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A B S T R A C T

We study conditions under which the threshold parameter in the Omega ratio represents risk aversion in
the sense of monotonicity of risk premia. To this end, we derive asymptotic expansions for risk premia
associated with taking a small additional risk on top of a background risk. These risk premia have the expected
monotonicity behavior if, roughly speaking, the variance of the additional risk decreases with the background
risk and if the density of the background risk is log-concave. When these conditions are violated, the threshold
in the Omega ratio does not represent risk aversion in general. Finally, we compare our sufficient conditions for
the Omega ratio to those that are needed to guarantee monotonicity of risk premia with an expected utility
criterion under background risk. We argue that the conditions that are needed for the Omega threshold to
represent risk aversion are comparable to those that are needed for expected utility with exponential utility
functions.
1. Introduction

Ever since its proposal by Keating and Shadwick [12], ranking risky
prospects by the Omega ratio has been a popular alternative to utility-
based approaches on the one side and criteria like the Sharpe ratio
on the other. The Omega ratio is a risk-return ratio which compares
the expected gains above a given threshold to the expected losses
below it. Plotting the Omega ratio 𝛺𝐾 as a function of the thresh-
old 𝐾 gives a representation of the entire distribution and enables a
user to quickly compare, e.g., different investment opportunities by
their Omega curves. These plots have been especially popular with
practitioners. In the academic literature, a surprisingly controversial
literature has discussed whether the risk preferences captured by the
Omega ratio are in line with risk-averse behavior, see e.g. [7,13,14]
and, for a recent survey and summary, [8].1 The central question in this
literature is whether a ranking in the sense of second-order stochastic
dominance (SSD), i.e., a ranking that all risk-averse expected utility
maximizers can agree upon, implies the same ranking in the Omega
ratio.2 In a nutshell, this is the case if attention is restricted to risks 𝑋

✩ Area: Decision Analysis and Preference Modeling. This manuscript was processed by Associate Editor Salvatore Corrente.
∗ Corresponding author.
E-mail address: n.f.f.schweizer@uvt.nl (N. Schweizer).

1 There is also a sizeable and closely related literature on using the Omega ratio as a decision and optimization criterion in operations research and related
fields, see e.g. [1–3], and [4].

2 See, e.g., [5] for a more general discussion of decision criteria and their consistency with SSD. For background on SSD from the perspective of the theory
of stochastic orders, see, e.g., [6] (where it corresponds to the ‘‘increasing concave order’’).

3 We refer, e.g., to [7] or [8] for a more in-depth discussion and more precise statements.
4 See, for instance, [9,10] or [11].

whose Omega ratio is greater than 1 or, equivalently, whose expected
value 𝜇 = 𝐸[𝑋] is above the threshold 𝐾.3 Thinking in terms of a plot
of Omega against the threshold, consistency with risk-averse behavior
is thus ensured if we cut off the 𝑦-axis at 𝛺 = 1 and only keep the upper
part.

In this paper, we address a direct follow-up question. Given that
consistency with risk-averse behavior is guaranteed for a range of
threshold values, how should we interpret an increase in the threshold?
In particular, we study conditions for the validity of a claim that
is sometimes made,4 especially in the practitioner-oriented literature,
providing one of the main rationales behind plots of the Omega ratio:
An increase in the threshold 𝐾 corresponds to an increase in risk
appetite and thus, conversely, to a decrease in risk aversion. Thinking in
terms of Omega plots, we thus ask what the 𝑥-axis means when it comes
to risk preferences. In contrast, the previous literature on consistency
with risk-averse behavior – as surveyed in [8] – has mostly focused on
the ranking across the 𝑦-axis for a fixed point on the 𝑥-axis, i.e., for a
fixed threshold 𝐾.
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1.1. Overview of main results

Our analysis starts with two ideas that go back to Pratt [15] who
addressed similar questions for expected utility. First, in order to rank
different decision criteria in terms of their degree of risk aversion, we
consider risk premia, i.e., the required compensations that make an
agent indifferent whether to accept a certain risk or not. If the threshold
𝐾 captures the degree of risk appetite, the opposite of risk aversion,
then risk premia should be decreasing with 𝐾. Second, in order to make
this question analytically tractable, we focus mostly on risk aversion ‘‘in
the small’’. Thus, we consider Taylor expansions of the risk premium
in the limit of vanishing risk, and study the monotonicity behavior of
the leading order terms. Our main results are sufficient conditions for
these leading order terms to be decreasing in 𝐾. These results guarantee
that the interpretation of 𝐾 as measuring the degree of risk appetite are
valid at least for sufficiently small risks.

In line with the previous literature on consistency with risk-averse
preferences, we restrict attention throughout to risky prospects 𝑋
whose mean 𝜇 lies above the threshold, 𝜇 ≥ 𝐾. However, when dis-
cussing risk premia, some additional restrictions are natural. First, we
mostly rule out the limiting case 𝜇 = 𝐾: An agent whose preferences are
captured by the Omega ratio with threshold 𝐾 is indifferent between
all risks 𝑋 with mean 𝐸[𝑋] = 𝐾, implying a risk premium of zero. For
risks with mean 𝐾, the agent is thus effectively risk-neutral.5 Second,
the Omega of a non-risky prospect 𝑥 > 𝐾 is infinite since the gain/loss
ratio becomes (𝑥 − 𝐾)∕0. Accordingly, an agent with Omega ratio
preferences will want an infinitely high compensation for exchanging a
certain prospect 𝑥 > 𝐾 against any risky prospect with finite mean and
unbounded support, no matter how favorable. Consequently, we limit
attention to choices between risky prospects.

We thus arrive at a setting that is closely related to models from the
classical literature on utility-based choice under background risk.6 An
agent decides between a risky prospect 𝑋 and another risky prospect
𝑋 + ℎ𝑆 + 𝜋. Here, ℎ > 0 is a positive constant while 𝑋 and 𝑆 are two
possibly correlated random variables with 𝐸[𝑋] = 𝜇 > 𝐾 and 𝐸[𝑆|𝑋] =
𝐸[𝑆] = 0. 𝑋 + ℎ𝑆 can thus be seen as a mean-preserving spread of 𝑋.
The risk premium 𝜋 is chosen in such a way that 𝑋 + ℎ𝑆 + 𝜋 has the
same Omega ratio as 𝑋 itself, thus corresponding to the indifference
price of the additional risk.

As noted above, the literature on consistency of the Omega ratio
and risk aversion has shown that 𝜋 is always positive in this setting.
We want to know whether 𝜋 is also decreasing in 𝐾, confirming the
nterpretation of 𝐾 as a measure of risk appetite. As a first main
esult, we provide an explicit expansion of 𝜋 around ℎ = 0, similar to
xpansions for utility-based risk premia from [15] and the subsequent
iterature on background risk. We then show that risk premia are
ecreasing in 𝐾 for sufficiently small ℎ if two conditions are satisfied,
i) the probability density 𝑔 of the background risk 𝑋 is log-concave7

n the lower tail, i.e., below 𝐾 and (ii) the conditional variance of the
dditional risk 𝜎2(𝑥) = Var(𝑆|𝑋 = 𝑥) is weakly decreasing in 𝑥 for
≤ 𝐾.8

Thus, we find that 𝐾 can be interpreted as a measure of risk
ppetite under natural conditions. Nevertheless, these conditions are
ot always satisfied. In particular, while the log-concavity condition is

5 This observation is closely related to the discussion of ‘‘non-strict
ominance compatibility’’ in [8].

6 See [16] for an introduction and [17] for a recent contribution with many
eferences.

7 A function is called log-concave if its logarithm is concave.
8 Throughout the paper, we use the terms ‘‘decreasing’’ and ‘‘weakly

ecreasing’’ synonymously to indicate that for a function 𝑓 ∶ R → R the
ondition 𝑥 < 𝑦 implies 𝑓 (𝑥) ≥ 𝑓 (𝑦) for all 𝑥, 𝑦 ∈ R. We add the ‘‘weakly’’

mostly to emphasize that we are not ruling out constant functions which are
often among the most important special cases.
2

w

somewhat stronger than needed,9 we can easily create counterexamples
by relaxing it. In particular, we find that when 𝑋 follows a Student-𝑡
istribution and 𝑆 is independent of 𝑋, risk premia are non-monotonic
n 𝐾. Log-concavity can be interpreted as combining two types of condi-
ions, a local regularity condition that e.g. rules out jumps in the density
nd a global regularity condition that rules out tail behavior which
s heavier than exponential. The example of the Student-𝑡 distribution
hows that heavy tails can indeed destroy the validity of interpreting 𝐾
s a measure of risk aversion. This matters because the Omega ratio’s
bility to handle heavy-tailed risks has been cited as an important
dvantages over alternative criteria.10

As noted above, rankings based on the Omega ratio are consistent
ith risk aversion as long as means are finite and above the threshold.
owever, our result shows that plots of Omega against the threshold

hould be interpreted with caution because the interpretation of the
hreshold as capturing risk appetite breaks down when the lower tails
re too heavy. In Section 3.2, we demonstrate some additional plots
hat can be made to get a sense of whether such violations are a concern
n a particular application. Of course, taking an agnostic stand, one
an plot the Omega against the threshold without claiming that the
hreshold has any interpretation beyond it being the threshold. Yet
hen, it is not easy to say what we learn precisely from a plot of
he Omega against its threshold. What we do see in such a plot is a
ollection of rankings that are all consistent with risk averse behavior.
o make a choice between these rankings, a decision-maker could, for

nstance, determine a single threshold based on economic criteria (such
s using a risk-free return as a benchmark like in the Sharpe ratio),
educing the Omega curves to single points again. Alternatively, the
ecision-maker could use the Omega plot as a starting point to filter
ut a number of promising alternatives, investigating those alternatives
hat are ranked highest at different threshold levels in more detail with
dditional tools. Finally, as we briefly discuss in Section 3.2, our results
n the connection between risk premia and threshold levels can also be
sed to translate risk premia (which are, arguably, more intuitive) into
hreshold levels.

.2. Comparison with expected utility

For our second set of results, we compare our findings about Omega-
ased risk premia to the situation for risk premia based on classical
arametric families of utility functions like the power (CRRA) and the
xponential (CARA) family. What can we say about monotonicity of
isk premia under background risk when we vary the risk aversion
arameter in either of these families? How do the conditions on the dis-
ribution of the background risk 𝑋 and the additional risk 𝑆 compare?
ut differently: Suppose you plot risk premia based on power utility
r exponential utility against the ‘‘risk aversion parameter’’ of these
amilies of utility functions. Will there be the same problems regarding
he interpretation of the 𝑥-axis?

For this situation of background risk, the classical references
re [19,20]. Leaving 𝜎2(𝑥) = Var(𝑆|𝑋 = 𝑥) largely unrestricted, Ross
19] shows that a rather rigid notion of comparative risk aversion
etween two utility functions needs to be satisfied to guarantee that
ifferences in risk premia have the expected sign. In particular, two
ower utility or two exponential utility functions can generally not
e ranked in this strong order, implying that under background risk

9 To be precise, while log-concavity of the density function is a stronger
ondition than needed, we provide another log-concavity condition, which is
asically a necessary and sufficient condition, see Lemma 3, Corollary 2 and
he surrounding discussion.
10 See, e.g., [18] who argue that, unlike the Sharpe ratio, the Omega can
ccount for heavier than normal tail behavior as captured by higher moments
ike skewness and kurtosis. At the same time, the Omega can be estimated
ithout actually estimating these higher moments — which may be a challenge

ith limited amounts of data.
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their parameters do not represent a degree of risk aversion in general.
In contrast, the main result of Kihlstrom et al. [20] implies that
when 𝜎2(𝑥) ≡ 𝜎̄2 is constant and when one of the utility functions
nder consideration has decreasing absolute risk aversion, Pratt [15]’s
otion of comparisons in absolute risk aversion carries over and risk
remia have the desired monotonicity behavior. Because power and
xponential utility functions exhibit (weakly) decreasing absolute risk
version, it follows that changes in the ‘‘risk aversion parameters’’ go
ogether with the desired monotonicity behavior of risk premia.

Thus, it seems that with constant 𝜎2, no further conditions need to
e imposed on the distribution of 𝑋 to guarantee that the parameters in
he classical families of utility functions can be interpreted as degrees
f risk aversion under background risk. In contrast, our results for
he Omega ratio required an additional log-concavity condition. Yet
his view is a bit misleading since the regularity conditions that need
o be satisfied for the criteria to be well-defined are stronger for ex-
ected utility: Power utility cannot handle negative realizations while
xponential utility requires existence of a moment-generating function
hich is closely related to log-concavity. In this sense, the requirements

or the Omega case and for exponential utility are remarkably similar.
he Omega ratio needs less integrability to be well-defined but some
dditional regularity to justify the interpretation of 𝐾 as a degree of risk

aversion. In many counterexamples where this interpretation breaks
down, risk premia based on expected utility are not available as an
alternative.

Comparing our results for the Omega ratio to those of Ross [19]
and Kihlstrom et al. [20] for expected utility – in particular expo-
nential and power utility – a gap between these two classical papers
becomes apparent: While the negative result of Ross [19] leaves 𝜎2(𝑥)
completely unrestricted, [20] limit attention to the extreme case where
𝜎2 is independent of 𝑥. In contrast, our positive results for the Omega
ratio merely need that 𝜎2(𝑥) is weakly decreasing in 𝑥. We show that
the main result of Kihlstrom et al. [20] can be extended to weakly
decreasing 𝜎2(𝑥), thus closing part of this gap. In fact, we can replace
their assumption of decreasing absolute risk aversion by assuming that
the product of 𝜎2(𝑥) and the absolute risk aversion function is weakly
decreasing.

1.3. A quartet of decision criteria

We close the introduction with some more discussion of how the
Omega ratio fits into the broader decision-theoretic picture. Since
the 1970s, various competitors to expected utility theory have been
proposed for a variety of reasons. One departure from expected utility
that is shared by (perhaps surprisingly) many of these competitors is
the introduction of a reference or aspiration level to which possible
outcomes are compared. Besides the Omega with its threshold param-
eter, this includes prominent models such as (cumulative) prospect
theory [21,22], regret theory [23,24], habit formation [25] and the
reference-dependent preferences of [26]. In fact, as a decision-criterion,
the Omega forms part of a quartet with three other models of this type
that base decisions, respectively, on success probabilities, quantiles and
expectiles.

Basing decisions on maximizing success probabilities like the prob-
ability of exceeding a certain target level is a very simple and intuitive
criterion. In the literature, it has been discussed, e.g., in the context
of the ‘‘security-potential/aspiration’’ theory of Lopes [27] or, under
the name ‘‘utility mass model’’ by Manski [28].11 In fact, Manski
discusses this criterion as one of a pair of models, the other being the
maximization of a given quantile of the outcome distribution. The two
models are, of course, closely related due to the mathematical con-
nection between the quantile function and the cumulative distribution

11 See [29] for a recent empirical contribution with a broad overview of this
iterature.
3

function.12 Besides their widespread use in risk management under the
name Value-at-Risk (e.g., [30]), quantiles as decision criteria have been
studied, among others, by [31], [32,33] and [34].

Expectiles were first proposed by Newey and Powell [35] who
investigated an alternative to quantile regression that replaces the
usual weighted-absolute-error criterion by a weighted least-squares
criterion. Newey and Powell [35] called the minimizers of these criteria
expectiles and noted that ‘‘expectiles have properties that are similar
to quantiles’’. In fact, [36] showed that there is a non-linear trans-
formation of the original distribution such that the quantiles of the
transformed distribution coincide with the expectiles of the original
distribution. Under the same transformation, the Omega curve of the
original distribution matches the odds curve of the transformed dis-
tribution.13 Since success probabilities 𝑝 and odds of success 𝑝

1−𝑝 are
monotonically related, maximizing the odds of success is equivalent to
maximizing the success probability. Consequently, the relation between
Omega ratios and expectiles as decision criteria is completely analogous
to the relation between success probabilities and quantiles.

In the past decade, expectiles have been studied quite actively14

from a decision-theoretic perspective, starting with the observation
of Bellini et al. [39] and Ziegel [40] that – when viewed as financial
risk measures – certain expectiles are the only risk measures satisfying
the axioms of coherence and elicitability. The study of the connection
between Omega ratios and expectiles was initiated in Bellini et al. [41].
They show that when the entire curves of Omegas between two payoffs
can be ranked, i.e. if the curves do not cross, then the same is true
for the entire curves of expectiles – and vice versa. In these cases,
the criteria are equivalent. However, the criteria are not equivalent
in general – analogously to Manski’s utility mass and quantile models
which are not equivalent either.

1.4. Structure

The paper is organized as follows: Section 2 introduces the problem,
the setting and some technical assumptions. Section 3.1 contains our
technical main result, the asymptotic expansions for Omega-based risk
premia. In Section 3.2, we illustrate these results in an example, and in
Section 3.3, we contrast our results on risk premia for mean-preserving
spreads to analogous results for location-scale families. Section 4 dis-
cusses related results for risk premia based on expected utility. Some
technical proofs are found in Appendix A. Finally, Appendix B recalls
some details on the connection between Omegas and expectiles while
Appendix C provides some technical details on risk premia based on
expected utility under background risk.

2. The setting

Let (𝛩, , 𝑃 ) be a probability space on which all subsequent random
ariables are defined.15 For a real-valued, integrable random payoff 𝑋
nd a real number 𝐾, the Omega ratio 𝛺𝐾 (𝑋) with threshold 𝐾 is
efined as

𝐾 (𝑋) =
𝐸[(𝑋 −𝐾)+]
𝐸[(𝐾 −𝑋)+]

12 Manski also notes that these two models share one ‘‘disagreeable feature’’:
They have large indifference classes, i.e., large sets of payoff distributions that
are considered equivalent. As discussed above, this feature is also shared by
the Omega ratio.

13 For the reader’s convenience, we summarize the mathematics behind
these facts in Appendix B.

14 For recent contributions in this literature, see, e.g., [37,38] and the
references therein.

15 A concrete example could be 𝛩 = R𝑛 equipped with the Borel sigma
algebra  where 𝑛 is the number of real-valued random variables under
consideration.
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where 𝐸[⋅] denotes the expected value and (⋅)+ the positive part. The
Omega ratio is thus the ratio between the expected gains and the
expected loss in reference to the threshold 𝐾. The Omega ratio is non-
negative and decreasing in 𝐾. It takes the values 0 or ∞ when 𝐸[(𝑋 −
𝐾)+] = 0 or 𝐸[(𝐾−𝑋)+] = 0. We extend the definition to the case where
𝑋 = 𝐾 holds almost surely16 by setting 𝛺𝐾 (𝐾) = 1. Introducing the
notation 𝑃𝑋 (𝐾) = 𝐸[(𝐾 −𝑋)+], 𝐶𝑋 (𝐾) = 𝐸[(𝑋 − 𝐾)+] and 𝜇𝑋 = 𝐸[𝑋],
we can rewrite the Omega as 1 plus the ‘‘Sharpe-Omega’’ of Kazemi
et al. [42],

𝛺𝐾 (𝑋) =
𝐶𝑋 (𝐾)
𝑃𝑋 (𝐾)

= 1 +
𝜇𝑋 −𝐾
𝑃𝑋 (𝐾)

using the ‘‘put–call-parity’’ for expected payoffs, 𝐶𝑋 (𝐾) = 𝑃𝑋 (𝐾)+𝜇𝑋 −
𝐾.

The literature on consistency of the Omega ratio and risk-averse
behavior (e.g. [8]) has shown that consistency holds whenever 𝜇𝑋 ≥ 𝐾
or, equivalently, whenever 𝛺𝐾 (𝑋) ≥ 1.17

Admissible thresholds: We want to study whether an increase in the
gain–loss threshold 𝐾 makes risk preferences based on the Omega ratio
less risk-averse. For this question to be meaningful, we limit attention
to situations in which the Omega ratio is finite and in line with risk-
averse behavior. We say that the threshold 𝐾 is admissible for 𝑋 if
𝐾 < 𝜇𝑋 and if 𝑃𝐾 (𝑋) = 𝐸[(𝐾 − 𝑋)+] > 0. The latter condition is
equivalent to Prob(𝑋 < 𝐾) > 0. Thus, 𝐾 is admissible for 𝑋 if it lies
in the support of 𝑋 but below its mean. Formally, (𝑋), the range of
admissible thresholds for 𝑋 is given by the interval

(𝑋) = (𝑥min, 𝜇𝑋 ) with 𝑥min = inf{𝐾 ∈ R|Prob(𝑋 < 𝐾) > 0}

where we allow 𝑥min = −∞. When 𝑋 is deterministic, 𝑋 = 𝑥 a.s. for
some real number 𝑥, then (𝑋) is empty. Conversely, when 𝑋 is not
deterministic, then (𝑋) is non-empty. When 𝑋 has full support on R
then (𝑋) = (−∞, 𝜇𝑋 ).

By restricting attention to admissible thresholds we thus effectively
rule out deterministic payoffs 𝑋. The Omega ratio was not designed for
comparing those – and it is also not very good at it. An agent whose
preferences are based on the Omega ratio with threshold 𝐾 prefers a
deterministic payoff 𝑥 > 𝐾 over any payoff with finite Omega ratio
since 𝛺𝐾 (𝑥) = ∞. Similarly, the agent is indifferent between any pair 𝑥
and 𝑦 of deterministic payoffs that lie above 𝐾.

The condition 𝐾 ∈ (𝑋) is equivalent to 1 < 𝛺𝐾 (𝑋) < ∞. Thus,
in line with the literature on consistency with risk-averse behavior,
admissibility means that we are in the range of thresholds where
consistency holds and, additionally, where 𝛺𝐾 is finite. Finally, note
that (𝑋) is an open interval. Thus, 𝐾 ∈ (𝑋) implies 𝐾±𝜀 ∈ (𝑋) for
sufficiently small 𝜀 > 0. We can thus always vary 𝐾 a little bit without
leaving (𝑋).

Risk premia and risk appetite: In order to investigate whether the thresh-
old 𝐾 in the Omega ratio is a measure of risk appetite, we study how
premia for taking up additional risks vary with 𝐾. To this end, consider
some non-deterministic, integrable baseline risk 𝑋 and let 𝐾 ∈ (𝑋)
be a threshold. Denote by 𝑆 another integrable, real-valued random
variable with 𝐸[𝑆|𝑋] = 0. Thus, 𝑋 + 𝑆 is a mean-preserving spread
of 𝑋. Since 𝐾 ∈ (𝑋), 𝑋 + 𝑆 has a weakly smaller Omega ratio
than 𝑋, see also (1) below. The risk premium 𝜋𝐾 is defined as the
deterministic monetary amount that needs to be added to 𝑋 + 𝑆 in
order to compensate the additional risk and make the agent indifferent.
The following lemma shows that risk premia are well-defined and gives
some basic properties.

16 This is the only case where 𝐸[(𝑋 − 𝐾)+] = 0 and 𝐸[(𝐾 − 𝑋)+] = 0 hold
simultaneously.

17 In a nutshell, increasing risk increases the expected ‘‘option payoff’’
𝑃𝑋 (𝐾). Whether this translates into an increase or decrease in risk depends
on the sign of 𝜇𝑋 −𝐾. In particular, a strict increase in 𝑃𝑋 (𝐾) (while keeping
4

𝜇𝑋 fixed) will translate into a strict decrease of the Omega whenever 𝜇𝑋 > 𝐾.
Lemma 1. Assume that 𝑋 and 𝑆 are integrable payoffs with 𝐾 ∈ (𝑋)
and 𝐸[𝑆|𝑋] = 0. Then, there exists a unique risk premium 𝜋𝐾 ∈ [0,∞)
which solves

𝛺𝐾 (𝑋) = 𝛺𝐾 (𝑋 + 𝑆 + 𝜋𝐾 ).

Moreover, 𝐾 ∈ (𝑋 + 𝑆 + 𝜋𝐾 ).

Proof. By Jensen’s inequality, 𝐸[(𝐾 − 𝑋 − 𝑆)+] ≥ 𝐸[(𝐾 − 𝑋)+] which
implies

𝛺𝐾 (𝑋 + 𝑆) = 1 + 𝐸[𝑋 + 𝑆] −𝐾
𝐸[(𝐾 −𝑋 − 𝑆)+]

≤ 1 + 𝐸[𝑋] −𝐾
𝐸[(𝐾 −𝑋)+]

= 𝛺𝐾 (𝑋) (1)

ince 𝐸[𝑆] = 0. Next, note that 𝐸[(𝐾 − 𝑋 − 𝑆 − 𝜋𝐾 )+] is decreasing in
𝐾 so that

𝐾 (𝑋 + 𝑆 + 𝜋𝐾 ) = 1 +
𝐸[𝑋] + 𝜋𝐾 −𝐾

𝐸[(𝐾 −𝑋 − 𝑆 − 𝜋𝐾 )+]

s strictly increasing in 𝜋𝐾 and going to ∞ as 𝜋𝐾 goes to ∞. Conse-
uently, there exists a unique, finite 𝜋𝐾 ≥ 0 which solves 𝛺𝐾 (𝑋 + 𝑆 +
𝐾 ) = 𝛺𝐾 (𝑋). Finally, 1 < 𝛺𝐾 (𝑋) < ∞ implies 1 < 𝛺𝐾 (𝑋+𝑆+𝜋𝐾 ) < ∞

which can only hold if 𝐸[(𝐾 −𝑋 − 𝑆 − 𝜋𝐾 )+] > 0 and 𝐸[𝑋] + 𝜋𝐾 > 𝐾.
Thus 𝐾 ∈ (𝑋 + 𝑆 + 𝜋𝐾 ). □

We are now ready to make our main research question precise: Does
the threshold 𝐾 represent risk appetite in the sense that an increase in
𝐾 leads to a decrease in 𝜋𝐾?

Definition 1. Assume that 𝑋 and 𝑆 are integrable payoffs with 𝐾 ∈
(𝑋) and 𝐸[𝑆|𝑋] = 0. Denote by 𝜋𝐾 the unique risk premium defined
via

𝛺𝐾 (𝑋) = 𝛺𝐾 (𝑋 + 𝑆 + 𝜋𝐾 ). (2)

We say that 𝐾 represents risk appetite at (𝑋,𝑋 +𝑆) if 𝜋𝐾 is decreasing
in 𝐾 ∈ (𝑋).

In the remainder of this paper, we study under which conditions 𝐾
represents risk appetite in this sense of monotonicity of risk premia.
This definition of comparative risk aversion is in line with a large
literature starting e.g. with Pratt [15]’s famous work on risk premia
under expected utility preferences.

Technical assumptions and notation: So far, we have made very few
assumptions on the distributions of 𝑋 and 𝑆, leaving it, e.g., open
whether distributions are discrete or continuous. In particular, the
notions of risk premia and increasing risk appetite apply both in the
discrete and in the continuous case and can, e.g., be applied to Omegas
from empirical distributions. For our theoretical main results in the
following sections, we need to assume more however.

We assume that the baseline risk 𝑋 is integrable and continu-
ously distributed with bounded density function 𝑔 with respect to the
Lebesgue measure. We denote by 𝐺 the associated cumulative distri-
bution function. Moreover, we write 𝜇 = 𝐸[𝑋], 𝑃 (𝐾) = 𝐸[(𝐾 − 𝑋)+]
and 𝐶(𝐾) = 𝐸[(𝑋 − 𝐾)+], dropping the subscript 𝑋 from the previous
notation. For the additional risk, we assume that 𝑆 is square-integrable
with 𝐸[𝑆|𝑋] = 0. We also define the conditional variance function

𝜎2(𝑥) ∶= Var(𝑆|𝑋 = 𝑥). (3)

For some of our results, in particular the asymptotic expansions
of risk premia, we need additional regularity assumptions. Intuitively,
we face a technical challenge that is well-known from the quantitative
finance literature on computing sensitivities of standard options like
puts and calls.18 Since the ‘‘payoffs’’ (𝑥 −𝐾)+ and (𝐾 − 𝑥)+ are weakly
differentiable once but not twice, some structure is needed to ensure
existence of higher order derivatives of their expectations. To this
end, we introduce the following additional assumption on the joint
distribution of 𝑋 and 𝑆 which is invoked where needed.

18 See, e.g., Chapter 7 of Glasserman [43].
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Assumption 1. Denote by 𝑙𝑋,𝑆 the joint density of 𝑋 and 𝑆 with
respect to the Lebesgue measure. We assume that 𝑙𝑋,𝑆 satisfies the
following two regularity conditions:

1. (Global convergence) There exists a bounded, integrable func-
tion 𝑏 ∶ R → R and a constant 𝜅 > 3 such that

𝑙𝑋,𝑆 (𝑥, 𝑠) ≤ 𝑏(𝑥)𝜑(𝑠) (4)

where 𝜑 ∶ R → R is defined by

𝜑(𝑠) ∶=

{ 1
|𝑠|𝜅 for |𝑠| ≥ 1;

1 for |𝑠| < 1.
(5)

2. (Local continuity) For all real numbers 𝑥, 𝑦 and 𝑠, we have

|𝑙𝑋,𝑆 (𝑥, 𝑠) − 𝑙𝑋,𝑆 (𝑦, 𝑠)| ≤ 𝐶 max(1, |𝑠|)|𝑥 − 𝑦|, (6)

where 𝐶 is a constant independent of 𝑥, 𝑦 and 𝑠.

To illustrate Assumption 1 and the families of distributions for
which it holds, we first have a look at the case where 𝑋 and 𝑆 are
independent:

Example 1. Suppose 𝑋 and 𝑆 are independent with respective density
functions 𝑔 ∶ R → R and 𝑝 ∶ R → R so that 𝑙𝑋,𝑆 (𝑥, 𝑠) = 𝑔(𝑥)𝑝(𝑠) and
o that 𝜎2(𝑥) = Var(𝑆) is constant in 𝑥. Then Assumption 1 is satisfied
nder the following conditions on 𝑔 and 𝑝:

(a) 𝑋 is integrable and 𝑔 is bounded from above and Lipschitz
continuous on R.

(b) 𝑆 is square-integrable with 𝐸[𝑆] = 0, 𝑝 is bounded from above
and there exists a constant 𝐶 > 0 such that 𝑝(𝑠) ≤ 𝐶

|𝑠|𝜅 for all
𝑠 ∈ R with |𝑠| ≥ 1 and for some 𝜅 > 3.

Condition (a) is satisfied, e.g., for the normal distribution, the Laplace
distribution, the Gamma distribution (with 𝛼 ≥ 2),19 the Beta dis-
tribution (with 𝛼 ≥ 2 and 𝛽 ≥ 2), the Lognormal distribution, the
Weibull distribution (with 𝛼 ≥ 2), the skew-normal distribution, and
the 𝑡-distribution with 𝜈 > 1. Here, the parameter constraint for the
𝑡-distribution is needed to ensure integrability while the remaining
parameter constraints ensure Lipschitz continuity (i.e. a finite slope
in 𝑥 = 0 and, in case of the Beta distribution, also in 𝑥 = 1). Up to
a possible shift to ensure 𝐸[𝑆] = 0, condition (b) is satisfied for the
same list of distributions, except that we need to tighten the parameter
constraint for the 𝑡-distribution to 𝜈 > 2 to ensure square-integrability
and the density bound 𝑝(𝑠) ≤ 𝐶|𝑠|−𝜅 . For the Gamma distribution,
we can relax the parameter constraint to 𝛼 ≥ 1 because we only
need boundedness but no longer Lipschitz continuity. Similar reasoning
applies to the Beta and to the Weibull distribution. Finally, (b) is also
satisfied by distributions like a uniform distribution on [−𝑤,𝑤] for
some 𝑤 > 0 whose density is bounded from above but not Lipschitz
continuous.

Clearly, the independence assumption in the previous example is
somewhat restrictive. The next lemma shows that Assumption 1 also
holds under fairly mild conditions in the ‘‘heteroskedastic’’ case where
𝑆 = 𝛴(𝑋)𝑍 and 𝑍 is a mean-zero random variable that is independent
of 𝑋, implying 𝜎2(𝑥) = 𝛴(𝑥)2Var(𝑍) in this case.

Lemma 2. Let 𝑆 be given by 𝑆 = 𝛴(𝑋)𝑍 where 𝛴(⋅) is a non-negative,
continuous function and 𝑍 is a continuously distributed, mean-zero random
variable which is independent of 𝑋 and has density ℎ. Assume that there
are constants 𝐶 > 0 and 𝜅 > 3 such that ℎ(𝑧) ≤ 𝐶𝜑(𝑧) for 𝜑(𝑧) defined
in (5). Moreover, assume that 𝑔, ℎ and 1

𝛴(⋅) are bounded and Lipschitz
continuous and that the expected values 𝐸[𝛴(𝑋)𝜅−1] and 𝐸[ 1

𝛴(𝑋) ] are finite.
Then Assumption 1 holds.

19 Regarding the parametrization of the Beta, Gamma and Weibull
istributions, we follow [44].
5



The proof of the lemma is given in the appendix. Unlike in Ex-
ample 1, we now also need Lipschitz continuity for the density ℎ of
𝑍. Thus, the conditions of the lemma are, e.g., satisfied if (up to a
possible shift to ensure 𝐸[𝑍] = 0) both 𝑔 and ℎ come from the normal
distribution, the Laplace distribution, the Gamma distribution (with
𝛼 ≥ 2), the Beta distribution (with 𝛼 ≥ 2 and 𝛽 ≥ 2), the Lognormal
istribution, the Weibull distribution (with 𝛼 ≥ 2), the skew-normal
istribution, or the 𝑡-distribution with 𝜈 > 2 (where 𝜈 > 1 is sufficient

for 𝑋). For the function 𝛴(⋅), we can, e.g., assume that 𝛴 is Lipschitz
ontinuous and there exist real numbers 𝛴0 and 𝛴1 such that 0 < 𝛴0 ≤
(𝑥) ≤ 𝛴1 for all 𝑥 ∈ R.

. Main results

.1. Asymptotic expansions

Our goal is to understand how risk premia based on the Omega ratio
epend on the threshold 𝐾. To make this question tractable, we study
𝐾 (ℎ), the risk premium for taking on the additional risk ℎ𝑆 on top of
he existing risk 𝑋 where ℎ > 0 is a real-valued parameter. Formally,
n line with (2), for 𝐾 ∈ (𝑋), 𝜋𝐾 (ℎ) is defined as the unique solution
o the equation

𝐾 (𝑋) = 𝛺𝐾 (𝑋 + ℎ𝑆 + 𝜋𝐾 (ℎ))

hich is well-defined by Lemma 1. The next proposition provides our
symptotic expansion of 𝜋𝐾 (ℎ) around 𝜋𝐾 (0) = 0.

roposition 1. Under Assumption 1, for 𝐾 ∈ (𝑋) and ℎ > 0, we have
he expansion

𝐾 (ℎ) = 𝜎2(𝐾)𝑅(𝐾)ℎ
2

2
+ 𝑂(ℎ3) (7)

where 𝜎2(𝐾) is defined in (3) and where

(𝐾) =
(𝜇 −𝐾)𝑔(𝐾)

𝑃 (𝐾) + (𝜇 −𝐾)𝐺(𝐾)
≥ 0. (8)

The proof of the proposition is given in the appendix. The propo-
ition shows that the leading order term in 𝜋𝐾 (ℎ) depends on 𝐾
hrough the product of two non-negative factors, a factor 𝑅(𝐾) that
nly depends on the distribution of 𝑋 and a second factor 𝜎2(𝐾) which
nly depends on the distribution of 𝑆 conditional on 𝑋. If both factors
re weakly decreasing in 𝐾, then risk premia are decreasing in 𝐾, in
ine with the interpretation of 𝐾 as risk appetite. This is summarized
n the following corollary:

orollary 1. In the setting of Proposition 1 and for sufficiently small
> 0, if 𝑅(𝐾) and 𝜎2(𝐾) are both weakly decreasing in 𝐾 ∈ (𝑋) then
isk premia are weakly decreasing in 𝐾. Thus, 𝐾 represents risk appetite at
𝑋,𝑋 + ℎ𝑆) for all sufficiently small ℎ.

In the language of Pratt [15], Corollary 1 mixes elements of a result
bout risk aversion ‘‘in the small’’ (locally) and risk aversion ‘‘in the
arge’’ (globally). While the result is ‘‘in the small’’ in the sense that we
nly consider sufficiently small (additional) risks, it is ‘‘in the large’’
n the sense that we study a range of thresholds, in line with our
oal of understanding how to interpret plots of Omegas against their
hresholds.

In the corollary, we could, of course, also allow for one factor being
ncreasing if the other decreases sufficiently strongly. What matters
s how their product behaves. When 𝑋 and 𝑆 are independent, the
unction 𝜎2(⋅) is constant so 𝑅 needs to be decreasing, reducing the two
onditions to a single one. Moreover, recall that (𝑋) is the lower part
f the support of 𝑋 up to the mean 𝜇. Thus, monotonicity only needs
o be guaranteed in that range. For example, if 𝜎2(𝑥) is largest in the
ails of the distribution of 𝑋 in the sense that 𝜎2(𝑥) = 𝜓(|𝑥 − 𝜇|) for
ome positive and increasing function 𝜓 , then 𝜎2(𝑥) is decreasing over

(𝑋).
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To understand why the monotonicity behavior of 𝜎2(𝑥) matters,
uppose for a moment that 𝜎2(⋅) is increasing over (𝑋) so that the
dditional risk 𝑆 has the largest conditional variance when𝑋 is realized
n the center of its distribution. Recall that the risk measure 𝑃 (𝐾) in the
mega ratio only considers the riskiness of the tail below 𝐾. Thus, a

isk premium 𝜋𝐾 that only accounts for the lower tail (𝐾 ≪ 𝜇) may well
e smaller than a risk premium that also looks at the center (𝐾 ≈ 𝜇).

The following example illustrates this.

Example 2. Suppose that 𝜎2(𝐾) = 𝜎̄21{𝐾>𝑡} for some real numbers
𝜎̄2 > 0 and 𝑡 ∈ (𝑋) where 1{⋅} denotes the indicator function.
Then, 𝑆 = 0 a.s. conditional on 𝑋 = 𝐾 for any 𝐾 < 𝑡. Accordingly,
[(𝐾 − 𝑋 − 𝑆)+] = 𝐸[(𝐾 − 𝑋)+] for 𝐾 < 𝑡. Thus, 𝜋𝐾 = 0 for 𝐾 < 𝑡.

n contrast, for 𝐾 ∈ (𝑡, 𝜇) the risk premium will be strictly positive in
general. Thus, the risk premium is not decreasing in 𝐾 and 𝐾 does not
represent risk appetite. Moreover, since the risk premium vanishes in
the limit 𝐾 → 𝜇, 𝐾 does not represent risk aversion either.

The example shows that upwards jumps,20 in the conditional vari-
ance function 𝜎2(𝐾) can threaten the interpretation of 𝐾 as a measure
f risk appetite. Inspecting the factor 𝑅(𝐾), we see that the same is

true for the density function 𝑔(𝐾). An upwards jump in 𝑔(𝐾) would
change the slope but not the level of 𝐺(𝐾) and 𝑃 (𝐾), thus leading
to an upwards jump in the risk premium around 𝐾. Beyond this,
the dependence of 𝑅 on the distribution is a bit more complex. To
understand it better, we rewrite 𝑅 in terms of another function 𝐿:

Lemma 3. The function 𝑅(𝐾) from (8) can be written as

𝑅(𝐾) = 𝑑
𝑑𝐾

log(𝐿(𝐾)) (9)

here 𝐿(𝐾) is given by

(𝐾) = 𝑃 (𝐾) + (𝜇 −𝐾)𝐺(𝐾) = ∫

𝐾

𝑥min

(𝜇 − 𝑘)𝑔(𝑘)𝑑𝑘.

Consequently, if 𝐿 is log-concave in 𝐾 ∈ (𝑋) then 𝑅 is decreasing in
𝐾 ∈ (𝑋).

Proof. Note that 𝐿(𝐾) = 𝑃 (𝐾)+(𝜇−𝐾)𝐺(𝐾) is the denominator in (8).
Moreover, 𝑑

𝑑𝐾𝐿(𝐾) = (𝜇−𝐾)𝑔(𝐾) since 𝑑
𝑑𝐾 𝑃 (𝐾) = 𝐺(𝐾). This shows (9),

𝑅 is the derivative of log(𝐿). Consequently, log-concavity of 𝐿 implies
monotonicity of 𝑅. Finally, the integral expression for 𝐿 follows from
𝑑
𝑑𝐾𝐿(𝐾) = (𝜇 −𝐾)𝑔(𝐾) and lim𝐾↓𝑥min

𝐿(𝐾) = 0. □

Thus, in order to check whether 𝑅 is decreasing, it suffices to check
hether log(𝐿) is concave over (𝑋). A plot of log(𝐿) can easily be
ade using the same software that is used to plot the Omega ratio itself,

elying on basically the same calculations. If the curve log(𝐿) deviates
learly from concavity for some risks under consideration, there is
eason to be concerned about the interpretation of 𝐾 as a measure of
isk appetite.

The next lemma relates log-concavity of 𝐿 to a more standard
ondition, log-concavity of the density function 𝑔.

Lemma 4. If the density function 𝑔(𝐾) is log-concave in 𝐾 ∈ (𝑋), then
he function 𝐿(𝐾) is log-concave and, accordingly, the function 𝑅(𝐾) from
8) is decreasing.

roof. Since 𝑑
𝑑𝐾𝐿(𝐾) = (𝜇 − 𝐾)𝑔(𝐾) ≥ 0 for 𝐾 ∈ (𝑋) = (𝑥min, 𝜇), we

know that 𝐿 is increasing over (𝑋). Moreover, since lim𝐾↓𝑥min
𝐿(𝐾) =

0, 𝐻(𝐾) = 𝐿(𝐾)∕𝐿(𝜇) is a valid cumulative distribution function on
(𝑋) with density function ℎ(𝐾) = (𝜇−𝐾)𝑔(𝐾)∕𝐿(𝜇). Being the product

20 While easy to grasp, discontinuous jumps in 𝜎2(𝑥) or 𝑔(𝑥) are, of course,
outside the scope of Assumption 1. In order to construct similar examples that
satisfy Assumption 1 one could replace the jump by a rapid but smooth local
increase.
6

of the two log-concave functions, 𝑔 and the linear function (𝜇− ⋅)∕𝐿(𝜇),
ℎ is itself log-concave. Moreover, log-concavity is inherited by the
cumulative distribution function 𝐻 and thus by 𝐿.21 □

Thus, log-concavity of the density of 𝑋 is a sufficient condition
for 𝑅 being decreasing. For instance, when 𝑋 is normally distributed,
the log-density is a concave quadratic polynomial, implying that 𝑅
is decreasing. In contrast, with heavier than exponential lower tail
behavior, this sufficient condition breaks down and there is reason to
be concerned that lack of log-concavity can lead to non-monotonic risk
premia. In the example of a Student-𝑡 distribution below in Section 3.2,
we will see a case where 𝑅 is non-monotonic when 𝑋 follows a smooth
and unimodal distribution that is not log-concave, confirming that,
indeed, heavy tails can be a problem for the interpretation of 𝐾 as a
measure of risk appetite.

In the above discussion, we have focused on Proposition 1 as a pos-
itive result, providing sufficient conditions for the threshold parameter
in the Omega ratio to be aligned with risk appetite. However, arguably,
the result is even stronger as a negative result, implying a necessary
condition rather than a sufficient condition. This is made precise in the
following direct corollary of the proposition.

Corollary 2. Suppose that the density of an integrable payoff 𝑋 is
Lipschitz continuous and bounded. Moreover, suppose that for some interval
(𝑘0, 𝑘1) ⊆ (𝑋) the function 𝑅(𝐾) defined in (8) is strictly increasing in
𝐾 ∈ (𝑘0, 𝑘1).22 Let 𝑆 be standard normally distributed and independent
of 𝑋. Thus, (𝑋,𝑆) satisfy Assumption 1 with 𝜎2(𝐾) ≡ 1. Then, for all
ufficiently small ℎ, the risk premium 𝜋𝐾 (ℎ) for switching from 𝑋 to 𝑋+ℎ𝑆
is increasing in 𝐾 ∈ (𝑘0, 𝑘1).

The corollary shows that as soon as 𝑅(𝐾) is not weakly decreasing at
a given point, we can add small independent risks ℎ𝑆 to 𝑋 to generate
lternative payoffs 𝑌 = 𝑋 + ℎ𝑆 for which the threshold does not
epresent risk appetite when comparing 𝑋 and 𝑌 .

.2. Illustrations

If 𝑋 follows a normal distribution or a Student-𝑡 distribution, we
an compute 𝑅 explicitly. The results are summarized in the following
emma:

emma 5.

(i) If 𝑋 is normally distributed with mean 𝜇 and standard deviation 𝛴,
then the function 𝑅 is given by

𝑅(𝐾) =
𝜇 −𝐾
𝛴2

(10)

(ii) If 𝑋 follows a Student-𝑡 distribution with 𝜈 > 1 degrees of freedom
and location and scale parameters23 𝜇 and 𝛴, then the function 𝑅
is given by

𝑅(𝐾) =
(𝜇 −𝐾)(1 − 1

𝜈 )

𝛴2 + 1
𝜈 (𝜇 −𝐾)2

. (11)

Proof. These are tedious but straightforward calculations so we just
give the main stepping stones. In both cases, we first compute the

21 See [45] for these elementary properties of log-concave functions.
22 A function 𝑓 ∶ R → R is called strictly increasing if 𝑥 < 𝑦 implies

𝑓 (𝑥) < 𝑓 (𝑦) for all 𝑥, 𝑦 ∈ R.
23 Often, the Student-𝑡 distribution is introduced as a standard 𝑡-distribution

with only a single parameter 𝜈. Our 𝑋 is distributed as 𝜇+𝛴𝑍 where 𝑍 follows
a standard 𝑡-distribution with 𝜈 degrees of freedom. In particular, 𝛴 does not
oincide with the standard deviation of 𝑋. 𝑋 only possesses a finite standard

deviation for 𝜈 > 2. In that case, its standard deviation is given by
√

𝜈 𝛴.

𝜈−2
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function 𝑅0,1(𝐾) for the case 𝜇 = 0 and 𝛴 = 1. For the normally
distributed case, we find 𝑅0,1(𝐾) = −𝐾 while for the Student-𝑡 case,
we find

𝑅0,1(𝐾) =
−𝐾(1 − 1

𝜈 )

1 + 1
𝜈𝐾

2
. (12)

his result can be extended to general 𝜇 and 𝛴 using the relation

𝜇,𝛴 (𝐾) = 1
𝛴
𝑅0,1

(

𝐾 − 𝜇
𝛴

)

. □

For the case of a normal distribution, we find that 𝑅(𝐾) is decreasing
n 𝐾 which is expected because the normal distribution has a log-
oncave density. Note also that, in the admissible case 𝜇 > 𝐾, the

expression (10) (and thus the risk premium) goes to ∞ when 𝛴 goes
to zero, capturing that – with an admissible threshold – risk premia for
deterministic baselines 𝑋 are infinite in this case.

Comparing cases (i) and (ii), we recall that in the limit, as the
‘‘degrees of freedom’’ parameter 𝜈 goes to ∞, the Student-𝑡 distribution
converges to a normal and, indeed, (11) converges to (10). However,
for finite 𝜈, the function 𝑅 from (11) behaves quite differently from
(10). In particular, as summarized in the first part of the following
corollary, the function 𝑅 is non-monotonic. The second part of the
corollary summarizes the consequences

Corollary 3.

(i) For the Student-𝑡 distribution, the function 𝑅 as defined in (11)
is increasing in 𝐾 for 𝐾 < 𝜇 − 𝛴

√

𝜈 and decreasing for 𝐾 ∈
(𝜇 − 𝛴

√

𝜈, 𝜇).
(ii) In the setting of Proposition 1, suppose that 𝑋 follows a Student-𝑡

distribution with 𝜈 > 1 degrees of freedom and location and scale
parameters 𝜇 and 𝜎. Let 𝑆 be independent of 𝑋 so that 𝜎2(𝐾) =
Var(𝑆|𝑋 = 𝐾) is constant in 𝐾. Then, for sufficiently small ℎ, the
risk premium from taking on the additional risk ℎ𝑆 is increasing in
𝐾 for 𝐾 < 𝜇 −𝛴

√

𝜈 and decreasing in 𝐾 for 𝐾 ∈ (𝜇 −𝛴
√

𝜈, 𝜇). In
particular, 𝐾 does not represent risk appetite for 𝐾 < 𝜇 − 𝛴

√

𝜈.

roof. For (i), like in the proof of Lemma 5, we consider first the case
= 0, 𝛴 = 1 and thus (𝑋) = (−∞, 0). By (12), the derivative of 𝑅0,1

s given by

𝑑
𝑑𝐾

𝑅0,1(𝐾) =
(𝐾2 − 𝜈)(𝜈 − 1)

(𝐾2 + 𝜈)2
.

nvestigating the sign of the derivative, we see that 𝑅0,1 is increasing
n 𝐾 for 𝐾 < −

√

𝜈 and decreasing for 𝐾 ∈ (−
√

𝜈, 0). Now, due to the
relation 𝑅𝜇,𝛴 (𝐾) = 1

𝛴𝑅0,1(
𝐾−𝜇
𝛴 ), we find the result of (i) by replacing 𝐾

with 𝐾−𝜇
𝛴 in these conditions. (ii) follows directly from combining (i)

ith Proposition 1. □

Corollary 3 thus shows that when the distribution of 𝑋 violates log-
concavity in the sense of too heavy tails, the connection between the
threshold and risk appetite can break down.

In Figs. 1–3, we further illustrate these differences between the
normally distributed and the 𝑡-distributed case based on simulations
rom the two examples. This discussion can also be thought of as a
odel for how one might investigate the behavior of risk premia in

mpirical applications, relying on the insights from Proposition 1. In the
xample, 𝑋 follows either a normal distribution with parameters 𝜇 = 2
nd 𝛴 = 0.04 or a Student-𝑡 distribution with 𝜈 = 3 degrees of freedom
nd the same 𝜇 and 𝛴. The resulting two possible density functions for

are plotted in Fig. 1, highlighting that the differences between the
wo cases are visible but not extreme at first sight. The additional risk
s ℎ𝑆 where ℎ = 0.02 and 𝑆 is standard normal so that 𝜎2(𝑥) ≡ 1. The
lack curves in Fig. 2 are empirical risk premia computed by solving the
ample equivalents of 𝛺 (𝑋) = 𝛺 (𝑋+ℎ𝑆+𝜋 ) for different 𝐾 and 𝑚 =
7

𝐾 𝐾 𝐾
Fig. 1. The two candidate probability density functions for 𝑋, a normal distribution
(gray curve) or a Student-𝑡 distribution 𝑋 (black curve).

106 simulations.24 The gray curves are our premium approximations
𝜋𝐾 ≈ 𝑅(𝐾)ℎ2∕2 using the closed-form expressions for 𝑅(𝐾) from,
respectively, (10) and (11) and the true parameters. Comparing the two
curves in the two cases, we see that approximation is fairly accurate
and, in particular, captures the monotonicity behavior of 𝜋𝐾 rather
well. While risk premia in the normal case are decreasing in 𝐾, in line
with the interpretation of 𝐾 as risk appetite, this interpretation breaks
down in the Student-𝑡 case where premia are clearly non-monotonic.
Finally, the dashed, black curve is a non-parametric finite difference
approximation of the gray curve,

𝑅(𝐾) = 𝑑
𝑑𝐾

log(𝐿(𝐾)) ≈
log(𝐿̂(𝐾 + 𝛥∕2)) − log(𝐿̂(𝐾 − 𝛥∕2))

𝛥
= 𝑅(𝐾)

here 𝐿̂(𝐾) = 𝑃 (𝐾) + (𝜇 −𝐾)𝐺(𝐾) and 𝛥 = 0.02. Here, 𝑃 (𝐾), 𝐺(𝐾) and
̂ denote sample equivalents of 𝑃 (𝐾), 𝐺(𝐾) and 𝜇. Computing and plot-
ing 𝑅(𝐾) is thus of similar complexity as plotting the empirical Omega
atio. The resulting approximation is close to the other two curves.
verall, the figure highlights that a small change in the distribution
f 𝑋 can have dramatic consequences for the monotonicity behavior of
isk premia and, thus, for the interpretation of the threshold parameter
.

In Fig. 3, we illustrate the situation of Fig. 2 in a more traditional
lot of the (log)-Omega ratios25 of 𝑋 and 𝑌 where 𝑌 = 𝑋 + ℎ𝑆 + 𝑝.
ere, as the only change, we pick ℎ slightly larger than before, ℎ =
.08, to increase the visual impact of the additional risk. The premium
= 0.04 is fixed throughout the plot.26 Again, the plots are based on 106

imulations to reduce the impact of noise. In the normally distributed
ase, we find a single intersection between the two Omega curves,
ighlighting that our fixed risk premium is high enough for agents with
high threshold 𝐾 but not for agents with a low threshold. In contrast,

or the case where 𝑋 follows a 𝑡-distribution, we see two intersections
nd thus a preference reversal that should not be there if 𝐾 would
apture risk appetite in this example.27

24 In particular, we choose large numbers of samples to get a good sense of
what is going on. For the normal distribution, we have chosen a somewhat
more narrow plot range on the 𝑥-axis since we observe fewer extreme
observations with this more light-tailed distribution.

25 The idea of plotting the logarithm of Omega rather than the Omega itself
to get clearer pictures goes back already to [12].

26 The motivation for 𝑝 = 0.04 is as follows: In Fig. 2, a premium of 0.0025 is
within the range of observed premia for both distributions, giving in particular
two intersections for the Student-𝑡 distribution. In light of Proposition 1,
increasing ℎ by a factor 4 should give an increase by a factor 42 in risk premia.
We thus arrive at 42 × 0.0025 = 0.04.

27 Even when all distributions are normal, there can be multiple intersections
in an Omega-plot, compare e.g. Fig. 2 in [7]. The key distinction is that in the
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Fig. 2. Risk premia and approximations as a function of the threshold 𝐾 for normally distributed 𝑋 (left panel) and Student-𝑡 distributed 𝑋 (right panel).
Fig. 3. Logarithmized Omega ratios of 𝑋 and 𝑋 + ℎ𝑆 + 𝑝 for normally distributed 𝑋 (left panel) and Student-𝑡 distributed 𝑋 (right panel).
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Some authors such as [10] have proposed the slope of the Omega
curve as a measure of risk preferences with a preference for flatter
curves indicating higher risk appetite. The Omega plot for the normally
distributed case nicely illustrates how this logic is related to thresholds
as measures of risk appetite. In this example, it is unambiguous which
of the curves is flatter. Moreover, since Omega curves are decreasing,
it is the flatter one which dominates to the right of the intersection
— and thus at higher thresholds. In contrast, in the Student-𝑡 case, it
is not even clear which of the two curves should be regarded as the
flatter one: At the first intersection, it is the black curve, at the second
one it is the gray one.

On a somewhat higher level, we observe that Omega ratios behave
quite differently for the two types of distribution. This can be inter-
preted as a confirmation of the claim28 that the Omega ratio takes into
account all higher moments of the distribution and not just the first
two.29

3.3. Location-scale families

When the two risks that are being compared come from the same
location-scale family, the situation becomes a lot easier than the setting
of mean-preserving spreads we have studied so far. In this case, risk
premia have distribution-independent closed-form expressions — in
the small as well as in the large. Moreover, risk premia are linearly
decreasing in 𝐾, implying that 𝐾 captures risk appetite. The fact that
everything is easy and well-behaved in the location-scale setting is, of
course, closely related to the well-known observation that the choice

right panel of our Fig. 3 we have multiple intersections within the domain
where Omega is consistent with risk-averse behavior, 𝛺𝐾 > 1.

28 See, for instance, already [12].
29 Note though that, strictly speaking the 𝑡-distribution with 𝜈 = 3 does

not possess any finite moments beyond the first two. Note also that, as
discussed in Footnote 23, the two distributions do not have exactly the same
second moment. However, the picture for the normal distribution would look
qualitatively the same if we would rescale that distribution to match the
8

second moment of the Student-𝑡 distribution. v
of performance criterion is largely irrelevant when attention is limited
to a single location-scale family, see, e.g., [46]. If the world was two-
dimensional in such a way that any comparison of two risks could be
reduced to comparing mean and variance, there would be no need for
the Omega ratio and many other concepts from decision theory. The
following proposition summarizes the situation.

Proposition 2. Suppose that two payoffs are given by 𝑋 = 𝜇+ 𝜎𝑋𝑍 and
𝑌 = 𝜇 + 𝜎𝑌𝑍 where 𝑍 is an integrable payoff with 𝐸[𝑍] = 0 and 𝜇, 𝜎𝑋
and 𝜎𝑌 are three real numbers with 𝜎𝑌 > 𝜎𝑋 > 0. Then, for any threshold

∈ R the risk premium 𝜋𝐾 that solves 𝛺𝐾 (𝑋) = 𝛺𝐾 (𝑌 + 𝜋𝐾 ) is given by

𝐾 = (𝜇 −𝐾)
(

𝜎𝑌
𝜎𝑋

− 1
)

. (13)

Thus 𝐾 represents risk appetite at (𝑋, 𝑌 ).

Proof. We need to find 𝜋𝐾 such that 𝛺𝐾 (𝑋) = 𝛺𝐾 (𝑌 + 𝜋𝐾 ) or,
equivalently,

𝜇 −𝐾
𝐸[(𝐾 − 𝜇 − 𝜎𝑋𝑍)+]

=
𝜇 + 𝜋𝐾 −𝐾

𝐸[(𝐾 − 𝜇 − 𝜋𝐾 − 𝜎𝑌𝑍)+]
(14)

We can rewrite the right hand side into
(𝜇 + 𝜋𝐾 −𝐾) 𝜎𝑋𝜎𝑌

𝐸
[

(

(𝐾 − 𝜇 − 𝜋𝐾 )
𝜎𝑋
𝜎𝑌

− 𝜎𝑋𝑍
)+

] ,

showing that (14) holds if we choose 𝜋𝐾 such that

(𝜇 + 𝜋𝐾 −𝐾)
𝜎𝑋
𝜎𝑌

= 𝜇 −𝐾.

olving this for 𝜋𝐾 gives the result. □

The mathematics behind this result is not new, going back to
heorem 8 in [14], even though the connection to risk premia is not
pelled out there. While we only need the case of equal means, the
xtension to 𝜇𝑋 ≠ 𝜇𝑌 is straightforward.

emark 1. An advantage of the closed-form relation between risk
remia and threshold levels in Eq. (13) is that it can easily be in-
erted to infer threshold levels from risk premia, thus suggesting an
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method for inferring the level 𝐾 that matches a decision-maker’s risk
preferences – provided that those are captured by the Omega. Consider
a decision-maker who has to choose between two stochastic returns.
Under the first return distribution, the return is 1% or 3% with equal
probability while under second distribution the return is 𝜋% or 4 + 𝜋%
with equal probability. Which value of 𝜋 makes a risk-averse decision-
maker indifferent between the two lotteries? Clearly, for 𝜋 ≤ 0, the
first lottery has lower risk and a higher return, while for 𝜋 ≥ 1 the
second lottery dominates the first in the sense of first-order stochastic
dominance. Thus, there should be an indifference point for some 𝜋 ∈
[0, 1]. For example, let us assume that our decision-maker is indifferent
for 𝜋 = 0.5. This situation fits into the setting of Proposition 2 with
𝜇 = 2, 𝜎𝑋 = 1, 𝜎𝑌 = 2 and 𝑍 taking values 1 and −1 with equal
probability. Solving (13) for the threshold,

𝐾 = 𝜇 − 𝜋
𝜎𝑌
𝜎𝑋

− 1

nd plugging in shows that the decision-maker’s indifference at 𝜋 = 0.5
corresponds to a threshold of 𝐾 = 1.5, i.e., at 1.5%.30

One case where the approximation from Proposition 1 and the
closed-form solution for location-scale families from Proposition 2 can
easily be compared is when everything is normally distributed. Let 𝑋
be normally distributed with mean 𝜇 and standard deviation 𝛴, let
𝑆 be standard normal and independent from 𝑋 and let 𝑌 = 𝑋 + ℎ𝑆
for some ℎ > 0. Thus, 𝑌 is normally distributed with mean 𝜇 and
standard deviation

√

𝛴2 + ℎ2. Moreover, 𝜎2(𝐾) ≡ 1. Thus, using (10)
nd Proposition 1, our approximation of the risk premium for switching
rom 𝑋 to 𝑌 = 𝑋 + ℎ𝑆 is given by

𝐾 ≈ (𝜇 −𝐾) ℎ
2

2𝛴2

while the closed-form expression from Proposition 2 is given by

𝜋𝐾 = (𝜇 −𝐾)

(
√

1 + ℎ2

𝛴2
− 1

)

.

The two approximations coincide up to
√

1 + 𝑥2−1 ≈ 𝑥2

2 , a second-order
Taylor approximation around 𝑥 = 0.

When 𝑋 is Student-𝑡 distributed, there is a stark contrast between
the non-monotonicity result for mean-preserving spreads 𝑋 + 𝑆 that
follows from Proposition 1 and the linearly decreasing expression for
location-scale families from Proposition 2. This shows that the intuitive
equivalence between adding an additional risk versus scaling up an
existing one is ‘‘Gaussian thinking’’ that does not hold up under heavy
tails.

4. Comparison with expected utility

So far, we have established sufficient conditions such that Omega-
based risk premia for mean-preserving spreads 𝑋 + ℎ𝑆 have the ex-
pected monotonicity behavior in the threshold 𝐾 for small ℎ > 0 and,
consequently, the parameter 𝐾 represents risk appetite. A sufficient
condition is that 𝑋 has a log-concave probability density and that the
conditional variance 𝜎2 is weakly decreasing.

The goal of this section is to compare these sufficient conditions
to the conditions that are needed to ensure that risk premia based
on expected utility have the intended monotonicity behavior in the
risk aversion parameters of classical families of utility functions. Is
the threshold parameter 𝐾 a more or a less robust representer of risk
appetite or its converse, risk aversion, than, e.g. the parameter of a
CRRA utility function? In particular, how does a plot of Omega ratios

30 We leave it to further research to study this elicitation method in greater
etail, investigating among others its practical performance, its performance
eyond location-scale families and the portability of the resulting threshold
stimates from one setting to the next.
9

as a function of 𝐾 compare to a more traditional plot of risk premia
based on CRRA or CARA utility functions against the respective risk
aversion parameters of those functions?

For a smooth, strictly increasing and strictly concave function 𝑢, we
define the utility-based risk premium 𝜋𝑢(ℎ) via

𝐸[𝑢(𝑋)] = 𝐸[𝑢(𝑋 + ℎ𝑆 + 𝜋𝑢(ℎ))]. (15)

As before, we assume 𝐸[𝑆|𝑋] = 0 and define 𝜎2(𝑥) = Var(𝑆|𝑋 = 𝑥). For
he utility function 𝑢, we are especially interested in the cases where
t is either a constant absolute risk aversion (CARA) utility function
ith risk aversion parameter 𝛼 > 0 or a constant relative risk aversion

(CRRA) utility function with risk aversion parameter 𝛾 > 031

𝑢(𝑥) = − exp(−𝛼𝑥) or 𝑢(𝑥) = 𝑥1−𝛾 − 1
1 − 𝛾

.

Our main question in this section is now as follows: Under which
conditions are risk premia (for small ℎ > 0) increasing in the respective
isk aversion parameters 𝛼 and 𝛾 of the CRRA and CARA classes of

utility functions? In principle, this is a classical question from the
literature on background risk [16]. However, most of that literature has
assumed that 𝑋 and 𝑆 have a compact support, thus abstracting away
from possible regularity problems and the technical conditions that rule
them out. In Appendix C we thus present concise statements of the
relevant results, while keeping the discussion in this section somewhat
less technical.

4.1. Scope

Let us first discuss the scope of the various criteria: Under which
conditions are the base quantities 𝐸[𝑢(𝑋)] and 𝛺𝐾 (𝑋) mathematically
well-defined?32 For the Omega ratio 𝛺𝐾 (𝑋) to be well-defined, the

ain necessary condition is integrability, 𝐸[|𝑋|] needs to be finite.
his is a relatively mild condition that treats the upper and lower
ails symmetrically. In contrast, utility functions like the CARA and
RRA can handle the St. Petersburg paradox, i.e., they still give a

inite expected utility for risks with a very heavy upper tail which
ossibly violates integrability. For example, a risk 𝑋 with the (power
aw) cumulative distribution function 𝐹 (𝑥) = 1 − 𝑥−1 on [1,∞) does
ot have a finite mean or a finite Omega ratio but it does have finite
xpected utility 𝐸[𝑢(𝑋)] for any CARA or CRRA utility function.33

When it comes to heavy lower tails, expected utility is far more
imited in scope. For CRRA utility to be well-defined for any 𝛾 > 0,
e need to assume that 𝑋 is non-negative and that 𝐸[𝑋1−𝛾 ] < ∞

or all 𝛾 > 0. For CARA utility, we are more flexible and can allow
or negative realizations of 𝑋 as long as 𝐸[exp(−𝛼𝑋)] is finite for all
> 0. Thus, CARA utility is well-defined for normally distributed 𝑋,

ut cannot handle heavier than exponential tails in the density of 𝑋.
or instance, when 𝑋 follows a Student-𝑡 distribution, CARA utility is
egative infinity.

We thus see that expected-utility criteria tend to have a broader
cope than the Omega regarding the heaviness of the upper tail of the
istribution of 𝑋 but a narrower scope when it comes to the lower
ail. By using the Omega rather than CARA or CRRA utility, we can no
onger resolve the St. Petersburg paradox but need not worry as much
bout distributions with heavy lower tails.

31 In the CRRA case, we assume, as usual, that 𝑢(𝑥) = log(𝑥) for 𝛾 = 1 and
that the support of 𝑋 and 𝑋 + ℎ𝑆 is contained in R+.

32 Of course, as discussed further below, we need to make additional
assumptions to ensure that risk premia are finite and satisfy our asymptotic
expansions, see Assumption 1 for the Omega ratio and Assumption 2 in
Appendix C for expected utility.

33 Some authors, starting with Karl Menger in the 1930s, have argued
that boundedness from above of the utility function is needed for a genuine
resolution of the paradox. This is satisfied by CRRA utility with 𝛾 > 1 and by
CARA for all 𝛼 ≥ 0. See [47] for details, references and more discussion of
expected utility and the St. Petersburg Paradox.
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4.2. Asymptotic expansions

We now look into asymptotic expansions for the utility-based risk
premia from (15), providing the counterparts of our Proposition 1.
Classical arguments from the literature on background risk [16] show
that, provided all expected values are well-defined, 𝜋𝑢(0) = 𝜋′𝑢(0) = 0
nd thus

𝑢(ℎ) = 𝜋′′𝑢 (0)
ℎ2

2
+ 𝑂(ℎ3)

here

′′
𝑢 (0) = −

𝐸[𝜎2(𝑋)𝑢′′(𝑋)]
𝐸[𝑢′(𝑋)]

. (16)

e refer to Proposition 4 in the appendix for a precise statement of
he technical conditions behind this and to Lemmas 6 and 7 for their
pecialization to, respectively, CARA and CRRA utility.

bsence of background risk: If there is no background risk, i.e., if 𝑋 = 𝑥
lmost surely, (16) simplifies to

′′
𝑢 (0) = −𝜎2(𝑥)

𝑢′′(𝑥)
𝑢′(𝑥)

. (17)

his special case goes back already to Pratt [15]. In particular, unlike
or the Omega ratio, utility-based risk premia can easily be defined in
he absence of background risk.

Here, if two utility functions 𝑢 and 𝑣 can be ranked in terms of
heir absolute risk aversion functions, −𝑢′′(𝑥)∕𝑢′(𝑥) ≥ −𝑣′′(𝑥)∕𝑣′(𝑥),
ondition (17) immediately implies a ranking of the risk premia 𝜋𝑢 ≥
𝑣. In particular, such a ranking holds when 𝑢 and 𝑣 are both CARA
r both CRRA functions with different values of the risk aversion
arameters 𝛼 or 𝛾 since, respectively, −𝑢′′(𝑥)∕𝑢′(𝑥) = 𝛼 in the CARA case

and −𝑢′′(𝑥)∕𝑢′(𝑥) = 𝛾∕𝑥, 𝑥 > 0, in the CRRA case. Thus, in the absence of
background risk, the parameters 𝛼 and 𝛾 represent risk aversion within
their respective families of utility functions.

Comparing risk premia under background risk: Ross [19] and Kihlstrom
et al. [20] showed that in general when 𝑋 is stochastic a ranking of
the absolute risk aversion functions is not sufficient for guaranteeing a
ranking of 𝜋𝑢 and 𝜋𝑣. One main observation of [19] is the following34:

Fact 1. For an interval 𝑊 ⊆ R, let 𝑢 ∶ 𝑊 → R and 𝑣 ∶ 𝑊 → R
be two strictly increasing utility functions and let 𝑋 be a random vari-
able with values in 𝑊 such that 𝐸[𝑢′(𝑋)], 𝐸[𝑣′(𝑋)], 𝐸[𝜎2(𝑋)𝑢′′(𝑋)] and
𝐸[𝜎2(𝑋)𝑣′′(𝑋)] are well-defined. Then, the condition

− 𝑢′′(𝑥)∕𝑢′(𝑦) ≥ −𝑣′′(𝑥)∕𝑣′(𝑦) (18)

for all 𝑥, 𝑦 ∈ 𝑊 implies that

−
𝐸[𝜎2(𝑋)𝑢′′(𝑋)]

𝐸[𝑢′(𝑋)]
≥ −

𝐸[𝜎2(𝑋)𝑣′′(𝑋)]
𝐸[𝑣′(𝑋)]

(19)

and thus 𝜋′′𝑢 (0) ≥ 𝜋′′𝑣 (0) in the setting of (16) regardless of the shape of
𝜎2(𝑋) and the distribution of 𝑋.

Proof. Note first that by strict monotonicity of 𝑢 and 𝑣, 𝐸[𝑢′(𝑋)]
and 𝐸[𝑣′(𝑋)] are positive. Introduce an independent copy 𝑌 of 𝑋 and
replace 𝑋 by 𝑌 in the denominators of (16), 𝐸[𝑢′(𝑋)] = 𝐸[𝑢′(𝑌 )]
and 𝐸[𝑣′(𝑋)] = 𝐸[𝑣′(𝑌 )]. Then, using independence, we can rewrite
𝜋′′𝑢 (0) ≥ 𝜋′′𝑣 (0) into

𝐸[𝜎2(𝑋)(𝑢′′(𝑋)𝑣′(𝑌 ) − 𝑣′′(𝑋)𝑢′(𝑌 ))] ≤ 0.

Condition (18) implies that expression inside the expected value is
always negative, thus giving the result. □

34 See also [48].
10
Ross also showed that condition (18) is in a sense tight. Unfortu-
nately, (18) is a fairly rigid condition that is generally violated even
when 𝑢 and 𝑣 are two CARA or two CRRA functions. Thus, additional
assumptions are needed to guarantee that risk premia are monotonic
in the parameters of those families of utility functions. The following
example of CARA utility in connection with an increasing function 𝜎2

makes this claim concrete. The logic behind this counterexample is the
same as in Example 2 for the Omega ratio, showing that some problems
are shared between the different criteria.

Example 3. Suppose that 𝑋 is exponentially distributed with parame-
ter 𝜆 and that 𝑢 is a CARA utility function with parameter 𝛼. Moreover,
let 𝜎2(𝑥) = 𝜎̄21{𝑥>𝑡} for some positive constants 𝜎̄2 and 𝑡, i.e., noise is
added only to sufficiently high realizations of 𝑋. In that case,

𝜋′′(0) = −
𝐸[𝜎2(𝑋)𝑢′′(𝑋)]

𝐸[𝑢′(𝑋)]
= 𝜎̄2𝛼

𝐸[1𝑋>𝑡 exp(−𝛼𝑋)]
𝐸[exp(−𝛼𝑋)]

= 𝜎̄2𝛼 exp(−𝑡(𝜆 + 𝛼))

which is decreasing in 𝛼 for sufficiently large 𝛼 except in the boundary
case 𝑡 = 0 where 𝜎2(𝑥) is constant.

In contrast to the case of general 𝜎2(𝑥) treated in [19], the results
of Kihlstrom et al. [20] apply to the constant case 𝜎2(𝑥) ≡ 𝜎̄2. In that
case, (16) becomes35

𝜋′′𝑢 (0) = −𝜎̄2
𝐸[𝑢′′(𝑋)]
𝐸[𝑢′(𝑋)]

. (20)

The main sufficient condition of [20] can be summarized as follows:

Fact 2. For an interval 𝑊 ⊆ R, let 𝑢 ∶ 𝑊 → R and 𝑣 ∶ 𝑊 → R
be two strictly increasing utility functions and let 𝑋 be a random variable
with values in 𝑊 such that 𝐸[𝑢′(𝑋)], 𝐸[𝑣′(𝑋)], 𝐸[𝑢′′(𝑋)] and 𝐸[𝑣′′(𝑋)]
are well-defined. Then, the conditions that (i) −𝑢′′(𝑥)∕𝑢′(𝑥) ≥ −𝑣′′(𝑥)∕𝑣′(𝑥)
for all 𝑥 ∈ 𝑊 and that (ii) at least one of the functions −𝑢′′∕𝑢′ or −𝑣′′∕𝑣′
is (weakly) decreasing imply

−
𝐸[𝑢′′(𝑋)]
𝐸[𝑢′(𝑋)]

≥ −
𝐸[𝑣′′(𝑋)]
𝐸[𝑣′(𝑋)]

(21)

nd thus 𝜋′′𝑢 (0) ≥ 𝜋′′𝑣 (0) in the setting of (20).

The proof of this fact is a special case of the proof of Proposition 3
elow. Conditions (i) and (ii) are satisfied e.g. when 𝑢 and 𝑣 are both

CRRA utility functions or both CARA utility functions. Thus, for the
case where 𝜎2 is constant, the results of Kihlstrom et al. [20] imply
that 𝜋′′𝑢 (0) must be increasing in 𝛼 or, respectively, 𝛾. For example, for
the CARA case, we find 𝜋′′(0) = 𝛼Var(𝑆) which indeed increases in 𝛼.

.3. A third fact

Comparing Facts 1 and 2 and their implications for CARA and CRRA
arameters as measures of risk aversion, we thus have a negative result
rom [19] for general 𝜎2, and a positive result from [20] for constant 𝜎2.
n Examples 2 and 3, we saw that problems with increasing functions
2 appear both for Omega-based risk premia and for utility-based ones.
t is thus natural to ask whether the positive result for decreasing
unctions 𝜎2 under the Omega ratio from Corollary 1 also holds under
xpected utility.

In Proposition 3, we show that the main result of Kihlstrom et al.
20] is indeed preserved if 𝜎2 is decreasing rather than constant.
oreover, a sufficiently strong decrease in 𝜎2 can counteract increases

n −𝑢′′∕𝑢′ and vice versa. What matters is that the product of the
wo functions is decreasing. The proposition is an extension of their
heorem (p. 916) with the proof adapted from their line of argument.

35 The setting actually studied by Kihlstrom et al. [20] is a slightly different
one: They do not impose 𝐸[𝑆] = 0 but make the stronger assumption of
independence between 𝑋 and 𝑆. Yet it is easy to see that their analysis also
applies in our setting.
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Proposition 3. For an interval 𝑊 ⊆ R, let 𝑢 ∶ 𝑊 → R and
∶ 𝑊 → R be two twice continuously differentiable, strictly increasing,
trictly concave functions. Let 𝑋 be a random variable with values in 𝑊 .
et 𝜎2 ∶ 𝑊 → R be a non-negative, measurable function. Assume that (i)
𝑢′′(𝑥)∕𝑢′(𝑥) ≥ −𝑣′′(𝑥)∕𝑣′(𝑥) for all 𝑥 ∈ 𝑊 and that (ii) at least one of the
wo functions 𝑆𝑢(𝑥) = −𝜎2(𝑥)𝑢′′(𝑥)∕𝑢′(𝑥) and 𝑆𝑣(𝑥) = −𝜎2(𝑥)𝑣′′(𝑥)∕𝑣′(𝑥)
s weakly decreasing over 𝑊 . Then,

𝐸[𝜎2(𝑋)𝑢′′(𝑋)]
𝐸[𝑢′(𝑋)]

≥ 𝐸[𝜎2(𝑋)𝑣′′(𝑋)]
𝐸[𝑣′(𝑋)]

. (22)

rovided all expected values in (22) exist.

The proof is deferred to the appendix. By (16), it follows that
or CARA and for CRRA utility functions, the parameters capture the
egree of risk aversion as long as 𝜎2 is weakly decreasing because then
ondition (ii) in Proposition 3 is satisfied. More precisely, since −𝑢′′∕𝑢′

is constant for CARA utility, the condition on 𝜎2 in that case is that
𝜎2(𝑥) is weakly decreasing. For CRRA utility, we have −𝑢′′∕𝑢′ = 𝛾∕𝑥 and
thus only need to impose the weaker condition that 𝜎2(𝑥)∕𝑥 is weakly
decreasing. No additional conditions on the distribution of 𝑋 like the
log-concavity in the Omega case is needed. However, as discussed in
the beginning of this section, differences in the scopes of the various
criteria need to be taken into account.36 For example, when 𝑋 has a
heavy lower tail, like for a Student-𝑡 distribution, only the Omega-based
risk premium is well-defined — even though the interpretation of the
threshold in terms of risk appetite may no longer be valid.

5. Conclusion

By and large, we conclude that the situations where risk premia
are well-defined and the parameter properly captures risk appetite (or,
conversely, risk aversion) are fairly similar for the Omega ratio and
expected utility with an exponential utility function. An advantage
of the Omega ratio is that it remains well-defined in situation with
a heavy lower tail – even though the interpretation of the threshold
in terms of risk appetite may break down. Conversely, a considerable
advantage of expected utility is that its risk premia remain well-defined
in the important boundary case of vanishing background risk, and in
situations with a non-integrable upper tail as in the St. Petersburg
paradox. One might argue that these differences partly reflect the
origins of the two theories. Arguably, expected utility was developed by
Daniel Bernoulli as a response to the St. Petersburg paradox, see, e.g.,
[47]. In contrast, the Omega ratio was developed as a decision criterion
in a world where lower tails can be heavy, where background risk never
vanishes and where St. Petersburg gambles are rarely on offer.

Nevertheless, besides these encouraging observations, we have also
seen that sometimes the threshold in the Omega ratio can be discon-
nected from its intended interpretation as a measure of risk appetite.
Our paper thus stands in the line of papers surveyed in [8], showing
that some caution is needed when working with the Omega ratio.
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Appendix A. Technical proofs

A.1. Proof of Lemma 2

A direct calculation shows that

𝑙𝑋,𝑆 (𝑥, 𝑠) = 𝑔(𝑥)ℎ
(

𝑠
𝛴(𝑥)

)

1
𝛴(𝑥)

.

Noting that we can write 𝜑(𝑧) as 𝜑(𝑧) = min(1, |𝑧|−𝜅 ) and using that
(𝑧) ≤ 𝐶𝜑(𝑧), we can bound 𝑙𝑋,𝑆 from above by

𝑋,𝑆 (𝑥, 𝑠) ≤ 𝐶𝑔(𝑥)𝜑
(

𝑠
𝛴(𝑥)

)

1
𝛴(𝑥)

= 𝐶𝑔(𝑥) min (1, |𝑠|−𝜅𝛴(𝑥)𝜅 ) 1
𝛴(𝑥)

ext, using the elementary inequality min(1, 𝑎𝑏) ≤ min(1, 𝑎) max(1, 𝑏) for
non-negative real numbers 𝑎 and 𝑏, we obtain

𝑙𝑋,𝑆 (𝑥, 𝑠) ≤ 𝐶𝑔(𝑥) max
(

1
𝛴(𝑥)

, 𝛴(𝑥)𝜅−1
)

𝜑 (𝑠) .

his shows the boundedness part of the global convergence condition.
ntegrability now also follows, using that 𝐸[𝛴(𝑋)−1] and 𝐸[𝛴(𝑋)𝜅−1]

are finite. For the local continuity, denote by 𝐶 a generic, positive
constant whose value may change from line to line and note that

|𝑙𝑋,𝑆 (𝑥, 𝑠) − 𝑙𝑋,𝑆 (𝑦, 𝑠)|

=
|

|

|

|

|

𝑔(𝑥)ℎ
(

𝑠
𝛴(𝑥)

)

1
𝛴(𝑥)

− 𝑔(𝑦)ℎ
(

𝑠
𝛴(𝑦)

)

1
𝛴(𝑦)

|

|

|

|

|

≤
|

|

|

|

|

𝑔(𝑥)ℎ
(

𝑠
𝛴(𝑥)

)

1
𝛴(𝑥)

− 𝑔(𝑦)ℎ
(

𝑠
𝛴(𝑥)

)

1
𝛴(𝑥)

|

|

|

|

|

+
|

|

|

|

|

𝑔(𝑦)ℎ
(

𝑠
𝛴(𝑥)

)

1
𝛴(𝑥)

− 𝑔(𝑦)ℎ
(

𝑠
𝛴(𝑦)

)

1
𝛴(𝑥)

|

|

|

|

|

+
|

|

|

|

|

𝑔(𝑦)ℎ
(

𝑠
𝛴(𝑦)

)

1
𝛴(𝑥)

− 𝑔(𝑦)ℎ
(

𝑠
𝛴(𝑦)

)

1
𝛴(𝑦)

|

|

|

|

|

≤𝐶

(

|𝑔(𝑥) − 𝑔(𝑦)| +
|

|

|

|

|

ℎ
(

𝑠
𝛴(𝑥)

)

− ℎ
(

𝑠
𝛴(𝑦)

)

|

|

|

|

|

+
|

|

|

|

1
𝛴(𝑥)

− 1
𝛴(𝑦)

|

|

|

|

)

≤𝐶
(

|𝑥 − 𝑦| + (|𝑠| + 1)
|

|

|

|

1
𝛴(𝑥)

− 1
𝛴(𝑦)

|

|

|

|

)

≤ 𝐶 max(1, |𝑠|)|𝑥 − 𝑦|.

.2. Proof of Proposition 1

Throughout this proof, 𝐶 denotes a generic, positive constant whose
alue may change from line to line. The constant 𝐶 is always inde-
endent of 𝜖 and ℎ but may depend on some of the other parameters.
ormally applying a second order Taylor expansion to the function 𝜋𝐾
round 0 for small enough ℎ, we obtain

𝐾 (ℎ) = 𝜋𝐾 (0) + 𝜋′𝐾 (0)ℎ + 𝜋′′𝐾 (0)
ℎ2

2
+ 𝑂(ℎ3).

To prove the proposition, we thus need to justify the Taylor expan-
sion and make sure that the coefficients match those given in the
proposition. After acknowledging the obvious fact that 𝜋𝐾 (0) = 0, the
remainder of the proof thus consists of proving the following three
points:

1. 𝜋𝐾 is twice differentiable at 0,
2. 𝜋′𝐾 (0) = 0, and
3. 𝜋′′𝐾 (0) = 𝜎2(𝐾)𝑅(𝐾).

To begin, we spell out the defining Eq. (2) of the risk premium 𝜋𝐾 (ℎ)

1 +
𝜇 −𝐾

= 1 +
𝜇 + 𝜋𝐾 (ℎ) −𝐾 , (23)
𝐸[(𝐾 −𝑋)+] 𝐸[(𝐾 −𝑋 − ℎ𝑆 − 𝜋𝐾 (ℎ))+]
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and rearrange it into

(𝜇 −𝐾)𝐸[(𝐾 −𝑋 − ℎ𝑆 − 𝜋𝐾 (ℎ))+] = (𝜇 + 𝜋𝐾 (ℎ) −𝐾)𝐸[(𝐾 −𝑋)+]. (24)

Note that the condition 𝐾 ∈ (𝑋) and Lemma 1 ensure that both
denominators in (23) are non-zero so that (24) is meaningful. Thus, we
can establish that 𝜋′(ℎ) exists and is bounded by the implicit function
theorem.

Taking a derivative with respect to ℎ on both sides of (24) yields

(𝐾 − 𝜇)𝐸[1{𝐾−𝑋−ℎ𝑆−𝜋𝐾 (ℎ)>0}(𝑆 + 𝜋′𝐾 (ℎ))] = 𝜋′𝐾 (ℎ)𝐸[(𝐾 −𝑋)+]. (25)

In the limiting case ℎ = 0, the expected value on the left hand side
becomes

𝐸[𝑆1{𝐾−𝑋>0}] + Prob({𝐾 −𝑋 > 0})𝜋′𝐾 (0) = Prob({𝐾 −𝑋 > 0})𝜋′𝐾 (0),

where we use that 𝐸[𝑆|𝑋] = 0. Evaluating (25) at ℎ = 0 thus gives

0 = 𝜋′𝐾 (0)
{

𝐸[(𝐾 −𝑋)+] + (𝜇 −𝐾)Prob({𝐾 −𝑋 > 0})
}

. (26)

By our assumption that 𝐾 ∈ (𝑋), 𝐸[(𝐾 −𝑋)+] is strictly positive and
𝜇 ≥ 𝐾. On the right hand side of (26), we thus have the product of
𝜋′𝐾 (0) and a strictly positive number. It follows that 𝜋′𝐾 (0) = 0. This
concludes the proof for point 2 from our list.

For the next steps of the proof, we need to take one more derivative
with respect to ℎ. To this end, we rewrite (25) as

(𝐾 − 𝜇)𝑓1(ℎ) + (𝐾 − 𝜇)𝑓2(ℎ)𝜋′𝐾 (ℎ) = 𝜋′𝐾 (ℎ)𝐸[(𝐾 −𝑋)+], (27)

where

𝑓1(ℎ) = 𝐸[𝑆1{𝐾−𝑋−ℎ𝑆−𝜋𝐾 (ℎ)>0}] and 𝑓2(ℎ) = Prob({𝐾 −𝑋 −ℎ𝑆 − 𝜋𝐾 (ℎ) > 0}).

It is clear from (27) and the fact that the factor in curly brackets from
(26) is positive, that 𝜋′𝐾 is differentiable if 𝑓1 and 𝑓2 are differentiable,
implying point 1 on our list. Moreover, if we can compute the deriva-
tives of 𝑓1 and 𝑓2, we can directly calculate 𝜋′′𝐾 (0) and arrive at point
3. In the remainder of this proof, we thus verify that 𝑓1 and 𝑓2 are
differentiable and calculate their derivatives.

We first focus on 𝑓1. For 𝜖 ∈ (0, 1), denote by 𝛷𝜖 the cumulative
distribution function of a normal distribution with mean 0 and variance
𝜖2 and by 𝜙𝜖 the associated density function. In the limit 𝜖 → 0, the
function

𝑓1,𝜖(ℎ) = 𝐸[𝑆𝛷𝜖(𝐾 −𝑋 − ℎ𝑆 − 𝜋(ℎ))]

converges to 𝑓1 because 𝛷𝜖(⋅) converges to 1{⋅>0} almost everywhere
and the expression inside the expectation is bounded by the integrable
random variable |𝑆| and since the boundary event {𝐾−𝑋−ℎ𝑆−𝜋(ℎ) =
0} has probability 0 due to the assumption of continuous distributions.
Integrability of |𝑆| follows from Assumption 1. The goal is to derive the
derivative of 𝑓1 by studying the derivative of 𝑓1,𝜖 , exploiting that 𝛷𝜖(⋅)
is smooth even though 1{⋅>0} is not. To establish the differentiability
of 𝑓1,𝜖 , we first note the differentiability of the function within the
expectation and compute its derivative,

𝑑
𝑑ℎ
𝑠𝛷𝜖(𝐾 − 𝑥 − ℎ𝑠 − 𝜋(ℎ)) =𝑠 1

𝜖
√

2𝜋
𝑒−

(𝐾−𝑥−ℎ𝑠−𝜋(ℎ))2

2𝜖2 (−𝑠 − 𝜋′(ℎ))

= − 𝑠2𝜙𝜖(𝐾 − 𝑥 − ℎ𝑠 − 𝜋(ℎ))

− 𝑠𝜋′(ℎ)𝜙𝜖(𝐾 − 𝑥 − ℎ𝑠 − 𝜋(ℎ)).

For any fixed 𝜖 > 0, the absolute value of the derivative is bounded by
|

|

|

|

𝑑
𝑑ℎ
𝑠𝛷𝜖(𝐾 − 𝑥 − ℎ𝑠 − 𝜋(ℎ))

|

|

|

|

≤ 1

𝜖
√

2𝜋
𝑠2 + |𝜋′(ℎ)| 1

𝜖
√

2𝜋
|𝑠|. (28)

Since 𝜋′(ℎ) is bounded, the right hand side of (28) is integrable since
Assumption 1 implies the integrability of |𝑆| and 𝑆2. Taking the
derivative of 𝑓1,𝜖 with respect to ℎ now gives
′ (ℎ) = −𝐸[𝑆2𝜙 (𝐾−𝑋−ℎ𝑆−𝜋(ℎ))]−𝜋′(ℎ)𝐸[𝑆𝜙 (𝐾−𝑋−ℎ𝑆−𝜋(ℎ))].
12

1,𝜖 𝜖 𝜖
To complete our study of 𝑓1,𝜖 , it thus suffices to study the expressions
𝐸[𝑆𝑘𝜙𝜖(𝐾 −𝑋 − ℎ𝑆 − 𝜋(ℎ))], for 𝑘 = 0, 1, 2.37 We thus write

𝐸[𝑆𝑘𝜙𝜖(𝐾 −𝑋 − ℎ𝑆 − 𝜋(ℎ))] =∫R ∫R
𝑠𝑘𝑙𝑋,𝑆 (𝑥, 𝑠)

1

𝜖
√

2𝜋
𝑒−

(𝐾−𝑥−ℎ𝑠−𝜋(ℎ))2

2𝜖2 𝑑𝑠𝑑𝑥

=∫R ∫R
𝑠𝑘𝑙𝑋,𝑆 (𝐾 − 𝜖𝑦 − ℎ𝑠 − 𝜋(ℎ), 𝑠)𝜙(𝑦)𝑑𝑠𝑑𝑦

(29)

here 𝜙 ≡ 𝜙1 is the standard normal density and note that by
ssumption 1

∫R ∫R
|

|

|

𝑠𝑘𝑙𝑋,𝑆 (𝐾 − 𝜖𝑦 − ℎ𝑠 − 𝜋(ℎ), 𝑠)𝜙(𝑦)||
|

𝑑𝑠𝑑𝑦

𝐶 ∫R ∫R
|𝑠|𝑘𝑏(𝐾 − 𝜖𝑦 − ℎ𝑠 − 𝜋(ℎ))𝜑(𝑠)𝜙(𝑦)𝑑𝑠𝑑𝑦

𝐶 ∫R ∫R
|𝑠|𝑘𝜑(𝑠)𝜙(𝑦)𝑑𝑠𝑑𝑦 <∞

here the last step uses that 𝑏 is bounded. We can therefore apply the
ominated convergence theorem for the limit 𝜖 → 0. It follows that

lim
𝜖→0

𝐸[𝑆𝑘𝜙𝜖(𝐾 −𝑋 − ℎ𝑆 − 𝜋(ℎ))]

∫R ∫R
𝑠𝑘 lim

𝜖→0
𝑙𝑋,𝑆 (𝐾 − 𝜖𝑦 − ℎ𝑠 − 𝜋(ℎ), 𝑠)𝜙(𝑦)𝑑𝑠𝑑𝑦

∫R ∫R
𝑠𝑘𝑙𝑋,𝑆 (𝐾 − ℎ𝑠 − 𝜋(ℎ), 𝑠)𝜙(𝑦)𝑑𝑠𝑑𝑦

∫R
𝑠𝑘𝑙𝑋,𝑆 (𝐾 − ℎ𝑠 − 𝜋(ℎ), 𝑠)𝑑𝑠.

o finish this proof, we need to show that the functions 𝐸[𝑆𝑘𝜙𝜖(𝐾−𝑋−
𝑆−𝜋(ℎ))] converge uniformly with respect to ℎ when 𝜖 goes to 0. This
s necessary to establish that the limit of the sequence is the derivative
f the target function. For any given 𝜖, we define 𝑀 = 𝜖−

1
2(𝑘+2) and note

hat 𝑀 > 1 by our assumption that 𝜖 ∈ (0, 1). We have
|

|

|

|

𝐸[𝑆𝑘𝜙𝜖 (𝐾 −𝑋 − ℎ𝑆 − 𝜋(ℎ))] − ∫R
𝑠𝑘𝑙𝑋,𝑆 (𝐾 − ℎ𝑠 − 𝜋(ℎ), 𝑠)𝑑𝑠

|

|

|

|

29)
=

|

|

|

|

∫R ∫R
𝑠𝑘(𝑙𝑋,𝑆 (𝐾 − 𝜖𝑦 − ℎ𝑠 − 𝜋(ℎ), 𝑠) − 𝑙𝑋,𝑆 (𝐾 − ℎ𝑠 − 𝜋(ℎ), 𝑠))𝜙(𝑦)𝑑𝑠𝑑𝑦

|

|

|

|

≤
|

|

|

|

|

∫R ∫[−1,1]
𝑠𝑘(𝑙𝑋,𝑆 (𝐾 − 𝜖𝑦 − ℎ𝑠 − 𝜋(ℎ), 𝑠) − 𝑙𝑋,𝑆 (𝐾 − ℎ𝑠 − 𝜋(ℎ), 𝑠))𝜙(𝑦)𝑑𝑠𝑑𝑦

|

|

|

|

|

+
|

|

|

|

|

∫R ∫[−𝑀,𝑀]∖[−1,1]
𝑠𝑘(𝑙𝑋,𝑆 (𝐾 − 𝜖𝑦 − ℎ𝑠 − 𝜋(ℎ), 𝑠) − 𝑙𝑋,𝑆 (𝐾 − ℎ𝑠 − 𝜋(ℎ), 𝑠))𝜙(𝑦)𝑑𝑠𝑑𝑦

|

|

|

|

|

+
|

|

|

|

|

∫R ∫R∖[−𝑀,𝑀]
𝑠𝑘(𝑙𝑋,𝑆 (𝐾 − 𝜖𝑦 − ℎ𝑠 − 𝜋(ℎ), 𝑠) − 𝑙𝑋,𝑆 (𝐾 − ℎ𝑠 − 𝜋(ℎ), 𝑠))𝜙(𝑦)𝑑𝑠𝑑𝑦

|

|

|

|

|

≤∫R ∫[−1,1]
|𝑠|𝑘𝐶|𝜖𝑦| 1

√

2𝜋
𝑒−

𝑦2

2 𝑑𝑠𝑑𝑦 + ∫R ∫[−𝑀,𝑀]∖[−1,1]
|𝑠|𝑘+1𝐶|𝜖𝑦|𝜙(𝑦)𝑑𝑠𝑑𝑦

+ ∫R ∫R∖[−𝑀,𝑀]
|𝑠|𝑘𝐶(𝑏(𝐾 − 𝜖𝑦 − ℎ𝑠 − 𝜋(ℎ)) + 𝑏(𝐾 − ℎ𝑠 − 𝜋(ℎ))) 1

|𝑠|𝜅
𝜙(𝑦)𝑑𝑠𝑑𝑦

≤𝐶𝜖 ∫R
|𝑦|𝜙(𝑦)𝑑𝑦 + 𝐶𝜖𝑀𝑘+2

∫R
|𝑦|𝜙(𝑦)𝑑𝑦 + 𝐶𝑀𝑘+1−𝜅

≤𝐶(𝜖 + 𝜖
1
2 + 𝜖

𝜅−𝑘−1
2(𝑘+2) ).

ince the last term is independent of ℎ and converges to 0 as 𝜖 tends
to 0, we have established the uniform convergence of 𝐸[𝑆𝑘𝜙𝜖(𝐾 −𝑋 −
𝑆 − 𝜋(ℎ))]. Combining this result with the fact that 𝜋′(ℎ) is bounded,
′
1,𝜖 also converges uniformly with respect to ℎ. We can conclude that

′
1(ℎ) = lim

𝜖→0
𝑓 ′
1,𝜖(ℎ)

= − ∫R
𝑠2𝑙𝑋,𝑆 (𝐾 − ℎ𝑠 − 𝜋(ℎ), 𝑠)𝑑𝑠 − 𝜋′(ℎ)∫R

𝑠𝑙𝑋,𝑆 (𝐾 − ℎ𝑠 − 𝜋(ℎ), 𝑠)𝑑𝑠.

Specifically for ℎ = 0, we find that

′
1(0) = −∫R

𝑠2𝑙𝑋,𝑆 (𝐾, 𝑠)𝑑𝑠 − 𝜋′(0)∫R
𝑠𝑙𝑋,𝑆 (𝐾, 𝑠)𝑑𝑠 = −Var(𝑆|𝑋 = 𝐾)𝑔(𝐾)

37 The case 𝑘 = 0 is not needed right now. It is included because it appears
later when we analyze 𝑓 in an analogous fashion.
2,𝜖
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where we use that 𝐸[𝑆|𝑋] = 0 and that 𝑙𝑋,𝑆 (𝐾, 𝑠) is the product of 𝑔(𝐾)
and of the density of 𝑆 conditional on 𝑋 = 𝐾. Applying the same line
f reasoning to the second function 𝑓2 from (27), we find that

′
2(ℎ) = −∫R

𝑠𝑙𝑋,𝑆 (𝐾 − ℎ𝑠− 𝜋(ℎ), 𝑠)𝑑𝑠− 𝜋′(ℎ)∫R
𝑙𝑋,𝑆 (𝐾 − ℎ𝑠− 𝜋(ℎ), 𝑠)𝑑𝑠,

nd
′
2(0) = −∫R

𝑠𝑙𝑋,𝑆 (𝐾, 𝑠)𝑑𝑠 − 𝜋′(0)∫R
𝑙𝑋,𝑆 (𝐾, 𝑠)𝑑𝑠 = 0.

Finally, we can now take one more derivative on both sides of (27) and
plug in ℎ = 0 to obtain the condition

(𝐾 −𝜇)𝑓 ′
1(0)+ (𝐾 −𝜇)𝑓 ′

2(0)𝜋
′
𝐾 (0)+ (𝐾 −𝜇)𝑓2(0)𝜋′′𝐾 (0) = 𝜋′′𝐾 (0)𝐸[(𝐾 −𝑋)+]

which only depends on 𝜋′′𝐾 (0), 𝑓2(0) = 𝐺(𝐾) and terms we have already
computed. Solving for 𝜋′′𝐾 (0), we find that

𝜋′′𝐾 (0) =
(𝜇 −𝐾)Var(𝑆|𝑋 = 𝐾)𝑔(𝐾)
𝐸[(𝐾 −𝑋)+] + (𝜇 −𝐾)𝐺(𝐾)

.

which is well-defined because the denominator is again the factor in
curly brackets from (26). This concludes the proof of point 3.

A.3. Proof of Proposition 3

The main intermediate step in the proof is to show that for all
1, 𝑥2 ∈ 𝑊 with 𝑥1 ≥ 𝑥2 we have that
{

(𝑆𝑢(𝑥1) − 𝑆𝑣(𝑥1)) + (𝑆𝑢(𝑥2) − 𝑆𝑣(𝑥2))
}

+(1−𝑟)(𝑆𝑢(𝑥2)−𝑆𝑣(𝑥1)) ≥ 0 (30)

where 𝑟 = (𝑢′(𝑥1)∕𝑣′(𝑥1))∕(𝑢′(𝑥2)∕𝑣′(𝑥2)). We first prove (30) and then
show how to complete the proof from there. Note that the ratio
𝑢′(𝑥)∕𝑣′(𝑥) is weakly decreasing in 𝑥 since the associated first order
condition follows from (i). Thus, 𝑥1 ≥ 𝑥2 and the fact that 𝑢′ and 𝑣′

are positive imply 𝑟 ∈ [0, 1]. From (i), it follows that 𝑆𝑢(𝑥) ≥ 𝑆𝑣(𝑥)
for all 𝑥 ∈ 𝑊 so the term in curly brackets is non-negative. To show
that 𝑆𝑢(𝑥2) −𝑆𝑣(𝑥1) ≥ 0, consider first the case in (ii) that 𝑆𝑢 is weakly
decreasing. In that case, we can write

𝑆𝑢(𝑥2) ≥ 𝑆𝑢(𝑥1) ≥ 𝑆𝑣(𝑥1)

where the second step uses (i). In the other case, 𝑆𝑣 is weakly decreas-
ing so

𝑆𝑢(𝑥2) ≥ 𝑆𝑣(𝑥2) ≥ 𝑆𝑣(𝑥1).

This shows (30). To derive the claim of the proposition from (30), we
first rewrite (30)

− 𝑢′′(𝑥1)𝜎2(𝑥1)𝑣′(𝑥2) − 𝑢′′(𝑥2)𝜎2(𝑥2)𝑣′(𝑥1)

≥ − 𝑣′′(𝑥1)𝜎2(𝑥1)𝑢′(𝑥2) − 𝑣′′(𝑥2)𝜎2(𝑥2)𝑢′(𝑥1). (31)

Since each side of (31) is symmetric in 𝑥1 and 𝑥2, (31) must hold for
all 𝑥1, 𝑥2 ∈ 𝑊 if it holds for 𝑥1 ≥ 𝑥2. We can thus drop the assumption
that 𝑥1 ≥ 𝑥2. Now, consider two mutually independent copies 𝑋1 and
𝑋2 of 𝑋. Plugging in 𝑋1 for 𝑥1, 𝑋2 for 𝑥2, taking expectations and using
independence turns (31) into

− 𝐸[𝑢′′(𝑋1)𝜎2(𝑋1)]𝐸[𝑣′(𝑋2)] − 𝐸[𝑢′′(𝑋2)𝜎2(𝑋2)]𝐸[𝑣′(𝑋1)]

≥ − 𝐸[𝑣′′(𝑋1)𝜎2(𝑋1)]𝐸[𝑢′(𝑋2)] − 𝐸[𝑣′′(𝑋2)𝜎2(𝑋2)]𝐸[𝑢′(𝑋1)]

which implies

−2𝐸[𝑢′′(𝑋)𝜎2(𝑋)]𝐸[𝑣′(𝑋)] ≥ −2𝐸[𝑣′′(𝑋)𝜎2(𝑋)]𝐸[𝑢′(𝑋)]

and thus (22).

Appendix B. Omegas, odds and expectiles

In this appendix, we informally recall how Omega curves and expec-
tiles can be written as odds curves and quantile functions of the same
transformed distribution, mostly translating observations from [36,41]
13
into our notation. To this end, let 𝑋 be a real-valued random payoff
as introduced in Section 2 with cumulative distribution function 𝐺.
For simplicity, assume that 𝐺 is strictly increasing and thus invertible.
Recalling the two decision criteria discussed in [28], we can associate
to 𝑋 a success probability 1 − 𝐺(𝐾) at level 𝐾 ∈ R, and, for 𝛼 ∈ (0, 1),
the 𝛼-quantile 𝑞𝛼(𝑋) which is the solution to 𝐺(𝑞𝛼(𝑋)) = 𝛼. The odds at
level 𝐾 are given by
1 − 𝐺(𝐾)
𝐺(𝐾)

.

ince the odds are a monotonically increasing transformation of the
uccess probabilities, 𝑥 ↦ 𝑥

1−𝑥 , it does not matter whether success
probabilities or odds are used as a decision criterion. Now, using the
notation 𝐶𝐾 (𝑋) = 𝐸[(𝑋 − 𝐾)+] and 𝑃𝐾 (𝑋) = 𝐸[(𝐾 − 𝑋)+], define a
transformed distribution function38

𝐹 (𝐾) =
𝑃𝐾 (𝑋)

𝐶𝐾 (𝑋) + 𝑃𝐾 (𝑋)

he odds associated with the transformed distribution 𝐹 coincide with
the Omega ratios of the original distribution 𝐺

1 − 𝐹 (𝐾)
𝐹 (𝐾)

=
𝐶𝐾 (𝑋)
𝑃𝐾 (𝑋)

= 𝛺𝐾 (𝑋).

oreover, the condition for an 𝛼-quantile of 𝐹 , 𝐹 (𝑒𝛼(𝑋)) = 𝛼 is
quivalent to

𝑒𝛼 (𝑋)(𝑋) = 1 − 𝛼
𝛼

, (32)

.e., the expectile can be interpreted as the value of the threshold
arameter that fixes the Omega ratio at a level determined by 𝛼.
q. (32) is the well-known connection between Omegas and expectiles
compare formula (5) in [41]), confirming that the expectiles of 𝐺 are
he quantiles of 𝐹 .

ppendix C. Arrow–Pratt approximations for expected utility un-
er background risk

In this technical appendix, we provide Arrow–Pratt approximations
or expected utility under background risk. In principle, this material
s classical, see, e.g., [19,20] or the textbook of Gollier [16]. However,
e are not aware of a previous treatment of this material that explicitly

pells out the regularity conditions that are needed when considering
isks with an unbounded support. Yet, for a fair comparison with the
mega ratio, this additional generality is needed. We begin with a gen-
ral result and then specialize it to CARA and CRRA utility functions.
ur result relies on the following technical assumption which is the
ounterpart of Assumption 1 in our analysis of the Omega ratio.

ssumption 2. Let 𝑢 ∶ 𝑊 → R be a twice continuously differentiable,
trictly increasing and concave function with support 𝑊 ⊆ R of the
orm 𝑊 = (𝑤,∞) for some 𝑤 ∈ [−∞,∞). Fix some 𝛿 > 0 and assume
hat the real-valued random variables 𝑋 and 𝑆 satisfy that 𝑋+𝛿𝑆 ∈ 𝑊
.s., that 𝑆 is square-integrable and that 𝐸[𝑆|𝑋] = 0. Moreover, we
ssume the following:

(i) Well-definedness. 𝐸[𝑢(𝑋 + ℎ𝑆 + 𝐶)] < ∞ for all ℎ ∈ [0, 𝛿] and
𝐶 ≥ 0.

(ii) Regularity.

1. There exists an integrable function 𝜃1(𝑋,𝑆) independent
of ℎ such that for all ℎ ∈ [0, 𝛿], 𝐶 ≥ 0, and 𝑘 ∈ {0, 1},
|𝑆𝑘𝑢′(𝑋 + ℎ𝑆 + 𝐶)| ≤ 𝜃1(𝑋,𝑆).

38 To see that this indeed a cumulative distribution function, one can check
that the associated density is 𝐺(𝐾)∕(𝐶𝐾 (𝑋) + 𝑃𝐾 (𝑋)) ≥ 0 or verify that the
expression is in line with [36].
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2. There exists an integrable function 𝜃2(𝑋,𝑆) independent
of ℎ such that for all ℎ ∈ [0, 𝛿], 𝐶 ≥ 0, and 𝑘 ∈ {0, 1, 2},
|𝑆𝑘𝑢′′(𝑋 + ℎ𝑆 + 𝐶)| ≤ 𝜃2(𝑋,𝑆).

Notice that the strict monotonicity of 𝑢 together with the regularity
part of Assumption 2 implies the following condition to which we will
refer as ‘‘non-degeneracy’’,

𝐸[𝑢′(𝑋 + ℎ𝑆 + 𝐶)] > 0 for all ℎ ∈ [0, 𝛿] and 𝐶 ≥ 0. (33)

Moreover, as before, we denote by 𝜎2(𝑋) the conditional variance
of 𝑆, 𝜎2(𝑋) = Var(𝑆|𝑋). Then we have the following expansion for
utility-based risk premia:

Proposition 4. In the setting of Assumption 2, the utility-based risk premia
𝜋𝑢(ℎ), ℎ ∈ [0, 𝛿], that are defined via

𝐸[𝑢(𝑋 + ℎ𝑆 + 𝜋𝑢(ℎ))] = 𝐸[𝑢(𝑋)] (34)

satisfy

𝜋𝑢(ℎ) = 𝜋′′(0)ℎ
2

2
+ 𝑂(ℎ3)

here

′′
𝑢 (0) = −

𝐸[𝜎2(𝑋)𝑢′′(𝑋)]
𝐸[𝑢′(𝑋)]

.

roof. Formally applying a second order Taylor expansion to the
unction 𝜋𝑢 around 0 for small enough ℎ, we obtain

𝜋𝑢(ℎ) = 𝜋𝑢(0) + 𝜋′𝑢(0)ℎ + 𝜋′′𝑢 (0)
ℎ2

2
+ 𝑂(ℎ3).

To prove the proposition, we thus need to justify the Taylor expansion
and make sure that the coefficients match those given in the proposi-
tion. After noting that, obviously, 𝜋𝑢(0) = 0, the remainder of the proof
thus consists of proving the following three points:

1. 𝜋𝑢 is twice differentiable at 0,
2. 𝜋′𝑢(0) = 0, and
3. 𝜋′′𝑢 (0) = −𝐸[𝑢′′(𝑋)𝜎2(𝑋)]

𝐸[𝑢′(𝑋)] .

Consider the defining condition (34) of the risk premium. Given
he first regularity assumption, the expression 𝐸[𝑢(𝑋 + ℎ𝑆 + 𝜋)] is

continuously differentiable with respect to 𝜋, and we have 𝜕
𝜕𝜋𝐸[𝑢(𝑋 +

ℎ𝑆 + 𝜋)] > 0 from the non-degeneracy condition (33). Thus, we can
establish that 𝜋′(ℎ) exists and is bounded by the implicit function
theorem.

Taking a derivative with respect to ℎ on both sides of (34) yields

𝐸[𝑢′(𝑋 + ℎ𝑆 + 𝜋𝑢(ℎ))(𝑆 + 𝜋′(ℎ))] = 0. (35)

Note that we need regularity condition 1 to ensure that the derivative
takes the desired form. In the limiting case ℎ = 0, we have

0 = 𝐸[𝑢′(𝑋)(𝑆 + 𝜋′𝑢(0))] = 𝐸[𝑢′(𝑋)𝐸[(𝑆 + 𝜋′𝑢(0))|𝑋]] = 𝜋′𝑢(0)𝐸[𝑢
′(𝑋)]

where we use that 𝐸[𝑆|𝑋] = 0. By the non-degeneracy condition, we
can conclude that 𝜋′𝑢(0) = 0. This concludes the proof for point 2 on our
list.

For the next steps of the proof, we need to take one more derivative
with respect to ℎ. We can rewrite (35) as

𝜋′𝑢(ℎ) = −
𝐸[𝑆𝑢′(𝑋 + ℎ𝑆 + 𝜋𝑢(ℎ))]
𝐸[𝑢′(𝑋 + ℎ𝑆 + 𝜋𝑢(ℎ))]

(36)

It is clear that 𝜋′𝑢 is differentiable if the numerator and denominator are
differentiable and the denominator is non-zero. This is guaranteed by
the non-degeneracy condition and by the regularity condition.

Taking a derivative on both sides of (35), we obtain

0 =𝜋′′𝑢 (ℎ)𝐸[𝑢
′(𝑋 + ℎ𝑆 + 𝜋𝑢(ℎ))] + 𝐸[𝑢′′(𝑋 + ℎ𝑆 + 𝜋𝑢(ℎ))(𝑆2 + 𝑆𝜋′𝑢(ℎ))]

+ 𝜋′𝑢(ℎ)𝐸[𝑢
′′(𝑋 + ℎ𝑆 + 𝜋𝑢(ℎ))(𝑆 + 𝜋𝑢(ℎ))]
14
Plugging in ℎ = 0, we find that

0 = 𝜋′′𝑢 (0)𝐸[𝑢
′(𝑋)] + 𝐸[𝑢′′(𝑋)𝑆2].

olving for 𝜋′′𝑢 (0) and using that 𝐸[𝑆2
|𝑋] = 𝜎2(𝑋) yields

𝜋′′𝑢 (0) = −
𝐸[𝑢′′(𝑋)𝜎2(𝑋)]

𝐸[𝑢′(𝑋)]
.

This concludes the proof of point 3. □

The next lemma provides a sufficient condition on the distribution
of 𝑋 and 𝑆 that ensures that Assumption 2 is satisfied for CARA utility.
Here, we consider a range 𝐴 for the risk aversion parameter 𝛼. This
range should be thought of as the range of risk aversion level which
are being compared.

Lemma 6. Consider constant absolute risk aversion (CARA) utility
functions 𝑢 with parameter 𝛼,

𝑢(𝑥) = − exp(−𝛼𝑥),

for 𝛼 taken from some interval 𝐴 ⊆ (0,∞) and support𝑊 = R. Assume that
𝑆 is square-integrable and that 𝐸[𝑆|𝑋] = 0. Then Assumption 2 is satisfied
for all 𝛼 ∈ 𝐴 and some 𝛿 > 0 when the joint Laplace transform of 𝑋 and
𝑆 exists, i.e.,

𝐸[exp(−𝑎𝑋 − 𝑏𝑆)] <∞ (37)

for all (𝑎, 𝑏) ∈ R2 with 𝑎 ∈ 𝐴 and 𝑏 ∈ [−2, 2 + 𝑎𝛿].

Proof. Clearly, 𝑢 is concave, twice differentiable and strictly increasing.
The utility 𝑢(𝑋 + ℎ𝑆) is integrable by assumption. We also have

𝑢′(𝑥) = 𝛼 exp(−𝛼𝑥) and 𝑢′′(𝑥) = −𝛼2 exp(−𝛼𝑥).

Next, we need to verify regularity. It is easy to see that for |𝑆| > 1,
≤ |𝑆| ≤ |𝑆|2 ≤ exp(2|𝑆|) and for |𝑆| ≤ 1, 1 ≥ |𝑆| ≥ |𝑆|2. Therefore,

|𝑆𝑘𝑢′(𝑋 + ℎ𝑆 + 𝐶)|

=𝟏{|𝑆|>1}𝛼|𝑆|𝑘 exp(−𝛼(𝑋 + ℎ𝑆 + 𝐶))

+ 𝟏{|𝑆|≤1}𝛼|𝑆|𝑘 exp(−𝛼(𝑋 + ℎ𝑆 + 𝐶))

𝟏{|𝑆|>1}𝛼 exp(−𝛼𝑋) exp(−𝛼ℎ𝑆 + 2|𝑆|) exp(−𝛼𝐶)

+ 𝟏{|𝑆|≤1}𝛼 exp(−𝛼𝑋) exp(−𝛼ℎ𝑆) exp(−𝛼𝐶)

𝛼 exp(−𝛼𝑋) exp(−𝛼ℎ𝑆)(exp(2|𝑆|) + 1)

𝛼 exp(−𝛼𝑋)(1 + exp(−𝛼𝛿𝑆))(1 + exp(−2𝑆) + exp(2𝑆)),

or 𝑘 = 0, 1. We use the fact the exponential function is positive and
onotonic, and 𝑎, 𝑏 ≤ max{𝑎, 𝑏} ≤ 𝑎 + 𝑏 for 𝑎, 𝑏 ≥ 0. Similarly,

𝑆𝑘𝑢′′(𝑋 + ℎ𝑆 + 𝐶)|

≤ 𝛼2 exp(−𝛼𝑋)(1 + exp(−𝛼𝛿𝑆))(1 + exp(−2𝑆) + exp(2𝑆)),

or 𝑘 = 0, 1, 2. We choose

1(𝑋,𝑆) = 𝛼 exp(−𝛼𝑋)(1 + exp(−𝛼𝛿𝑆))(1 + exp(−2𝑆) + exp(2𝑆))

nd

2(𝑋,𝑆) = 𝛼2 exp(−𝛼𝑋)(1 + exp(−𝛼𝛿𝑆))(1 + exp(−2𝑆) + exp(2𝑆)).

his concludes the proof. □

emark 2. From Lemma 6, we see that the main condition is existence
f the Laplace transform (37). This is always satisfied for 𝑋 and 𝑆 taken
rom a bounded support or, e.g., drawn from a Gaussian distribution.

ith heavier tails, however, (37) is not guaranteed. For instance,
uppose that −𝑋 is drawn from an exponential distribution with rate 𝜆
o that 𝑋 is distributed on (−∞, 0) with density 𝜆 exp(𝜆𝑥). In that case,
37) can only hold for 𝑎 < 𝜆.

We next turn to CRRA utility.
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Lemma 7. Let 𝐴 ⊆ (0,∞) be an interval. Assume that 𝑆 is square-
ntegrable and that 𝐸[𝑆|𝑋] = 0. For 𝛾 ∈ 𝐴, consider constant relative risk
version (CRRA) utility functions 𝑢 with parameter 𝛾,

(𝑥) = 𝑥1−𝛾 − 1
1 − 𝛾

for 𝛾 ≠ 1 and 𝑢(𝑥) = log(𝑥) for 𝛾 = 1

and support 𝑊 = (0,∞). Then Assumption 2 is satisfied for all 𝛾 ∈ 𝐴 and
some 𝛿 > 0 if for all ℎ ∈ [0, 𝛿], all 𝐶 ≥ 0 and all 𝛾 ∈ 𝐴, 𝑢(𝑋 + ℎ𝑆 + 𝐶) is
integrable and if 𝑋 + 𝛿𝑆 ≥ 𝜖 > 0 a.s. for some 𝜖 > 0.

Proof. Integrability is given. We also have (both for 𝛾 ≠ 1 and 𝛾 = 1)

𝑢′(𝑥) = 𝑥−𝛾 and 𝑢′′(𝑥) = −𝛾𝑥−𝛾−1 (38)

Since the utility is strictly increasing, the non-degeneracy
condition (33) is satisfied. Moreover, we have

|𝑆𝑘𝑢′(𝑋 + ℎ𝑆 + 𝐶)| =
|𝑆|𝑘

(𝑋 + ℎ𝑆 + 𝐶)𝛾
≤ 1
𝜖𝛾

(1 + |𝑆|) =∶ 𝜃1(𝑆),

almost surely. Similarly,

|𝑆𝑘𝑢′′(𝑋 + ℎ𝑆 + 𝐶)| ≤ 𝛾
|𝑆|𝑘

𝜖(1+𝛾)
≤ 𝛾
𝜖(1+𝛾)

(1 + |𝑆| + |𝑆|2) =∶ 𝜃2(𝑆)

almost surely. This concludes the proof since 𝑆 was assumed to be
square-integrable. □

Remark 3.

1. If 𝐴 ⊆ (1,∞), we do not need to assume integrability of 𝑢(𝑋 +
ℎ𝑆 + 𝐶) separately since in that case 𝑢 is bounded over [𝜖,∞),
guaranteeing integrability.

2. The assumption that 𝑋 + 𝛿𝑆 ≥ 𝜖 > 0 can in principle be relaxed
to 𝑋 + 𝛿𝑆 > 0 a.s. for 𝛾 > 0 and even to 𝑋 + 𝛿𝑆 ≥ 0 a.s. for
𝛾 ∈ (0, 1) when suitable technical conditions on 𝜎2(⋅) and on the
distribution of 𝑋 near 0 are put in place.39 We leave out further
details here but note that – in one way or other – assumptions
need to be in place that keep 𝑋 + ℎ𝑆 away from the negative
numbers and guarantee sufficient regularity near 0.
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