
 

 

Comment on  

“A theoretical foundation of 

ambiguity measurement” 
 

 
J. Econ. Theory 187 (2020) 105001 
 
 
Ruonan Fu, Bertrand Melenberg, Nikolaus Schweizer 
 

DP 11/2023-062 
 



Available online at www.sciencedirect.com
ScienceDirect

Journal of Economic Theory 207 (2023) 105573
www.elsevier.com/locate/jet

Comment on “A theoretical foundation of ambiguity 

measurement” [J. Econ. Theory 187 (2020) 105001]

Ruonan Fu ∗, Bertrand Melenberg, Nikolaus Schweizer

Tilburg University, Department of Econometrics and OR, PO box 90153, NL-5000 LE Tilburg, the Netherlands

Received 23 October 2020; final version received 26 September 2022; accepted 30 October 2022
Available online 17 November 2022

Abstract

In this paper, we study asymptotic expansions for distorted probabilities under ambiguity, revisiting the 
framework and analysis of Izhakian (2020b). We argue that the first order terms in these expansions need 
to be corrected and provide alternatives. We also revisit later results in this paper on the separation of ambi-
guity and ambiguity attitudes. We argue that a crucial lemma is flawed implying that Izhakian’s ambiguity 
measure �2 is not an equivalent way of representing the preferences it is supposed to represent.
© 2022 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND 
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

JEL classification: D81; D84
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1. Introduction

For a long time, the predominant modeling approach in economics for decision-making under 
uncertainty has been that of an agent who faces a so-called pure risk situation, i.e., an uncertain 
outcome which is a random draw from a known probability distribution. Starting with Knight 
(1921), this view has constantly been challenged over the past century, see e.g. Ellsberg (1961), 
Gilboa and Schmeidler (1989) and Hansen and Sargent (2001). Yet, nevertheless, most empirical 
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work in economics and finance still relies on the conceptually simpler reduction of uncertainty 
to pure risk. This situation is the starting point of an impressive series of papers by Y. Izhakian 
and his coworkers which can be roughly summarized as follows.

(i) Starting from axiomatic first principles, Izhakian (2017) derives a concrete functional form 
for preferences under risk and ambiguity.

(ii) Building on that concrete functional form, Izhakian (2020b) provides asymptotic expansions 
of preferences in terms of quantities which are easy to elicit from observable data. This 
is similar to the classical Arrow-Pratt approximation from risk theory which can be seen 
as a justification for measuring risk using the variance. The analogue of the variance in 
this picture is the proposed ambiguity index �2. In particular, just like the variance, �2 is 
intended to be read as a measure of ambiguity that is independent of ambiguity attitudes.

(iii) As a measure of ambiguity, �2 has been applied within a short time span to an impressive 
collection of empirical settings. Izhakian and Yermack (2017) study the effect of ambiguity 
on the exercise of employee stock options using �2 as the measure. Brenner and Izhakian 
(2018) apply �2 to the US equity market and explore the relation between risk, ambigu-
ity, and expected returns. Augustin and Izhakian (2020) study the implication of ambiguity 
for the pricing of credit default swaps using �2. Izhakian (2020a) extends mean-variance 
preferences to mean-variance-ambiguity preferences, where ambiguity is measured by �2. 
Ben-Rephael and Izhakian (2020) study trading behavior under ambiguity relying on �2. 
Coiculescu et al. (2019) explore the effect of risk and ambiguity on R&D investment using �2 as the measure of ambiguity. In addition, �2 has been applied to various topics in cor-
porate finance, such as firms’ payout policies (Herron and Izhakian, 2020a), mergers and 
acquisitions (Herron and Izhakian, 2020b), and the corporate capital structure (Izhakian et 
al., 2020).

In this paper, we take a close look at step (ii) in this development, the connection between 
preferences and the �2 via asymptotic expansions. We begin with a close look at the definition of 
these preferences, highlighting some issues and smaller errors, that are relatively straightforward 
to correct. We then argue that there is a flaw in the proof of Izhakian (2020b)’s Theorem 1 which 
is the key result that establishes the connection between agents’ perceived probabilities and the �2. This flaw is not a mere technicality. After fixing it, the expansion looks different and is no 
longer connected to the �2 in a way that is obvious to us. Accordingly, the �2 also vanishes from 
later results of the paper such as Theorem 2 or Theorem 5 which connect preferences to the �2.

While we offer alternatives to the first main results of Izhakian (2020b), his Theorems 1 and 
2, our outlook on repairing some further steps in his analysis is more pessimistic. In particular, 
his Theorems 5, 6, and 7 on the separation of risk and ambiguity all rely crucially on his Lemma 
3. Lemma 3 basically argues that certain covariance terms are always zero, thus simplifying the 
analysis a lot. We show that Lemma 3 is incorrect, invalidating the claimed separation of risk 
and ambiguity.1 As a consequence, also the follow-up theorems, showing that the preference 
ordering can equivalently be described by �2, fail. Given ambiguity, �2 presents a total order 
over prospects. But given only ambiguity, the preference orderings, still depending on risk pref-

1 Intuitively, when two random variables X and Y have zero covariance, one can write E[XY ] = E[X]E[Y ] thus 
achieving a clean separation into two factors associated with each variable. With a non-zero covariance, the expectation 
of the product can usually not be split in such a way.
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erences, are only partial orders. There can be no equivalence between a total order and a partial 
order (that is not a total order), as is claimed by Izhakian (2020b)’s Theorems 5 and 6.

Let us emphasize that these findings do not invalidate the empirical results of the papers 
summarized in (iii).2 While the strong connection between preferences under ambiguity and �2

seems lost, �2 may well measure ambiguity – just like there are many other measures of risk 
besides the variance. We do know that it is a non-negative quantity that vanishes only in the 
absence of ambiguity and that it has had remarkable success in empirical work. However, �2 as 
an ambiguity measure has its limitations. We provide an example in which the ordering according 
to �2 is opposite to the ordering according to the ambiguity-averse preferences it is supposed to 
represent.

The remainder of this paper is structured as follows. In Section 2, we first introduce the set-
ting, including an explicit link between our setting and the more general framework in Izhakian 
(2020b).3 We also point out some minor flaws in the definitions of preferences in Izhakian 
(2020b). Next, in Section 3 we discuss Izhakian (2020b)’s approximation and provide a coun-
terexample to his Theorem 1. In Section 4 we provide an informal derivation of our alternative 
asymptotic expansion for perceived probabilities and give a simple numerical example which 
shows that its accuracy is much higher than that of Izhakian (2020b)’s expansion. Afterwards, 
we also present rigorous derivations, which can be seen as our analogues of Izhakian (2020b)’s 
Theorems 1 and 2. In Section 5 we discuss Izhakian (2020b)’s �2. We explain the problems with 
Izhakian (2020b)’s crucial Lemma 3 and argue why �2 cannot be used as an equivalent way to 
represent preferences. We also briefly discuss an alternative way to quantify ambiguity, based on 
our approximation. Section 6 concludes.

Before we begin, we would like to emphasize that the various problems we identify in 
Izhakian (2020b) can be understood and verified independently of each other. In particular, our 
counterexamples to Izhakian’s asymptotic expansions hold regardless of whether one resolves 
the sign errors in the definition of preferences or sticks to the original versions. Similarly, our 
issues with Lemma 3 and Theorem 5 can be understood regardless of whether one works with 
the corrected asymptotic expansions or with Izhakian’s original version.

2. Setting

Izhakian’s model of risk and ambiguity is a two-stage model like, e.g., the smooth ambiguity 
of Klibanoff et al. (2005). A risky and ambiguous quantity (prospect) X is drawn from a proba-
bility distribution which is unknown to the agent. The agent knows however that this probability 
distribution is in turn drawn from a known probability distribution over a family of probability 
distributions. In this note, we do not go back to the decision-theoretic basics but start right away 
with a concrete model which is a special case of Izhakian’s.

We consider a random variable Z with values in some set U and distribution μ as the state of 
the world. The set U may be either finite or infinite. Throughout, the operations E[·], cov(·, ·) and 
var(·) refer to expected values, covariances, and variances with respect to the distribution of Z. 
While Z models ambiguity, risk is modeled through the measurable function P : R ×U → [0, 1]
which has the property that for any fixed z ∈ U the function P(·, z) is a cumulative distribution 

2 Of course, several of these papers do cite some of the flawed theoretical claims from Izhakian (2020b). See, e.g., 
Section 2.1 of Izhakian et al. (2020) which is basically a summary of Theorem 1 and 2 of Izhakian (2020b) for the case 
where the reference point lies at −∞.

3 Since our main interest is in counterexamples, nothing is lost by restricting attention to our somewhat simpler setting.
3
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function. We assume that P(·, z) is smooth in its first argument with (Lebesgue) density function 
φ(·, z).4 We assume that, conditional on Z = z, the real-valued, risky and ambiguous quantity X
is continuously distributed according to the cumulative distribution function P(x, z) with density 
φ(x, z) and support supp(z). Unless the support plays an important role, we define P(x, z) and 
φ(x, z) for all x ∈ R, thus assuming that the density is simply set to zero outside the support of 
X. We denote by P̄ (x) = E[P(x, Z)] the expected cumulative distribution function and note that 
it is a proper distribution function which coincides with the unconditional distribution of X. The 
associated density is given by φ̄(x) = E[φ(x, Z)]. The set of prospects X will be denoted by X .

2.1. Transformed probabilities

Next, we introduce Izhakian’s preference ordering � over X . An agent who is neutral to the 
distinction between risk and ambiguity would simply evaluate prospects X ∈ X by integrating a 
suitable utility function u(x) against P̄ (x), i.e.,

∞∫
−∞

u(x)dP̄ (x) =
∞∫

−∞
u(x)φ̄(x)dx,

for some utility function u that is assumed to be a continuous, strictly increasing bounded func-
tion.5 We shall denote this class of utility functions by V .

The agent in Izhakian’s model calculates instead the integral with respect to a transformed 
probability distribution. Let ϒ be a weighting function that is smooth and strictly increasing. Let 
� be the implied weighting function, defined by �(p) = 1 − ϒ(1 − p). Then we can define two 
transformed probability distributions, namely, the cumulative distribution function6

Pϒ(x) = ϒ−1(E[ϒ(P (x,Z))])
and the cumulative distribution function

P�(x) = �−1(E[�(P (x,Z))]) = 1 − ϒ−1(E[ϒ(1 − P(x,Z))])
with respective densities

φϒ(x) = d

dx
Pϒ(x), and φ�(x) = d

dx
P�(x).

The functions Pϒ(x) and P�(x) both coincide with P̄ (x) in the ambiguity neutral case, �(x) = x, 
or in the absence of ambiguity, i.e., Z a.s. constant.

If ϒ is concave then by Jensen’s inequality,

Pϒ(x) = ϒ−1(E[ϒ(P (x,Z))]) ≤ P̄ (x,Z). (1)

This implies that Pϒ(x) dominates P̄ (x) in the stochastic first-order sense. If ϒ is concave, then 
� is convex, implying that P̄ (x) dominates P�(x) in the stochastic first-order sense. For each 
utility function u ∈ V we then have

4 Throughout this section, we use “smooth” in the sense of “differentiable sufficiently often and otherwise well-
behaved.” We become more precise in Section 4 when we provide a rigorous justification for our alternative expansion.

5 Izhakian (2020b) also assumes that there is a reference point k such that u(k) = 0. As we will discuss later, we do 
not need this reference point.

6 Notice that ϒ−1(z) = 1 − �−1(1 − z).
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∞∫
−∞

u(x)dP�(x) ≤
∞∫

−∞
u(x)dP̄ (x) ≤

∞∫
−∞

u(x)dPϒ(x).

Thus, if ϒ is concave, an economic agent using Pϒ(x) to evaluate expected utility reveals ambi-
guity seeking behavior, while an economic agent using P�(x) reveals ambiguity aversion.

In the sequel, we shall focus on an ambiguity averse agent and assume, unless explicitly 
stated otherwise, that ϒ is concave. In our setting, this means that the economic agent makes 
use of the transformed probability distribution P�(x), with � a smooth, strictly increasing, and 
convex transformation.

2.2. Preference orderings

We can now describe Izhakian’s preference ordering over X in our context. Let G be the set 
of relevant � functions (smooth, strictly increasing, and convex7). Let prospect X1 ∈ X have 
distribution function P1(x, Z), with density φ1(x, Z), and let prospect X2 ∈ X have distribution 
function P2(x, Z), with density φ2(x, Z). We shall denote the preference ordering over X by 
�(u,�): We have X1 �(u,�) X2 if, for some (u, �) ∈ V × G,

∞∫
−∞

u(x)dP1,�(x) ≥
∞∫

−∞
u(x)dP2,�(x), (2)

where Pi,�(x) = �−1(E[�(Pi(x, Z)]) with density φi,�(x), i ∈ {1, 2}. In terms of densities this 
is equivalent to

∞∫
−∞

u(x)φ1,�(x)dx ≥
∞∫

−∞
u(x)φ2,�(x)dx. (3)

In line with Izhakian (2020b)’s Theorem 1, our main interest is then in approximating P�(x) and 
its density φ�(x).

2.3. Reformulations and reference points

Before we turn to these approximations, we first present some reformulations of the expected 
utility using P�(x), and link these reformulations to expressions presented in Izhakian (2020b). 
We are particularly interested in the dependence on the reference point. Let P� be the probability 
distribution corresponding to P�. Thus, P�(X ≤ x) = P�(x). We can write

∞∫
−∞

u(x)dP�(x) =
0∫

−∞
((1 − P�(u(X) ≤ x)) − 1)dx +

∞∫
0

(1 − P�(u(X) ≤ x))dx. (4)

Using

1 − P�(x) = ϒ−1(E[ϒ(1 − P(x,Z))]), (5)

7 See footnote 4.
5
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we see that (4) is a special case of V (f ) as defined in equation (2) of Izhakian (2020b) (where 
Izhakian’s f is replaced by X).

We can also write for some k

∞∫
−∞

u(x)dP�(x) =
k∫

−∞
u(x)dP�(x) +

∞∫
k

u(x)dP�(x). (6)

Using again (5), we can rewrite this equation as

∞∫
−∞

u(x)dP�(x) =
k∫

−∞
u(x)d

[
1 − ϒ−1(E[ϒ(1 − P(x,Z))])

]

+
∞∫

k

u(x)d
[
1 − ϒ−1(E[ϒ(1 − P(x,Z))])

]

= −
k∫

−∞
u(x)d

[
ϒ−1(E[ϒ(1 − P(x,Z))]) − 1

]

−
∞∫

k

u(x)d
[
ϒ−1(E[ϒ(1 − P(x,Z))])

]
.

This is a special case of W(f ), introduced on page 9 of Izhakian (2020b) as the dual representa-
tion of V (f ). However, our derivation shows that the plus-sign before his second integral has to 
be replaced by the minus-sign in our expression, needed to guarantee V (f ) = W(f ).8

Our derivation also reveals that the reference point k does not play the intended role, namely, 
to distinguish between gains and losses. Indeed, Izhakian (2020b) uses the same transformed 
probability distribution P�(x) for values above and below this reference point. This means that 
the value of k should not matter in evaluating the integral in (6) (or its equivalent formulations). 
However, curiously, and as we discuss below, in Izhakian (2020b), the reference point is assigned 
an important role, since the utility index u(x) is normalized such that u(k) = 0.

One can generalize (6) to give the reference point k its intended role, for example, by using 
P�(x) for gains (above the reference point) and using Pϒ(x) for losses (below the reference 
point). Since ϒ is concave, this means ambiguity aversion above the reference point and ambi-
guity seeking behavior below the reference point. Something like this is done, for example, by 
Barberis and Huang (2008) in the context of prospect theory. In the sequel, we shall not consider 
this generalization of (6), but focus on the ambiguity averse case without a (spurious) reference 
point.9

8 For example, without correcting the plus-sign, Izhakian (2020b)’s expression does not reduce to expected utility in 
the absence of ambiguity: If we plug in a deterministic distribution function P(x) with density φ(x), the dependence on 
ϒ vanishes and we obtain 

∫ k
−∞ u(x)φ(x)dx − ∫ ∞

k u(x)φ(x)dx rather than 
∫ ∞
−∞ u(x)φ(x)dx.

9 Indeed, some later works of Izhakian such as Izhakian et al. (2020) place the reference point at −∞ without placing 
any constraints on the utility function, possibly recognizing the problem.
6
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3. Izhakian (2020b)’s asymptotic expansion

In this section we first present and discuss Izhakian (2020b)’s approximation as presented 
in his Theorem 1, reformulated in our context. Next, we present a counterexample invalidating 
the claims of this theorem. In a nutshell, the term sgn(u(x))φ̄(x)var(φ(x, Z)) plays a crucial 
role in Izhakian’s approximation. We first discuss the factor sgn(u(x)) and then move on to 
φ̄(x)var(φ(x, Z)).

3.1. Izhakian’s asymptotic expansion

The main result of Izhakian’s Theorem 1 is an asymptotic expansion for φ�(x). Let sgnk(x)

be equal to 1 if x > k and equal to −1 otherwise. In our setting the asymptotic expansion for 
φ�(x) presented in Izhakian (2020b) can be translated as follows

φ�(x) ≈ φ̄(x) − sgnk(x)A(P̄ (x))φ̄(x)var(φ(x,Z)), (7)

where

A(x) = �′′(x)/�′(x) = −ϒ′′(1 − x)/ϒ′(1 − x)

is analogous to the absolute risk aversion of Arrow and Pratt and where “≈” stands for equality 
up to a higher order error term in the limit of vanishing ambiguity. The sign of A(x) reveals the 
attitude towards ambiguity: A(x) > 0 corresponds to ambiguity aversion, A(x) < 0 represents 
ambiguity seeking behavior, and A(x) = 0 means ambiguity neutrality.

Izhakian’s measure of ambiguity, �2, is defined as the integral over x of the ambiguity-
dependent part in the correction term in (7), i.e.,

�2 =
∞∫

−∞
φ̄(x)var(φ(x,Z))dx. (8)

We shall discuss this measure of ambiguity in Section 5.
The approximation presented in (7) depends on the reference point k. Since Izhakian (2020b)

normalizes the increasing utility function u such that u(k) = 0, we can rewrite (7) as

φ�(x) ≈ φ̄(x) − sgn(u(x))A(P̄ (x))φ̄(x)var(φ(x,Z)), (9)

with sgn(u(x)) = 1 if u(x) > 0 and −1 otherwise. This removes the (explicit) dependence of the 
approximation on k.

It is curious that the factor sgn(u(x)) appears in an approximation to φ�(x) (which depends 
on � but not on u). However, it is easy to see that without a factor like this Izhakian’s prefer-
ence approximation cannot respect ambiguity aversion. Most likely, this was the motivation for 
including this factor. Ignoring higher order terms, the expected utility using the approximation 
of the density function becomes

∞∫
−∞

u(x)
[
φ̄(x) − sgn(u(x))A(P̄ (x))φ̄(x)var(φ(x,Z))

]
dx.

In order for this expression to represent ambiguity aversion (corresponding to A(x) ≥ 0 for all 
x) or ambiguity seeking behavior (corresponding to A(x) ≤ 0 for all x) for any φ(x, Z), it is 
indeed necessary that u(x)sgn(u(x)) ≥ 0.
7
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The left hand side density φ�(x) of (9) integrates to one. However, the approximation, i.e., the 
right hand side of (9), typically does not integrate to one: While the first term in the approxima-
tion integrates to one, the second term of the approximation only integrates to zero under special 
circumstances. For example, if sgn(u(x)) < 0 and A(P̄ (x)) > 0, the integral of the second term 
is strictly positive, but if sgn(u(x)) > 0 and A(P̄ (x)) > 0 the integral of the second term be-
comes strictly negative. Combined with the dependence of the approximation on the sign of u(x)

(or on k) these results violate the claim in Izhakian (2020b) that the approximation will be exact, 
for example, when � (or ϒ) is linear or quadratic.10 Indeed, as we will illustrate later, the ap-
proximation might be poor if it does not integrate to one. And even if it integrates to one for some 
given value of k, where the sign of u(x) switches, by changing this value of k the approximation 
will change, typically no longer integrating to one, and thus impossible to be exact.

As discussed by Izhakian (2020b), the approximation (7) only has a chance to be valid for

|A(P̄ (x))| < 1

var(φ(x,Z))
,

since if this condition is not satisfied, the approximation (9) might become negative, potentially 
turning ambiguity aversion into ambiguity seeking behavior (or the other way around). However, 
such a condition is unfortunate, since it requires decreasing ambiguity aversion (or decreasing 
ambiguity seeking behavior) when the ambiguity increases.

All these considerations raise serious doubts about Theorem 1 of Izhakian (2020b). We next 
provide an example, invalidating the claims in Theorem 1.11

3.2. Counterexample to Theorem 1

We focus on the special case �(x) = exp(x) − 1, which leads to A ≡ 1 and A′ ≡ 0.12 This 
choice implies that we can translate the claim of his theorem into our framework as follows:
Suppose that var(φ(x, Z)) ≤ 1. Then

φ�(x) = φ̄(x) − sgn(u(x))φ̄(x)var(φ(x,Z)) + R2(φ(x,Z)). (10)

Moreover R2(φ(x, Z)) = o(E[|φ(x, Z) − φ̄(x)|3]) as |φ(x, Z) − φ̄(x)| → 0.
Notice that (10) is a statement about deterministic quantities which do not depend on the 

realization of Z. Thus, R(φ(x, Z)) is not random and the stochastic limit |φ(x, Z) − φ̄(x)| → 0
is not entirely straightforward to interpret. Nevertheless, our example is simple enough to fit 
into this setting without room for doubt. In particular, the example is a valid counterexample no 
matter whether sgn(u(x)) is −1 or 1.

Our basic idea is to consider a family of random distribution functions P(·, Z) with the prop-
erty that the support of P(·, z) is [0, 1] for all z. We focus on the case where x is the lower end 
of the support x = 0. We know that P(0, z) = 0 for all z and, consequently, P�(0) = P̄ (0) = 0. 
There is no ambiguity about the cumulative distribution function at the lower end of the support. 
For the distorted density φ�(0), we find that

10 According to Izhakian (2020b), the approximation is also exact if the fourth and higher central moments of φ(x, Z)

are equal to zero. These moments can only be zero in the degenerate case, in which case var(φ(x, Z)) is also zero, making 
the approximation indeed exact.
11 In the appendix, we also take a closer look at the proof of Theorem 1, pointing out the place that leads to the error.
12 The function �λ(x) = (exp(λx) − 1)/λ, is, of course, a special case of a function with constant (positive if λ > 0
or negative if λ < 0) absolute risk aversion in the sense of Arrow-Pratt. The limit λ → 0 is the ambiguity neutral case 
�0(x) = x.
8



R. Fu, B. Melenberg and N. Schweizer Journal of Economic Theory 207 (2023) 105573
φ�(0) = d

dx
log (E[exp(P (x,Z))])

∣∣∣∣
x=0

= (E[φ(x,Z) exp(P (x,Z))]
E[exp(P (x,Z))]

∣∣∣∣
x=0

= φ̄(0),

since P(0, Z) = 0. Thus, in this situation no correction terms are needed as also φ�(0) and φ̄(0)

coincide. However, the leading error term E[φ(0, Z)]var(φ(0, Z)) in (10) is not necessarily zero 
when the density φ(0, Z) at the lower bound of the support is random. In this situation, since 
φ�(0) = φ̄(0) we know that the absolute value of the error term in (10) is given by

|R2(φ(0,Z))| = φ̄(0)var(φ(0,Z)). (11)

We will now make concrete parametric assumptions to show that the claim R2(φ(x, Z)) =
o(E[|φ(x, Z) − φ̄(x)|3]) as |φ(x, Z) − φ̄(x)| → 0 is wrong in general.

We assume P(x, Z) = (1 − Z
2 )x + 1

2Zx2 for x ∈ [0, 1]. Z follows the uniform distribution on 
[−L, L], L ∈ [0, 2]. The corresponding density function is φ(x, Z) = 1 − Z

2 + Zx. Moreover, 
φ̄(x) = 1 and var(φ(x, Z)) = 1

3 (x − 1
2 )2L2. The example thus models ambiguity around the 

uniform distribution on [0, 1]. To study the limit of vanishing ambiguity of Izhakian’s theorem, 
we can let L go to 0. Izhakian’s regularity condition var(φ(x, Z)) ≤ 1 is satisfied for all x ∈ [0, 1]
and all L ∈ [0, 2]. By (11), we know that

|R2(φ(0,Z))| = var(φ(0,Z)) = 1

12
L2.

Moreover,

E[|φ(0,Z) − φ̄(0)|3] = E[| − Z

2
|3] = 1

32
L3.

We thus have a direct contradiction to the claim that

|R2(φ(0,Z))| = o(E[|φ(0,Z) − φ̄(0)|3])
which boils down to the wrong statement that

0 = lim
L→0

1
12L2

1
32L3

= lim
L→0

8

3L
= ∞.

This counterexample shows that the claimed convergence speed of the remainder term in 
Izhakian’s Theorem 1 is incorrect. Instead, R2(φ(0, Z)) is of order O(E[|φ(0, Z) − φ̄(0)|2]).

4. An alternative asymptotic expansion

Given the findings in the previous section, our main claim is that, in general, the approxima-
tion (7) is not more precise than the crude approximation φ�(x) ≈ φ̄(x) while another equally 
simple approximation, to be introduced in this section, is superior. We first present this alternative 
asymptotic expansion. Then we illustrate and compare this approximation with the one proposed 
by Izhakian. We conclude this section by presenting a rigorous derivation of our approximation, 
to present our analogues to Izhakian’s Theorems 1 and 2.
9
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4.1. The alternative asymptotic expansion

To derive the alternative approximation, we simply apply the classical Arrow-Pratt approxi-
mation to P�(x), noting that for any fixed x this is formally the “certainty equivalent” of P(x, Z)

for an agent with “utility function” �,

P�(x) = �−1(E[�(P (x,Z))]) ≈ P̄ (x) +A(P̄ (x))
var(P (x,Z))

2
≡ P ≈

� (x). (12)

Now, formally taking the derivative with respect to x on both sides of this approximation leads 
to

φ�(x) ≈ φ̄(x) +A(P̄ (x))cov(P (x,Z),φ(x,Z)) +A′(P̄ (x))φ̄(x)
var(P (x,Z))

2
, (13)

since
d

dx
var(P (x,Z)) = E[2(P (x,Z) − P̄ (x))(φ(x,Z) − φ̄(x))]

= 2 cov(P (x,Z),φ(x,Z)).

We see that in this approximation the value of Izhakian (2020b)’s reference point k does not 
play a role and there are also no restrictions on the magnitude of the ambiguity aversion (if the 
ambiguity increases). Moreover, since

lim
x→±∞ var(P (x,Z)) = 0,

we have

lim
x→−∞P ≈

� (x) = lim
x→−∞ P̄ (x) = 0 and lim

x→∞P ≈
� (x) = lim

x→∞ P̄ (x) = 1.

The approximation has the same end limit values as P̄ (x, Z). Thus, like the integral over the 
density φ�(x), also the integral over the approximation is one. In our previous counterexample 
with P(0, Z) = 0 a.s., we have cov(P (0, Z), φ(0, Z)) = 0 and var(P (0, Z)) = 0 so the approx-
imation becomes exact, φ�(0) = φ̄(0). So, we conclude that this approximation does not suffer 
from the drawbacks of the approximation proposed by Izhakian (2020b).

4.2. Illustration

To illustrate and compare Izhakian’s and our approximation in a concrete example, we con-
sider the case �(x) = (exp(λx) − 1)/λ, λ �= 0, which leads to A ≡ λ and A′ ≡ 0. In this case, 
Izhakian’s approximation (9) becomes

φ�(x) ≈ φ̄(x) − sgn(u(x))λ φ̄(x)var(φ(x,Z)) (14)

while our approximation (13) becomes

φ�(x) ≈ φ̄(x) + λ cov(P (x,Z),φ(x,Z)). (15)

We take λ = 5. We assume that Z takes two values, 0 and 1 with equal probability. P(x, 0) is a 
normal distribution with mean 0 and variance 1 while P(x, 1) is a normal distribution with mean 
0 and variance 10. This mixture-of-normals example can be interpreted as a stylized model of 
ambiguity about the level of volatility in a financial market. Moreover, it is simple enough for 
computing φ�(x) and its two approximations exactly and to contrast them against φ̄(x).
10
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Fig. 1. The black line is the distorted distribution φ�(x), while the grey line is the undistorted mixture distribution φ̄(x).

Fig. 2. The dashed line is the term φ̄(x)var(φ(x, Z)) in (14), while the dotted line is the term cov(P (x, Z), φ(x, Z)) in 
(15).

Fig. 1 shows the difference between the distorted distribution φ�(x) and the undistorted mix-
ture distribution φ̄(x). We see that this distortion increases the weight of lower tail while moving 
the mode of the distribution slightly upwards. Fig. 2 shows the main term of the two approxima-
tion formulas, Izhakian’s φ̄(x)var(φ(x, Z)) and our cov(P (x, Z), φ(x, Z)). The two terms are 
completely different. While Izhakian’s term is symmetric around 0, ours indeed puts additional 
probability mass on positive values and subtracts it on the negative axis. The latter behavior is 
in line with the difference we see between φ̄ and φ�, considering λ is positive, corresponding to 
ambiguity averse behavior. Finally, Fig. 3 adds the two approximations to Fig. 1. Our approxi-
mation is highly accurate fairly uniformly over all values of x despite the marked distortion. In 
11
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Fig. 3. The solid black line is the distorted distribution φ�(x); the solid grey line is the undistorted mixture distribution 
φ̄(x); the dashed black line is the approximation of φ�(x) based on (14); the dotted black line is the approximation of 
φ�(x) based on (15).

contrast, the approximation based on (14) does not match the shape of φ� closely. In the tails, 
this approximation is much closer to φ̄(x) than to φ�(x). The discontinuity at 0 comes from the 
assumption that u(0) = 0. This is the only dependence on the utility function in any of the curves: 
For negative x, we subtract the dashed line from Fig. 2 from the grey line in Fig. 1 while for pos-
itive numbers we add it. If we would shift the distributions P(x, 0) and P(x, 1) by a constant 
along the x-axis, φ�(x), φ̄(x) and our approximation (15) would be shifted by the same constant 
while the discontinuity in (14) is fixed in 0, leading to a different curve. Similarly, changing 
the utility function so that u(0) �= 0 would only shift the discontinuity in the dashed line while 
leaving everything else unchanged.

Comparing Izhakian’s approximation (14) and our approximation (15) under constant abso-
lute risk aversion, an alternative for Izhakian’s �2 (see (8)) would be

κ =
∞∫

−∞
|cov(Pθ (x,Z),φθ (x,Z))|dx. (16)

Without absolute values, the integral would be zero. Therefore, we first take absolute values, be-
fore calculating the integral. We shall discuss this alternative measure of ambiguity in Section 5.

4.3. Rigorous derivations

To conclude this section, we provide a rigorous derivation of our alternative expansion. Our 
results in this subsection can be considered as our analogues to Izhakian’s Theorems 1 and 2.

We do not aim at maximal generality here but rather at a simple and transparent result. In 
particular, we restrict attention to situations where we interpolate between a random variable (or 
random distribution function) and its expected value using a single parameter θ ∈ [0, 1]. We thus 
restrict attention to a particular class of situations with vanishing ambiguity. Besides the simplic-
ity, the main justification for this is that ultimately, we will be interested in the approximation of 
12
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a particular fixed model. Thus, introducing the limit of vanishing ambiguity is merely a technical 
step.

Our first intermediate result is essentially the classical Arrow-Pratt approximation for the 
certainty equivalent of a random outcome. Our one deviation from the text book version of this 
result is that we rely on the integral form of the remainder term. This will be useful in later steps 
when we plug in random functions for the random variables and take their derivatives. Then, we 
need to ensure that derivatives of the remainder term behave nicely. All proofs of this section are 
in the appendix.

Lemma 4.1. Let � : [0, 1] → R be a strictly increasing, three times continuously differentiable 
function whose first derivative is bounded away from zero. Consider a random variable Y with 
expectation Ȳ = E[Y ]. For θ ∈ [0, 1], define the random variable Yθ = θY + (1 − θ)Ȳ and 
the certainty equivalent Y�(θ) = �−1(E[�(Yθ )]). The second-order Taylor expansion of Y�(θ)

around θ = 0 is

Y�(θ) = Ȳ + 1

2
A(Ȳ )var(Yθ ) +

θ∫
0

1

2
Y ′′′

� (s)(θ − s)2ds, (17)

where A = �′′/�′.

To obtain the asymptotic expansions we need, we now set Y = P(x, Z), replacing the random 
variable by a random cumulative distribution function. For fixed x, this does not change anything, 
but, of course, we are ultimately interested in derivatives with respect to x. Thus, the role of Ȳ is 
taken by P̄ (x) and Yθ becomes Pθ(x, Z) = θP (x, Z) + (1 −θ)P̄ (x). Therefore, as we increase θ
from 0 to 1 we effectively turn risk into ambiguity, interpolating from P̄ (x) to P(x, Z). Finally, 
�−1(E[�(Pθ (x, Z))]) is a function of not only θ but also x, and denoted by P�(θ, x). When 
θ = 1, we have P�(θ, x) = P�(x); when θ = 0, P�(θ, x) = P̄ (x). Following Lemma 4.1, we 
thus know that

P�(θ, x) = P̄ (x) + 1

2
A(P̄ (x))var(Pθ (x,Z)) +

θ∫
0

1

2

∂3P�

∂θ3 (s, x)(θ − s)2ds.

The following theorem is our analogue of Izhakian’s Theorem 1.

Theorem 4.2. Let φ�(θ, x) = ∂
∂x

P�(θ, x) and φθ (x, Z) = ∂
∂x

Pθ (x, Z). We assume that � :
[0, 1] → R is a strictly increasing, four times continuously differentiable function whose first 
derivative is bounded away from zero. Moreover, we assume that there exists C such that 
φ(x, z) ≤ C for all x ∈R and z ∈ U . Then we have that

φ�(θ, x) =φ̄(x) +A(P̄ (x))cov(Pθ (x,Z),φθ (x,Z))

+ 1

2
A′(P̄ (x))φ̄(x)var(Pθ (x,Z)) +R(θ), (18)

where A = �′′/�′ and

R(θ) =
θ∫

1

2

∂4P�

∂θ3∂x
(s, x)(θ − s)2ds.
0

13
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In the limit θ → 0, we have R(θ) = O(θ3).

Note that

var(Pθ (x,Z)) = θ2var(P (x,Z))

and

cov(Pθ (x,Z),φθ (x,Z)) = θ2cov(P (x,Z),φ(x,Z))

so that we have two terms of order θ2. Finally, plugging θ = 1 into (18) and dropping the re-
mainder term, we arrive at our previous approximation (13).

We can use the previous theorem to obtain an asymptotic expansion in terms of prefer-
ences. This is our analogue of Izhakian’s Theorem 2. In this theorem, we impose conditions 
on Izhakian’s �2 (see (8)), on κ (see (16), and on the union of the supports supp(z), defined as 
S = ∪z∈U supp(z).

Theorem 4.3. Suppose that the conditions of Theorem 4.2 are satisfied. In addition, assume �2 < ∞ and κ < ∞ and assume that S is bounded. Then for u ∈ V we have that
∫
S

u(x)φ�(θ, x)dx =
∫
S

[u(x)φ̄(x) +A(P̄ (x))cov(Pθ (x,Z),φθ (x,Z))

+ 1

2
A′(P̄ (x))φ̄(x)var(Pθ (x,Z))]dx +Ru(θ), (19)

where

Ru(θ) =
θ∫

0

⎡
⎣∫
S

u(x)
1

2

∂4P�

∂θ3∂x
(s, x)dx

⎤
⎦ (θ − s)2ds.

In the limit θ → 0, we have Ru(θ) = O(θ3).

5. Measuring ambiguity

In this section, we first discuss Izhakian’s measure of ambiguity, �2, defined as

�2 =
∞∫

−∞
φ̄(x)var(φ(x,Z))dx.

We write �2
�(X) whenever we want to emphasize the dependence of �2 on the prospect X and the 

weighting function �. We show that this measure is not representing preferences as is claimed in 
Izhakian (2020b) in his Theorems 5 and 6. Next, we propose and discuss the alternative measure 
κ , defined by

κ =
∞∫

|cov(Pθ (x,Z),φθ (x,Z))|dx.
−∞

14
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5.1. Izhakian’s �2

The motivation for �2 as a measure of ambiguity is its claimed link with the preference 
ordering as stated in Theorems 5 and 6 of Izhakian (2020b). The claimed link between Izhakian’s �2 and a preference ordering �(u,�) over X , represented by some (u, �) ∈ V × G (i.e., under 
ambiguity aversion) is then

�2
�(X1) ≤ �2

�(X2) ⇐⇒ X1 �(u,�) X2, (20)

assuming P̄1(x) = P̄2(x) and thus also φ̄1(x) = φ̄2(x). One can rewrite the right hand side of 
(20) more explicitly in terms of u and � using (2) or (3). The claimed equivalence (20) is strong 
and surprising: The preference relation �(u,�) on the right hand side depends on two non-linear 
functions, u and �, while the summary statistic �2

� on the left hand side depends only on �. In 
the following, we argue that this is too good to be true.

Izhakian (2020b) arrives at (20) using his Theorem 1 (discussed earlier) and his Lemma 3. In 
the proof of Theorem 5 (and also of Theorems 6 and 7), Lemma 3 plays a key role in separating 
the �2 from other components of preferences. Translated into our framework, Lemma 3 claims 
the following:

For a < b in the support of φ̄, denote by φ̄a,b the restriction of φ̄ to the interval [a, b],

φ̄a,b(x) = φ̄(x)1{x∈[a,b]}∫ b

a
φ̄(x)dx

and define the function v(x) = var(φ(x, Z)). Then for any other function h :R → R

b∫
a

h(x)v(x)φ̄a,b(x)dx =
b∫

a

h(x)φ̄a,b(x)dx

b∫
a

v(x)φ̄a,b(x)dx.

This lemma is clearly wrong. In probabilistic terms, the lemma states that when X is distributed 
with density φ̄a,b over the interval [a, b] then the random variable v(X) is uncorrelated from 
any random variable of the form h(X). Effectively, this means that v(x) = var(φ(x, Z)) must be 
constant in x which is not supported by the assumptions. To see this, we can pick h(x) = v(x)

so that the claim of the lemma becomes

b∫
a

v(x)2φ̄a,b(x)dx −
⎛
⎝

b∫
a

v(x)φ̄a,b(x)dx

⎞
⎠

2

= 0

which is the same as v(X) having zero variance when X is distributed according to φ̄a,b for 
arbitrary a < b. Inspecting Izhakian’s proof of the lemma, at least part of the problem seems to 
be that he uses an incorrect tower property of conditional expectations where the inner condi-
tional expectation is squared, E[E[U |V ]2] = E[E[U ]2]. Given the result of Lemma 3, Izhakian 
(2020b) claims to be able to separate �2 from the risk component of the preference ordering, 
resulting in his Theorems 5 and 6.

Given that Lemma 3 is wrong, the question arises whether there is another way to prove 
Izhakian (2020b)’s Theorems 5 and 6. We shall now argue why such attempts are doomed to fail, 
since, contrary to the result of Lemma 3, �2 cannot be separated from the risk component of the 
preference ordering.
15
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The point is that in the claimed equivalence (20) the left hand side does not depend on the 
utility function u, whereas the right hand side does. Given � ∈ G, �2 is a total order over X .13

However, the preference ordering is only a total order over X given both � and u. But since the 
left hand side of (20) does not depend on u, this equivalence (20) can only be true for a given � if 
the right hand side is true for all u ∈ V . But with u left free, the preference ordering on the right 
hand side becomes a partial order and is no longer a total order. Such a right hand side partial 
order cannot be equivalent to the left hand side total order of (20).

Indeed, for a given � ∈ G, and given the left hand side of (20), we should have for all u ∈ V
∞∫

−∞
u(x)dP1,�(x) ≥

∞∫
−∞

u(x)dP2,�(x). (21)

But this means that P1,�(x) first-order stochastically dominates P2,�(x), i.e.,

for all x, P1,�(x) ≤ P2,�(x). (22)

This is a partial order, but not a total order, over X .
If the left hand side of (20) holds, but condition (22) is not satisfied, then there will exist at least 

one utility function u ∈ V with the opposite inequality than given in (21). It is straightforward to 
construct examples, such that (22) is not satisfied, when comparing some X1 and X2, whereas 
they are always ordered by �2. For example, take

X1 ∼ P1(x, z) = 1

3
(x3 − x)z + x, X2 ∼ P2(x, z) = 1

2
(x2 − x)z + x,

for Z ∼ U({−1, +1}), x ∈ [0, 1], and choosing �(x) = exp(x) − 1. Then clearly X1 and X2 are 
ordered using �2, but neither P1,�(x) nor P2,�(x) first-order stochastically dominates the other. 
This can be seen from the fact that the difference P1,�(x) − P2,�(x) switches signs at x = 1

2
as shown in Fig. 4. It follows that the ambiguity measure �2 cannot represent the preference 
orderings as claimed by Izhakian (2020b). We emphasize that this problem is not particular to 
the �2. The counterexample shows that �(u,�) cannot be represented by any total order that 
depends on � but not on u.

5.2. Monotonic transformations

If one still wants to make use of �2 as a measure of ambiguity, it is relevant to be aware of the 
following drawback. In Observation 6 of Izhakian (2020b) it is stated that �2 is invariant under 
monotonic transformations of X. This is clearly true in discrete examples. Suppose that X takes 
values x1, . . . , xn with random probabilities p1(Z), . . . , pn(Z). Then the discrete version of �2, 
i.e.,

�2 =
n∑

i=1

E[pi(Z)]var(pi(Z)),

only depends on the probabilities pi(Z) and will not change if we compute �2 for the distribution 
of f (X) provided that f (xi) �= f (xj ) for all i �= j . In contrast, in the continuous case, �2 is not 
even invariant to scaling X by a positive factor. To see this, suppose, we multiply a continuous 

13 A total (or linear) order is a partial order in which any two elements can be compared.
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Fig. 4. The black line shows P1,�(x) − P2,�(x) as a function of x ∈ [0,1].

X with random density φ(x, Z) by the factor c and write Y = cX. The density function of Y is 
1
c
φ

( y
c
,Z

)
, with �2 of Y given by

�2 =
∞∫

−∞
E

[
1

c
φ

(y

c
,Z

)]
var

(
1

c
φ

(y

c
,Z

))
dy

= 1

c2

∞∫
−∞

E[φ(x,Z)]var(φ(x,Z))dx.

Thus, after scaling X by a factor c, �2 is changed by a factor of c−2.
Therefore, the claim of Observation 6 is limited to discrete distributions. This indicates on 

the one hand that some caution is needed when transferring intuitions about the �2 between the 
discrete and the continuous case. On the other hand, it hints at the possibility that �2 might be a 
more natural quantity in discrete settings than in continuous ones.

5.3. An alternative ambiguity measure

If we look into our analysis for an alternative to the �2, the natural starting point is the term 
cov(P (x, Z), φ(x, Z)) from our expansion

φ�(x) ≈ φ̄(x) + λ cov(P (x,Z),φ(x,Z)) (23)

in the special case where �′′(x)/�′(x) ≡ λ is constant. If one is mainly interested in measuring 
the strength of the distortion due to ambiguity without representing preferences, a natural choice 
of ambiguity measure might be the integral of its absolute value

κ =
∞∫

|cov(P (x,Z),φ(x,Z))|dx.
−∞
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Note however that, just like for the �2, the ordering according to this ambiguity measure cannot 
represent the same ordering as the underlying preferences. Our previous counterexample still 
applies.

Nevertheless, the κ has some attractive properties. It can be related to the total variation dis-
tance dtv (e.g. Tsybakov (2008), p. 83) between the measures μ� and μ̄ associated with the 
densities φ� and φ̄ by rearranging (23),

dtv(μ�, μ̄) = 1

2

∞∫
−∞

|φ�(x) − φ̄(x)|dx ≈ |λ|κ
2

.

In the product of |λ| and κ , we thus achieve a separation into a factor that measures the strength of 
ambiguity attitudes and a factor that measures the degree of ambiguity. Using classical properties 
of the total variation distance, this implies, e.g., the following universal asymptotic bound on 
preference distortions,

∣∣∣∣∣∣
∞∫

−∞
u(x)φ�(x)dx −

∞∫
−∞

u(x)φ̄(x)dx

∣∣∣∣∣∣ ≤ 2dtv(μ�, μ̄) � |λ|κ

for any utility function u that takes values in [0, 1]. Note the absolute value on the left hand side: 
The bound does not say anything about the ordering of the two utilities, only about the size of 
their absolute difference.

Unlike �2, the measure κ is invariant to monotonic transformations. To see this, consider the 
transformation Y = f (X), where f is strictly monotonic and continuously differentiable with 
first derivative bounded away from zero. Denoting by P(x, Z) and φ(x, Z) the random distribu-
tion function and density of X, the corresponding quantities for Y are PY (y, Z) = P(f −1(y), Z)

and φY (y, Z) = 1
f ′(f −1(y))

φ(f −1(y), Z). The κ for Y is

κ =
+∞∫

−∞
|cov(PY (x,Z),φY (x,Z))|dy =

+∞∫
−∞

|cov(P (x,Z),φ(x,Z))|dx,

by the usual substitution rules for integrals. Thus, the κ of Y coincides with the κ of X.

6. Conclusion

In this paper we reject Izhakian (2020b)’s claim that �2 is an ambiguity measure that can be 
used as an equivalent way of representing preferences under risk and ambiguity. Instead, we have 
to conclude that the search for an ambiguity measure, with the characteristics Izhakian (2020b)
is looking for, is still open.

We wish to end this paper by emphasizing that we are not writing this paper lightheartedly. 
We still consider the research agenda outlined in (i)-(iii) in the introduction a highly important 
one. Ambiguity research has been mostly restricted to theoretical work for far too long. Finding 
ways of taking the theory to the data is a timely and important topic. We like to see our paper 
as a positive contribution to this agenda. It is mostly one particular (but central) technical aspect 
that worries us, the derivation of the ambiguity measure �2.
18
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Appendix A

Comments on the proof of Izhakian’s Theorem 1. To understand the problem behind Izhakian’s 
Theorem 1 (Izhakian, 2020b) better, we follow his proof step-by-step. In his proof, he refers to 
Judd (2003) to do the Taylor expansion of

G(x) = ϒ′(1 − P(x,Z))

ϒ′(ϒ−1(E[ϒ(1 − P(x,Z))]))
with respect to φ(x, Z). Judd (2003) states that, given the Taylor expansion of f (x) at x = a

as f (a) + (x − a)f ′(a) + R1 (where R1 is the residual term), for the strictly increasing and 
nonlinear transformation x = h(y), the Taylor expansion of f (h(y)) at y = b = h−1(a) is

f (h(y)) = f (h(b)) + (y − b)f ′(h(b))h′(b) + R1 = f (a) + (y − b)f ′(a)h′(b) + R1.

We apply this result in the context of Theorem 1. The Taylor expansion of G(x) around x = x0
is G(x) = G(x0) + (x − x0)G

′(x0) + R1. The nonlinear transformation of x is y = φ(x, Z), and 
thus x = φ−1(y, Z).14 Then, the Taylor expansion of H(y) = G(φ−1(y, Z)) around y = y0 =
φ(x0, Z) is

H(y) = G(φ−1(y,Z)) = G(x0) + (φ(x,Z) − φ(x0,Z))G′(x0)
dφ−1

dy
(y0,Z) + R1,

where

dφ−1

dy
(y0,Z) = 1

φ′(x0,Z)
,

G(x0) = ϒ′(1 − P(x0,Z))

ϒ′(ϒ−1(E[ϒ(1 − P(x0,Z))])) ,
and

G′(x0) = − ϒ′′(1 − P(x0,Z))φ(x0,Z)

ϒ′(ϒ−1(E[ϒ(1 − P(x0,Z))]))
+ϒ′(1 − P(x0,Z))ϒ′′(ϒ−1(E[ϒ(1 − P(x0,Z))]))E[ϒ′(1 − P(x0,Z))φ(x0,Z)]

ϒ′(ϒ−1(E[ϒ(1 − P(x0,Z))]))3 .

This result is quite different from equation (A.2) in Izhakian (2020b).

Proof of Lemma 4.1. By Taylor’s theorem, the second-order approximation of Y�(θ) around 
θ = 0 is

Y�(θ) = Y�(0) + Y ′
�(0)θ + 1

2
Y ′′

�(0)θ2 + R2(θ) (24)

We work with the integral form of the remainder, i.e. R2(θ) = ∫ θ

0
1
2Y ′′′

� (s)(θ − s)2ds.

14 The probability density function φ is not strictly increasing in many cases. To satisfy the requirement of Judd (2003), 
we assume it is strictly increasing and its inverse function is φ−1.
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The first and second derivative of Y�(θ) with respect to θ are

Y ′
�(θ) = E[�′(Yθ )(Y − Ȳ )]

�′(�−1(E[�(Yθ )])) ,

Y ′′
�(θ) = E[�′′(Yθ )(Y − Ȳ )2]

�′(�−1(E[�(Yθ )])) − �′′(�−1(E[�(Yθ )]))E[�′(Yθ )(Y − Ȳ )]2

�′(�−1(E[�(Yθ )]))3 .

When θ = 0, Y�(0) = Ȳ , Y ′
�(0) = 0, and Y ′′

�(0) = �′′(Ȳ )

�′(Ȳ )
var(Y ) = A(Ȳ )var(Y ). Furthermore, 

var(Yθ ) = θ2var(Y ). We plug these results into (24), and thus obtain (17) in Lemma 4.1. �
Proof of Theorem 4.2. (18) follows easily by taking the derivative of P�(θ, x) with respect to 
x. It remains to study the order of the error term

θ∫
0

1

2

∂4P�

∂θ3∂x
(s, x)(θ − s)2ds.

Using the short-hand notation

G1 = G1(s, x) = �′(�−1(E[�(Ps(x,Z))]))
G2 = G2(s, x) = �′′(�−1(E[�(Ps(x,Z))]))
G3 = G3(s, x) = �′′′(�−1(E[�(Ps(x,Z))]))
G4 = G4(s, x) = �′′′′(�−1(E[�(Ps(x,Z))]))
H1 = H1(s, x) = E[�′(Ps(x,Z))(P (x,Z) − P̄ (x))]
H2 = H2(s, x) = E[�′′(Ps(x,Z))(P (x,Z) − P̄ (x))2]
H3 = H3(s, x) = E[�′′′(Ps(x,Z))(P (x,Z) − P̄ (x))3],

we have

∂3P�

∂θ3 (s, x) = H3

G1
− 3

G2

G3
1

H1H2 −
(

G3

G4
1

− 3
G2

2

G5
1

)
H 3

1 ,

and

∂4P�

∂θ3∂x
(s, x) = 1

G1
· ∂H3

∂x
− H3

G2
1

· ∂G1

∂x
− 3

H1H2

G3
1

· ∂G2

∂x

− 3
G2H2

G3
1

· ∂H1

∂x
− 3

G2H1

G3
1

· ∂H2

∂x
+ 9

G2H1H2

G4
1

· ∂G1

∂x

− 3
G3H

2
1

G4
1

· ∂H1

∂x
+ 9

G2
2H

2
1

G5
1

· ∂H1

∂x
− H 3

1

G4
1

· ∂G3

∂x

+ 4
G3H

3
1

G5
1

· ∂G1

∂x
+ 6

G2H
3
1

G5
1

· ∂G2

∂x
− 15

G2
2H

3
1

G6
1

· ∂G1

∂x
.

Moreover, it can be easily verified that
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∂G1

∂x
= G2

G1
E[�′(Ps(x,Z)φs(x,Z))]

∂G2

∂x
= G3

G1
E[�′(Ps(x,Z)φs(x,Z))]

∂G3

∂x
= G4

G1
E[�′(Ps(x,Z)φs(x,Z))]

∂H1

∂x
= E[�′′(Ps(x,Z))(P (x,Z) − P̄ (x))φs(x,Z)]

− E[�′(Ps(x,Z))(φ(x,Z) − φ̄(x))]
∂H2

∂x
= E[�′′′(Ps(x,Z))(P (x,Z) − P̄ (x))2φs(x,Z)]

− 2E[�′′(Ps(x,Z))(P (x,Z) − P̄ (x))(φ(x,Z) − φ̄(x))]
∂H3

∂x
= E[�′′′′(Ps(x,Z))(P (x,Z) − P̄ (x))3φs(x,Z)]

− 3E[�′′′(Ps(x,Z))(P (x,Z) − P̄ (x))2(φ(x,Z) − φ̄(x))].
By assumption � and its first four derivatives are bounded. Thus G1, G2, G3, G4, H1, H2, and 
H3 are all bounded given P(x, Z) ∈ [0, 1]. Furthermore, �′ and thus |G1| is bounded away from 
zero and φ(x, Z) is also bounded. Thus, ∂G1

∂x
, ∂G2

∂x
, ∂G3

∂x
, ∂H1

∂x
, ∂H2

∂x
, and ∂H3

∂x
are bounded as well. 

Overall, ∂4P�

∂θ3∂x
(s, x) is bounded uniformly in s for every x, so there exist functions B1(x) and 

B2(x) such that

B1(x) ≤ ∂4P�

∂θ3∂x
(s, x) ≤ B2(x).

Therefore, we have

1

6
B1(x)θ3 ≤

θ∫
0

1

2

∂4P�

∂θ3∂x
(s, x)(θ − s)2ds ≤ 1

6
B2(x)θ3.

The approximation error term in (18) is of order O(θ3) in the limit θ → 0. �
Proof of Theorem 4.3. We calculate 

∫
S u(x)φ�(x)dx by substituting the right hand side of (18)

for φ�(x). As remainder term, we get

Ru(θ) =
∫
S

u(x)

⎡
⎣

θ∫
0

1

2

∂4P�

∂θ3∂x
(s, x)(θ − s)2ds

⎤
⎦dx.

This remainder term is equal to∫
S

u(x)φ�(x)dx −
∫
S

u(x)φ≈
� (x)dx,

with φ≈
� (x) the right hand side of (18) except R(θ). By the assumptions of this theorem, the two 

integrals in this expression exist. Thus, also the integral Ru(θ) exists. Using Fubini’s theorem, 
we can rewrite Ru(θ) as
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Ru(θ) =
θ∫

0

⎡
⎣∫
S

u(x)
1

2

∂4P�

∂θ3∂x
(s, x)dx

⎤
⎦ (θ − s)2ds.

Using the results of the previous theorem, the inner integral is an integral that can be bounded by 
(measurable) bounded functions, not depending on s, over a bounded interval. Thus, integrating 
over the bounded set S , we can find constants C1 and C2, such that

C1 ≤
∫
S

u(x)
1

2

∂4P�

∂θ3∂x
(s, x)dx ≤ C2.

But then we find, analogously to the previous theorem,

1

6
C1θ

3 ≤Ru(θ) ≤ 1

6
C2θ

3.

This approximation error term is of order O(θ3) in the limit θ → 0. �
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