns in absolute value generated by just the diffusive component of the stochastic process.

Since the index basically represents a portfolio, the index return is given by the weighted average of the returns of the single
tocks. On ‘normal’ days diversification would result in an index return small enough in absolute value not to be considered a jump.
ut differently, due to diversification the volatility of the index is in general lower than the weighted average of the volatilities
f the single stocks. However, in case the vast majority of individual stocks move in the same direction there will hardly be any
iversification. Hence, a resulting large negative return of the index ’has to be’ identified by the model as a jump.

However, synchronous movements do not give the full picture. To find out if all the index jumps in our sample are likely to
be the result of index constituents moving in the same direction, we analyze the jump probabilities of the different industries our
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Table 8
Signs of individual stock returns on index jump days (SVIJ model).
Date #𝑅 > 0 % 𝑅 > 0 #𝑅 < 0 %𝑅 < 0

Panel A: Lowest number of stocks jumping
21/05/1993 6.00 0.07 84.00 0.93
24/02/1994 13.00 0.14 77.00 0.86
20/07/1999 19.00 0.20 75.00 0.80
04/01/2000 12.00 0.13 83.00 0.87
19/10/2010 9.00 0.10 82.00 0.90

Panel B: Largest number of stocks jumping
13/10/1989 0.00 0.00 92.00 1.00
27/02/2007 0.00 0.00 93.00 1.00
27/10/1997 0.00 0.00 96.00 1.00
15/11/1991 2.00 0.02 90.00 0.98
17/09/2001 14.00 0.14 85.00 0.86

NOTE: The table shows the five days in our sample where an index jump (as identified by the SVIJ model) is
accompanied by the smallest and the largest number of single stock jumps, respectively. #(𝑅 > 0) (#(𝑅 < 0))
denotes the absolute number of stocks with positive (negative) returns on the given days, while %(𝑅 > 0)
(%(𝑅 < 0)) denotes the corresponding percentage.

Table 9
Index and single stock volatilities on index jump days (SVIJ model)

Date Jump Day Day Before Jump Day

Return
√

𝑉𝑡 index Avg
√

𝑉𝑡 Min.
√

𝑉𝑡 Max.
√

𝑉𝑡
√

𝑉𝑡−1 index Avg.
√

𝑉𝑡−1

13/10/1989 −6.53 0.94 1.55 0.69 3.34 0.85 1.51
27/02/2007 −3.63 0.68 1.23 0.43 2.43 0.63 1.18
27/10/1997 −7.09 2.01 2.15 0.82 4.02 1.90 2.10
15/11/1991 −4.32 0.77 1.81 0.87 3.76 0.70 1.77
17/09/2001 −5.42 1.77 2.85 0.60 10.20 1.65 2.78
16/10/1989 3.20 0.81 1.52 0.70 3.22 0.94 1.55
07/11/2012 −2.63 0.96 1.30 0.53 2.28 0.89 1.26
31/07/2014 −2.07 0.70 1.05 0.63 1.59 0.64 1.01
20/06/2013 −2.46 0.97 1.35 0.85 2.13 0.90 1.30
31/08/1998 −7.52 2.45 3.01 1.15 4.90 2.33 2.97

NOTE: For index jump days as identified by the SVIJ model the table shows the index return, the conditional index return volatility, as well as the cross-sectional
average, minimum, and maximum of the conditional return volatilities of the index constituents. For the day before the index jump day, the table shows the
conditional index return volatility and the cross-sectional average of the conditional return volatilities of the index constituents.

sample firms belong to.6 For the sake of brevity we concentrate our following analysis on the results found for the SVJ model. The
hreshold for the jumps in the single stocks is set to 25% posterior jump probability. Table 7, showing the five respective index jump
ays with the smallest and largest number of jumping stocks also contains information on the average posterior jump probabilities
cross industries. Here we see a clear difference between the index jump days listed in both panels. For the days with the largest
umber of stocks jumping we observe significantly higher average jump probability across all sectors than for index jump days with
he fewest stock jumping, where we find significant average jump probabilities for at most one sector.

The important conclusion we draw from this difference is that the index jumps on days with few stocks jumping are generated
rom diffusive movements in the stocks which go largely in the same direction. We call these jumps ‘synchronicity jumps’. In contrast
o this, the index jumps on days with a large number of stocks are actually generated by jumps in stocks across all sectors. We,
herefore, call these index jumps ‘macro-driven’.

At this point, it is instructive to briefly come back to our discussion concerning the identification of jump days. Since our
stimation method rules out false positives with a probability close to one, we are very confident that the ’synchronicity jumps’ we
dentify are indeed index jumps that are properly identified by the models. This is important, since one of the central contributions
f our analysis is exactly the characterization of two economically distinct types of jump events so that we have to make sure that
he identification of either type of jump is not due to a false rejection of a hypothesis.

It is of interest to investigate which events took place on the days we classify as index jump days. Table 10 shows the results
f Google searches for news stories on these particular days. For the days with a large number of stocks jumping one usually gets
ack stories of stock market crashes as a first or second hit. For example, the jumps on October 13, 1989, and on October 27, 1997,
an be clearly linked to crucial market-wide events. The first event was termed a ‘‘mini-crash’’ relating to a drop in prices in the
unk bond markets, whereas the second relates to an economic crisis in Asia (sometimes called the ’Asian flu’). These two days also

6 The companies are assigned to industries according to the first two digits of the SIC codes (see siccode.com). Our sector Primary contains the firms from the
SIC industries ‘‘Agriculture, Forestry, Fishing’’ as well as ‘‘Mining’’, while Manufacturing contains the firms from ‘‘Construction’’ and ‘‘Manufacturing’’. Transport
s short for the SIC sector ‘‘Transport and Public Utilities’’. Trade aggregates the SIC industries ‘‘Wholesale Trade’’ and ‘‘Retail Trade’’. Finance is short for
‘Finance, Insurance and Real Estate’’, Services is the industry with the same name in the SIC classification scheme, and PA is short for the SIC industry ‘‘Public
dministration’’.
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Table 10
News on index jump days (SVIJ model)

Date Google result Event

Panel A: Lowest number of stocks jumping
21/05/1993 Nothing
24/02/1994 Nothing
20/07/1999 Share prices a bit lower - NYT
04/01/2000 Tech stock crash - CNN
19/10/2010 Wall St drops as mortgage worries hit banks - Reuters

Panel B: Largest number of stocks jumping
13/10/1989 Friday the 13th mini-crash - Wikipedia Junk bond market collapse
15/11/1991 S.E.C.’s Analysis Of Nov. 15 Plunge - NYT Algorithmic trading
27/10/1997 October 27, 1997, mini-crash - Wikipedia Asian economic crisis
17/09/2001 First trading day after the September 11 attacks September 11
27/02/2007 Market gets crushed on global fears - Feb. 27, 2007 Fears of a global economic slowdown

NOTE: This table shows the results of Google news searches for the five index jump days in the SVIJ model with the largest and the
smallest number of single stocks jumping, respectively. The search was performed for either just the date or the combination of the date
and the word ‘‘stocks’’. For these searches, the table shows the respective first hit related to capital markets.

Table 11
Index jump days with largest and smallest number of stocks jumping (SVIJ model for sector returns).

Date Return Jump Prob. # Jump. Stocks Prim. Man. Tran. Trade Fin. Serv.

Panel A: Jump days with lowest number of stocks jumping
21/05/1993 −1.62 23.03 1 1.48 13.33 2.30 3.62 2.64 4.89
24/02/1994 −1.38 39.14 1 4.89 36.00 1.02 12.42 5.90 2.98
20/07/1999 −2.50 22.97 1 4.58 16.29 1.22 5.84 2.38 15.41
04/01/2000 −3.85 28.57 1 2.51 26.09 17.78 2.40 5.81 5.85
19/10/2010 −1.55 25.91 1 23.72 29.34 3.12 1.92 2.23 35.01

Panel B: Jump days with largest number of stocks jumping
13/10/1989 −6.53 99.98 74 51.27 98.35 99.03 98.45 99.71 98.71
27/02/2007 −3.63 99.99 63 57.01 99.70 97.58 94.59 85.74 90.37
27/10/1997 −7.09 38.69 45 53.42 37.98 58.93 72.81 53.54 16.30
15/11/1991 −4.32 99.70 27 16.14 97.22 90.84 91.04 90.37 65.44
17/09/2001 −5.42 27.84 27 3.88 7.43 4.08 10.88 23.64 15.26

NOTE: The table reports the return and the jump probability for the S&P 100 index for the five index jump days in the SVIJ model with the largest and
the smallest number of single stocks jumping, respectively. ‘‘# Jump. Stocks’’ denotes the number of stocks exhibiting a jump probability of more than 30%
on those days. The following columns present the posterior jump probabilities for the different sectors according to 2-digit SIC codes (see siccode.com). The
jump probabilities are based on value weighted sector returns. Prim. denotes the primary sector, containing firms from the SIC industries ‘‘Agriculture, Forestry,
Fishing’’ as well as ‘‘Mining’’. Man. denotes that manufacturing sector, containing the firms from ‘‘Construction’’ and ‘‘Manufacturing’’. Transp. is short for the
SIC sector ‘‘Transport and Public Utilities’’. Trade aggregates the SIC industries ‘‘Wholesale Trade’’ and ‘‘Retail Trade’’. Fin. is short for ‘‘Finance, Insurance and
Real Estate’’, and Serv. is the service industry (with the same name in the SIC classification scheme).

epresent the two largest negative index returns in our sample. Also, the news for February 27, 2007, frequently mentions a large
rice drop in the Chinese stock market as an important reason for the big loss in the S&P 100 on that day, so the reasons for this
ump are similar to the ones described above. In summary, the reason why we refer to these jumps as ’macro-driven jumps’ is that
large number of stocks experience a jump on these days, and the reasons can be traced back to macroeconomic events.

.5.3. Sector analysis
To investigate if the separation of jump days into synchronicity and macro-driven jumps carries over when using directly a sector

ndex instead of average jump probabilities of single stocks within the index we relate the sector jumps to the index jumps. To do
hat, we construct sector returns by taking the average of the daily stock returns weighted by the market value of equity within
he sector. Second, we estimate the SVIJ model for each sector and compute the posterior jump probability for each day. We show
he posterior jump probabilities for the different sectors on the index jump days with the largest and smallest numbers of stocks
umping in Table 11.

The results reveal that the categorization between jumps induced by synchronous movements and macroeconomic events also
olds when looking at sector portfolio returns. We see a clear difference in posterior jump probabilities between Panels A and B of
he table. Taking a posterior jump probability of 10% as threshold to identify a jump day we see that in Panel A between 1–3 sectors
ump whereas in Panel B 3–5 sectors jump. In addition to counting the instances where the posterior jump probability crosses the
hreshold, we also observe that the probabilities reaching 99% in Panel B of the table are much larger than the magnitudes in Panel
, reaching 36%.
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Table 12
Jump parameters across sectors (SVIJ model).

Prim. Man. Transp. Trade Fin. Serv. PA

𝜇𝑌

Sector averages 0.614 0.707 0.605 0.992 0.666 1.179 0.821
Prim. 0.000 0.586 0.964 0.082 0.798 0.028 0.353
Man. 0.000 0.536 0.114 0.800 0.037 0.542
Transp. 0.000 0.069 0.757 0.023 0.322
Trade 0.000 0.122 0.476 0.456
Fin. 0.000 0.041 0.474
Serv. 0.000 0.180
PA 0.005

𝜎𝑌

Sector averages 3.214 4.754 4.266 4.810 5.521 5.778 1.721
Prim. 0.000 0.000 0.036 0.006 0.016 0.000 0.000
Man. 0.000 0.362 0.927 0.429 0.132 0.000
Transp. 0.000 0.449 0.228 0.052 0.000
Trade 0.000 0.510 0.244 0.000
Fin. 0.000 0.818 0.000
Serv. 0.000 0.000
PA 0.000

𝜆

Sector averages 0.075 0.040 0.050 0.049 0.056 0.044 0.050
Prim. 0.000 0.005 0.070 0.043 0.237 0.019 0.037
Man. 0.000 0.160 0.147 0.194 0.533 0.002
Transp. 0.000 0.841 0.687 0.471 0.931
Trade 0.000 0.577 0.547 0.840
Fin. 0.000 0.365 0.610
Serv. 0.000 0.330
PA 0.000

𝜆𝑉

Sector averages 0.022 0.023 0.025 0.025 0.022 0.035 0.012
Prim. 0.000 0.819 0.665 0.680 0.950 0.075 0.183
Man. 0.000 0.709 0.742 0.804 0.026 0.025
Transp. 0.000 0.996 0.606 0.081 0.027
Trade 0.000 0.639 0.103 0.040
Fin. 0.000 0.030 0.071
Serv. 0.000 0.000
PA 0.005

𝜇𝑉

Sector averages 3.280 2.213 2.849 3.763 4.675 1.878 3.453
Prim. 0.000 0.080 0.594 0.795 0.146 0.07 0.795
Man. 0.000 0.276 0.384 0.001 0.541 0.000
Transp. 0.000 0.623 0.054 0.204 0.349
Trade 0.034 0.636 0.308 0.863
Fin. 0.000 0.002 0.139
Serv. 0.000 0.010
PA 0.000

NOTE: The table reports the results from a regression of model parameters on a set of sector dummies. The respective
sectors are based on 2-digit SIC codes (see siccode.com). Prim. denotes the primary sector, containing firms from the SIC
industries ‘‘Agriculture, Forestry, Fishing’’ as well as ‘‘Mining’’. Man. denotes that manufacturing sector, containing the firms
from ‘‘Construction’’ and ‘‘Manufacturing’’. Transp. is short for the SIC sector ‘‘Transport and Public Utilities’’. Trade aggregates
the SIC industries ‘‘Wholesale Trade’’ and ‘‘Retail Trade’’. Fin. is short for ‘‘Finance, Insurance and Real Estate’’, Serv. is the service
industry (with the same name in the SIC classification scheme), and PA is short for the SIC industry ‘‘Public Administration’’.
Within each block we report the parameter averages in the first row, followed by 𝑝-values of 𝑡-tests in the remaining rows of the
block. In case the sectors in the column and row are equal, the value shown is the 𝑝-value for the test that the corresponding
parameter is equal to zero on average. In case the sectors in the column and row are not equal, the value shown is the 𝑝-value
for the test that the corresponding parameter is on average the same in the two sectors.

3.6. Jump distributions across sectors

To gain some more insights into the jump components of the average stock across sectors, we look in more detail at the model
parameters controlling the jump component.7 To do this we modify the setup used in Eq. (5) as follows

𝜃𝑘𝑖 =
7
∑

𝑠=1
𝛽𝑘,𝑠𝐷𝑖,𝑠 + 𝜀𝑖 (6)

with 𝐷𝑖,𝑠 denoting a dummy that is one if company 𝑖 belongs to sector 𝑠. Given the setup, the regression coefficients represent the
average parameter values of the constituents within the sector.

The result of this exercise can be found in Table 12. The table contains five blocks, one for each parameter relating to the jump
part of the SVIJ model. The first row within each block shows the parameter estimates, i.e., the sector averages, while the remaining

7 We thank an anonymous referee and the associate editor for this suggestion.
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rows show 𝑝-values for hypothesis tests. When the sectors in the row and in the column are the same, the number is the 𝑝-values for
the test that the average of a certain parameter in the given sector is equal to zero. When row and column are labeled differently,
the number shown is the 𝑝-value for the test that the given parameter is on average the same for the two sectors.

The first interesting observation is that the average 𝜇𝑦 is positive for all sectors. This shows that the result of a positive
unconditional average for 𝜇𝑦 shown in Table 1 is not caused by specific effects which we observe only for a small subset of sectors.
This gives further evidence that the jump distribution of returns of single stocks is considerably different from that of the index.
Finally, the result that the average number of jumps per year is larger for single stocks is also not sector-specific but obtained across
most of the industries.

4. Conclusion

This paper analyzes stochastic models for the dynamics of the S&P 100 index and its constituent stocks. The models allow for
a jump component in the price as well as in the conditional variance process and are estimated Bayesian methods building on an
MCMC algorithm to obtain the posterior distribution.

Our results indicate a pronounced heterogeneity across the different assets with respect to the parameters governing the stochastic
processes. Unsurprisingly, the long-run level of volatility is much higher for individual stocks than for the index. Furthermore, we
find a less pronounced leverage effect in the individual stocks than for the index. Considering the distribution of the price jumps
we show that the stylized fact of negative average jump sizes does not in general carry over from the index to individual stocks. A
novel result of our study is that we show via simulation that our estimation is able to cleanly identify a day as a jump day when a
jump has actually taken place.

A key result of our analysis is that there are actually two types of index jump days, characterized by either very few (in the case
of the Poly-SVCJ model even zero) or very many stocks jumping together with the index on the given day. The first type of index
jump occurs when many stocks exhibit a diffusive (i.e, not jump-induced) movement in the same direction, which is why we call
these jumps ‘synchronicity jumps’. In contrast to this, the second type of index jump is generated by jumps in a large number of
stocks across all sectors of the economy. These jumps are consequently labeled ‘macro-driven jumps’.

Surprisingly, we find that the models under consideration do not identify an unusually large number of jumps during the 2008
financial crisis. Intuitively, this can be explained by the prolonged period of high levels of conditional volatility during that time,
which makes it possible that large absolute index returns can even be generated by a pure stochastic volatility model without a
jump component.
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Appendix A

See Table A.1.

Table A.1
Descriptive statistics of the returns data.

Name Mean Vol Skew Kurt Sample Period Included in Index

S&P 100 INDEX 0.0343 1.1728 −1.1766 27.6996 1982-08-02/2014-12-31 –
ABBOTT LABORATORIES 0.0719 1.6257 −0.1041 7.2728 1980-01-02/2014-12-31 2005-08-30/2014-12-31
ABBVIE INC 0.1501 1.5597 −0.2305 3.7572 2013-01-03/2014-12-31 2013-01-02/2014-12-31
ACCENTURE LTD BERMUDA 0.0790 2.0663 0.1605 9.9740 2001-07-20/2014-12-31 2012-03-19/2014-12-31
AES CORP 0.0826 3.3378 0.0392 32.3182 1991-06-27/2014-12-31 2000-12-18/2008-12-21
ALLIED CHEMICAL CORP 0.0615 1.9843 0.2593 25.2694 1980-01-02/2014-12-31 1999-12-02/2014-12-31
ALLSTATE CORP 0.0594 2.0515 −0.0218 19.5724 1993-06-04/2014-12-31 2003-04-16/2014-12-31
ALUMINUM COMPANY AMER 0.0533 2.2701 0.1412 12.2234 1980-01-02/2014-12-31 1989-09-11/2012-03-18
AMAZON COM INC 0.1977 4.1282 0.9847 11.5115 1997-05-16/2014-12-31 2009-01-02/2014-12-31
AMERICA ONLINE INC DEL 0.1538 3.1131 0.3418 9.0893 1992-03-20/2014-12-31 2000-06-19/2014-12-31
AMERICAN ELECTRIC POWER CO 0.0511 1.3461 0.1163 26.6300 1980-01-02/2014-12-31 1989-09-11/2014-03-23
AMERICAN EXPRESS CO 0.0781 2.2427 0.1368 12.2596 1980-01-02/2014-12-31 1989-09-11/2014-12-31
AMERICAN GENERAL INS CO 0.0792 1.7044 0.6678 20.5178 1980-01-02/2001-08-28 1991-09-20/2001-08-29

(continued on next page)
337



A. Pollastri, P. Rodrigues, C. Schlag et al. Journal of Empirical Finance 70 (2023) 322–341
Table A.1 (continued).
Name Mean Vol Skew Kurt Sample Period Included in Index

AMERICAN HOME PRODUCTS CORP 0.0654 1.7628 −0.4139 16.8989 1980-01-02/2009-10-15 2008-11-19/2009-10-15
AMERICAN INFORMATION TECHS 0.0930 1.4258 −0.0882 12.3473 1984-02-17/1999-10-08 1989-09-11/1999-10-11
AMERICAN INTERNATIONAL GRP 0.0569 2.9631 1.7055 109.1684 1980-01-02/2014-12-31 1989-09-11/2008-12-21
AMERICAN TELEPHONE & TELEG 0.0458 1.8846 0.2003 15.7507 1980-01-02/2005-11-18 1989-09-11/2005-11-20
AMGEN INC 0.1108 2.5679 0.2829 8.9464 1983-06-20/2014-12-31 1999-11-08/2014-12-31
AMP INC 0.0702 1.9227 3.2582 90.9085 1980-01-02/1999-04-01 1989-09-11/1999-04-01
ANADARKO PETROLEUM CORP 0.0689 2.3675 0.0064 9.5869 1986-10-03/2014-12-31 2012-03-19/2014-12-31
ANHEUSER BUSCH COS INC 0.0797 1.5206 0.1727 12.0377 1980-01-02/2008-11-17 2001-11-30/2008-11-18
APACHE CORP 0.0595 2.4167 0.3459 6.9580 1980-01-02/2014-12-31 2011-03-21/2015-03-22
APPLE COMPUTER INC 0.1102 3.0053 −0.3784 20.0699 1980-12-15/2014-12-31 2007-06-01/2014-12-31
ATLANTIC RICHFIELD CO 0.0591 1.6313 0.5264 6.4429 1980-01-02/2000-04-17 1989-09-11/2000-04-17
AVON PRODUCTS INC 0.0450 2.0731 −0.4025 23.5689 1980-01-02/2014-12-31 1989-09-11/2012-03-18
BAKER HUGHES INC 0.0580 2.6247 −0.0569 15.5477 1987-04-27/2014-12-31 1989-09-11/2013-06-06
BANC ONE CORP 0.0788 1.8068 0.0946 12.2909 1980-01-02/2004-06-30 1998-09-16/2004-06-30
BANK NEW YORK INC 0.0760 2.1860 0.5306 17.8470 1980-01-02/2014-12-31 2007-07-02/2014-12-31
BANKAMERICA CORP 0.0688 2.1509 0.3705 16.7452 1980-01-02/1998-09-30 1989-09-11/1998-09-30
BAXTER TRAVENOL LABS INC 0.0558 1.8009 −0.8241 17.3099 1980-01-02/2014-12-31 1989-09-11/2015-06-30
BELL ATLANTIC CORP 0.0538 1.5620 0.2056 11.1753 1984-02-17/2014-12-31 1989-09-11/2014-12-31
BERKSHIRE HATHAWAY INC DEL 0.0510 1.5004 1.0250 15.0967 1996-05-10/2014-12-31 2010-02-16/2014-12-31
BETHLEHEM STEEL CORP 0.0037 3.7097 0.4113 85.6385 1980-01-02/2002-06-11 1989-09-11/2000-12-10
BLACK & DECKER MFG CO 0.0495 2.2718 0.2994 13.4094 1980-01-02/2010-03-12 1989-09-11/2007-03-22
BOEING CO 0.0649 1.9240 0.0362 8.2104 1980-01-02/2014-12-31 1989-09-11/2014-12-31
BOISE CASCADE CORP 0.0464 2.7668 0.9903 22.8418 1980-01-02/2013-11-05 1989-09-11/2006-11-30
BRISTOL MYERS CO 0.0666 1.7138 −0.3464 16.4181 1980-01-02/2014-12-31 1989-09-11/2014-12-31
BRUNSWICK CORP 0.0883 2.8465 0.6917 29.5052 1980-01-02/2014-12-31 1989-09-11/2000-12-17
BURLINGTON NORTHERN INC 0.0843 1.9329 0.2613 14.6961 1980-01-02/2010-02-12 1989-09-11/2010-02-15
BURROUGHS CORP 0.0433 3.5554 1.3325 39.7964 1980-01-02/2014-12-31 1989-09-11/2006-10-01
CAMPBELL SOUP CO 0.0606 1.5917 0.4189 9.9510 1980-01-02/2014-12-31 1998-10-01/2011-03-20
CAPITAL CITIES COMMUNICATIONS 0.0910 1.4446 0.8221 16.6306 1980-01-02/1996-02-09 1989-09-11/1996-02-11
CAPITAL ONE FINANCIAL CORP 0.1075 3.1526 −0.1844 16.8348 1994-11-17/2014-12-31 2006-12-01/2014-12-31
CATERPILLAR TRACTOR INC 0.0588 1.9891 −0.0718 9.0190 1980-01-02/2014-12-31 2005-08-19/2014-12-31
CELGENE CORP 0.1484 3.7360 0.2958 8.3539 1987-07-29/2014-12-31 2015-03-23/2014-12-31
CHAMPION INTERNATIONAL CORP 0.0492 1.9932 0.3683 12.6571 1980-01-02/2000-06-20 1989-09-11/2000-06-18
CHEMICAL NEW YORK CORP 0.0730 2.3385 0.4510 16.6208 1980-01-02/2014-12-31 2000-12-18/2014-12-31
CHRYSLER CORP 0.1192 2.6628 0.6932 8.3257 1980-01-02/1998-11-12 1994-03-18/1998-11-12
CIGNA CORP 0.0667 2.0513 −0.7635 30.3265 1982-04-21/2014-12-31 1989-09-11/2008-12-21
CISCO SYSTEMS INC 0.1335 2.7626 0.2716 9.1528 1990-02-20/2014-12-31 1996-04-01/2014-12-31
CLEAR CHANNEL COMM.CATIONS 0.1088 2.3059 0.2779 10.1534 1984-04-23/2008-07-30 2000-12-18/2008-07-30
COASTAL CORP 0.0885 2.2246 0.2402 7.7094 1980-01-02/2001-01-29 1991-04-02/2001-01-29
COCA COLA CO 0.0690 1.5382 −0.0175 18.0170 1980-01-02/2014-12-31 1989-09-11/2014-12-31
COLGATE PALMOLIVE CO 0.0737 1.6001 0.2726 13.7735 1980-01-02/2014-12-31 1989-09-11/2014-12-31
COLUMBIA HOSPITAL CORP 0.0695 2.2850 0.2226 9.1957 1990-05-18/2006-11-17 1996-01-02/2006-11-19
COMCAST CORP NEW 0.0638 1.9496 0.4501 16.4274 2002-11-20/2014-12-31 2005-03-28/2014-12-31
COMMERCIAL CREDIT CO 0.0653 2.9103 1.2585 47.7310 1986-10-30/2014-12-31 1998-10-07/2014-12-31
COMMONWEALTH EDISON CO 0.0618 1.3330 −0.2357 9.3855 1980-01-02/2000-10-20 1989-09-11/2000-10-22
COMPUTER SCIENCES CORP 0.0614 2.2768 −0.5338 20.6186 1980-01-02/2014-12-31 1989-09-11/2007-07-01
CONSOLIDATED FOODS CORP 0.0751 1.7167 0.3055 25.7033 1980-01-02/2014-08-28 1999-12-01/2011-03-20
CONTROL DATA CORP DE 0.0499 2.4132 0.2903 9.2141 1980-01-02/2007-11-08 1989-09-11/2000-12-17
COSTCO WHOLESALE CORP 0.0883 2.2817 0.0115 9.3191 1985-11-29/2014-12-31 2009-01-02/2014-12-31
COVIDIEN LTD 0.0714 1.7210 1.0893 18.0512 2007-07-03/2014-12-31 2007-07-02/2009-06-04
DELL COMPUTER CORP 0.1254 3.0933 0.0037 7.4415 1988-06-23/2013-10-29 2004-07-01/2013-01-01
DELTA AIR LINES INC 0.0012 2.7491 −0.4874 23.8109 1980-01-02/2005-10-12 1989-09-11/2005-08-18
DEVON ENERGY CORP NEW 0.0594 2.3414 0.1143 8.6114 1999-08-19/2014-12-31 2008-12-22/2014-12-31
DIGITAL EQUIPMENT CORP 0.0394 2.3889 −0.2140 12.7653 1980-01-02/1998-06-11 1989-09-11/1998-06-11
DISNEY WALT PRODUCTIONS 0.0757 1.9467 −0.2903 16.8432 1980-01-02/2014-12-31 1989-09-11/2014-12-31
DOW CHEMICAL CO 0.0574 1.9982 −0.0364 10.3790 1980-01-02/2014-12-31 1989-09-11/2014-12-31
DU PONT E I DE NEMOURS & CO 0.0575 1.7318 −0.0720 8.1014 1980-01-02/2014-12-31 1989-09-11/2014-12-31
EASTMAN KODAK CO 0.0109 2.8249 1.8525 101.2664 1980-01-02/2012-01-18 1989-09-11/2007-04-01
EBAY INC 0.1474 3.6787 1.6611 20.3824 1998-09-25/2014-12-31 2012-03-19/2015-07-19
EL PASO NATURAL GAS CO 0.0712 2.8792 −0.2316 27.7503 1992-03-16/2012-05-24 2001-01-30/2008-12-21
EMC CORP MA 0.1250 3.3334 −0.1229 11.5252 1986-04-07/2014-12-31 2000-04-18/2014-12-31
EMERSON ELECTRIC CO 0.0598 1.6415 0.0655 10.0294 1980-01-02/2014-12-31 2011-03-21/2014-12-31
EXXON CORP 0.0649 1.4931 −0.0184 19.5141 1980-01-02/2014-12-31 1989-09-11/2005-08-28
FACEBOOK INC 0.1526 3.0153 1.7286 20.0418 2012-05-21/2014-12-31 2013-12-23/2014-12-31
FEDERAL EXPRESS CORP 0.0691 2.1041 0.1931 6.7529 1980-01-02/2014-12-31 1989-09-11/2014-12-31
FIRST ALABAMA BANCSHARES INC 0.0654 2.4806 1.5101 59.2637 1980-01-02/2014-12-31 2006-11-06/2011-03-20

(continued on next page)
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Table A.1 (continued).
Name Mean Vol Skew Kurt Sample Period Included in Index

FIRST BANK SYSTEM INC 0.0679 1.9883 0.1791 21.0219 1980-01-02/2014-12-31 2001-02-27/2014-12-31
FIRST NATIONAL ST BANC. 0.0882 1.6984 −0.0039 21.9818 1980-01-02/1995-12-29 1994-07-13/1996-01-01
FIRST UNION CORP 0.0705 2.7970 4.2971 321.7767 1980-01-02/2008-12-31 2006-10-02/2009-01-01
FLEET CALL INC 0.1363 4.3190 0.6717 9.8212 1992-01-29/2005-08-12 2000-12-18/2005-08-14
FLUOR CORP NEW 0.0772 2.6595 0.2407 9.3999 2000-12-26/2014-12-31 1989-09-11/2000-12-17
FORD MOTOR CO DEL 0.0705 2.3896 0.5249 16.7504 1980-01-02/2014-12-31 1989-09-11/2014-12-31
FREEPORT MCMORAN COP. & GLD. 0.0674 3.0267 0.0612 8.0146 1995-08-01/2014-12-31 2009-11-06/2015-03-22
GALEN HEALTH CARE INC 0.4542 3.2914 4.5166 38.4934 1993-03-09/1993-08-31 1989-09-11/1993-03-07
GENERAL DYNAMICS CORP 0.0702 1.7574 0.3222 10.0093 1980-01-02/2014-12-31 1989-09-11/2014-12-31
GENERAL ELECTRIC CO 0.0632 1.7319 0.1696 12.1074 1980-01-02/2014-12-31 1989-09-11/2014-12-31
GENERAL MOTORS CO 0.0245 1.9556 0.0730 6.3680 2010-11-19/2014-12-31 2013-06-07/2014-12-31
GILEAD SCIENCES INC 0.1436 3.3830 0.3577 7.9008 1992-01-23/2014-12-31 2008-12-22/2014-12-31
GILLETTE CO 0.0946 1.8885 −0.1493 18.2620 1980-01-02/2005-09-30 2000-12-12/2005-10-02
GLOBAL CROSSING LTD −0.2070 8.0609 −0.1735 18.9322 1998-08-17/2002-01-30 2000-12-18/2001-10-09
GOLDMAN SACHS GROUP INC 0.0612 2.5330 0.8161 15.5364 1999-05-05/2014-12-31 2002-07-22/2014-12-31
GOOGLE INC −0.0332 1.3342 −0.3257 3.9544 2014-04-04/2014-12-31 2014-04-03/2014-12-31
GOOGLE INC 0.1111 2.0476 0.8505 13.2077 2004-08-20/2014-12-31 2006-11-20/2014-12-31
GREAT WESTERN FINANCIAL CORP 0.0898 2.4521 0.3476 19.7749 1980-01-02/1997-07-01 1989-09-11/1997-07-01
GULF & WESTERN INDS INC 0.0879 1.7611 0.3831 10.0506 1980-01-02/1994-07-07 1989-09-11/1993-11-23
HALLIBURTON COMPANY 0.0584 2.5840 −0.2697 17.0982 1980-01-02/2014-12-31 1989-09-11/2014-12-31
HARRIS CORP 0.0573 2.0798 0.1318 10.5475 1980-01-02/2014-12-31 1989-09-11/1999-11-07
HEINZ H J CO 0.0671 1.4860 0.4932 10.8937 1980-01-02/2013-06-07 1989-09-11/2013-06-06
HEWLETT PACKARD CO 0.0698 2.3768 0.0606 9.5706 1980-01-02/2014-12-31 1989-09-11/2014-12-31
HOLIDAY INNS INC 0.1462 2.3836 −0.5722 36.6306 1980-01-02/1990-02-07 1989-09-11/1990-02-07
HOME DEPOT INC 0.1251 2.2725 −0.2434 14.2860 1981-09-23/2014-12-31 1999-10-12/2014-12-31
HOMESTAKE MINING CO 0.0443 2.8279 0.4877 7.3386 1980-01-02/2001-12-14 1989-09-11/2000-12-17
HONEYWELL INC 0.0749 1.7748 −0.0464 8.8373 1980-01-02/1999-12-01 1989-09-11/1999-12-01
IDEC PHARMACEUTICALS CORP 0.1558 3.8988 0.3487 10.9795 1991-09-18/2014-12-31 2014-03-24/2014-12-31
INTEL CORP 0.0897 2.5912 −0.0100 8.4256 1980-01-02/2014-12-31 1993-03-08/2014-12-31
INTERNATIONAL BUSINESS MACHS 0.0503 1.7118 0.0011 13.5375 1980-01-02/2014-12-31 1989-09-11/2014-12-31
INTERNATIONAL FLAVORS & FRAG 0.0564 1.6633 0.1486 9.7585 1980-01-02/2014-12-31 1989-09-11/2000-12-17
INTL MINERALS & CHEM CO 0.0553 1.9555 1.1227 43.8950 1980-01-02/2000-10-17 1989-09-11/2000-10-17
INTERNATIONAL PAPER CO 0.0545 2.0807 0.1447 14.3673 1980-01-02/2014-12-31 1989-09-11/2008-12-21
INTERNATIONAL TEL & TELEG 0.0692 1.7419 −0.4519 22.6547 1980-01-02/2014-12-31 1989-09-11/1995-12-19
ITT HARTFORD GROUP INC 0.0832 3.6644 4.8677 161.6137 1995-12-21/2014-12-31 1995-12-20/2008-12-21
JOHNSON & JOHNSON 0.0670 1.4805 −0.1422 10.4876 1980-01-02/2014-12-31 1989-09-11/2014-12-31
K MART CORP 0.0028 2.9084 −1.4132 52.1555 1980-01-02/2002-12-18 1989-09-11/2000-12-17
KINDER MORGAN INC 0.0572 1.4405 0.2657 8.7428 2011-02-14/2014-12-31 2015-03-23/2014-12-31
KRAFT FOODS INC 0.0369 1.3281 −0.3082 10.7533 2001-06-14/2014-12-31 2007-04-02/2014-12-31
LEHMAN BROTHERS HOLDINGS INC 0.0226 3.8205 −4.8513 140.0087 1994-06-01/2008-09-17 2000-12-18/2008-09-16
LILLY ELI & CO 0.0608 1.7193 −0.6146 21.6938 1980-01-02/2014-12-31 2012-03-19/2014-12-31
LIMITED STORES INC 0.1147 2.4454 0.2591 7.4929 1980-01-02/2014-12-31 1989-09-11/2007-10-24
LITTON INDUSTRIES INC 0.0635 1.9833 2.0809 111.1357 1980-01-02/2001-05-30 1989-09-11/1994-03-17
LOCKHEED CORP 0.0729 1.9107 0.2539 13.7155 1980-01-02/2014-12-31 2008-12-22/2014-12-31
LOWES COMPANIES INC 0.0956 2.2709 0.1404 7.4377 1980-01-02/2014-12-31 2008-12-22/2014-12-31
LUCENT TECHNOLOGIES INC 0.0439 3.8410 −0.0236 11.1382 1996-04-08/2006-11-30 1999-04-02/2006-11-30
MCI COMMUNICATIONS CORP 0.1309 2.7754 0.0772 11.6370 1980-01-02/1998-09-14 1989-09-11/1998-09-15
MASTERCARD INC 0.1664 2.4505 0.7597 11.3591 2006-05-26/2014-12-31 2008-07-18/2014-12-31
MAY DEPARTMENT STORES CO 0.0740 1.8467 0.1657 9.5297 1980-01-02/2005-08-29 1993-11-24/2005-08-28
MCDONALDS CORP 0.0696 1.5808 −0.0059 8.3107 1980-01-02/2014-12-31 1989-09-11/2014-12-31
MEDIMMUNE INC 0.1693 4.1281 0.2680 12.6918 1991-05-09/2007-06-18 2000-12-18/2007-05-31
MELVILLE CORP 0.0727 1.8495 −0.2962 14.1645 1980-01-02/2014-12-31 2007-03-23/2014-12-31
MERCK & CO INC 0.0645 1.6725 −0.4963 15.7386 1980-01-02/2014-12-31 1989-09-11/2014-12-31
MERRILL LYNCH & CO INC 0.0782 2.7541 0.5784 21.2506 1980-01-02/2008-12-31 1989-09-11/2009-01-01
METLIFE INC 0.0804 2.8039 0.6068 23.2407 2000-04-06/2014-12-31 2009-06-05/2014-12-31
MICROSOFT CORP 0.1143 2.2217 −0.1290 13.5677 1986-03-14/2014-12-31 1997-08-18/2014-12-31
MIDDLE SOUTH UTILITIES INC 0.0556 1.5671 −0.1894 18.4182 1980-01-02/2014-12-31 1989-10-06/2012-03-18
MINNESOTA MINING & MFG CO 0.0607 1.4817 −0.4948 17.9756 1980-01-02/2014-12-31 1989-09-11/2014-12-31
MOBIL CORP 0.0751 1.6884 0.0008 16.0957 1980-01-02/1999-11-30 1989-09-11/1999-11-30
MONSANTO CO 0.0805 1.9509 −0.3507 16.5776 1980-01-02/2003-04-15 1989-09-11/2003-04-15
MONSANTO CO NEW 0.0985 2.2486 0.1318 10.3522 2000-10-19/2014-12-31 2009-03-17/2014-12-31
MORGAN STANLEY GROUP INC 0.0822 2.9231 3.8522 122.0236 1986-03-24/2014-12-31 2000-04-03/2014-12-31
NATIONAL DETROIT CORP 0.0862 1.5419 0.1807 6.4340 1980-01-02/1998-10-01 1989-09-11/1998-10-01
NATIONAL OILWELL INC 0.1131 3.2491 0.1810 9.0072 1996-10-30/2014-12-31 2008-04-22/2015-03-22
NATIONAL SEMICONDUCTOR CORP 0.0822 3.4263 1.2795 29.2925 1980-01-02/2011-09-23 1989-09-11/2007-07-01
NCNB CORP 0.0715 2.5100 0.7587 31.7124 1980-01-02/2014-12-31 1997-07-02/2014-12-31
NEWS CORP 0.0637 2.2513 0.6366 14.4908 2004-11-15/2014-12-31 2009-10-16/2014-12-31

(continued on next page)
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Table A.1 (continued).
Name Mean Vol Skew Kurt Sample Period Included in Index

NIKE INC 0.0950 2.2192 0.1775 8.8340 1980-12-03/2014-12-31 2008-12-22/2014-12-31
NORFOLK SOUTHERN CORP 0.0674 1.8796 0.0281 8.4887 1982-06-28/2014-12-31 1989-09-11/2014-12-31
NORTHERN NAT GAS CO 0.0438 3.2118 5.4086 441.1611 1980-01-02/2002-01-11 2000-12-11/2001-11-29
NORTHERN TELECOM LTD 0.0122 3.2614 −0.4326 26.5146 1980-01-02/2009-01-13 1989-09-11/2002-07-21
NORTHWEST BANCORPORATION 0.0829 2.2071 1.3609 30.9468 1980-01-02/2014-12-31 1999-01-04/2014-12-31
NYNEX CORP 0.0703 1.2448 0.0116 21.1318 1984-02-17/1997-08-14 1995-07-31/1997-08-17
NYSE GROUP INC 0.0331 3.1962 1.0572 17.2035 2006-03-09/2013-11-12 2007-10-25/2011-03-20
OCCIDENTAL PETROLEUM CORP 0.0606 1.9711 0.0733 11.5760 1980-01-02/2014-12-31 1989-09-11/2000-12-17
ORACLE SYSTEMS CORP 0.1424 3.2087 0.4584 15.3404 1986-03-13/2014-12-31 1996-02-12/2014-12-31
PEPSICO INC 0.0707 1.5945 0.1918 9.9154 1980-01-02/2014-12-31 1989-09-11/2014-12-31
PFIZER INC 0.0682 1.7527 −0.0580 7.1721 1980-01-02/2014-12-31 2000-12-18/2014-12-31
PHARMACIA & UPJOHN INC 0.0775 2.0571 −0.2234 7.1764 1995-11-06/2000-03-31 1989-09-11/2000-04-02
PHILADELPHIA ELECTRIC CO 0.0573 1.4983 0.1878 11.9797 1980-01-02/2014-12-31 2000-10-23/2014-12-31
PHILIP MORRIS INC 0.0890 1.6769 −0.2565 15.1802 1980-01-02/2014-12-31 2001-10-10/2014-12-31
PHILIP MORRIS INTERNATIONAL 0.0560 1.4665 0.1642 12.2630 2008-04-01/2014-12-31 2008-03-31/2014-12-31
PHILLIPS PETROLEUM CO 0.0636 1.9736 0.0286 9.4972 1980-01-02/2014-12-31 2006-12-01/2014-12-31
POLAROID CORP −0.0219 2.7873 −0.8217 20.8630 1980-01-02/2001-10-09 1989-09-11/2000-12-11
PRICELINE COM INC 0.1343 4.6438 0.2881 16.6555 1999-03-31/2014-12-31 2015-07-01/2014-12-31
PROCTER & GAMBLE CO 0.0639 1.4724 −1.3897 48.0556 1980-01-02/2014-12-31 1998-06-12/2014-12-31
PROMUS COMPANIES INC 0.0902 2.4311 0.2926 6.9420 1990-02-27/2008-01-25 1990-02-08/2008-01-28
QUALCOMM INC 0.1419 3.3219 0.9578 11.8472 1991-12-16/2014-12-31 2008-07-31/2014-12-31
RALSTON PURINA CO 0.0848 1.6452 1.0845 20.6945 1980-01-02/2001-12-12 1989-09-11/2001-12-12
RAYTHEON CO 0.0556 1.7719 −1.5036 59.1846 1980-01-02/2014-12-31 1989-09-11/2014-12-31
ROCKWELL INTERNATIONAL CORP 0.0770 2.2723 −0.1074 9.1508 1996-12-17/2014-12-31 1989-09-11/2008-04-21
SCHERING PLOUGH CORP 0.0755 2.0287 −0.2580 13.2578 1980-01-02/2009-11-03 2008-12-22/2009-11-03
SCHLUMBERGER LTD 0.0564 2.1973 −0.0622 8.0232 1980-01-02/2014-12-31 1989-09-11/2014-12-31
SEARS ROEBUCK & CO 0.0699 2.1427 −0.0957 21.4413 1980-01-02/2005-03-24 1989-09-11/2005-03-27
SIMON PROPERTY GROUP INC 0.0826 2.0631 0.9723 25.3419 1993-12-15/2014-12-31 2012-03-19/2014-12-31
SKYLINE CORP 0.0305 2.5161 0.4262 9.5888 1980-01-02/2014-12-31 1989-09-11/1995-07-30
SOUTHERN CO 0.0644 1.2359 0.1019 14.3641 1980-01-02/2014-12-31 1989-09-11/2014-12-31
SOUTHWESTERN BELL CORP 0.0563 1.6269 0.1115 15.3978 1984-02-17/2014-12-31 2001-08-30/2014-12-31
SQUIBB CORP 0.1075 1.8673 1.2111 27.8156 1980-01-02/1989-10-03 1989-09-11/1989-10-05
STANDARD OIL CO CALIFORNIA 0.0618 1.6604 0.1778 11.3158 1980-01-02/2014-12-31 2005-10-04/2014-12-31
STANDARD OIL CO IND 0.0689 1.6268 −0.1362 12.9094 1980-01-02/1998-12-31 1989-09-11/1999-01-03
STARBUCKS CORP 0.1195 2.5889 0.2055 9.2841 1992-06-29/2014-12-31 2012-03-19/2014-12-31
TANDY CORP 0.0311 2.9874 0.0142 18.9871 1980-01-02/2014-12-31 1989-09-11/2006-11-05
TEKTRONIX INC 0.0537 2.3927 0.4827 18.2175 1980-01-02/2007-11-21 1989-09-11/2000-12-17
TELEDYNE INC 0.0638 2.7064 0.5007 10.8077 1980-01-02/2014-12-31 1989-09-11/2008-03-30
TEXAS INSTRUMENTS INC 0.0773 2.5917 0.1542 9.8111 1980-01-02/2014-12-31 1989-09-11/2014-12-31
TOYS R US INC 0.0763 2.3302 0.3190 10.2141 1980-01-02/2005-07-21 1989-09-11/2005-07-21
TYCO LABS INC 0.0874 2.3186 0.4469 40.1974 1980-01-02/2014-12-31 2000-10-18/2009-03-16
UAL INC 0.0318 3.2699 −1.3699 56.0458 1980-01-02/2003-04-02 1989-09-11/1994-07-12
UNION PACIFIC CORP 0.0670 1.7747 −0.1085 8.4833 1980-01-02/2014-12-31 2011-03-21/2014-12-31
UNITED HEALTHCARE CORP 0.1239 2.7098 −0.0004 20.7194 1984-10-18/2014-12-31 2008-01-29/2014-12-31
UNITED PARCEL SERVICE INC 0.0325 1.4728 0.3712 10.6931 1999-11-11/2014-12-31 2005-11-21/2014-12-31
UNITED TECHNOLOGIES CORP 0.0679 1.7043 −0.4090 15.5116 1980-01-02/2014-12-31 1989-09-11/2014-12-31
UNITED TELECOMMUNICATIONS 0.0568 2.5963 0.0770 20.7018 1980-01-02/2013-07-10 2005-08-15/2012-03-18
VIACOM INC 0.0621 2.5252 0.5624 13.2874 1990-06-15/2014-12-31 2000-05-05/2008-12-21
VISA INC 0.1159 2.1614 0.3222 10.3211 2008-03-20/2014-12-31 2011-03-21/2014-12-31
WAL MART STORES INC 0.0930 1.7866 0.2376 6.6456 1980-01-02/2014-12-31 1989-09-11/2005-08-28
WALGREEN CO 0.0868 1.7948 0.1262 8.2066 1980-01-02/2014-12-31 2008-12-22/2014-12-31
WESTERN BANCORPORATION 0.0814 1.9801 1.4664 28.7596 1980-01-02/1996-03-29 1989-09-11/1996-03-31
WESTINGHOUSE ELECTRIC CORP 0.0841 2.1743 0.0871 21.1441 1980-01-02/2000-05-03 1998-11-13/2000-05-04
WEYERHAEUSER CO 0.0513 2.0307 −0.1422 9.8389 1980-01-02/2014-12-31 1989-09-11/2005-08-28
WILLIAMS COS 0.0843 2.9563 1.9961 126.7370 1980-01-02/2014-12-31 1989-09-11/2013-12-22
XEROX CORP 0.0445 2.3887 0.2469 24.6742 1980-01-02/2014-12-31 1989-09-11/2005-08-28
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