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Abstract
We consider a funded pension system where collective risks, in a simple Black-
Scholes financial market, are allocated to the retirement savings of individual partic-
ipants. In particular, we consider an allocation in such a way that the relative effect 
on total retirement wealth, that is, the sum of financial wealth and human capital, is 
the same for each participant. We show that this allocation is Pareto efficient. This 
stylized life-cycle fact inspired the new Dutch retirement system. Subsequently, we 
extend the allocation rule to a setting that includes annuity risk. This risk can be a 
traded risk (e.g., interest rate risk) as well as a non-traded risk (e.g., longevity risk). 
From our closed-form solutions, we identify the similarities between our optimal 
allocation rule and the allocation rule in the new Dutch retirement system. A numer-
ical example illustrates our findings.
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1  Introduction

In June 2020, after more than a decade of negotiations, social partners concluded a 
political agreement on a reform of the second pillar pension system in the Nether-
lands.1 A four-year transition period towards this new pension system is planned to 
start in 2023. As of 2027, all pension funds should have finalized this transition.2,3 
A key element of the pension reform is a refined allocation rule to share collec-
tive risks. This allocation rule replaces the one-size-fits-all approach in the current 
Dutch pension system.

The purpose of this paper is to show that, under stylized assumptions, the new 
allocation rule leads to a Pareto optimal allocation of risks among current partici-
pants. First, we consider a simple Black-Scholes financial market setting with a sin-
gle risk factor. We derive Pareto optimal allocations to collectively share financial 
market risk among individual participants. In this analysis, we consider the aggre-
gate investment exposure of collective pension fund wealth as exogenously given. 
Obviously, when we would allow for optimization of this aggregate exposure, we 
simply obtain well-known optimal (individual) life-cycle investment strategies.

Second, we show how the presence of a (traded or non-traded) annuity risk fac-
tor affects Pareto optimal risk allocations. Annuity risk is a crucial ingredient, since 
the retirement income is the number of annuities that a retiree can obtain with his/
her financial wealth. We do not specify the exact source of the annuity risk. It can be 
thought of as any risk that affects the price of an annuity, such as interest rate risk, 
longevity risk, or inflation risk.

We find that the new Dutch pension contract can incorporate Pareto optimal shar-
ing of risks between current participants. In other words, the outcome of one par-
ticipant can only be improved at the expense of another participant. In addition, we 
show how the optimal risk sharing rule depends on the weights attached to different 
participants.

The new Dutch pension contract contains an additional instrument, the so-called 
solidarity reserve, that enables risk sharing with future (‘unborn’) participants. We 

2  Kamerstukken II 2020/2021, 32 043-559. Brief over stand van zaken uitwerking pensioenakkoord. The 
Hague: Ministry of Social Affairs and Employment. 10 May 2021. https://​www.​tweed​ekamer.​nl/​kamer​
stukk​en/​briev​en_​reger​ing/​detail?​id=​2021Z​07639​&​did=​2021D​16869.
3  Some caveats apply to this deadline. First, it applies to new pension contributions, while existing pen-
sion entitlements are optionally converted to the new pension system (‘invaren’). Pension funds may also 
choose to leave existing pension assets in the current system in a fund closed for new contributions. Sec-
ond, individual defined contribution schemes can opt to continue an age-dependent contribution sched-
ule for current participants. New entrants should have a flat (age-independent) contribution rate, though 
exemptions may apply for insurance premiums for survivor pensions and disability pensions. Third, poli-
cies to compensate disadvantaged participants (e.g., due to the abolishment of uniform accrual rates) 
should be finalized on 1 January 2037. Fourth, the so-called solidarity reserve is allowed to exceed the 
maximum of 15 percent of total assets until 1 January 2037 or until an earlier moment that the solidarity 
reserve is below 15 percent.

1  Kamerstukken II 2019/2020, 32 043-520. Uitwerking pensioenakkoord. The Hague: Ministry of Social 
Affairs and Employment. 6 July 2020. https://​www.​tweed​ekamer.​nl/​kamer​stukk​en/​briev​en_​reger​ing/​
detail?​id=​2020Z​13557​&​did=​2020D​28688.

https://www.tweedekamer.nl/kamerstukken/brieven_regering/detail?id=2021Z07639&did=2021D16869
https://www.tweedekamer.nl/kamerstukken/brieven_regering/detail?id=2021Z07639&did=2021D16869
https://www.tweedekamer.nl/kamerstukken/brieven_regering/detail?id=2020Z13557&did=2020D28688
https://www.tweedekamer.nl/kamerstukken/brieven_regering/detail?id=2020Z13557&did=2020D28688
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ignore this type of intergenerational risk sharing in the present paper and refer to 
Van Bilsen et al. (2022) for an analysis.

The ideas in this paper are strongly based on optimal risk sharing rules as origi-
nally studied in Borch (1962). Bao et al. (2017) and Pazdera et al. (Pazdera et al., 
2017) use Borch’s general risk sharing rules in more specific settings than in Borch 
(1962), in particular risk sharing within a pension fund. An even more specific anal-
ysis for the Dutch pension system can be found in Muns and Werker (2019). The 
analysis in the present paper, jointly taking into account life-cycle investment risk 
and annuity risk, is new. Since the retirement income is the number of annuities 
that a retiree can buy with his/her financial wealth, we consider for the retirement 
income both the nominator risk (investment risk) and the denominator risk (annuity 
risk).

Our paper is also connected to the strand of literature that optimizes investments 
over the life cycle of an individual participant; see Gomes (2020) for a recent over-
view. In this literature, however, the risk allocation is not restricted to a certain col-
lective risk exposure as we consider. More specifically, the new Dutch pension con-
tract prescribes an allocation principle, and not an investment policy. To illustrate 
the difference between the two concepts in the new pension system, pension funds 
agree with stakeholders upon (i) a certain collective investment policy to invest 
total fund wealth and (ii) allocation rules to allocate fund returns, i.e., ex-ante risk, 
among participants (including the solidarity reserve).

Subsequently, pension funds stick to this agreement for a longer period of time. 
During this period, multiple fund returns are allocated to participants, each period 
according to the same investment policy and agreed allocation rule. Clearly, from a 
mathematical point of view, optimizing a collective fund investment strategy given 
optimal risk-sharing rules is equivalent to deriving individually optimized life-cycle 
investment strategies. However, the first approach is more in the spirit of the new 
Dutch pension contract.

The rest of this paper is organized as follows. The institutional setting is dis-
cussed in more detail in Sect. 2. Section 3 introduces notation and assumptions. In 
Sect. 4 we analyze our baseline model with a single investment risk factor and no 
annuity risk. In Sect. 5 we extend our analysis to a setting, which is more relevant in 
a pension fund context, with a (traded or non-traded) annuity risk factor. Section 6 
contains a numerical illustration and Sect. 7 concludes.

2 � Institutional Framework

In this section, we outline the most important characteristics of the current and new 
pension system in the Netherlands. A detailed description on the transition towards 
the new pension system is given in Metselaar et al. (2022).
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2.1 � Current Pension System

Most Dutch pension schemes are formally called defined benefit (DB) schemes.4 
Collective risks are shared based on the DB notion of a uniform adjustment of accru-
als. The funding ratio5 determines this uniform adjustment. At first sight, this may 
seem a simple approach, but risk sharing through a single measure (funding ratio) 
is suboptimal by (i) the heterogeneity in risk exposures among different participants 
and (ii) the presence of multiple risk factors.6 As such, it will generally not lead to 
an ex-ante optimal sharing of collective risks among participants. In addition, the 
denominator of the funding ratio—the marked to market accounting value of funds’ 
liabilities – has turned out to be much more sensitive to the discount rate than the 
numerator of the funding ratio, i.e., the value of funds’ assets.7 This has substantially 
affected pension outcomes.

Up to the financial crisis of 2007–2008, inflation-based indexation of pension 
benefits was nevertheless deemed almost certain by participants in DB schemes. 
This perception was based on (i) past experiences8, (ii) a favorable financial position 
of pension funds9, (iii) the possibility to impose (accrual-free) recovery contribu-
tions on employees in case of distress, and (iv) an employer commitment to deposit 
(accrual-free) additional funds in case of financial distress.10

4  Over 90% of total pension liability provisions are in a (career average-pay) DB scheme. Source:https://​
www.​dnb.​nl/​en/​stati​stics/​data-​searc​h/#/​detai​ls/​pensi​on-​agree​ments-​year/​datas​et/​d2c03​ef8-​1d7a-​4132-​
bc31-​35ab4​5588f​df/​resou​rce/​51185​311-​af18-​45bb-​950e-​00d73​4bc83​c4. Note that the DNB figures 
exclude a small share of capital redemption insurance services. For supervisory purposes, this type of 
pension products is categorized as an insurance product rather than a regular second pillar pension.
5  The funding ratio refers to the ratio of the market value of collective fund assets over the accounting 
value of collective fund liabilities (the accruals). Current pension regulations prescribe that the account-
ing value of liabilities should estimate the market value as if the liabilities are guaranteed. This marked to 
market principle was the topic of a fierce political debate.
6  Heterogeneity in the exposure to the funding ratio can tackle this only in the hypothetical case of a 
single risk factor.
7  Suppose the duration of a funds’ liabilities is 25 years. Then, the funding ratio drops by about 25% in 
response to a one percentage point lower discount rate. (For simplicity, we neglect the postponing effect 
of the so-called ultimate forward rate.) Investments in bonds and interest rate swaps can mitigate this 
impact, but also may reduce speculative risk exposure and, this, upward indexation potential.
8  The average indexation was 2.2% in 2008 (for non-contributing participants, such as pensioners) and 
dropped to 0.4% in 2009 and 2010. From 2011 onwards, the average indexation has never exceeded 0.2% 
in any single year. Source: https://​www.​dnb.​nl/​en/​stati​stics/​data-​searc​h/#/​detai​ls/​level-​of-​index​ation-​
pensi​on-​funds/​datas​et/​f070a​1c4-​caa1-​4600-​ac4b-​3d9b5​db393​9f/​resou​rce/​2dd8a​e12-​5d45-​4c76-​96e4-​
2c6ff​b6e29​fa.
9  The average funding ratio dropped from 140.9% (end of 2007Q1) to 89.6% (end of 2020Q1). The most 
recent figure is 110.3% (2021Q3). Source: https://​www.​dnb.​nl/​en/​stati​stics/​data-​searc​h/#/​detai​ls/​finan​
cial-​posit​ion-​of-​pensi​on-​funds-​quart​er/​datas​et/​fc8e7​817-​0884-​4473-​b822-​62284​b4452​78/​resou​rce/​ba6e2​
73f-​5dc4-​49c7-​9dee-​e22e2​22cc0​18.
10  An employer commitment was a standard practice for company pension funds. Note that most work-
ers are affiliated to a sectoral pension funds. Source: https://​www.​dnb.​nl/​en/​stati​stics/​data-​searc​h/#/​detai​
ls/​pensi​on-​agree​ments-​year/​datas​et/​d2c03​ef8-​1d7a-​4132-​bc31-​35ab4​5588f​df/​resou​rce/​4cd41​bde-​134d-​
4257-​8e23-​9259b​1902b​ba.

https://www.dnb.nl/en/statistics/data-search/#/details/pension-agreements-year/dataset/d2c03ef8-1d7a-4132-bc31-35ab45588fdf/resource/51185311-af18-45bb-950e-00d734bc83c4
https://www.dnb.nl/en/statistics/data-search/#/details/pension-agreements-year/dataset/d2c03ef8-1d7a-4132-bc31-35ab45588fdf/resource/51185311-af18-45bb-950e-00d734bc83c4
https://www.dnb.nl/en/statistics/data-search/#/details/pension-agreements-year/dataset/d2c03ef8-1d7a-4132-bc31-35ab45588fdf/resource/51185311-af18-45bb-950e-00d734bc83c4
https://www.dnb.nl/en/statistics/data-search/#/details/level-of-indexation-pension-funds/dataset/f070a1c4-caa1-4600-ac4b-3d9b5db3939f/resource/2dd8ae12-5d45-4c76-96e4-2c6ffb6e29fa
https://www.dnb.nl/en/statistics/data-search/#/details/level-of-indexation-pension-funds/dataset/f070a1c4-caa1-4600-ac4b-3d9b5db3939f/resource/2dd8ae12-5d45-4c76-96e4-2c6ffb6e29fa
https://www.dnb.nl/en/statistics/data-search/#/details/level-of-indexation-pension-funds/dataset/f070a1c4-caa1-4600-ac4b-3d9b5db3939f/resource/2dd8ae12-5d45-4c76-96e4-2c6ffb6e29fa
https://www.dnb.nl/en/statistics/data-search/#/details/financial-position-of-pension-funds-quarter/dataset/fc8e7817-0884-4473-b822-62284b445278/resource/ba6e273f-5dc4-49c7-9dee-e22e222cc018
https://www.dnb.nl/en/statistics/data-search/#/details/financial-position-of-pension-funds-quarter/dataset/fc8e7817-0884-4473-b822-62284b445278/resource/ba6e273f-5dc4-49c7-9dee-e22e222cc018
https://www.dnb.nl/en/statistics/data-search/#/details/financial-position-of-pension-funds-quarter/dataset/fc8e7817-0884-4473-b822-62284b445278/resource/ba6e273f-5dc4-49c7-9dee-e22e222cc018
https://www.dnb.nl/en/statistics/data-search/#/details/pension-agreements-year/dataset/d2c03ef8-1d7a-4132-bc31-35ab45588fdf/resource/4cd41bde-134d-4257-8e23-9259b1902bba
https://www.dnb.nl/en/statistics/data-search/#/details/pension-agreements-year/dataset/d2c03ef8-1d7a-4132-bc31-35ab45588fdf/resource/4cd41bde-134d-4257-8e23-9259b1902bba
https://www.dnb.nl/en/statistics/data-search/#/details/pension-agreements-year/dataset/d2c03ef8-1d7a-4132-bc31-35ab45588fdf/resource/4cd41bde-134d-4257-8e23-9259b1902bba
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Nowadays, many participants have missed inflation-linked indexation up to a 
cumulative total of 20% from 2009 until 202111, with the current Dutch inflation 
rate showing a sharp increase to above 5% at the end of 2021.12 In some periods, 
they even faced a threat of cutting pensions, thereby conflicting a perceived certain 
(nominal or real) retirement income in DB schemes. As a result, all participants 
increasingly faced uncertainty in their pension benefits, because of the low interest 
rate environment and an ageing population. First, lower interest rates have led to low 
funding ratios. In the first half of 2020, funding ratios below 90% were no excep-
tion, including some larger pension funds.13 Second, from an actuarial point of view 
even contribution rates at historically high levels are too low to attain a replacement 
rate of typically 75 percent.14 In response to the lower interest rates, some pension 
funds lowered accrual rates substantially as further increases in the contribution rate 
were deemed impossible. In the long run, low accrual rates can lead to low replace-
ment rates. Third, pension funds with an ageing population have more difficulties 
to impose a recovery contribution. In fact, a smaller share of working participants 
should pay a higher recovery rate to compensate the same loss. A recovery contri-
bution is even more difficult to impose in case contribution rates are already high. 
Fourth, globalization and liberalization have forced firms into a more competitive 
economic environment. This has reduced the willingness of employers to commit to 
deposit additional funds if their pension fund is in financial distress.

All this triggered a vigorous political debate among many stakeholders on the 
“appropriate” way to calculate the discounted value of accruals. Particularly, the 
legal discount rate—based on the default-free term structure15—was subject of this 
heated debate. Obviously, different generations had different interests in this debate. 
In the end, social partners agreed that it is preferable if the discount rate plays no 
longer any (crucial) role in the pension system.

13  See https://​fd.​nl/​econo​mie-​polit​iek/​13795​68/​pensi​oenfo​nds-​uit-​gevar​enzone-​tijd-​om-​dekki​ngsgr​aad-​
vast-​te-​klikk​en. A funding ratio equal to 100% indicates that a pension funds can exactly fulfill its prom-
ise to pay the (nominal) payout scheme of current accruals. Partial indexation is possible if the policy 
funding ratio exceeds 110%. Full indexation requires that the policy funding ratio exceeds another, fund-
specific, threshold (Source: DNB https://​www.​dnb.​nl/​stati​stiek​en/​data-​zoeke​n/#/​detai​ls/​gegev​ens-​indiv​
iduele-​pensi​oenfo​ndsen-​kwart​aal/​datas​et/​54946​461-​ebfb-​42b1-​9479-​fa56b​72d6b​1a/​resou​rce/​a4b65​84f-​
09b7-​498d-​bce5-​3ef12​e966f​87). The latter threshold is for most funds about 120% (Source: DNB https://​
www.​dnb.​nl/​stati​stiek​en/​data-​zoeke​n/#/​detai​ls/​gegev​ens-​indiv​iduele-​pensi​oenfo​ndsen-​kwart​aal/​datas​et/​
54946​461-​ebfb-​42b1-​9479-​fa56b​72d6b​1a/​resou​rce/​a4b65​84f-​09b7-​498d-​bce5-​3ef12​e966f​87). The pol-
icy funding ratio is the twelve-month moving average funding ratio.
14  In 2021, contribution rates up to 30% of the pension basis are no exception. https://​pensi​oenpro.​nl/​
pensi​oenpro/​30042​187/​lagere-​rente-​en-​rende​ments​verwa​chtin​gen-​jagen-​kosten-​pensi​oen-​op.
15  Since 2007, discount rates are based on the market price of interest rate swaps (marked-to-market 
principle): The term structure is the 6 month euribor swap rates, and a so-called ultimate forward rate 
interpolates on the longer end of this term structure to account for the lower liquidity of swaps with 
longer maturities (https://​www.​dnb.​nl/​voor-​de-​sector/​open-​boek-​toezi​cht-​secto​ren/​pensi​oenfo​ndsen/​
prude​ntieel-​toezi​cht/​techn​ische-​voorz​ienin​gen/​vasts​telli​ng-​rente​termi​jnstr​uctuur-​pensi​oenfo​ndsen-​vanaf-
1-​janua​ri-​2021/). Before 2007, a flat discount rate of at most 4% applied.

11  https://​fd.​nl/​econo​mie-​polit​iek/​13254​48/​pensi​oenen-​in-​tien-​jaar-​tijd-​met-​20-​uitge​hold.
12  https://​www.​cbs.​nl/​en-​gb/​news/​2021/​49/​stron​gest-​infla​tion-​in-​almost-​40-​years.

https://fd.nl/economie-politiek/1379568/pensioenfonds-uit-gevarenzone-tijd-om-dekkingsgraad-vast-te-klikken
https://fd.nl/economie-politiek/1379568/pensioenfonds-uit-gevarenzone-tijd-om-dekkingsgraad-vast-te-klikken
https://www.dnb.nl/statistieken/data-zoeken/#/details/gegevens-individuele-pensioenfondsen-kwartaal/dataset/54946461-ebfb-42b1-9479-fa56b72d6b1a/resource/a4b6584f-09b7-498d-bce5-3ef12e966f87
https://www.dnb.nl/statistieken/data-zoeken/#/details/gegevens-individuele-pensioenfondsen-kwartaal/dataset/54946461-ebfb-42b1-9479-fa56b72d6b1a/resource/a4b6584f-09b7-498d-bce5-3ef12e966f87
https://www.dnb.nl/statistieken/data-zoeken/#/details/gegevens-individuele-pensioenfondsen-kwartaal/dataset/54946461-ebfb-42b1-9479-fa56b72d6b1a/resource/a4b6584f-09b7-498d-bce5-3ef12e966f87
https://www.dnb.nl/statistieken/data-zoeken/#/details/gegevens-individuele-pensioenfondsen-kwartaal/dataset/54946461-ebfb-42b1-9479-fa56b72d6b1a/resource/a4b6584f-09b7-498d-bce5-3ef12e966f87
https://www.dnb.nl/statistieken/data-zoeken/#/details/gegevens-individuele-pensioenfondsen-kwartaal/dataset/54946461-ebfb-42b1-9479-fa56b72d6b1a/resource/a4b6584f-09b7-498d-bce5-3ef12e966f87
https://www.dnb.nl/statistieken/data-zoeken/#/details/gegevens-individuele-pensioenfondsen-kwartaal/dataset/54946461-ebfb-42b1-9479-fa56b72d6b1a/resource/a4b6584f-09b7-498d-bce5-3ef12e966f87
https://pensioenpro.nl/pensioenpro/30042187/lagere-rente-en-rendementsverwachtingen-jagen-kosten-pensioen-op
https://pensioenpro.nl/pensioenpro/30042187/lagere-rente-en-rendementsverwachtingen-jagen-kosten-pensioen-op
https://www.dnb.nl/voor-de-sector/open-boek-toezicht-sectoren/pensioenfondsen/prudentieel-toezicht/technische-voorzieningen/vaststelling-rentetermijnstructuur-pensioenfondsen-vanaf-1-januari-2021/
https://www.dnb.nl/voor-de-sector/open-boek-toezicht-sectoren/pensioenfondsen/prudentieel-toezicht/technische-voorzieningen/vaststelling-rentetermijnstructuur-pensioenfondsen-vanaf-1-januari-2021/
https://www.dnb.nl/voor-de-sector/open-boek-toezicht-sectoren/pensioenfondsen/prudentieel-toezicht/technische-voorzieningen/vaststelling-rentetermijnstructuur-pensioenfondsen-vanaf-1-januari-2021/
https://fd.nl/economie-politiek/1325448/pensioenen-in-tien-jaar-tijd-met-20-uitgehold
https://www.cbs.nl/en-gb/news/2021/49/strongest-inflation-in-almost-40-years
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2.2 � New Dutch Pension System16

The new Dutch pension contract is best characterized as a CDC system. While pen-
sion risks are still shared collectively, a key element of the pension reform is the new 
mechanism to share collective risks. Foremost, risk sharing is no longer based on a 
funding ratio; this concept is no longer used. Instead, each pension scheme should 
specify a predefined allocation mechanism that prescribes how returns are allocated 
to the participants. This allocation mechanism consists of two components:17

(1)	 a hedge return (‘beschermingsrendement’) to compensate participants for the 
realization of annuity risks such as interest rate risk. The realization as well as 
the corresponding compensation will differ by participant. For instance, the price 
of a pension annuity of young participants varies with long-term interest rates. 
If annuity risk (in nominal terms) for outcomes in the far future is considered to 
be less relevant, the hedge return may only partly compensate young participants 
for their exposure to (long-term) nominal interest rate risk, i.e., price changes in 
deferred annuities that match their pension payout scheme. In a similar vein, the 
hedge return can compensate participants for macro longevity risk.

(2)	 a mechanism to allocate the (positive or negative) excess return (‘overrende-
ment’). The excess return is the collective fund return that remains after allocat-
ing the hedge returns to all participants in Step (1). Dutch pension funds will 
generally adopt life-cycle principles for this allocation to take into account the 
human capital of (non-retired) participants.18

Both components of the allocation mechanism will generally differ by individual 
participant. Ideally, the allocation mechanism is fine-tuned to the individual prefer-
ences of each participant. We show how this heterogeneity depends on individual 
characteristics such as risk appetite, financial wealth, and total wealth.

3 � Assumptions and Notation

Consider a pension fund with a finite number of participants indexed by i = 1,… , n . 
Participants are, at time t, equipped with financial wealth Fit and human capital Hit.

16  The new pension system enables two different types of pension arrangements: the solidary contribu-
tion scheme act and the flexible contribution scheme act. The latter arrangement is closely related to 
existing individual DC schemes. We focus on the solidary contribution scheme.
17  Concept Memorie van Toelichting. Ministry of Social Affairs and Employment. 15 December 2020. 
https://​www.​inter​netco​nsult​atie.​nl/​wetto​ekoms​tpens​ioenen.
18  Ideally, the allocation mechanism can be further refined by including (i) the value of other forms of 
wealth, such as housing, first and third pillar pensions, non-pension savings, partner’s pension savings, 
and partner’s human capital, and (ii) taking into account correlations between the different forms of 
wealth. Our derivations can be easily generalized to this setting.

https://www.internetconsultatie.nl/wettoekomstpensioenen
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3.1 � Financial Wealth

Financial wealth Fit > 0 represents retirement savings to finance a retirement income 
after the pension date of participant i. For simplicity, our analysis does not consider 
other possible sources to finance a retirement income, such as a state pension, part-
ner income, and housing. The pension fund invests collective financial wealth

The (continuously compounded) instantaneous risk-free interest rate r describes the 
evolution of the risk-free rate. Uncertainty is generated in a Black-Scholes financial 
market by a standard Brownian motion Z. The time t stock price St satisfies S0 = 1 
and follows a geometric Brownian motion (GBM), i.e.,

where the price of risk, or Sharpe ratio, � of the Brownian motion Z and the volatil-
ity of the stock 𝜎 > 0 are given constants.

Through the pension fund, financial wealth Fit of participant i at time t has an 
effective exposure wit to the excess return of the stock price S.19 As such, the return 
allocated to financial wealth Fit can be seen as the sum of (in this case risk-free) 
hedge return rdt and excess return wit�(�dt + dZt) . In addition, financial wealth 
increases with the pension contribution hitdt:

3.2 � Human Capital

Human capital Hit is the present value of future pension contributions hit . In our 
model, pension contributions are deterministic and known with perfect foresight.20 
Starting the retirement date Ti no labor income is earned, i.e., Hit = hit = 0 if t ≥ Ti . 
In other words, human capital Hit can be interpreted as a riskless bond with coupon 
his at time s ∈ [t, Ti]:

This gives time dynamics

Ft =

n∑
i=1

Fit.

dSt = (r + ��)Stdt + �StdZt,

(1)dFit = [(r + wit��)Fit + hit] dt + wit�Fit dZt

Hit = ∫
Ti

s=t

exp(−r(s − t))his ds

19  Strictly speaking, because the pension fund invests F
t
 collectively, investments of each individual can-

not be disentangled on an individual basis. As a result, the exposure w
it
 should not be interpreted as the 

fraction in funds’ stock investments F
t
.

20  Pension contributions h
it
 are allowed to vary over time t, which can reflect a time-varying contribution 

rate or an age-dependent labor income (or, more precisely, pension basis).
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In this formalization human capital is considered a nominal riskless bond. We do 
so to keep the analysis simple. In Sect. 5, we extend our analysis to a setting where 
human capital can be considered as a risky real bond.

Note that in practice it is difficult to assess the level of human capital of individ-
ual participants accurately. The same holds for their risk aversion (to be discussed 
below). The contract we specify will lead to suboptimal exposures when either of 
these is incorrectly assessed. In relation to a standard individual life-cycle DC con-
tract this is paramount to specifying a suboptimal glide path. In that case invest-
ment exposures are suboptimal, though no wealth transfers take place between 
participants.

3.3 � Total Wealth

The allocation rules derived below depend on the ratio of financial capital Fit to total 
wealth Fit + Hit available to finance the private pension of participant i. Adding (1) 
and (2), total wealth randomly evolves over time according to the GBM,

Note that the pension contribution rate hit is not included in (3), because the pension 
contribution is transferred from Hit to Fit . Under the assumption that labor income is 
a nominal riskless bond, the present value Hit is the characteristic of the pension 
contribution scheme hit that affects the optimal allocation. Also (3) takes the stand-
ard form for the value of a self-financing portfolio where the expected excess returns 
equals the risk exposure wit�

Fit

Fit+Hit

 multiplied by the price of risk �.

3.4 � Annuity

At participant i’s retirement date Ti ≥ t , total wealth FiTi
+ HiTi

= FiTi
 is converted 

into a pension annuity. Let Ait denote the annuity price (sometimes called annuity 
factor) to convert total wealth into a pension income. We simply start without annu-
ity risk:

In Sect. 5, we include annuity risk in this expression.
Since our focus is on risk sharing among working generations, we will not model 

the payout scheme of the annuity explicitly. For instance, the payout scheme may 

(2)dHit = (rHit − hit) dt.

(3)
d(Fit + Hit)

Fit + Hit

=

(
r + wit��

Fit

Fit + Hit

)
dt + wit�

Fit

Fit + Hit

dZt.

(4)
dAit

Ait

= r dt
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include an optional 10% lumpsum around pension date, which is planned to be intro-
duced as of 2023 in the Netherlands.21

3.5 � Utility

Using his total wealth Fit + Hit , a participant i can buy at time t the annuitized pen-
sion income22

Both components Fit + Hit and Ait in (5) follow a geometric Brownian motion. By 
It’s quotient rule, annuitized pension income Yit evolves as a geometric Brownian 
motion as well:

The parameters �Yit
 and �Yit change when we allow for annuity risk in Sect. 5.

As we will assume CRRA preferences, the optimal consumption path and the 
optimal risk allocation path follow from independent decisions (Samuelson 1969). 
As a consequence, we can assume that utility is generated by annuitized pension 
income, and consider the impact of the risk allocation on annuitized pension income. 
This approach is standard in the literature on optimal risk allocations.

Let Rit denote the continuously compounded growth rate in annuitized pension 
income Yit . The pension fund assumes for participant i CRRA(�i) preferences on the 
growth rate exp

(
Rit

)
:23

Note that, as Rit denotes a continuously compounded return, a risk-neutral agent is 
represented by �i = 0 for which utility Uit

(
Rit

)
= E[exp(Rit)] is proportional to the 

discretely compounded return exp(Rit) . We exclude risk-neutral participants from 
our analysis by assuming {�i ≠ 0} for each participant i. Risk-neutral participants 

(5)Yit =
Fit + Hit

Ait

.

(6)
dYit

Yit
= �Yit

dt + �Yit dZt

(7)U
(
Rit

)
=

{
1

1−�i
E
[
exp

((
1 − �i

)
Rit

)
− 1

]
�i ≠ 1

E
[
Rit

]
�i = 1

21  Kamerstukken I 2020/2021, 35 555, ‘Wet bedrag ineens, RVU en verlofsparen’, I, 18 mei 2021. 
https://​www.​eerst​ekamer.​nl/​behan​deling/​20210​518/​brief_​van_​de_​minis​ter_​van_​socia​le_2/​info.
22  Welfare differences are relatively small between a fully annuitized pension income and a pension 
income with an optimal stock exposure during the pension period (Bovenberg et  al. 2007). The stock 
exposure during working life has much a more pronounced welfare effect. As such, annuitized pension 
income Y

it
 is our relevant measure, such that we do not need to specify how pension income generates 

utility, e.g., the role of consumption smoothing and bequests.
23  The pension fund operates on behalf of the participants. The assumed preferences (i) are not neces-
sarily perfectly aligned with participants’ preferences, and (ii) do not necessarily reflect the social cost of 
investments.

https://www.eerstekamer.nl/behandeling/20210518/brief_van_de_minister_van_sociale_2/info
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( �i = 0 ) simply maximize their expected end-of-period wealth. They prefer an infi-
nite exposure wit to benefit from the risk premium �.24

3.6 � Certainty Equivalent

Proposition 1 gives us a well-known simple expression for the certainty equivalent 
CEQit of Rit . The reader is referred to Appendix A for the proofs.

Proposition 1  The certainty equivalent of the continuously compounded growth rate 
Rit in (7) is

Intuitively, utility increases with the mean �Yit
 of the return dYit∕Yit , while it 

decreases with the volatility �2
Yit

 particularly if the risk aversion �i is high.
Social welfare CEQt is the weighted average of individual certainty equivalents 

CEQit with weights 
{
𝛼i > 0

}n

i=1
25:

A higher weight �i indicates that the social planner attaches more weight to the out-
come of participant i. Without loss of generality, we assume 

∑n

i=1
�i = 1 such that 

(9) is a weighted average. The functional form (9) will enable a quadratic optimiza-
tion that provides us with closed-form solutions.

Note that social welfare CEQt in (9) can also be obtained from a linearization of 
(7) around CEQit = 0 (see also (A5)):

The second-order term O
(
CEQ2

it

)
 is negligible in continuous time since CEQ is 

small.

4 � Collective Risk Sharing in a Pension Fund: No Annuity Risk

In this section, we assume that the dynamics of annuity risk are represented by (4).

(8)CEQit = �Yit
−

�i
2
�2
Yit
.

(9)CEQt =

n∑
i=1

�iCEQit

CEQt =
∑
i

Uit

(
�iCEQit

)
=
∑
i

�iCEQit + O
(
CEQ2

it

)
.

24  For the special case � = 0 , risk-neutral participants are indifferent for the exposure w
it
.

25  We suppress the time script t for convenience, though �
i
 can depend on time as well.
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4.1 � Certainty Equivalent

Applying Its quotient rule on (6) and substituting (3) and (4),

where

Substituting (11) into Proposition 1,

The certainty equivalent (12) increases with the risk premium � . This is intuitive, 
because a higher risk premium increases the reward for risk. The pattern for � is 
mixed. The certainty equivalent increases in � if and only if the reward for taking 
risk is sufficiently high, i.e., 𝜆 > 𝜎.

4.2 � First‑Best Optimal Exposure

We first define the well-known first-best solutions that maximize the corresponding 
certainty equivalents.

Proposition 2  (i)	� When wit can be chosen freely for participant i , the first-best 
investment weight equals 

(ii)	� The first-best investment of the fund is 

 where Ft =
∑n

i=1
Fit , Ht =

∑n

j=1
Hjt , and 𝛾̃ is the (harmonic) total wealth weighted 

risk-aversion: 

(10)

dYit

Yit
=

Ait

Fit + Hit

d
Fit + Hit

Ait

=
d(Fit + Hit)

Fit + Hit

−
dAit

Ait

+

(
dAit

Ait

)2

−
d(Fit + Hit)

Fit + Hit

dAit

Ait

= �Yit
dt + �Yit dZt,

(11)�Yit
= wit��

Fit

Fit + Hit

�Yit = wit�
Fit

Fit + Hit

.

(12)CEQit = wit��
Fit

Fit + Hit

−
�i
2

(
wit�

Fit

Fit + Hit

)2

.

(13)wFB
it

=
Fit + Hit

Fit

�

�i�
.

(14)wFB
t

=
Ft + Ht

Ft

𝜆

𝛾̃𝜎
,
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(iii)	� The first-best certainty equivalent of participant i is 

Proposition  2 is a well-known adaption of the Merton-Samuelson solution of 
the CRRA consumption problem in a Black-Scholes financial market (Samuelson 
(1969) and Merton (1969)). Our solution is adapted for the presence of riskless 
human capital Hit . Intuitively, the first-best exposure wFB

it
 in (13) decreases with �i 

and �.
When Hit ≡ 0 , the standard mean-variance optimal investment weight �

�i�
 is 

obtained. When Hit > 0 the first-best solution (13) states that stock exposures for 
financial capital Fit have to be leveraged up. This is done in such a way that the 
effective stock exposure for total wealth Fit + Hit equals the standard Merton-Samu-
elson solution

Therefore, total wealth, and thus also annuitized retirement income 
Yit =

(
Fit + Hit

)
∕Ait , have a constant stock exposure �∕(�i�) over time t and across 

states Zt.26

These results are well known and can be related to the Rao-Blackwell-Kolmog-
orov theorem in statistical inference; see Nikulin (2001). The optimal exposure 
implies that the i.i.d. shocks dZt , for all t , have an identical effect on the retire-
ment income. More precisely, retirement income Yt (and total wealth) is invariant 
with respect to a reordering of increments of the Brownian motion Z . Indeed, the 
Rao-Blackwell-Kolmogorov theorem states that, for a given expectation, a statistic 
becomes more stable, in the sense of a smaller variance, when it is measurable with 
respect to a sufficient statistic. In the present setting, the sufficient statistics are the 
order statistics of the increments of the Brownian motion (as these are i.i.d.). Alter-
natively, observe that an equal exposure of a participant’s retirement income to pre-
vious shocks implies that collective fund returns should be allocated in such a way 
that they affect each participant’s annuitized retirement income equally. This is pre-
cisely what we will find below.

(15)
Ft + Ht

𝛾̃
=

n∑
j=1

Fjt + Hjt

𝛾j

(16)CEQFB
it

=
�2

2�i
.

(17)wFB
it

Fit

Fit + Hit

=
�

�i�
.

26  From a theoretical perspective, even the expected retirement income Y
it
= H

it
∕A

it
 of a future 

(‘unborn’) participant i should have the stock exposure (17). However, their financial wealth can be over-
drawn before entry ( F

it
< 0 ), which would introduce a discontinuity risk into the pension scheme. In 

addition, it will be difficult, if not impossible, to identify future participants with certainty. This moti-
vates us to only include participants with positive financial wealth ( F

it
> 0).
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4.3 � Second‑Best Optimal Exposure

Besides the first-best exposure wFB
it

 above, we are also interested in the collective 
fund problem. Suppose a funds’ investment policy has pinned down the collective 
exposure to financial market risk at a certain level w . This setting is common in 
Dutch pension funds where the (collective) fund’s investment policy is often decided 
separately from the allocation rules. One possible explanation may be the difficulty 
of assessing participants’ risk aversions.

Given the—possibly suboptimal—collective exposure w , financial market risk 
is optimally allocated to the individual participants. This constrained optimum is 
referred to as the second-best optimal allocation.

To formalize this, by (9) and (12),

where, as before, we assume that the social planner adopts weights 
{
𝛼i > 0

}n

i=1
 with ∑

i �i = 1 . The social planner solves

subject to an exogenously given collective exposure w of fund wealth Ft =
∑n

i=1
Fit 

to the stock St . Thus, the social planner faces the constraint

Proposition 3  For given w the optimal risk allocation of the social planner is

Proposition 3 characterizes, indexed by all possible sets of weights 
(
𝛼i > 0

)n
i=1

 , 
the Pareto optimal allocations 

{
wSB
it

}n

i=1
 of the collective pension exposure to indi-

vidual pension savings accounts. For each Pareto risk allocation wSB
it

 , the util-
ity of one participant cannot be increased without reducing the utility of another 
participant.

The optimal exposure 
{
wSB
it

}n

i=1
 is invariant under a scaling of the weights (

𝛼i > 0
)n
i=1

 by a positive scalar. For instance, doubling all weights does not change 
the optimal exposure.

If the collective exposure wt equals the first-best collective optimum wFB
t

 , we find 
again wSB

it
= wFB

it
 in Proposition 3. More formally, including wt as an additional free 

(18)

CEQt =

n∑
i=1

�iCEQit

=

n∑
i=1

�i

(
wit��

Fit

Fit + Hit

−
�i
2

(
wit�

Fit

Fit + Hit

)2
)
,

(19)max
{wit}

n

i=1

CEQt,

(20)
n∑
i=1

witFit = wtFt.

(21)wSB
it

= wFB
it

+
vit∑
j
vjt

1

Fit

�
wtFt −

n�
j=1

wFB
jt
Fjt

�
vjt =

�
Fjt + Hjt

�2
�j�j

.
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parameter would give the first-order condition �SB = 0 , and, indeed, 
wFB
t
Ft =

∑n

j=1
wFB
jt
Fjt , which gives the first-best result in Proposition 2. For this spe-

cial case where wt = wFB
t

 , total welfare U is maximized, and the optimal allocation {
wSB
it

}n

i=1
=
{
wFB
it

}n

i=1
 is independent of the weights �i.

If the collective investment wtFt is above (below) the first-best collective invest-
ment wFB

t
Ft , the difference wtFt −

∑n

i=1
witFit is allocated to the participants accord-

ing to the weights 
�
vit∕

∑
j vjt

�n

i=1
 and added to each individual’s first-best exposure 

wFB
i

 . Provided 
{
𝛾i > 0

}
i=1n

 , all weights vi are also positive and the exposure of each 
participant i is above (below) the first-best exposure wFB

it
.

Note that the stock characteristics � and � affect the first-best allocation (see 
Proposition 2), but have no effect on the distribution vit in Proposition 3 of an excess 
fund exposure.27 Vice versa, the weights �i only determine the distribution of an 
excess fund exposure, but not the first-best allocation.

The allocation in Proposition 3 specifies the second-best optimal exposure of the 
financial wealth Fit of each individual participant. The induced second-best optimal 
exposure of total wealth Fit + Hit is

Again, we are back at the standard Merton-Samuelson optimum �∕(�i�) if Hit = 0 
and wt = wFB

t
.

The following proposition characterizes the set of Pareto optimal allocations.

Proposition 4 

(i)	� For given wt , the set of Pareto efficient allocations 
{
wSB
it

}n

i=1
 can be characterized 

by the convex hull 

 with 
{
�i ∈ [0, 1]

}n

i=1
 normalized to 

∑
j
�j = 1 , and 

(ii)	� Suppose wt ≠ wFB
t

 . Each 
{
wSB
it

}n

i=1
 in (i) corresponds to a unique 

{
𝛼i > 0

}n

i=1
 

with 
∑

i �i = 1.

wSB
it

Fit

Fit + Hit

=
�

�i�
+

vit∑
j
vjt

1

Fit + Hit

�
wtFt −

n�
j=1

wFB
jt
Fjt

�
,

vit =

�
Fit + Hit

�2
�i�i

.

(22)wSB
it

({
�j
}n

j=1

)
= wFB

it
+ bi�i, i = 1,… , n,

bi =
1

Fit

(
wtFt −

n∑
j=1

wFB
jt
Fj

)
.

27  The weights v
it
 are proportional to the ratio of �F

i
 (marginal benefit in satisfying constraint (20)) to 

�
i
�
i
F
it

(Fit
+H

it)
2
 (additional marginal cost for each w

it
 in excess of wFB

it
 ). At the optimum, the marginal benefit 

equals the marginal cost.
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(iii)	�For �i ↓ 0 , 

(iv)	�For �i ↑ 1 , 

Given a certain fund exposure w, Proposition 4(i) indicates that the exposures {
wSB
it

}n

i=1
 that are optimal for some weights 

{
𝛼i > 0

}n

i=1
 can be characterized by a 

convex hull. In other words, a convex combination of Pareto optimal allocations 
is again Pareto optimal. For the special case wt = wFB

t
 , the convex hull consists of 

exactly one point with the individual first-best exposures 
{
wFB
it

}n

i=1
.

Proposition 4(ii) states that if wt ≠ wFB
t

 , each optimal allocation wSB
it

 is associ-
ated with a unique set of weights 

{
𝛼i > 0

}n

i=1
 (up to a normalization factor).

Proposition  4(iii) characterizes the n extremal points of the convex hull. All 
other Pareto optimal allocations are a convex combinations of the n extremal 
points.

Proposition 4(iv) indicates that for wt ≠ wFB
t

 , wSB
it

→ wFB
it

 can only be attained if 
�i ↑1 . By 

∑
j �j = 1 , the social planner must then attach an infinitely larger weight 

to participant i than all other participants.
We now consider allocations that are obtained under particular choices for the 

social planner’s weights �i and risk aversions �i.

Proposition 5  Suppose that the social planner weighs individual participants pro-
portional to their total wealth, i.e., �i ∝ Fi + Hi . At the second-best optimum, 

(i)	�

(ii)	� If in addition 𝛾i ≡ 𝛾̃ , then (23) and (25) simplify further to 

wSB
it

→ wFB
it

+ bi,w
SB
j

→ wFB
j

(j ≠ i).

wSB
it

→ wFB
it
.

(23)wSB
it

=
Fit + Hit

Ft + Ht

Ft

Fit

𝛾̃

𝛾i
wt,

(24)wSB
it

=
wt

wFB
t

wFB
it

if � ≠ 0,

(25)CEQSB
it

=
1

𝛾i

[
𝜆𝜎

Ft

Ft + Ht

𝛾̃wt −
1

2

(
𝜎

Ft

Ft + Ht

𝛾̃wt

)2
]
.

(26)wSB
it

=
Fit + Hit

Ft + Ht

Ft

Fit

wt,

(27)CEQSB
it

= 𝜆𝜎
Ft

Ft + Ht

wt −
𝛾̃

2

(
𝜎

Ft

Ft + Ht

wt

)2

.
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We have the following results from Proposition  5 where each participant is 
weighted by his/her total wealth. By (24), the second-best optimal exposure wSB

it
 of 

each participant i is a constant (wt∕w
FB
t
) times the first-best individual exposure wFB

it
 . 

This result holds even if the risk aversion differs among participants. Further, the 
individual second-best exposures wSB

it
 are proportional to the fund exposure wt . Of 

course, at the first-best fund exposure, where wt = wFB
t

=
Ft+Ht

Ft

𝜆

𝛾̃𝜎
 (see (14)), the sec-

ond-best certainty equivalent CEQSB
it

 in (25) equals the first-best CEQFB
it

 in (16).
Under the assumptions of (26), the second-best exposure of total retirement 

wealth is

Note that the exposure in the right-hand side of (28) is the same for each participant 
i, i.e., collective financial returns are allocated in such a way that the effect of total 
retirement wealth for each participant is, in relative terms, the same. This life-cycle 
idea is precisely the underlying idea of the new Dutch pension contract.

At the first-best (14), we find of course in (27) again the first-best certainty equiv-
alent (16).

5 � Collective Risk Sharing in a Pension Fund: With Annuity Risk

The previous section characterized Pareto optimal risk-sharing rules within a styl-
ized pension fund. In particular we derived an allocation of risk such that the effect 
on total retirement wealth for each participant is the same. However, the setting 
did not allow for interest rate, longevity, or inflation risk. These annuity risks are 
potentially important (Koijen et al. 2011). In this section, we do take annuity risk, 
in an abstract setting, into account. With annuity risk we mean that the utility of 
participants takes into account that pension wealth FiTi

 at the retirement date Ti has 
to be converted into an income stream, e.g., a lifelong annuity. The conversion rate 
is exposed to some risk factor. We model a single underlying risk factor to account 
for this annuity risk. The model can be extended to multiple (traded and non-traded), 
possibly, correlated factors, but this is not needed to describe the core ideas.

To allow for interest rate risk, we generalize the constant interest rate r to the 
time-varying instantaneous interest rate rt . Since this rate is a risk-free rate, exposure 
to this random rate is not rewarded with a risk premium.28 The evolution of rt will 
not be specified further.

Each participant i can face a different annuity price at time t to convert total 
wealth into a pension annuity. We denote this annuity conversion factor by the annu-
ity price Ait . The annuitized pension income at retirement date Ti is equal to 

FiTi

AiTi

 as 

we imposed HiTi
= 0 . We extend (4) by assuming that the annuity price Ait follows a 

(28)wSB
it

Fit

Fit + Hit

=
wtFt

Ft + Ht

.

28  Put differently, r
t
 is the numéraire to measure risk premia.
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GBM that depends on the instantaneous interest rate and the exposure to a risk fac-
tor ZA:

with Ai0 = 1 , 𝜎Ait
> 0 , and �A the price of risk for the Brownian motion ZA . We 

assume, for notational simplicity, that Z and ZA are independent.29

It is not necessary that �A represents a market price of risk. It may also reflect a 
price that has been agreed upon within the pension fund. In principle, both the risks 
Z and ZA can represent a traded or a non-traded risk. For a traded risk such as inter-
est rate risk and stock market risk, the collective fund exposure can be chosen by the 
pension fund (unless a particular restriction applies). The corresponding price-of-
risk is observable from market prices. In contrast, for non-traded risk the fund expo-
sure is exogenously given. Nonetheless, we can still allow for sharing of nontraded 
risks within the fund at some internal price-of-risk �A.

Like the annuity price, human capital may also have an exposure to the risk factor 
ZA . For instance, interest rates are a discount rate to determine annuity prices as well 
as human capital. Therefore, we allow for the possibility that human capital Hit has 
an exogenously given exposure Dit ≥ 0 to ZA . Since the exposure to this risk factor is 
rewarded with a risk premium �A , we extend (2) to:

The special case Dit = 0 , represents a risk in Ait unrelated to Hit , such as longevity 
risk at ages after the retirement date. Then, equation (30) is the same as (2).

We allow the pension fund to share the risk associated with ZA between the par-
ticipants. If we denote the (chosen by the fund) exposure of participant i ’s financial 
wealth Fit to ZAt by ait we can extend (1) to

For a non-traded risk ZA , the collective exposure 
∑

i aiFi of the funds financial 
wealth is exogenously given.

Next, we generalize the evolution of pension income (10) to this setting.

Proposition 6  Consider the dynamics (29)-(31). The evolution of annuitized pension 
income Yt = (Ft + Ht)∕At is

where

(29)
dAit

Ait

=
(
rt + �A�Ait

)
dt + �Ait

dZAt,

(30)dHit =
[(
rt + �ADit

)
Hit − hit

]
dt + DitHit dZAt.

(31)dFit =
[(
rt + wit�� + �Aait

)
Fit + hit

]
dt + wit�FitdZt + aitFitdZAt.

dYit

Yit
= �Yit

dt + �Yit dZt,

29  Appendix B generalizes our setting to correlated risk factors Z and Z
A
.
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The exposure anet
it

 refers to the exposure of financial wealth to ZA as if human 
capital Hit has no exposure to ZA . In contrast, the exposure ait includes a hedge for 
the exposure of Hit to ZA.

We can now extend the analysis above to obtain the optimal social planner’s allo-
cation in the presence of annuity risk.

Proposition 7 

	 (i)	 The first-best exposures to financial market risk and annuity risk are for par-
ticipant i

 where 

	 (ii)	 The following three statements are equivalent: 

(1)	
(2)	 A new entrant (who has Hit∕Fit → ∞ ) has a positive first-best exposure aFB

it
.

(3)	 The first-best exposure aFB
it

 increases with Hit∕Fit (and thus decreases with age).

	 (iii)	 The first-best fund exposures to financial market risk and annuity risk are 

(32)�Yit
=

Fit

Fit + Hit

(
wit�� + anet

it
�A + �2

Ait

Fit + Hit

Fit

− ait�Ait

)
,

(33)�2
Yit

=
(
w2
it
�2 +

(
anet
it

)2)( Fit

Fit + Hit

)2

,

(34)anet
it

= ait + Dit

Hit

Fit

−
Fit + Hit

Fit

�Ait
.

(35)wFB
it

=
Fit + Hit

Fit

�

�i�
,

(36)aFB
it

= a
net,FB

it
− Dit

Hit

Fit

+
Fit + Hit

Fit

�Ait
,

(37)a
net,FB

it
=

Fit + Hit

Fit

�A − �Ait

�i
.

𝜆A − 𝜎Ait

𝛾i
> Dit − 𝜎Ait

.

(38)wFB
t

=
Ft + Ht

Ft

�

�i�
,
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 where 

	 (iv)	 The first-best certainty equivalent of the return Ri of participant i is 

Let us discuss the statements in Proposition 7 in more detail. The result in (35) 
is actually the same as in (13). In other words, the first-best optimal exposure wFB

i
 is 

not affected by the exposure to ZA . That makes sense, given the assumed independ-
ence of Z and ZA . Thus, also the results in Sect. 4 for different choices of �i and �i 
still hold for wFB

i
.

In contrast to (16), the first-best exposure aFB
it

 in (36) and the first-best certainty 
equivalent in (41) vary by individual even if �i ≡ � . The reason is that the return on 
the hedge for human capital risk differs by individual.30

The intuition behind (ii1) and (ii2) is that the first-best exposure anet,FB
it

 exceeds 
the exposure Dit − �Ait

 to ZA , which is inherited from the exposure of human capi-
tal Hit and annuity risk Ait . Hence, the first-best exposure 

(
�A − �Ait

)
∕�i of initial 

financial wealth compensates for the shortfall in exposure to ZA . For the equiv-
alence of (ii1) and (ii3), the first-best exposure aFB

it
 is linear in Hit∕Fit with slope (

�A − �Ait

)
∕�i − Dit + �Ait

.
Suppose now that the fund exposures to financial market risk ( wt ) and annuity 

risk ( at ) are both exogenously determined. For instance, the investment strategy can 
be fixed for a longer period of time and annuity risk can be non-traded. The expo-
sure at of financial wealth to the risk factor ZA can be zero, but this is necessary. For 
instance, long-term bond prices are exposed to changes in the annuity price by the 
common exposure to long-term interest rates. As a result, financial wealth is sensi-
tive to annuity risk, i.e., at > 0 . In contrast, longevity risk may not affect the fund’s 
financial wealth Ft , such that at = 0 for this type of annuity risk.

Proposition 8  Given fund exposures wt and at , the second-best exposures of partici-
pant i are

(39)aFB
t

= anet,FB
t

+
1

Ft

(
n∑
j=1

(
Fjt + Hjt

)
�Ajt

− DjtHjt

)
,

(40)anet,FB
t

=
1

Ft

∑
j

(
Fjt + Hjt

)�A − �Ajt

�j
.

(41)CEQFB
it

=
�2 +

(
�A − �Ait

)2
2�i

+ Dit

Hit

Fit + Hit

�Ait
.

30  Pensioners with an identical risk perception do have the same CEQFB
it

 since H
i
≡ 0 holds for this 

group.
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where wSB
it

 and aSB
it

 are given in Proposition 7, and vit =
(Fit+Hit)

2

�i�i
.

Let us study in more detail the allocation of financial market risk Z and annuity 
risk ZA to the financial wealth of individual participants. Similar to the first-best, the 
result in (42) is actually the same as Proposition 3. In other words, the second-best 
optimal exposure wSB

i
 is not affected by the exposure to ZA . That makes sense, given 

the assumed independence of Z and ZA . Thus, also the results in Sect. 4 for different 
choices of �i and �i still hold.

Of course, the structure in (43) is very similar to (42). The optimal exposure is, 
again, the individual first-best exposure and a share in the excess fund exposure. 
This share is the same for wSB

i
 and aSB

i
 , because of the similar structure of the restric-

tions in (A19) that determine this share. For the exposure to ZA of total wealth,

Indeed, total wealth of new hires ( Fit ↓ 0 ) has a nonzero exposure, because of the 
future pension contributions Hit that already finance a nonzero pension annuity.

Next, we consider the similarities between the optimal allocation in Proposition 8 
and the new Dutch pension system. The optimal exposures in Proposition 8 can be 
decomposed as

where vit =
(Fit+Hit)

2

�i�i
.

(42)wSB
it

= wFB
it

+
vit∑
j
vjt

1

Fit

�
wtFt −

n�
j=1

wFB
jt
Fjt

�
,

(43)aSB
it

= aFB
it

+
vit∑
j
vjt

1

Fit

�
atFt −

n�
j=1

aFB
jt
Fjt

�
,

Fit

Fit + Hit

aSB
it

=
�A
�it

− Dit

Hit

Fit + Hit

+
1

Fit + Hit

vit∑
j
vjt

�
aF −

n�
j=1

aFB
j
Fjt

�
.

(44)
wSB
it

=

FB speculative

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
Fit + Hit

Fit

�

�i�
+

suboptimal speculative

⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

vit∑
j
vjt

1

Fit

�
wF −

n�
j=1

wFB
jt
Fjt

�

(45)

aSB
it

=
Fit + Hit

Fit

�
1 −

1

�i

�
�Ait

−
Hit

Fit

Dit

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
FB hedge

+
Fit + Hit

Fit

�A
�i

⏟⏞⏞⏞⏞⏟⏞⏞⏞⏞⏟
FB speculative

+
vit∑
j
vjt

1

Fit

�
aF −

n�
j=1

aFB
jt
Fjt

�

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
suboptimal speculative

,
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These terms have a clear interpretation. We discuss the terms in (45): 

(i)	� Fit+Hit

Fit

(
1 −

1

�i

)
�Ait

 : this is the ‘leveraged up’ hedge of risk in the annuity factor 
Ait . The term with 1

�i
 is only included if d

(
Fit + Hit

)
 and dAit both depend on ZA

.
(ii)	� −Hit

Fit

Dit : ‘natural’ hedge to neutralize effects from human capital (30). This 
term is particularly important for participants with a large exposure Dit to Ait.

(iii)	� Fit+Hit

Fit

�A
�i

 : This term is the first-best net exposure to ZA . It is the speculative 
demand for ZA linearly depending on �A.

(iv)	�  vit∑
j
vjt

1

Fit

�
aFt −

∑n

j=1
aFB
j
Fjt

�
 : this is the ‘leveraged up’ hedge of (29) due to the 

fact that annuity risk may not be traded or that the aggregate fund exposure a 
is exogenously given. This exposes the fund to the risk factor ZA sub-opti-
mally. This term is absent in case a is chosen optimally, i.e., a = aFB

t
 . The 

weights vit > 0 determine how the collective risk from the mismatch in period 
t is shared among the participants. Total wealth determines these weights. 
More specifically, the weights vit =

(Fit+Hit)
2

�i�i
 are proportional to the ratio of 

�Fit (marginal benefit in satisfying the constraint on ait in (A19)) to �i�iFit

(Fit+Hit)
2 

(additional marginal cost for each ait in excess of aFB
it

 ). At the optimum, this 
marginal cost equals the marginal benefit.

The optimal allocation aSB
it

 is strongly related to the new Dutch pension contract. 
To see this, notice first that each first-best component in (44)-(45) depends on the 
ratio Hit∕Fit . This individual-specific ratio may be approximated by an age-specific 
exposure in the new pension contract, since it may be difficult to obtain a reliable 
estimate of Hit for each individual participant.

Now, consider the case where ZA represents interest rate risk: 

(1)	 In the new Dutch pension contract, the hedge return (the so-called ‘bescher-
mingsrendement’) to hedge the exposure of the annuity to interest rate risk is 
represented by the first component in aSB

it
.

(2)	 The second component in aSB
it

 corrects for interest rate risk due to human capital 
(28). For working generations, this mitigates the optimal exposure of financial 
capital to interest rate risk. In the new pension contract, a pragmatic response 
to this exposure is to scale the exposures in the hedge return by an age-specific 
factor below 100% for working generations.

(3)	 The third and the fourth component in aSB
it

 are jointly included in the excess fund 
return that remains after allocating the hedge returns in the new pension contract 
(the so-called ‘overrendement’). For �i ∝ Fit + Hit , the optimal allocation of this 
excess return is proportional to 1

�i

Fit+Hit

Fit

 . Then, the optimal exposure of total 
wealth to this excess return is simply proportional to 1

�i
 . This holds for the spec-

ulative return in both (44) and (45).
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6 � Numerical Example

We illustrate some of our results for a fund with N = 40 participants facing a flat 
(in monetary terms) annual contribution rate, normalized to one: hi ≡ 1 . Partici-
pant i has contributed for i years of a total of N contribution years. Let � denote the 
expected return on financial assets, and let r denote the the discount rate to value 
human capital. Suppressing time subscripts for convenience gives ( i = 1,… ,N)

and for the pension funds’ wealth

Suppose the discount rate r and expected return � are both 1% , and assume a risk 
premium of � = 20% and stock volatility of � = 20% . The top plot in Fig. 1 shows 
that Fi and Hi are almost linear with age. This is due to the interest rate r and dis-
count rate � being close to zero. For young participants the ratio Hi∕Fi is high, which 
implies a high leverage in the first-best allocations.

6.1 � No Annuity Risk

The first-best exposure wFB
i

 of financial wealth from (13) is much higher at young 
ages, because then financial wealth is only a small proportion of total wealth. Since 
F = H and � = � , it follows from (14) that wFB = 2∕𝛾̃ . The top plot in Fig. 2 shows 
the first-best fund exposure wFB for different risk perceptions 𝛾̃ . Intuitively, a higher 
risk aversion (higher 𝛾̃ ) means a lower first-best fund exposure wFB . Note that wFB

i
 in 

(13) differs across individual participants.
Next, consider the second-best where w = wFB does not necessarily hold. Sup-

pose �i ∝ Fi + Hi and 𝛾i ≡ 𝛾̃ . Recall from (27) that each participant has then the 
same second-best optimal certainty equivalent, regardless whether w = wFB holds. 
The bottom plot in Fig. 2 shows how this second-best certainty equivalent CEQSB

i
 of 

Rt changes with the fund exposure w. Naturally, the fund exposure w = 0 is equiva-
lent to a certain payoff of zero. At w = 1 , we find from (27) that participants prefer a 
certain payoff of zero over the uncertain payoff of a full stock exposure of financial 
wealth if their risk aversion satisfies

(46)Financial wealth:Fi =

i−1∑
j=0

(1 + �)j =
1

�

[
(1 + �)i − 1

]

(47)Human capital:Hi =

N−i∑
j=1

(1 + r)−j =
1

r

[
1 − (1 + r)i−N

]
,

F =

N∑
i=1

Fi =
1

�

(
1

�

[
(1 + �)N+1 − 1

]
− (N + 1)

)

H =

N∑
i=1

Hi =
1

r

(
(N − 1) −

1

r

[
1 − (1 + r)1−N

])
.
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At higher levels of the fund exposure w, the certainty equivalent becomes more sen-
sitive to the risk aversion � . Likewise, the certainty equivalent of risk averse partici-
pants is more sensitive to the fund exposure w, which makes sense.

6.2 � Annuity Risk

We add annuity risk to the setting in the previous section. Each participant i has the 
first-best stock exposure wFB

i
 . We set the risk premium at �A = 10% for each unit 

of exposure on ZA , the exposure of Ai to ZA is �Ait
= 0.006(N + 21 − i)∕2 , and the 

exposure of human capital to ZA is Di = 0.006(N + 1 − i)∕2 . The linearity of �Ait
 and 

Di in i reflects the linearity of the duration by maturity (see top plot in Fig. 3). The 
slope coefficient of 0.006 is based on the annualized standard deviation of historical 
monthly returns on zero coupon bonds.31

In contrast to wFB
i

 , the first-best optimal aFB
i

 to the annuity risk factor ZA depends 
on the age of participant i, even if 𝛾i ≡ 𝛾̃ (see (36)). The bottom plot in Fig. 3 shows 
the first-best exposure aFB

i
 by age for different values of the risk perception �i . The 

first-best allocation aFB
it

 in Proposition  7 is no longer proportional to 1∕�i , as was 
the case with wFB

i
 in Fig. 1. In our example, Proposition 7(ii1) and (ii2) imply that 

𝛾i >
0.1−0.18

0.12−0.18
=

4

3
 suffices for a positive first-best exposure aFB

i
 for new entrants. 

Proposition 7(ii1) and (ii3) imply that the first-best positive exposure aFB
i

 is inde-
pendent of �i at i = 27

2

3
 (and N − i = 12

1

3
 ) where � = �Ait

.
The risk aversion �i has a large impact on aFB

i
 for young participants with �i not 

to close to 4/3. The intuition is that young participants with 𝛾i >> 4∕3 ) have a strong 
appetite to hedge annuity risk, while less risk-averse participants ( 𝛾i << 4∕3 ) may 
not be willing to do this if the risk premium is considered too low 𝜆A < 𝜎Ait

 . Relat-
edly, the individual first-best fund allocations are particularly sensitive to �i at low 
levels of � , also at the fund level (Fig. 4). The sensitivity is much lower at a higher 
level of risk aversion � . However, at such 𝛾̃ the fund exposure a has a pronounced 
impact on the second-best certainty equivalent return (left panel in Fig.  5). This 
reflects that the duration effect through At on to the annuity risk factor ZA can be 
large, particularly for young participants. For instance, a social planner with � = 8 
is willing to pay a nine percentage point certain annual return to substitute the expo-
sure a = 0.4 for the first-best exposure a = aFB.

A similar exercise is in the right panel in Fig. 5, where ai = aSB
i

 varies with w for 
some different levels of risk aversion �i . The certainty equivalent CEQSB is higher 
in the right panel in Fig. 5 than in the bottom panel in Fig. 2. The reason is that aFB

i
 

captures a risk premium, which increases the certainty equivalent. Nonetheless, the 

𝛾̃ >
2𝜆

𝜎

F + H

F
≈ 3.36.

31  Similar to the statutory rate, the interest rates of the bonds are the euro swap rates. Source: DNB 
Table  1.3.1. https://​www.​dnb.​nl/​stati​stiek​en/​data-​zoeke​n/#/​detai​ls/​nomin​ale-​rente​termi​jnstr​uctuur-​pensi​
oenfo​ndsen-​zero-​coupon/​datas​et/​ed155​34f-​eab3-​4862-​a68e-​f33ef​fa78d​6a/​resou​rce/​60304​cad-​97ba-​4974-​
a0ed-​05597​c91e3​7c.

https://www.dnb.nl/statistieken/data-zoeken/#/details/nominale-rentetermijnstructuur-pensioenfondsen-zero-coupon/dataset/ed15534f-eab3-4862-a68e-f33effa78d6a/resource/60304cad-97ba-4974-a0ed-05597c91e37c
https://www.dnb.nl/statistieken/data-zoeken/#/details/nominale-rentetermijnstructuur-pensioenfondsen-zero-coupon/dataset/ed15534f-eab3-4862-a68e-f33effa78d6a/resource/60304cad-97ba-4974-a0ed-05597c91e37c
https://www.dnb.nl/statistieken/data-zoeken/#/details/nominale-rentetermijnstructuur-pensioenfondsen-zero-coupon/dataset/ed15534f-eab3-4862-a68e-f33effa78d6a/resource/60304cad-97ba-4974-a0ed-05597c91e37c
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Fig. 1   Top: Financial wealth F
i
 (46) and human capital H

i
 (47), by age. Bottom: First-best stock exposure 

w
FB
i

 (13), by age

Fig. 2   Top: First-best fund exposure wFB in (14), by risk perceptions 𝛾̃ . Bottom: Second-best optimal cer-
tainty equivalent from (9) and (27), by fund exposure w for different risk perceptions 𝛾̃
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sensitivity of CEQSB is comparable in both figures. In sum, welfare effects are more 
sensitive to the fund exposure a to annuity risk than to the exposure w to financial 
market risk, in particular for risk averse participants.

Fig. 3   Top: Exposure to Z
A
 of A

i
 (in (29)) and of H

i
 (in (30)), by age i. Bottom: First-best annuity risk 

exposure aFB
i

 in (36) by age i 

Fig. 4   First-best fund exposure aFB
i

 from (36) and aFB from (39) by risk perception �
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7 � Conclusion

We have shown that an allocation where the relative effect on total retirement wealth 
(the sum of financial wealth and human capital) is the same for each participant is 
Pareto optimal. This stylized lifecycle fact inspired the new Dutch retirement sys-
tem. Under stylized assumptions, we characterized the Pareto optimal risk alloca-
tions. Subsequently, we extended the optimal allocation rule to a setting with annu-
ity risk. This optimal allocation rule consists of one part that hedges annuity risk 
and human capital risk, and another part to benefit from a risk premium on risky 
assets. The latter part is also present in the case with only financial market risk.

Our optimal allocation rule is very similar to the allocation rule in the proposed 
new Dutch pension system. One potential difference between these two allocation 
rules is that the individual-specific ratio of human capital to financial wealth plays 
a key role in our optimal allocation role, while in the proposed new Dutch pension 
system this ratio is allowed to be approximated by an age-dependent life-cycle. In 
future research, one can estimate the welfare loss due to this approximation.

A numerical example indicates that the fund risk allocation has substantial wel-
fare effects. With our settings, an appropriate hedge of annuity risk is particularly 

Fig. 5   Second-best certainty equivalent fund return CEQSB . Left: CEQSB by fund exposure a to the annu-
ity risk factor Z

A
 . Each participant i has the first-best exposure wFB

i
 from (35) and the second-best optimal 

risk exposure aSB
i

 from (43). Right: CEQSB by fund exposures w to the financial market risk factor Z. 
Each participant i has the first-best exposure aFB

i
 from (36) and the second-best optimal risk exposure wSB

i
 

from (42)
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important for risk averse participants. For them, the exposure to long-duration annu-
ity risk is most important to hedge sufficiently.

Our model is a basic model with some limitations, which opens up some 
opportunities for future research. We mention a few without intending to be 
exhaustive. First, the model can be calibrated to empirical data. Then, one can 
identify the impact of different risk factors such as interest rate risk, stock market 
risk, inflation risk, real wage risk, and mortality risk. Second, household char-
acteristics (partner income, number of children and housing assets) can enrich 
our concepts of financial wealth and human capital. Particularly, the interrelation 
of different sources of wealth can affect the optimal allocation. Third, a policy 
relevant question is to optimize the welfare gains when adding the so-called soli-
darity reserve to our model or, relatedly, when anticipating the entry of future 
generations to the pension fund. A fourth avenue for further research is to include 
more advanced time-series properties, e.g., non-normality, by extending our sim-
ple geometric Brownian motion framework. Finally, risk preferences other than 
CRRA preferences are another interesting topic for future research.

Appendix A: Proofs

Proposition 1

Proof  Apply It’s lemma with f (Yt) = log(Yt) to (6), while keeping the expected 
return �Yit

 and volatility �Yit constant over the interval [t, t + �] with 𝜏 > 0,

This implies for the (annualized) growth rate of retirement income

By (A1), we have

Yi,t+� ∼ Yit LN

((
�Yit

−
�2
Yit

2

)
�, �2

Yit
�2

)
.

(A1)exp
(
Rit

)
=

(
Yi,t+�

Yit

)1∕�

∼ LN

(
�Yit

−
�2
Yit

2
, �2

Yit

)

(A2)Rit ∼ N

(
�Yit

−
�2
Yit

2
, �2

Yit

)
.
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By (A2),

Substituting (A3) and (A4) into (7),

	�  ◻

Proposition 2

Proof  (i)	� This follows immediately from (12) and the first-order condition of the 
quadratic optimization problem maxwit

CEQit.
(ii)	� Substitute (13) into the fund identity wFB

t
Ft =

∑n

j=1
wFB
jt
Fjt , and rear-

range terms.
(iii)	� Substitute (13) into (12).

	�  ◻

Proposition 3

Proof  We suppress time scripts for convenience. The social planner’s optimization 
problem (19)–(20) can be solved by the method of Lagrange multipliers. Substitut-
ing (18) into (19), the Lagrangian of the social planner’s optimization problem is 
given by

where � denotes the Lagrange multiplier of the collective constraint. This leads to 
the first-order condition for the weight wi of participant i,

(A3)

E
[
exp

((
1 − �i

)
Rit

)]
= exp

(
(1 − �i)

(
�Yit

−
�2
Yit

2

)
+ (1 − �i)

2
�2
Yit

2

)

= exp
(
(1 − �i)

(
�Yit

−
�i
2
�2
Yit

))

= exp
(
(1 − �i) CEQit

)
.

(A4)E
[
Rit

]
= �Yit

−
�2
Yit

2
= CEQit.

(A5)U
(
Rit

)
= U

(
CEQit

)
=

{
1

1−�i

[
exp

(
(1 − �i)CEQit

)
− 1

]
�i ≠ 1

CEQit �i = 1.

L
({

wi

}n

i=1
, �
)
=

n∑
i=1

�i

(
wi��

Fi

Fi + Hi

−
1

2
�i

(
wi�

Fi

Fi + Hi

)2
)

− �

(
wF −

n∑
i=1

wiFi

)
,
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Rearranging terms and using (13) gives

Substituting (A6) into the collective allocation constraint (20),

Hence,

Substituting (A9) into (A6) gives (21). This optimum wSB
i

 corresponds to the global 
maximum since the Hessian of L

({
wi

}n

i=1

)
 is a diagonal matrix with negative diago-

nal elements. 	�  ◻

Proposition 4

Proof  Denote the open positive orthant as

Define the function f ∶ ℝ
n+ → ℝ

n+ with

(i)	� Straightforward from Proposition 3.
(ii)	� By w ≠ wFB , we have bi ≠ 0 for each i. The function f is a bijection, i.e., the 

projection f(�) is uniquely determined by � . Therefore, the weights �i =
fi(�)∑
j
fj(�)

 

correspond to a unique � with 
∑

i
�i = 1.

�i

(
Fi

Fi + Hi

�� − �iw
SB
i

(
�

Fi

Fi + Hi

)2
)

= −�Fi.

(A6)wSB
i

= wFB
i

+
�

�2

(
Fi + Hi

)2
�i�iFi

.

(A7)wF =

n∑
j=1

wSB
j
Fj

(A8)=

n∑
j=1

wFB
j
Fj +

�

�2

n∑
j=1

(
Fj + Hj

)2
�j�j

.

(A9)�SB

�2
=

(
n∑
j=1

(
Fj + Hj

)2
�j�j

)−1(
wF −

n∑
j=1

wFB
j
Fj

)
.

ℝ
n+ =

{
x ∈ ℝ

n ∣ xi > 0, i = 1,… , n
}
.

fi(x) =
vi

xi
vi =

(
Fi + Hi

)2
�i�i

≥ 0 i = 1,… , n.
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(iii)	� For �i ↓ 0 , we find �i =
fi(�)∑
j
fj(�)

→ 1 and �j≠i → 0 . The result follows now from 

(22).
(iii)	� In case �i ↑ 1 , it follows from 

∑
j �j = 1 that �j≠i → 0 . This gives 

�i =
fi(�)∑
j
fj(�)

→ 0 and, by (22), that wSB
i

→ wFB
i

.

	�  ◻

Proposition 5

Proof  (i)	� Plugging �i ≡ Fi + Hi into Proposition 3 leads to 

 This gets a simple interpretation when we recall from (15) that, 

 Substituting (A11) into (A10) gives the second-best optimal financial market expo-
sures (23).

	� For � ≠ 0 , we have wFB
it

≠ 0 from (13). Then, we obtain (24) by substitut-
ing (13) and (14) into (23).

	� Substituting (23) into (12) gives (25).
(ii)	� Straightforward from 𝛾i ≡ 𝛾̃ in (23) and (25).

	�  ◻

Proposition 6

Proof  Adding (30) and (31),

Combining the dynamics in (29) and (A12), and using It’s lemma with the assumed 
independence of Z and ZA , we find for the time dynamics of the pension income Yit

(A10)wSB
it
Fit =

vit∑
j
vjt

wtFt, vit =
Fit + Hit

�i
.

(A11)
n∑
j=1

vjt =

n∑
j=1

Fjt + Hjt

𝛾j
=

Ft + Ht

𝛾̃
.

(A12)

d
(
Fit + Hit

)
Fit + Hit

=

[
rt +

(
wit�� + �Aait

) Fit

Fit + Hit

+ �ADit

Hit

Fit + Hit

]
dt

+ wit�
Fit

Fit + Hit

dZt +

(
ait

Fit

Fit + Hit

+ Dit

Hit

Fit + Hit

)
dZAt.
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with anet
it

 as in (34). 	�  ◻

Proposition 7

Proof  (i)	� Combining (9), Proposition 1 and 6 gives for the social planner the cer-
tainty equivalent 

 with anet
it

 as in (34).

(A13)

dYit

Yit
=

Ait

Fit + Hit

d
Fit + Hit

Ait

=
Ait

Fit + Hit

[
d
(
Fit + Hit

)
Ait

−
Fit + Hit

Ait

dAit

Ait

+
2

2

Fit + Hit

Ait

(
dAit

)2
A2
it

−

(
d
(
Fit + Hit

))(
dAit

)

A2
it

]

=
d
(
Fit + Hit

)
Fit + Hit

−
dAit

Ait

+

(
dAit

Ait

)2

−
d
(
Fit + Hit

)
Fit + Hit

dAit

Ait

=

[
rt +

(
wit�� + �Aait

) Fit

Fit + Hit

+ �ADit

Hit

Fit + Hit

−
(
rt + �A�Ait

)
+ �2

Ait
− ait

Fit

Fit + Hit

�Ait

]
dt + wit�

Fit

Fit + Hit

dZt

+

[
ait

Fit

Fit + Hit

+ Dit

Hit

Fit + Hit

− �Ait

]
dZAt

=
Fit

Fit + Hit

([
wit�� + anet

it
�A + �2

Ait

Fit + Hit

Fit

− ait�Ait

]
dt

+wit� dZt + anet
it

dZAt
)
,

(A14)

CEQt =

n∑
i=1

�i

(
�Yit

−
�i
2
�2
Yit

)

=

n∑
i=1

�i

((
wit�� + anet

it
�A − ait�Ait

) Fit

Fit + Hit

+ �2
Ait

−
�i
2

(
w2
it
�2 +

(
anet
it

)2)( Fit

Fit + Hit

)2
)
,
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	� When maximizing (A14), the first-order conditions with respect to wit are 
identical to Proposition  2(i), which implies (35). The first-order condi-
tions with respect to ait , 

 where we used �a
net
it

�ait
= 1 from (34). Rewriting terms gives the first-best optimal 

exposure anet,FB
it

 in (37). Combining (34) and (37) gives the first-best optimal expo-
sure aFB

it
 in (36).

(ii)	� Let x = Hit∕Fit . By (37), the first-best exposure aFB
t

 is 

 For a new participant i with x → ∞ , we find from (A15), 

 This proves the equivalence of (1) and (3). The equivalence of (1) and (2) follows 
from (A15) since 

(iii)	� Follows from the fund contraints and (36).
(iv)	� Substituting (35)–(37) into (32) gives the first-best certainty equivalent 

(8) for the return Rit : 

 Similarly, we have in (33) 

�i
Fit

Fit + Hit

(
�A − �Ait

− �i
Fit

Fit + Hit

a
net,FB

it

)
= 0,

(A15)aFB
it

= (1 + x)
�A − �Ait

�i
− Ditx + (1 + x)�Ait

.

lim
x→∞

aFB
it

x
=

�A − �Ait

�i
− Dit + �Ait

.

d

d[Hit∕Fit]
aFB
it

=
�x

�[Hit∕Fit]

�

�x
aFB
it

=
�A − �Ait

�i
− Dit + �Ait

.

(A16)

�Yit
=

Fit

Fit + Hit

(
wFB
it
�� + a

net,FB

it
�A + �2

Ait

Fit + Hit

Fit

− aFB
it
�Ait

)

=
Fit

Fit + Hit

[
Fit + Hit

Fit

�

�i�
�� +

(
Dit

Hit

Fit

−
Fit + Hit

Fit

�Ait

)
�A

+�2
Ait

Fit + Hit

Fit

+ aFB
it

(
�A − �Ait

)]

=
�2

�i
+

(
Dit

Hit

Fit + Hit

− �Ait

)
�A + �2

Ait

+

(
�A
�i

+

(
1 −

1

�i

)
�Ait

− Dit

Hit

Fit + Hit

)(
�A − �Ait

)

=
�2 +

(
�A − �Ait

)2
�i

+ Dit

Hit

Fit + Hit

�Ait
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 Substituting (A16) and (A17) into Proposition 1 gives (41).

	�  ◻

Proposition 8

Proof  The constrained social planner’s optimization problem (19) is now

subject to (A14),

where at denotes the (exogenously given) exposure of fund wealth Ft to the risk fac-
tor ZA . Write the Lagrangian,

with as in (34),

The first-order conditions with respect to wit are identical to Proposition 3, which 
implies (42). The first-order conditions with respect to ait,

(A17)

�2
Yit

=
((

wFB
it

)2
�2 +

(
a
net,FB

it

)2)( Fit

Fit + Hit

)2

=

((
Fit + Hit

Fit

�

�i�

)2

�2 +

(
Fit + Hit

Fit

�A − �Ait

�i

)2
)(

Fit

Fit + Hit

)2

=
�2 +

(
�A − �Ait

)2
�2
i

.

(A18)max
{wit ,ait}

n

i=1

CEQt

(A19)
n∑
i=1

witFit = wtFt and

n∑
i=1

aitFit = atFt,

L
({

wit, ait
}n

i=1
, �, �A

)
=

n∑
i=1

�i

((
wit�� + anet

it
�A − ait�Ait

) Fit

Fit + Hit

+ �2
Ait

−
�i
2

(
w2
it
�2 +

(
anet
it

)2)( Fit

Fit + Hit

)2
)

− �

(
wF −

n∑
i=1

witFi

)
− �A

(
aF −

n∑
i=1

aitFi

)

(A20)anet
it

= ait + Dit

Hit

Fit

−
Fit + Hit

Fit

�Ait
.
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where we used �a
net
it

�ait
= 1 from (34). Rewriting terms gives the optimal exposure of 

the pension benefit of participant i to dZA,

Combining (A20) and (A21) gives the optimal exposure aSB
it

 of Fit to the risk factor 
ZA:

where we used (36).
By substituting (A22) into restriction (A19),

which implies

Substituting (A23) into (A22) gives (43). 	�  ◻

Appendix B: Correlated risk factors

We generalize the setting in Section 5 to allow for a nonzero correlation � between the 
risk factors Z, and ZA.

Certainty equivalent

Recall from (29) and (A12),

�i
Fit

Fit + Hit

(
�A − �Ait

− �i
Fit

Fit + Hit

anet
it

)
= −�AFit,

(A21)a
net,SB

it
=

1

�i

Fit + Hit

Fit

(
�A − �Ait

+
�A
�i

(
Fit + Hit

))
.

(A22)

aSB
it

=
Fit + Hit

Fit

�Ait
− Dit

Hit

Fit

+
1

�i

Fit + Hit

Fit

[
�A − �Ait

+
�A
�i

(
Fit + Hit

)]

= aFB
it

+
�A
�i�i

(
Fit + Hit

)2
Fit

,

n∑
i=1

(
aFB
it
Fit +

�A
(
Fit + Hit

)2
�i�i

)
= atFt,

(A23)�SB
A

=

(
n∑
j=1

(
Fjt + Hjt

)2
�j�j

)−1(
aFt −

n∑
i=1

aFB
it
Fit

)
.
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where

Using (A13) with correlation � ∶= �(dZt, dZAt),

where

Substituting into Proposition 1 and collecting terms,

with anet
it

 as in (34).

d
(
Fit + Hit

)
Fit + Hit

= �Fit+Hit
dt + �Fit+Hit

dZt + �Fit+Hit ,Ait
dZAt,

dAit

Ait

= �Ait
dt + �Ait

dZAt

�Fit+Hit
= rt +

(
wit�� + �Aait

) Fit

Fit + Hit

+ �ADit

Hit

Fit + Hit

�Fit+Hit
= wit�

Fit

Fit + Hit

�Fit+Hit ,Ait
= ait

Fit

Fit + Hit

+ Dit

Hit

Fit + Hit

�Ait
= rt + �A�Ait

dYit

Yit
=

d
(
Fit + Hit

)
Fit + Hit

−
dAit

Ait

+

(
dAit

Ait

)2

−
d
(
Fit + Hit

)
Fit + Hit

dAit

Ait

=
(
�Fit+Hit

− �Ait
+ �2

Ait
− ��Fit+Hit

�Ait
− �Fit+Hit ,Ait

�Ait

)
dt

+ �Fit+Hit
dZt +

(
�Fit+Hit ,Ait

− �Ait

)
dZAi

= �Yit
dt + �YitdZY ,

�Yit
= �Fit+Hit

− �Ait
+ �2

Ait
− ��Fit+Hit

�Ait
− �Fit+Hit ,Ait

�Ait

�2
Yit

= �2
Fit+Hit

+ 2��Fit+Hit

(
�Fit+Hit ,Ait

− �Ait

)
+
(
�Fit+Hit ,Ait

− �Ait

)2
.

(B24)

CEQit = �Yit
−

�i
2
�2
Yit

=
(
�Fit+Hit

− �Ait
+ �2

Ait
− ��Fit+Hit

�Ait
− �Fit+Hit ,Ait

�Ait

)

−
�i
2

(
�2
Fit+Hit

+ 2��Fit+Hit

(
�Fit+Hit ,Ait

− �Ait

)
+
(
�Fit+Hit ,Ait

− �Ait

)2)

=
((
� − ��Ait

)
�wit +

(
�A − �Ait

)
anet
it

) Fit

Fit + Hit

+ �Ait
Dit

Hit

Fit + Hit

−
�i
2

(
Fit

Fit + Hit

)2((
�wit

)2
+ 2��wita

net
it

+
(
anet
it

)2)
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First‑best optimal exposure

Let Dy. denote the diagonal matrix with diagonal y = (y1t,… , ynt) . Using (9) and 
(B24), rewrite the social planner’s problem (A18)–(A19) as the standard quadratic 
optimization problem

with

The first-best optimum of (B25) is

Therefore,

(B25)max
x∈ℝ2n

−
1

2
x⊤Qx + c⊤x + c0

Q =

�
𝜎2 𝜌𝜎
𝜌𝜎 1

�
⊗

�
D𝛼.D𝛾 .D

2
F.
D−2

F.+H.

�
c0 =

n�
i=1

𝛼i𝜎Ait
Dit

Hit

Fit + Hit

c =
�
I2 ⊗

�
D𝛼.DF.D

−1
F.+H.

��
⎛
⎜⎜⎜⎜⎜⎜⎝

�
𝜆 − 𝜌𝜎A1t

�
𝜎

⋮�
𝜆 − 𝜌𝜎Ant

�
𝜎

𝜆A − 𝜎A1t

⋮

𝜆A − 𝜎Ant

⎞
⎟⎟⎟⎟⎟⎟⎠

x =

⎛
⎜⎜⎜⎜⎜⎜⎝

w1t

⋮

wnt

anet
1t

⋮

anet
nt

⎞
⎟⎟⎟⎟⎟⎟⎠

.

xFB = Q−1c

=

�
𝜎2 𝜌𝜎
𝜌𝜎 1

�−1

⊗
�
D−1

𝛼.
D−1

𝛾 .
D−2

F.
D2

F.+H.

��
I2 ⊗

�
D𝛼.DF.D

−1
F.+H.

��
⎛⎜⎜⎜⎜⎜⎜⎝

�
𝜆 − 𝜌𝜎A1t

�
𝜎

⋮�
𝜆 − 𝜌𝜎Ant

�
𝜎

𝜆A − 𝜎A1t

⋮

𝜆A − 𝜎Ant

⎞⎟⎟⎟⎟⎟⎟⎠

=
1

1 − 𝜌2

��
1 − 𝜌

−𝜌𝜎 𝜎

�
⊗ In

�

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

𝜆−𝜌𝜎A1t
𝜎𝛾1

F1t+H1t

F1t

⋮
𝜆−𝜌𝜎Ant
𝜎𝛾n

Fnt+Hnt

Fnt
𝜆A−𝜎A1t
𝜎𝛾1

F1t+H1t

F1t

⋮
𝜆A−𝜎Ant
𝜎𝛾n

Fnt+Hnt

Fnt

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

(B26)wFB
it

=
1

1 − �2
� − ��A
��i

Fit + Hit

Fit

(B27)a
net,FB

it
=

1

1 − �2

�A − �� + (�2 − 1)�Ait

�i

Fit + Hit

Fit

.
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The special case � = 0 in (B26) and (B27) leads, of course, to (13) and (37), 
respectively.

Figure  6 depicts the first-best exposures. At large � , wFB is increasing with � , 
while aFB is decreasing with � . This counterbalancing effect is intuitive, because the 
exposures are more similar with higher � . The same holds true for 𝜌 < 0 . With the 
chosen parameter values, the reward to exposure to Z is more attractive than the 
reward to exposure to ZA . For larger � , participants leverage up the first-best expo-
sure wFB and aFB . In this way, participants benefit from the different rewards on the 
highly correlated risk factors Z and ZA , while the risks partly cancel out.

At � = 0 , Fig. 6 coincides with Figs. 2 and 4. It follows from Fig. 6 that the first-
best exposures aFB is more sensitive to � if � is more distant from zero. The reason is 
the leveraging up of both exposures. In that sense, the horizontal shape in Fig. 4 is 
not representative for aFB if |�| is larger.

Second‑best optimal exposure

Consider the optimization (B25) subject to the constraint

with

(B28)Ax = b,

Fig. 6   First-best fund exposure wFB from (B26) and aFB from (B27) for different correlations � of the risk 
factors Z and Z

A
 . Parameters are as in Sect. 6
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The constraint (B28) is identical to the constraints in (A19). The bottom entry in b 
corrects for the difference between ait and anet

it
 (see (34)). Write the Lagrangian

The first order conditions of the Lagrangian (B29) are (B28) and

Rewriting (B30),

Substituting (B31) into (B28) gives the Lagrange multiplier

Because

we have

The second-best optimal exposure follows from substituting (B32) into (B31), and 
then using (B33)

A = I2 ⊗
�
F1t ⋯ Fnt

�

b =

�
wF

aF +
∑

i

�
DitHit − (Fit + Hit)𝜎Ait

�
�
.

(B29)L(x, 𝜂) = −
1

2
x⊤Qx + c⊤x − 𝜂⊤(Ax − b).

(B30)Qx + A⊤𝜂 = c.

(B31)x = Q−1
(
c − A⊤𝜂

)
.

(B32)𝜂SB =
(
AQ−1A⊤

)−1(
AQ−1c − b

)
.

Q−1A⊤ =

��
𝜎2 𝜌𝜎
𝜌𝜎 1

�−1

⊗
�
D−1

𝛼.
D−1

𝛾 .
D−2

F.
D2

F.+H.

��⎛⎜⎜⎝
I2 ⊗

⎛
⎜⎜⎝

F1t

⋮

Fnt

⎞
⎟⎟⎠

⎞⎟⎟⎠

=

�
𝜎2 𝜌𝜎
𝜌𝜎 1

�−1

⊗

⎛
⎜⎜⎜⎝

(F1t+H1t)
2

𝛼1𝛾1

1

F1t

⋮

(Fnt+Hnt)
2

𝛼n𝛾n

1

Fnt

⎞
⎟⎟⎟⎠
,

(B33)

AQ−1A⊤ =
�
I2 ⊗

�
F1t ⋯ Fnt

��⎛⎜⎜⎜⎝

�
𝜎2 𝜌𝜎
𝜌𝜎 1

�−1

⊗

⎛
⎜⎜⎜⎝

(F1t+H1t)
2

𝛼1𝛾1

1

F1t

⋮

(Fnt+Hnt)
2

𝛼n𝛾n

1

Fnt

⎞
⎟⎟⎟⎠

⎞⎟⎟⎟⎠
=

�
𝜎2 𝜌𝜎
𝜌𝜎 1

�−1 n�
i=1

(Fit + Hit)
2

𝛼i𝛾i
.



171

1 3

Pareto Optimal Pension Risk Allocations﻿	

The second best optimal exposure aSB
it

 is obtained from (B34) by correcting 
(
anet
it

)SB 
in xSB for the hedge exposure (see (34)).

Notably, with � = 0 the second-best optimal exposure xSB in (B34) is the same 
as in Proposition  8. Though the first-best exposure xFB and the residual in (B34) 
depend on the return parameters ( � , �A , � , �Ait

 and � ), the distribution of the residual 
is independent of the asset return parameters.
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