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Abstract

With the gradual deepening of aging, the affordability of long-term care (LTC)
services in aging societies will become increasingly questionable. Both private
stand-alone LTC insurance and care-dependent annuity do not seem to provide
efficient solutions, due to their high risk charges. In this article, we propose two
ways of combining the long-term care business with retirement tontines, i.e. care-
dependent tontines, which shift a part of longevity risk to policyholders and provide
increased payments in care-dependent state. We determine the optimal payment
structures of these products that maximize the individuals’ expected lifetime utility.
Using realistic risk loadings based on data from China Health and Retirement Lon-
gitudinal Study (CHARLS) and capital requirement of China Risk Oriented Sol-
vency System (C-ROSS), it is shown that both care-dependent tontines present as
better choices for individuals, comparing to care-dependent annuities. The results
are robust in a different regulation scheme – Solvency II. Our findings contribute to
improving the penetration of elderly care insurance with appealing care-dependent
insurance products.
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1 Introduction

The aging wave has been sweeping the world. With continuous improvement of medical

and social security services, people have been living longer in expectation. Although

this is great progress for humanity, it raises plenty of aging problems in many countries.

For instance, the population aging speed in China is one of the fastest among countries.

Since entering an aging era in 2000, the degree of population aging in China has been

rising. According to a report published by AIC and IPLE (2020), in 2019, among the

Chinese people aged over 60 in the survey area, there were 7% in moderate Activities

of Daily Living (ADL)1 disability status and 4.8% in severe ADL disability. Besides,

the prediction statistics from Statista (Statista (2021)) have pointed out that China’s

population over 60 will rise from 17.4% of the total population in 2020, to 29.9% in 2040

with a rather low fertility rate.

Long-term care (LTC) insurance is born out of the long-term need for care, especially

in later life. It assists retirees to cover expenses they may need with care at home or

in a facility when they cannot perform daily living activities. Although some types of

LTC expenditure have already been covered in the public health/LTC insurance scheme,

the increasing number of the disabled elderly has prompted extensive concerns about

the future affordability of LTC services (Morrow and Röger (2003)). In this sense, the

development of a private LTC insurance market has become even more important and

urgent. However, industry practice experiences from OECD countries have proved that

the private long-term care insurance is not an effective solution as it only accounts for

a small market. Not much LTC insurance is issued to a relatively high percentage of

potential buyers at the retirement ages, for the sake of reducing the self-bearing risks of

the issuers2. These policy exclusions (Brown and Warshawsky (2013)) exactly keep those

who need the LTC insurance away. Besides, LTC policies are offered at premiums that are

substantially higher than the actuarially fair level. According to Brown and Finkelstein

(2009), the loading can be enormously high, particularly when taking account of the

lapse of policies. In the U.S. market, it raises the loading of 18 cents on the dollar to 51

cents on the dollar.

On the basis of these facts, Murtaugh et al. (2001) put forward empirically the idea of

integrating the life annuity and LTC insurance into one product. Other scholars also

1ADL refers to people’s daily self-care activities such as bathing, dressing, eating, continence, toilet-
ing, and transferring.

2The LTC insurance is intensively underwritten by its issuers (Brown and Warshawsky (2013)).
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come up with different ways to combine lifetime annuities and LTC insurance (Brown

and Warshawsky (2013), Vidal-Melia et al. (2016), Pitacco (2015), Hoermann and Ruß

(2008), Ramsay and Oguledo (2020), Chen et al. (2021), etc.). In fact, by combining the

life annuity and LTC coverage, it may make the long-term insurance product available

to more people, especially those who are currently rejected by the stand-alone LTC

insurance (e.g. those with poor health or unhealthy lifestyles). And also, more available

insurance products may contribute to enriching products in the old age insurance market

as well as increasing the penetration of elderly care insurance. In addition, it reduces the

cost of both stand-alone insurance products. Through the estimation of Murtaugh et al.

(2001), such bundled products significantly reduce premiums by 35 percent relative to

the stand-alone products.

Even if the care-dependent annuities are typically less expensive than buying life annuity

and long-term care products separately, the market for these products is still rather

limited. According to Webb (2009), these bundled products only make up less than 10%

of the voluntary annuity market in the United States. One reason is that adverse selection

still exists in the care-dependent annuity market (Zhou-Richter and Gründl (2011))3.

Another possible reason is that it is rather challenging for insurers to determine reserves

for these products, which might also lead to high administration and risk charges. One

possible way for the insurer to transfer a part of these risks to policyholders is to combine

the long-term care business with retirement tontines, see e.g. Hieber and Lucas (2020)

putting forward a care-dependent tontine scheme. Under the framework of tontines, it

is policyholders that bear most of the longevity risks, stated differently, the “mortality

credit” of the dead provides more payments for the alive. For the LTC coverage, it

requires a higher payment when the policyholder moves to a severely sick state, while

the mortality rate in this state will also increase. Thus, the increased care-dependent

payment could be viewed as an advance of additional “mortality credit”4. The focus of

Hieber and Lucas (2020) is on how to distribute the mortality credit such that fairness

can be achieved among the individuals.

In contrast to Hieber and Lucas (2020), in this article, we propose two ways of designing

3An adverse selection is said to exist in the care-dependent annuity market when people with both
high longevity and morbidity risk are more likely to purchase such products, which will force the insurers
to increase their premiums accordingly. The adverse selection in annuities is reduced (Murtaugh et al.
(2001), Spillman et al. (2003), Brown and Warshawsky (2013)), but not eliminated in the care-dependent
annuity market (Zhou-Richter and Gründl (2011)).

4Mortality of the severely sick ones occurs more likely than that of healthy ones, and the corresponding
“mortality credits” are larger. The additional “mortality credit” here represents the excess part of sick
ones’ “mortality credit” over the healthy ones’.

2



the care-dependent tontines (CDT): (i) consider that all insured members (both healthy

ones and severely sick ones) are in one pool; (ii) the insured members are divided into

two groups: the healthy, and the severely sick. At each time t , we reallocate the ones

whose states get changed into the corresponding groups. Considering the fact that there

are three main categories of LTC insurance products currently sold in the private LTC

insurance market, i.e. predetermined benefits, reimbursement benefits and service ben-

efits (Denuit et al. (2019)). Our products can be regarded as care insurance products

with predetermined benefits. Although we do not explicitly model the care costs in the

benefits, in designing our products, we do take account of the fact that people in care-

dependent state have increasing liquidity need for care costs. Individuals with various

risk aversion can choose those payments maximizing their own expected lifetime utility.

In other words, this article stands on the policyholder’s side and describes the optimal

decisions of payment streams that the policyholder would prefer. Based on fair premium

calculations and a utility framework (Chen and Rach (2019), Chen et al. (2020), Chen

and Rach (2021)), we determine the structures of the CDTs that maximize the poli-

cyholder’s expected lifetime utility with constant relative risk aversion and no bequest

motives. Furthermore, in this article, we compare different care-dependent products

analytically and numerically.

When considering an actuarially fair premium, we find that the care-dependent annu-

ity (CDA) is the best choice among different care-dependent products. Adding care-

dependent payoffs to the regular retirement products does not change the preference

order of the tontine and the annuity under actuarially fair pricing (Milevsky and Sal-

isbury (2015), Chen et al. (2019)). In order to conduct a realistic comparison among

the three care-dependent products, we rely on the data of China Health and Retirement

Longitudinal Study (CHARLS) and China Risk Oriented Solvency System (C-ROSS).

We compute the risk loadings following C-ROSS for various care-dependent products

under consideration. Our results reveal that the two types of CDTs are more attractive

than CDA for policyholders, when taking account of the realistic risk loadings. More

specifically, we show that the two CDTs lead to lower gross premiums than the CDA

product, while ensuring the same expected lifetime utility to the policyholders as the

CDA product. Besides, as the pool size grows larger, the advantage of CDTs over CDA

becomes more substantial. Further, we find that the two-pool CDT is more attractive

to those who are less risk-averse, while one-pool CDT is a better choice for those with

larger risk aversion coefficients. Finally, we detect that for insurers, under our baseline

parameter setting, constructing a care-dependent tontine in a two-pool structure may be
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the most cost-efficient way to add the care-dependent coverage among the three prod-

ucts studied in this article. In order to examine the possible robustness of our results

under different regulation regimes, we also compute the risk loadings with reference to

the capital requirements of Solvency II, the European insurance regulation framework.

Using the baseline parameter setting, it still shows that the CDTs are preferable to

CDA, which means our results are to some extent robust across regulation regimes. Our

findings provide the insurers with considerable views on the design of care-dependent

insurance contracts, which may boost the development of elderly care insurance market

and contribute to fulfilling the increasing demand of diversified care insurance products.

The remainder of this article is structured as follows: in Section 2, we introduce our

transition probabilities used throughout the entire article. In Section 3, we derive the

optimal payoffs of the care-dependent tontines from two different angles respectively.

Additionally, for the sake of product comparison later, we also give the optimal payoffs

of the care-dependent annuities under our model settings. Section 4 sets up the frame-

work for the product comparison under a realistic setting. And Section 5 presents the

numerical analysis, describing the used statistics and results. In the last Section, we

conclude the article. Several proofs, a statistical procedure to determine the transition

probabilities, the risk loading computation following the capital requirement of Solvency

II, and additional tables concerning the sensitivity analysis are listed in the appendix.

2 Transition Probabilities

In this section, we introduce the transition probabilities used throughout the entire article

on the basis of a three-state model. The transition probabilities reflect the policyholder’s

health condition.

Let x be the initial age, and Sx+t be a Markovian process describing the development of

a single policy in continuous time. Then the LTC insurance is modelled by a multi-state

model with state space S = {1 = healthy/active, 2 = severely sick/care-dependent, 3 =

dead} , and a set of transitions according to Figure 2.1. We assume the policyholder is

healthy at the initial age, i.e. Sx ≡ 1 .

Given that a policyholder is in state i at age y , the transition probabilities of this

policyholder being in state j at age y + t , are defined as:

ij
tpy = P{Sy+t = j | Sy = i} i, j ∈ S, i 6= j. (2.1)
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Figure 2.1: State set and transition intensities

The corresponding transition intensities could be written as (Haberman and Pitacco

(1998)):

ijµy = lim
t→0

(
ij
tpy
t

)
, i, j ∈ S, i 6= j. (2.2)

Furthermore, the probability of a policyholder being in state i at age y and remaining

in state i till age y + t is:

ii
tpy = P{Sy+t = i,∀t | Sy = i}, i ∈ S. (2.3)

Given the transition intensities of the multi-state model, we obtain the probabilities (2.1)

and (2.3) by Kolmogorov forward differential equations (Haberman and Pitacco (1998)).

11
tpy = exp

{
−
∫ t

0

[
12µy+s + 13µy+s

]
ds

}
, (2.4)

12
tpy =

∫ t

0

[
11
spy · 12µy+s · 22

t−spy+s
]

ds, (2.5)

tpy = 11
tpy + 12

tpy, (2.6)

22
tpy = exp

{
−
∫ t

0

23µy+sds

}
. (2.7)

• 11
tpy is the occupancy probability of a healthy individual aged y staying healthy

at age y + t ;

• 12
tpy denotes the probability of a healthy individual aged y , becoming severely

sick between (0, t) and remaining severely sick until t ;

• tpy is the t -year survival probability of a healthy individual aged y , which includes
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the case that he remains healthy for t years and the case that he becomes severely sick

during the t -year time;

• while 22
tpy represents the occupancy probability of a y -year-old sick individual

staying severely sick at age y + t .

Here, we disregard the possibility of recovery from the severely sick state, i.e. the tran-

sition {2 → 1} is not considered (Pitacco (2016); Hanewald et al. (2019); Chen et al.

(2021)).

3 Care-dependent Products

Consider a retiree at age x endowed with a wealth level v > 0 at his retirement date (in

our framework at time t = 0 ). Following Yaari (1965)’s setting, we assume a continuous-

time stream of payments for the care-dependent tontines. In a care-dependent tontine

contract, we further assume that the risks are shared among homogeneous policyholders

who are assumed to be identical copies of each other. There are n policyholders initially.

To construct the care-dependent tontine, we put forward two ways of designing the

product: (i) consider that all insured members (both healthy ones and severely sick

ones) are in one pool; (ii) the insured members are divided into two groups: the healthy,

and the severely sick. We will introduce these two kinds of care-dependent tontines in

the following subsections respectively.

3.1 One-pool Care-dependent Tontine

Firstly, we consider all the members in only one pool at each time t . Here the one pool

means that only alive and dead persons are identified at each time t , while different

payment streams are provided to the healthy and the severely sick respectively. We use

the notations doc11 (t) and doc12 (t) for the payment streams to the healthy and the severely

sick separately, which are pre-determined when the policy is underwritten. Correspond-

ingly, boc11 (t) and boc12 (t) are the payoffs for the healthy members and the severely sick

members. In accordance to the tontine scheme stated in Milevsky and Salisbury (2015),

we define the care-dependent tontine payoff for the policyholders in the healthy state as

boc11 (t) :=

{
1{Sx+t=1}

nd
oc1
1 (t)

N(t)
, if N(t) > 0,

0, else
, (3.1)
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where N(t) denotes the number of alive policyholders at time t , containing both healthy

and severely sick ones.

In another case, when the policyholder is severely sick, we define the care-dependent

tontine payoff as:

boc12 (t) :=

{
1{Sx+t=2}

nd
oc1
2 (t)

N(t)
, if N(t) > 0,

0, else
, (3.2)

As individuals usually have a higher demand for liquidity when becoming severely sick,

it might be more reasonable to expect doc12 (t) > doc11 (t) . In later sections, a risk-averse

policyholder will choose doc11 (t) and doc12 (t) optimally to maximize his expected lifetime

utility (Equation (3.13)). The results are then given in Theorem 3.1. After these optimal

payments are derived, we will examine the relation between doc11 (t) and doc12 (t) .

Next, we determine the actuarially fair premium of this care-dependent tontine under an

actuarial pricing framework. To focus on the effects of mortality and morbidity risks, for

simplicity, we ignore the financial risks5. Besides, the policyholder under consideration is

assumed to pay a single premium at the beginning of the contract. Thus, we assume that

the premium earns a constant and continuously compounded risk-free rate r ∈ R . This

assumption of the single premium is made not only for convenience of computation, but

also for the fact that single premium has been widely used for retirement products. In

2018, sales of single-premium immediate annuity in the United States amounted to 9.7

billion dollars6. Meanwhile, insurers including OneAmerica, Global Atlantic Financial

Group, and etc., have already provided the single-premium LTC plus annuity products

in the market7. The acturially fair premium for the considered one-pool care-dependent

tontine is given by

P oc1
0 := E

[∫ ∞
0

e−rtboc11 (t)dt+

∫ ∞
0

e−rtboc12 (t)dt

]
5When defining the predetermined benefits for the care-dependent tontine products, we neglect the

financial market risk. In other words, we do not consider the interest rate risk, nor are the benefits unit-
linked. Incorporating equity risk can make the benefits more volatile. If we compare pure mortality-
linked products with unit-linked products, it is to expect that the unit-linked products probably are
more preferable. However, it is unclear what the preference order will turn out if we compare a unit-
linked care-dependent annuity to a unit-linked care-dependent tontine. We leave this question for future
research.

6LIMRA Secure Retirement Institute: Total Annuity Sales Have Best Quarter in Nearly
10 Years. https://www.limra.com/en/newsroom/news-releases/2019/limra-secure-retirement-institute-
total-annuity-sales-have-best-quarter-in-nearly-10-years

7https://www.ltcinsuranceconsultants.com/long-term-care-annuity
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= E
[∫ ∞

0

e−rt1{Sx+t=1}
ndoc11 (t)

N(t)
dt

]
+ E

[∫ ∞
0

e−rt1{Sx+t=2}
ndoc12 (t)

N(t)
dt

]
=

∫ ∞
0

e−rt · 11tpx
n−1∑
k=0

ndoc11 (t)

k + 1

(
n− 1

k

)
(tpx)

k (1− tpx)
n−1−k dt

+

∫ ∞
0

e−rt · 12tpx
n−1∑
k=0

ndoc12 (t)

k + 1

(
n− 1

k

)
(tpx)

k (1− tpx)
n−1−k dt

=

∫ ∞
0

e−rt
11
tpx

tpx

n∑
k=1

(
n

k

)
(tpx)

k (1− tpx)
n−k · doc11 (t)dt

+

∫ ∞
0

e−rt
12
tpx

tpx

n∑
k=1

(
n

k

)
(tpx)

k (1− tpx)
n−k · doc12 (t)dt

=

∫ ∞
0

e−rt
11
tpx

tpx
(1− (1− tpx)

n) · doc11 (t)dt+

∫ ∞
0

e−rt
12
tpx

tpx
(1− (1− tpx)

n) · doc12 (t)dt.

(3.3)

For lines three and four, in the case that the policyholder is still alive, N(t) is at least

1. Thus, the overall pool size satisfies N(t)− 1 ∼ Bin (n− 1, tpx) .

The policyholder’s utility is assumed to be given by the following state-dependent utility

function

U(bi(t)) :=
∑
i∈S

ui(bi(t)), (3.4)

where bi is the payoff of care-dependent tontine in state i, i ∈ S . And ui(bi(t)) , i ∈ S
is strictly increasing and concave functions in bi .

It is usually hard to determine a person’s utility function exactly. Thus, a possible

alternative is to establish one’s utility function according to some plausible properties

(e.g. people are non-satiated, and typically show decreasing absolute risk aversion in

wealth). The power utility satisfies the above two properties and is abundantly used

in theoretical research regarding the long-term care insurance (Brown and Finkelstein

(2008), Davidoff (2010), Ameriks et al. (2020), Chen et al. (2021), etc.) because of its nice

analytical tractability. After setting up the model for utility, one can fit it with real-world

data to estimate the relevant parameters (e.g. risk aversion coefficient). For example,

Friedman (1974) has estimated the policyholder’s relative risk aversion coefficient w.r.t.

power utility applying the data from health insurance. Szpiro (1986) uses the property

and liability insurance data of the U.S. to estimate the relative risk aversion coefficient.

Therefore, we assume that the policyholder evaluates payoffs through a power utility with
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a constant relative risk aversion coefficient γ ∈ (0,∞), γ 6= 1 . Furthermore, considering

the fact that different values of γ may affect our results, a sensitivity analysis is given

w.r.t. γ later on. Then, for a healthy individual, his utility is

u1(ω) =
ω1−γ

1− γ
, (3.5)

where ω is the payoff for healthy participants.

We introduce a payment weighting factor α , with

α =

{
∈ (0, 1], if γ > 1,

> 1, if γ ∈ (0, 1)
, (3.6)

and the utility function for the severely sick is defined as

u2(ω) =
(α · ω)1−γ

1− γ
. (3.7)

We have known from the existing literature that the severe sickness may increase the

marginal utility of payments (e.g. Evans and Viscusi (1991)). Moreover, for the purpose

of designing attractive products, we would like to compensate the severely sick people

with higher payments. In this sense, the marginal utility in the severely sick state is

assumed to be not less than that in the healthy state. Note that the marginal utility

in the healthy state and the severely sick state are ∂u1(ω)
∂ω

= ω−γ and ∂u2(ω)
∂ω

= α1−γω−γ

respectively. In order to achieve this assumption, α1−γ ≥ 1 needs to be met. Thus,

different values of α are needed, due to the negative and positive sign of (1 − γ) for

γ > 1 and γ ∈ (0, 1) respectively. For α = 1 , the utility function of the severely sick is

identical to that of the healthy.

Here, for this one-pool case, the objective function can be written as

sup
d
oc1
1 (t),d

oc1
2 (t)

E
[∫ ∞

0

e−ρt
(
u1

(
ndoc11 (t)

N(t)

)
1{Sx+t=1} + u2

(
ndoc12 (t)

N(t)

)
1{Sx+t=2}

)
dt

]
s.t. P oc1

0 ≤ v, (3.8)

where ρ is the individual’s subjective discount rate and v the initial wealth the pol-

icyholder owns to invest in the care-dependent tontine. In Theorem 3.1, we solve the

optimization problem (3.8).

Theorem 3.1. Assume that the policyholder’s preferences for payments can be described
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by (3.8). For a one-pool care-dependent tontine product, maximizing the expected state-

dependent lifetime utility (3.8), the optimal payment stream functions are given by

doc1∗1 (t) =
e1/γ(r−ρ)t

(λ∗oc1)
1/γ
· (κn,γ(tpx))

1/γ

(1− (1− tpx)
n)

1/γ
, (3.9)

doc1∗2 (t) = α1/γ−1 · e
1/γ(r−ρ)t

(λ∗oc1)
1/γ
· (κn,γ(tpx))

1/γ

(1− (1− tpx)
n)

1/γ
, (3.10)

⇒ doc1∗2 = α1/γ−1 · doc1∗1 , (3.11)

where κn,γ(tpx) =
∑n

k=1

(
n
k

) (
k
n

)γ
(tpx)

k (1− tpx)
n−k .

Furthermore, the optimal Lagrangian multiplier λ∗oc1 > 0 is given by

λ∗oc1 =

(
1

v

(∫ ∞
0

e(
r−ρ
γ
−r)t ·

(
11
tpx

tpx
· κn,γ(tpx)

)1/γ

(
11
tpx

tpx
· (1− (1− tpx)

n)

)1/γ−1dt

+

∫ ∞
0

e(
r−ρ
γ
−r)t · α1/γ−1 ·

(
12
tpx

tpx
· κn,γ(tpx)

)1/γ

(
12
tpx

tpx
· (1− (1− tpx)

n)

)1/γ−1dt

))γ
. (3.12)

And then, the expected state-dependent lifetime utility is given by

U oc1∗
0 =

∫ ∞
0

e−ρt
11
tpx

tpx

n∑
k=1

(
n

k

)(
k

n

)γ
(tpx)

k (1− tpx)
n−k · u1(doc1∗1 (t))dt

+

∫ ∞
0

e−ρt
12
tpx

tpx

n∑
k=1

(
n

k

)(
k

n

)γ
(tpx)

k · (1− tpx)
n−k · u2(doc1∗2 (t))dt. (3.13)

As can be seen in (3.11), α and γ play crucial roles in the relation between doc1∗2 and

doc1∗1 . For α = 1 , we return to the original tontine setting of Chen et al. (2019) and

doc1∗2 = doc1∗1 ; our optimal tontine payments take the same form, with the exclusive

difference that the critical Lagrangian multiplier λ∗oc1 depends on the various transition

probabilities.

As shown by Equation (3.11), the optimal care-dependent tontine payment doc1∗2 for the

severely sick is α1/γ−1 times of doc1∗1 for the healthy. According to the different value

arranges of α when γ > 1 and γ ∈ (0, 1) (see (3.6)), it always holds α1/γ−1 > 1 . It
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means, the sick members will receive more payments, which coincides with our aim – to

provide higher liquidity to cover the medical care cost.

3.2 Two-pool Care-dependent Tontine

In another case, we distinguish two groups of policyholders at each time t > 0 , i.e. the

pool of healthy members, and the pool of severely sick members. At each time t , we

reallocate the ones who become severely sick into the corresponding pool.

Then the payoff for the healthy members is defined as:

boc21 (t) :=

{
1{Sx+t=1}

nd
oc2
1 (t)

N1(t)
, if N1(t) > 0,

0, else
. (3.14)

And the payoff for the severely sick members is defined as:

boc22 (t) :=

{
1{Sx+t=2}

nd
oc2
2 (t)

N2(t)
, if N2(t) > 0,

0, else
. (3.15)

Here N1(t) represents the number of healthy policyholders, and N2(t) is that in the

pool of the severely sick.

For a two-pool care-dependent tontine, the actuarially fair premium is given by:

P oc2
0 := E

[∫ ∞
0

e−rtboc21 (t)dt+

∫ ∞
0

e−rtboc22 (t)dt

]
= E

[∫ ∞
0

e−rt1{Sx+t=1}
ndoc21 (t)

N1(t)
dt

]
+ E

[∫ ∞
0

e−rt1{Sx+t=2}
ndoc22 (t)

N2(t)
dt

]
=

∫ ∞
0

e−rt 11tpx

n−1∑
k=0

ndoc21 (t)

k + 1

(
n− 1

k

)(
11
tpx
)k (

1− 11
tpx
)n−1−k

dt

+

∫ ∞
0

e−rt 12tpx

n−1∑
k=0

ndoc22 (t)

k + 1

(
n− 1

k

)(
12
tpx
)k (

1− 12
tpx
)n−1−k

dt

=

∫ ∞
0

e−rt
n∑
k=1

(
n

k

)(
11
tpx
)k (

1− 11
tpx
)n−k · doc21 (t)dt

+

∫ ∞
0

e−rt
n∑
k=1

(
n

k

)(
12
tpx
)k (

1− 12
tpx
)n−k · doc22 (t)dt

=

∫ ∞
0

e−rt
(
1−

(
1− 11

tpx
)n) · doc21 (t)dt
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+

∫ ∞
0

e−rt
(
1−

(
1− 12

tpx
)n) · doc22 (t)dt. (3.16)

In the third line, conditional on Sx+t = 1 , there is at least one alive member in the

healthy pool. Then the healthy pool size is distributed as N1(t)− 1 ∼ Bin (n− 1, 11tpx) .

In addition, in line four, conditional on Sx+t = 2 , the number in the severely sick pool

is not less than 1. Then N2(t)− 1 ∼ Bin (n− 1, 12tpx) .

Here again we write down the objective function:

sup
d
oc2
1 (t),d

oc2
2 (t)

E
[∫ ∞

0

e−ρt
(
u1

(
ndoc21 (t)

N1(t)

)
1{Sx+t=1} + u2

(
ndoc22 (t)

N2(t)

)
1{Sx+t=2}

)
dt

]
s.t. P oc2

0 ≤ v. (3.17)

In Theorem 3.2, we solve the objective function (3.17).

Theorem 3.2. Assume that the policyholder’s preferences for payments can be described

by (3.17). For a two-pool care-dependent tontine product, maximizing the expected state-

dependent lifetime utility (3.17), the optimal payment stream functions are given by

doc2∗1 (t) =
e1/γ(r−ρ)t

(λ∗oc2)
1/γ
· (κn,γ(

11
tpx))

1/γ

(1− (1− 11
tpx)

n
)
1/γ
, (3.18)

doc2∗2 (t) = α1/γ−1 · e
1/γ(r−ρ)t

(λ∗oc2)
1/γ
· (κn,γ(

12
tpx))

1/γ

(1− (1− 12
tpx)

n
)
1/γ
. (3.19)

The optimal Lagrangian multiplier λ∗oc2 > 0 is given by

λ∗oc2 =

(
1

v

(∫ ∞
0

e(
r−ρ
γ
−r)t

·

[
(κn,γ(

11
tpx))

1/γ

(1− (1− 11
tpx)

n
)
1/γ−1 +

α1/γ−1 · (κn,γ(12tpx))
1/γ

(1− (1− 12
tpx)

n
)
1/γ−1

]
dt

))γ
. (3.20)

And then, the expected state-dependent lifetime utility is given by

U oc2
0 =

∫ ∞
0

e−ρt
n∑
k=1

(
n

k

)(
k

n

)γ (
11
tpx
)k (

1− 11
tpx
)n−k · u1(doc2∗1 (t))dt

+

∫ ∞
0

e−ρt
n∑
k=1

(
n

k

)(
k

n

)γ (
12
tpx
)k (

1− 12
tpx
)n−k · u2(doc2∗2 (t))dt. (3.21)
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In comparison with the work of Hieber and Lucas (2020), which mainly focuses on the

insurer’s perspective, we start from the policyholder’s angle. Our first design of care-

dependent tontine coincides with the 3-state case of Hieber and Lucas (2020), i.e. we

both pool together two types of people (the healthy and the severely sick). The difference

is how we generate the optimal payoffs. Under the setting of Hieber and Lucas (2020),

the authors compensate the sick members’ extra mortality credits to themselves owing

to higher mortality, thus the payoff for the severely sick gets higher than that for the

healthy; additionally, the payoff for the severely sick will vary with the extra mortality

credits. While in our case, a rational policyholder will choose the optimal payoffs that

maximize his utility, under the budget constraint. In this sense, pricing is not the main

purpose of this paper. The payoff for the severely sick is determined by the policyholder’s

payment weighting factor and the overall utility. It gets higher than the payoff for the

healthy due to the payment weighting factor.

3.3 Care-dependent Annuity

In order to compare different care-dependent products, we write down the optimal payoff

functions of a care-dependent annuity using our model framework. For a policyholder

that is healthy, he will receive a regular annuity payoff of cac1 (t) > 0 . Once he becomes

care-dependent, a different payoff cac2 (t) > 0 will be provided. It is also expected that

cac2 (t) > cac1 (t) for a higher liquidity is desired when the policyholder gets severely sick.

This will be examined later.

Before going towards the optimal payoffs, let us first write down the actuarially fair

premium for the care-dependent annuity:

P ac
0 := E

[∫ ∞
0

e−rt1{Sx+t=1}c
ac
1 (t)dt

]
+ E

[∫ ∞
0

e−rt1{Sx+t=2}c
ac
2 (t)dt

]
=

∫ ∞
0

e−rt 11tpxc
ac
1 (t)dt+

∫ ∞
0

e−rt 12tpxc
ac
2 (t)dt. (3.22)

Analogously, the policyholder’s utility is given by

sup
cac1 (t),cac2 (t)

E
[∫ ∞

0

e−ρt
(
u1 (cac1 (t))1{Sx+t=1} + u2 (cac2 (t))1{Sx+t=2}

)
dt

]
s.t. P ac

0 ≤ v. (3.23)

13



Then we maximize the utility optimization problem (3.23) by Theorem 3.3.

Theorem 3.3. For a care-dependent annuity product, the optimal payoffs are given by

cac∗1 (t) =
(
λ∗ac · e(ρ−r)t

)−1/γ
(3.24)

cac∗2 (t) = α1/γ−1 ·
(
λ∗ac · e(ρ−r)t

)−1/γ
. (3.25)

By budget constraint, we obtain

λ∗ac =

(
1

v

∫ ∞
0

e(
r−ρ
γ
−r)t(11tpx + α1/γ−1 · 12tpx)dt

)γ
. (3.26)

The policyholder’s expected state-dependent lifetime utility is given by

Uac∗
0 =

∫ ∞
0

e−ρt 11tpx · u1(cac∗1 (t))dt+

∫ ∞
0

e−ρt 12tpx · u2(cac∗2 (t))dt. (3.27)

Similarly as in one-pool care-dependent tontine case, α = 1 leads to a regular annuity,

which does not lead to an increase in payoff when becoming care-dependent, i.e. cac∗1 (t) =

cac∗2 (t) .

In case that actuarially fair premiums are adopted for care-dependent tontines and care-

dependent annuities as in Equations (3.3), (3.16) and (3.22), the relation between the

care-dependent annuities and care-dependent tontines can be explored theoretically.

Proposition 3.4. By results reached from problems (3.8), (3.17), and (3.23), we have

Uac∗
0 ≥ U oc1∗

0 , (3.28)

Uac∗
0 ≥ U oc2∗

0 . (3.29)

Proof. See Appendix A.4.

Adding care-dependency payoffs to the regular retirement products does not change the

preference order of the tontine and the annuity under actuarially fair pricing. The optimal

care-dependent annuities always deliver a higher expected lifetime utility level than the

optimal care-dependent tontines. However, between the two care-dependent tontines, no

clear relation can be detected.
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4 Product Comparison under A Realistic Setting

So far, we have obtained the optimal payoffs as well as the corresponding utility of each

product with actuarially fair premiums on a net basis. In the following, we take the

realistic risk loadings into account, in order to explore how the attractiveness of the

care-dependent tontines and care-dependent annuities would change in the real world8.

We compute the gross premium which consists of the net premium and the risk loading

(Section 4.1), and the expected life-time utility of each product. A product leading to

a higher utility level (but costing more) is not necessarily better than a product leading

to a lower utility level (but costing less). In Section 4.2, we will show how to make the

considered care-dependent products reach the same expected utility level, such that we

can focus on the comparison of the gross premiums of the products.

4.1 Calculation of Risk Loadings

By ignoring any administration or acquisition charges, we assume a single charged risk

loading, i.e. F oc1
0 ≥ 0 for the 1-pool care-dependent tontine, F oc2

0 ≥ 0 for the 2-pool

care-dependent tontine and F ac
0 ≥ 0 for care-dependent annuity. Then we can specify

the initial gross premium for each product by

P̂ oc1
0 = P oc1

0 + F oc1
0 , (4.1)

P̂ oc2
0 = P oc2

0 + F oc2
0 , (4.2)

P̂ ac
0 = P ac

0 + F ac
0 . (4.3)

Now, in order to determine the risk loading, we further consider the longevity risk and dis-

8With reference to Chen et al. (2019), one could notice that when adding a reasonable risk loading
for longevity risk, tontines become more attractive than annuities. However, it is not the case without
a consideration about risk loading.
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ease risk9 following China Risk Oriented Solvency System (C-ROSS)10 regulation about

minimum capital requirement in China (see CBIRC (2020b)).

According to the Insurance Company Solvency Supervision Rules No.5, the minimum

capital requirement in retirement insurance section is computed by a scenario-comparison

method (CBIRC (2020b)). It is worthwhile to mention that the base scenario assump-

tions are used by the insurers to calculate their best-estimate liabilities. The capital

requirement is the change of the present value (PV) between the unfavorable scenario

and the base scenario, and it should not be negative, i.e.

MC = max (PVunf − PVbas, 0) , (4.4)

where MC is the minimum capital requirement for overall insurance risk in retirement

insurance business. The reinsurance factor is left out here, and PVbas represents the PV

under base scenario assumptions at time 0, and PVunf is that under the unfavorable

scenario at time 0. As there are actually two types of risks here, we will need to calculate

the minimum capital under each kind of risks separately. We denote the MClong as the

minimum capital requirement for longevity risk and MCmorb for disease incidence risk.

Then, they can be computed by

MClong = max (PVlong − PVbas, 0) , (4.5)

MCmorb = max (PVmorb − PVbas, 0) , (4.6)

with PVlong and PVmorb representing the PV in unfavorable situation of longevity and

9As for the disease risk, in fact, it contains not only the disease incidence risk, but also the disease
deterioration risk; these two types of disease risks are correlated (CBIRC (2020b)). Nevertheless, dealing
with this may distract from our main points that we want to convey in this part. As our focus in this
section is to illustrate the possible choice between two care-dependent tontines and the care-dependent
annuity in view of a gross premium. Under actuarially fair premium setting, results of Proposition
3.4 have shown the care-dependent annuity is always more attractive than either of the care-dependent
tontine. Thus, we ignore the disease deterioration risk faced by the severely sick members in the following
contents. Disease incidence risk refers to the risk of insurance companies suffering unexpected losses
due to the actual experience of the disease incidence being higher than expected. Disease deterioration
risk means the risk that the disease deterioration trend is higher than expected and finally causes non-
expected losses to the insurers.

10On 13 February 2015, the China Insurance Regulatory Commission (now called China Banking and
Insurance Regulatory Commission (CBIRC)) released the rules of the new solvency regime, which is
known as China Risk Oriented Solvency System (C-ROSS). It adopts a regulatory framework of ‘three
pillars’, reshapes it according to the characteristics of China’s insurance market to ensure that it is
viable and reflects the realities of the emerging market, and makes sure it is comparable with other
representative solvency regimes in the world (e.g. Solvency II in Europe and Risk-based Capital Phase
2 in Singapore) in terms of its three-pillar structure and specific regulatory standards and requirements.
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disease incidence risk, respectively. The longevity risk and disease incidence risk are

uncorrelated according to CBIRC (2020b). Thus we get the overall required minimum

insurance capital by

MCins =
√
MC2

long +MC2
morb. (4.7)

Refering to CBIRC (2020b), the assumptions for one-year probability under the unfa-

vorable scenario are defined to be the assumptions for one-year probability under the

base scenario multiplied by certain shock factors. The unfavorable scenario assumption

is equal to the base scenario assumption × (1 + SF ) , where SF is the unfavorable sce-

nario factor, the proportional shift upward or downward of the underlying assumption

(e.g. the best-estimate survival probabilities).

In the aspect of longevity risk, SF of longevity risk is based on the proportional shift

downward of the base mortality assumption at all future policy dates. We denote the

unfavorable scenario factor of longevity risk by SF long
t , and it takes the values according

to the policy duration as follows (CBIRC (2020b)):

SF long
t =


(1− 3%)t − 1 0 < t ≤ 10

(1− 3%)10 · (1− 2%)t−10 − 1 10 < t ≤ 20

(1− 3%)10 · (1− 2%)10 · (1− 1%)t−20 − 1 20 < t ≤ 30

(1− 3%)10 · (1− 2%)10 · (1− 1%)10 − 1 t > 30

. (4.8)

In the aspect of disease incidence risk, the unfavorable scenario factor SFmorb
t is based

on the proportional shift upward of the base morbidity assumption at all future policy

dates. We set it to be 20%, which is stated by CBIRC (2020b), i.e.

SFmorb
t = 20%, ∀t. (4.9)

In the unfavorable scenario, we denote plong for probability in consideration with a

longevity risk and pmorb is applied to represent the unfavorable probability with the

disease incidence risk. Then, for different care-dependent products, the PVs of cash

flows for different scenarios at time 0 are given by

PV oc1
i =

∫ ∞
0

e−rt
11
tp
i
x

tp
i
x

(
1−

(
1− tp

i
x

)n) · doc1∗1 (t)dt

+

∫ ∞
0

e−rt
12
tp
i
x

tp
i
x

(
1−

(
1− tp

i
x

)n) · doc1∗2 (t)dt, (4.10)
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PV oc2
i =

∫ ∞
0

e−rt
(
1−

(
1− 11

tp
i
x

)n) · doc2∗1 (t)dt

+

∫ ∞
0

e−rt
(
1−

(
1− 12

tp
i
x

)n) · doc2∗2 (t)dt, (4.11)

PV ac
i =

∫ ∞
0

e−rt 11tp
i
xc
ac∗
1 (t)dt+

∫ ∞
0

e−rt 12tp
i
xc
ac∗
2 (t)dt. (4.12)

i = bas, long, morb,

where i = bas represents the base scenario assumption, i = long is the unfavorable

scenario of longevity risk, and i = morb is the unfavorable scenario of disease incidence

risk.

According to the Insurance Company Solvency Supervision Rules No.3 (CBIRC (2020a)),

the risk margin RM actually measures the difference of future liabilities in an unfavor-

able scenario and a base scenario with a regulation proportion, which reflects as a risk

compensation to the insurers or re-insurers. Thus, we take it as an alternative to risk

loading for longevity and disease incidence risks (Chen et al. (2019); Bauer et al. (2010)).

Then, according to CBIRC (2020a), the risk margin RM is defined by

RM = MCins ·
G−1(85%)

G−1(99.5%)
, (4.13)

where MCins is the overall required minimum capital defined by (4.7), and G−1(x%)

represents the quantile of a normal distribution under probability x% , and x = 85 is

prescribed by the regulator (CBIRC (2020a)). G(·) is the distribution of best-estimate

liabilities11. Furthermore, the initial single loading for longevity and disease incidence

risks is then set to be F0 = RM .

In this paper, the risk loading in our setting is purely driven by solvency capital require-

ment. In the real world, typically a higher risk loading than required by the solvency

regulation is charged.

11The definition of G(·) is not given clearly in CBIRC (2020a) as it is still being tested by the
insurance industry. Here we take it as the distribution of best-estimate liabilities with reference to the
quantile method for risk margin computation (Zheng et al. (2013)). In addition, as determining the
distribution of best-estimate liabilities is not our focus in this article, dealing with the additional issues
might cause too much distraction from the key points we try to convey. Thus, we apply the standard

normal distribution, and get G−1(85%)
G−1(99.5%) ≈ 0.403 . We also use different normal distributions and get

corresponding coefficients, but it turns out that different coefficients G−1(85%)
G−1(99.5%) have little impact on

our conclusions.
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4.2 Product Comparison with Utility Indifference Number

Taking account of the risk loadings for the various care-dependent products, we cannot

purely compare the expected discounted lifetime utility resulting from the corresponding

optimal payoffs. A product leading to a higher utility level might cost in total more

initially, i.e. the gross premium of this product might be higher. To further compare

the attractiveness of two care-dependent tontines and the care-dependent annuity and

ease our comparison, we first make one dimension of the two quantities (utility and

gross premium) identical. More specifically, we compute the number of care-dependent

tontines that one should purchase, in order to obtain the same utility yielded by one

care-dependent annuity. Q1 and Q2 are used to denote the number of one-pool care-

dependent tontines and two-pool ones respectively (as has been applied by Chen et al.

(2019)). Then we have:

Uac
0 = E

[ ∫ ∞
0

e−ρt
(
u1

(
Q1
ndoc11 (t)

N(t)

)
1{Sx+t=1} + u2

(
Q1
ndoc12 (t)

N(t)

)
1{Sx+t=2}

)
dt

]
= Q1−γ

1 · U oc1
0 , (4.14)

Uac
0 = E

[ ∫ ∞
0

e−ρt
(
u1

(
Q2
ndoc21 (t)

N1(t)

)
1{Sx+t=1} + u2

(
Q2
ndoc22 (t)

N2(t)

)
1{Sx+t=2}

)
dt

]
= Q1−γ

2 · U oc2
0 . (4.15)

The Q1 and Q2 are solved by:

Q1 =

(
Uac
0

U oc1
0

) 1
1−γ

, (4.16)

Q2 =

(
Uac
0

U oc2
0

) 1
1−γ

. (4.17)

Q1 and Q2 respectively represent the number of 1-pool CDT and 2-pool CDT with

actuarially fair premium P oc1
0 = P oc2

0 = v = 10000 that one needs to purchase, in order

to receive the same expected discounted lifetime utility as from a CDA with actuarially

fair premium P ac
0 = v = 10000 . In other words, the policyholder becomes indifferent be-

tween one CDA and Q1 1-pool CDTs (or Q2 2-pool CDTs). Among the care-dependent

products with identical expected discounted lifetime utility, the one with lowest compa-

rable gross premium would be most attractive to the policyholder. Hence, we next will

compare the gross premium of Q1 1-pool care-dependent tontines (i.e. Q1 · P̂ oc1 ), Q2
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2-pool care-dependent tontines (i.e. Q2 · P̂ oc2 ) with one care-dependent annuity (i.e.

P̂ ac ).

To quantify this part of results, we shall rely on numerical techniques. In this case, we

apply the data from China Health and Retirement Longitudinal Study (CHARLS) and

rely on China Risk Oriented Solvency System (C-ROSS) to calculate the realistic risk

loadings and make product comparison.

5 Numerical Analysis

In this section, we compare the three different care-dependent products numerically.

First, we estimate the transition probabilities. After that, we make the comparison

among various care-dependent products from two aspects: (i) we compute the corre-

sponding risk loadings, (ii) and we generate the utility indifference numbers to compare

the attractiveness of different products. Finally, sensitivity analyses are given, to ex-

amine how the results will change with different inputs (i.e. risk aversion coefficient γ ,

payment weighting factor α , and risk-free rate r ).

5.1 Estimates of Transition Probabilities

To estimate the transition probabilities, we use the data from China Health and Re-

tirement Longitudinal Study (CHARLS). This database covers the period from 2011 to

2018, and has 4 waves in total. It contains information of Chinese residents ages 45 and

older. The baseline national wave of CHARLS is being fielded in 2011 and includes about

10,257 households and 17,708 individuals in 150 counties/districts and 450 villages/res-

ident committees. The survey data includes detailed demographic characteristics (such

as age, education level, marital status, etc.), family economic status, health status (self-

evaluated health status, chronic disease status, fundamental living ability and cognitive

ability, etc.), participation in medical insurance, medical service utilization and commu-

nity basic information.

The state of health is defined by the number of elderly people who lose their ability to

perform daily activities. The ability of daily living (ADL) is originally proposed by Katz

et al. (1963) and has been widely used in academia. There are 6 indicators of ADL:

eating, dressing, bathing, getting into and out of bed, using the toilet, and controlling

urination and defecation. Consistent with the basic situation in Hu et al. (2016)’s research
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and Chinese LTC insurance practice12, we define individuals as severely sick if they have

difficulty with three or more (i.e., 3+) ADLs.

To fully utilize the available data, we construct an unbalanced panel dataset with sample

weights considered and missing records deleted. Among four waves of the survey 2011,

2013, 2015, 2018, each individual should have at least two consecutive observations.

To calculate the transition intensities among different age groups, we first calculate the

crude transition intensities with reference to the work of Hanewald et al. (2019). When

going towards a specific transition situation, the crude transition intensity for an indi-

vidual aged y is given by

ĩjµy =
ijCy
iYy

, i, j ∈ S, i 6= j. (5.1)

where ijCy represents the total transition number from state i to state j at age y .

And iYy describes the overall years of exposure (e.g. sum of years for which the y -year-

old healthy individuals stay healthy). More concretely, the crude transition intensity

of healthy to severely sick at age 60, is defined as the total number of transitions from

healthy to severely sick at age 60 divided by the total number of years of risk exposure

for the 60-year-old at a healthy state. The crude transition intensity directly reflects

the number of transitions from the previous state to the next state in unit time. The

higher the crude transition intensity, the greater the probability of occurrence of the

corresponding transition.

On the basis of resulting crude transition intensities, we then apply a GLM approach

(see Appendix A.5) to smooth the trend of transition intensity going with age (Haber-

man and Renshaw (2009), Fong and Feng (2016)). By Equations (2.4), (2.5) and (2.7)

defined in Section 2, we approximate the t -year probabilities 11
tpy , 12

tpy and 22
tpy by

age and gender. As gender difference is not our focus in this article, we only demonstrate

the results for the 60-year-old males in the following contents. Figure 5.1 displays the

estimated t -year probabilities for a male aged 60.

The courses of the depicted curves follow the natural expectations: in Figure 5.1, the

occupancy probability of being healthy 11
tp60 starts from one, goes down with t and

approaches zero for larger t as the policyholder is going to die at an older age. When

12LTC insurance products in many Chinese insurance companies (e.g. China Life Insurance Company,
Kunlun Healthy Insurance Company and etc.), define that one becomes hard doing three or more ADLs
as the trigger condition of making LTC payments.
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Figure 5.1: t -year probabilities of a 60-year-old male ( 11
tp60 , 22

tp60 and 12
tp60 ).

looking at the curve with hollow triangles, we notice that the occupancy probability of

being severely sick 22
tp60 descends rapidly in the first two decades and tends to be smooth

to zero when he is about to die. Last but not least, the third curve describes the t -year

transition probability of a 60-year-old male, i.e 12
tp60 . The transition probability goes

up at first then down for longer years. As transition probability is in fact affected by

forces from two different directions (see Equation (2.5)): on the one hand, the increasing

probability of becoming severely sick with age, tends to pull up the transition probability;

while on the other hand, the transition probability is brought down by the decreasing

occupancy probability of being severely sick, or say, the decreasing survival probability

in severely sick state. In the about first two decades, the first type of force dominates;

while later, the second type of force plays a leading role in the overall influence to the

probability 12
tp60 .

5.2 Care-dependent Tontine vs Care-dependent Annuity

In this subsection, we calculate the risk loadings for different care-dependent products,

and use utility indifference numbers to show policyholders’ preference for these products

in a realistic scenario. But before that, we need to fix some further parameters (see Table

5.1).

With reference to the 5-year average growth rate of CPI in China (Statistics Bureau of
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Variable Notation Value

Net premium P j
0 = v, j = oc1, oc2, ac 10000

Pool size n 1000
Risk-free rate r 0.02
Subjective discount rate ρ 0.02
Risk aversion coefficient γ 2
Initial age x 60
Payment weighting fac-
tor

α 0.5

Table 5.1: Additional parameters for further computation.

the P.R.China (2020)), we fix the risk-free rate r at 2%. Then we let ρ = r at first, and

the cases where ρ > r and ρ < r will be further examined (see e.g. Chen et al. (2021)).

As for the risk aversion coefficient, we set γ = 2 firstly (see e.g. Havranek et al. (2015)),

and we will vary it later for sensitivity analysis.

5.2.1 Risk Loadings

Referring to our calculation method for risk loadings (see Section 4.1), as well as the

baseline parameters (see Table 5.1), we can compute the minimum capital requirements

(MCs ) and risk loadings (F ′0s ) for different care-dependent products under considera-

tion. The risk loadings for each care-dependent product are shown in Table 5.2. Gener-

ally, the risk loadings for care-dependent tontine products are much lower than that of

a care-dependent annuity. The care-dependent annuity requires the highest risk loading,

which amounts to a relevant share of 5.62% ( = 595.118
10000+595.118

) of the initial contribution.

It could be explained from two aspects: (i) the insurer completely bears the longevity

risk for this annuity-like product; (ii) this big amount of risk loading partly comes from

the unfavorable assumption for longevity risk (see Equation (4.8)) provided by CBIRC

(2020b). For instance, SF long
t takes a large value as time goes by13, which means it is

assumed there is a huge longevity risk in the long run.

We also observe the risk loading of the 1-pool CDT, i.e. 37.589, accounts for 0.37%

( = 37.589
10000+37.589

) of the gross premium. This is substantially greater than that of the

2-pool CDT, which is negligible. The difference comes from the first row in the Table

5.2. (i) The 1-pool CDT requires a larger minimum capital for longevity risk (MC long ).

13According to Equation (4.8), when t > 30 , SF longt = (1− 3%)
10 · (1− 2%)

10 · (1− 1%)
10 − 1 =

−45.5% .
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Let us take a closer look at the liability structures of these two CDTs (see Equation

(4.10) and (4.11)). With a strike from longevity risk, the changed probabilities will have

a greater impact on the 1-pool CDT than the 2-pool one. The term (1− (1− p)n) tends

to 1 as n becomes larger14. Thus, the longevity risk does not substantially affect the

two-pool CDT, especially in a large pool case. (ii) The 1-pool CDT also requires a larger

minimum capital for disease incidence risk (MCmorb ). The insurer takes over a relatively

high disease incidence risk for 1-pool CDT. While for the 2-pool CDT, on one side, the

increase of disease incidence risk causes 11
tp
morb
x to decline over years; on the other side,

an increased disease incidence risk brings about a greater 12
tp
morb
x . In our case, the effect

of disease incidence risk gets cancelled out and even drives down the future cash flows. By

definition of the corresponding minimum capital (4.6), the minimum capital for disease

incidence risk (MCmorb
oc2

) of the 2-pool CDT is equal to zero (This explanation also holds

for MCmorb
ac = 0 of CDA).

MC long
oc1

MC long
oc2

MC long
ac MCmorb

oc1
MCmorb

oc2
MCmorb

ac

51.6 0.633 1477 77.7 0 0

MC ins
oc1

MCins
oc2

MCins
ac F oc1

0 F oc2
0 F ac

0

93.3 0.633 1477 37.589 0.255 595.118

Table 5.2: Minimum capitals and risk loadings for various care-dependent products.

In addition to risk loading computation w.r.t. the Chinese regulation regime (C-ROSS),

we also carry out the relevant computation under a different regulation regime, i.e. the

capital requirements of Solvency II, the insurance regulation in EU countries. The risk

loadings obtained by the Solvency II do not deviate much from those by C-ROSS. The

care-dependent annuity still requires the highest risk loading, while under the baseline

parameter setting, the two-pool care-dependent tontine requires the least (see Appendix

A.6).

Regarding different pool sizes, we also choose the baseline parameters from Table 5.1 to

compute the corresponding risk loadings. Table 5.3 shows that for small pool sizes, say

n = 10 , the loadings for the CDTs are relatively large. The advantage of the CDTs over

the CDA is less substantial. A larger n leads to less risk loadings for both one-pool

CDT and two-pool CDT, but that of the one-pool CDT stops decreasing when the pool

size n reaches some certain level. We could observe that its risk loading remains the

14Here, p represents the probability, e.g. tp
long
x , 11

tp
long
x .
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same when n ≥ 1000 . This is due to the fact that the term (1− (1− p)n) tends to 1

as n becomes larger as mentioned at an early place. There is no other term related to

n in the calculation for the one-pool CDT’s risk loading, which means the influence of

n fades away as n grows. In case of two-pool CDT, for a substantially large pool size,

the loading for care-dependent tontines is negligible.

n F oc1
0 F oc2

0 F ac
0

10 144 270 595
100 41 14.9 595
500 37.7 0.978 595

1000 37.6 0.255 595
2000 37.6 0.0648 595
5000 37.6 0.0071 595

Table 5.3: Risk loading F0 for different pool sizes n using the baseline parameter setting
from Table 5.1. Net premium P oc1

0 = P oc2
0 = P ac

0 = v = 10000 , subjective discount rate
ρ = 0.02 , risk-free rate r = 0.02 , initial age x = 60 , risk aversion coefficient γ = 2 ,
and payment weighting factor α = 0.5 .

5.2.2 Product Comparison with Utility Indifference Number

As introduced in Section 4.2, we will compute the utility indifference numbers Q1 and Q2

for one-pool and two-pool care-dependent tontine separately. Using parameters assumed

in Table 5.1, we obtain Q1 , Q2 and comparable gross premiums for different care-

dependent products:

Q1 = 1.000896 and Q2 = 1.003010,

Q1 · P̂ oc1 = 1.000896× (10000 + 37.589) = 10046.583,

Q2 · P̂ oc2 = 1.003010× (10000 + 0.255) = 10030.356,

P̂ ac = 10000 + 595.118 = 10595.118.

Obviously, from results above, it is easy to find out that the 2-pool CDT becomes the best

choice for the policyholder and then is the 1-pool CDT, using the baseline parameters.

The CDA’s gloss is taken off by its high risk loading. To conclude, incorporating an initial

risk loading required by the insurance regulator, we find that under our baseline setting,

the care-dependent tontines are much more attractive than care-dependent annuities for

both cases, and the 2-pool CDT gets more appealing than the 1-pool one.
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In the following, we explore the sensitivity of different inputs, i.e. risk aversion coeffi-

cient γ , payment weighting factor α , and risk-free rate r respectively. Based on the

utility indifference number, we calculate the comparable gross premiums for different

care-dependent products, which is seen as the basis for people to choose a product. Gen-

erally, as can be seen from Table 5.4 and Table 5.5, it is noted that CDTs are always

better choices than CDA.

We first numerically examine the sensitivity of the policyholder’s risk aversion, i.e. γ ,

and other parameters are taken from the baseline setting table (i.e. Table 5.1). We

notice from Theorem 3.1, 3.2 and 3.3, that γ exerts an impact on the policyholder’s

utility as well as risk loadings through different payoffs. For example, changing γ brings

about the changes in the payment streams for the severely sick ( doc12 , doc22 , and dac2 )

and the utility indifference number (Q1 and Q2 ), thus it affects the comparable gross

premiums of care-dependent tontines. In the case that γ > 1 and α ∈ (0, 1) , the rows of

Table 5.4 reveal that the more risk-averse policyholders regard CDTs as a little bit more

expensive than those who are less risk-averse. To our surprise, we find that for those

who are assigned a bigger risk aversion coefficient, e.g. γ ≥ 8 when α = 0.5 , the 1-pool

CDT becomes the best option while 2-pool CDT comes in second in terms of choices. In

the case that γ ∈ (0, 1) and α > 1 , the comparable gross premium of the 1-pool CDT

drops with γ . With different value ranges of γ and α , the payment streams for the

severely sick vary in different direction with γ 15. The variation in the payment stream

leads to changes in the risk loading, and then the comparable gross premium. The risk

aversion coefficient γ plays a critical role in the payment functions of these two CDTs,

thus a slight change of γ may bring about relatively large difference in comparable gross

premiums.

Next, let us fix the risk aversion coefficient and look at the columns of Table 5.4. And also,

the other parameters are taken from the baseline setting table (i.e. Table 5.1). Generally

speaking, the change of the payment weighting factor does not lead to 2-pool CDT being

less attractive. The payment weighting factor α has an effect on the comparable gross

premiums of CDTs through utility indifference numbers and risk loadings. It can be

detected that a greater α slightly decreases the comparable gross premiums of CDTs

when γ > 1 and α ∈ (0, 1) , while increases those in the case that γ ∈ (0, 1) and α > 1 .

Likewise, the difference comes from the fact that the payment streams for the severely sick

15By Equation (3.10), (3.19) and (3.25), when γ > 1 and α ∈ (0, 1) , greater γ leads to a rise in

the term α1/γ−1 , while a decline in α1/γ−1 when γ ∈ (0, 1) and α > 1 . More concretely, ∂α1/γ−1

∂γ =

− 1
γ2 · lnα · α1/γ−1 , with α1/γ−1 > 0 and − 1

γ2 < 0 . Thus, the monotony depends on the value of α .
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vary in different directions with α , when α lies in different value ranges (see Equation

(3.10), (3.19) and (3.25)). In the case that γ > 1 and α ∈ (0, 1) , α1/γ−1 goes down

with α . Thus, corresponding payments for the severely sick drops with α 16. Further,

risk loadings reduce as α increases. In the case that γ ∈ (0, 1) and α > 1 , α1/γ−1

goes up with α . Thus, the corresponding payments for the severely sick and then risk

loadings increase with α ; meanwhile, the advantage of the 2-pool CDT becomes more

substantial17

Finally, as mentioned before, we are about to analyze the cases that r < ρ and r > ρ .

With ρ = 2% keeping fixed, we vary the risk-free interest rate r by 0 to 0.05, and

comparable gross premiums correspondingly. By Table 5.5, analogously, the comparable

gross premiums of CDTs decrease in risk-free interest rate r when γ > 1 and α ∈ (0, 1) ,

and increase with r when γ ∈ (0, 1) and α > 1 . However, this effect is moderate.

Q1 ∗ P̂ oc10 Q2 ∗ P̂ oc20 P̂ ac0

α ∈ (0, 1), γ > 1

α
γ

2 5 8 2 5 8 2 5 8

0.2 10113.74 10224.02 10269.52 10039.65 10126.93 10211.94 10729.28 10916.33 10969.9
0.5 10046.59 10088.6 10110.18 10030.36 10082.98 10133.68 10595.12 10650.96 10666.18
0.8 10019.41 10038.94 10052.78 10026.6 10066.86 10105.5 10541.05 10555.52 10559.25

α > 1, γ ∈ (0, 1)

α
γ

0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

1.5 10266.52 10047.26 10013.38 10006.57 10008.14 10010.84 11070.1 10610.15 10538.91
2 10533.97 10087.92 10021.03 10010.43 10009.6 10011.28 11641.77 10692.76 10554.36
5 10840.26 10265.98 10048.25 10014.86 10015.99 10012.83 12301.26 11064.11 10609.34

Table 5.4: Sensitivity analysis w.r.t risk aversion coefficient γ and payment weighting
factor α . Other parameters are taken from the baseline setting table (i.e. Table 5.1).
More concretely, net premium P oc1

0 = P oc2
0 = P ac

0 = v = 10000 , pool size n = 1000 ,
risk-free rate r = 0.02 , subjective discount rate ρ = 0.02 , and initial age x = 60 .

16But the payments for the severely sick are still higher than those for the healthy.
17 ∂α1/γ−1

∂α = ( 1
γ − 1)α1/γ−2 , with α1/γ−2 > 0 . Thus, the monotony depends on the value of γ .
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r Q1 ∗ P̂ oc10 Q2 ∗ P̂ oc20 P̂ ac0 Q1 ∗ P̂ oc10 Q2 ∗ P̂ oc20 P̂ ac0

γ = 2, α = 0.5 γ = 0.5, α = 2

0.00 10050.93 10033.5 10690.53 10076.65 10008.1 10515.29
0.01 10048.7 10031.86 10641.07 10082.07 10008.79 10597.38
0.02 10046.59 10030.36 10595.12 10087.92 10009.6 10692.76
0.03 10044.59 10028.97 10552.47 10094.2 10010.56 10803.27
0.04 10042.7 10027.7 10512.9 10100.92 10011.7 10930.82
0.05 10040.91 10026.53 10476.22 10108.06 10013.04 11077.43

Table 5.5: Sensitivity analysis w.r.t risk-free rate r . Other parameters are taken from
the baseline setting table (i.e. Table 5.1). Net premium P oc1

0 = P oc2
0 = P ac

0 = v = 10000 ,
pool size n = 1000 , subjective discount rate ρ = 0.02 , initial age x = 60 , risk aversion
coefficient γ = 2 , and payment weighting factor α = 0.5 .

5.3 Further Results

Regarding the risk loadings computed above, we can further explore how much it costs

to add the care-dependent coverage to the original retirement products. In this case,

we split the risk loading of a care-dependent tontine/annuity into the risk loading of

optimal tontine/annuity (in the form of optimal tontine/annuity introduced by Chen

et al. (2019)) and cost of care-dependent coverage. By setting the weighting factor

α = 1 for 1-pool CDT and CDA, while keeping the other parameters the same in Table

5.1, we get the risk loading required by optimal tontine for 0.011, and optimal annuity

for 518.502 (see Table 5.6). Subtracting the risk loading of optimal tontine/annuity from

that of care-dependent tontine/annuity, the cost for care-dependent coverage of each

product is clear. The results indicate that for the insurers, under the baseline parameter

setting, constructing a care-dependent tontine in a two-pool structure may be the most

cost-efficient way to add the care-dependent coverage among the three insurance products

under consideration. Due to the rather high cost of care-dependnet coverage, the insurer

of the one-pool care-dependent tontines do not only play an administrative role as regular

tontines, but serves more as a regular care insurance provider.

6 Conclusion and Discussion

This article comes up with two different ways to evaluate the care-dependent tontines

with a policyholder’s view. We first compute the actuarially fair premiums and then

based on a utility framework, we determine the optimal payment stream structures of
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Risk Loading of 1-pool CDT 37.589
Risk Loading of 2-pool CDT 0.255
Risk Loading of CDA 595.118

Risk Loading of Optimal Tontine 0.011
Risk Loading of Optimal Annuity 518.502

Cost of Care-dependent Coverage (1-pool CDT) 37.578
Cost of Care-dependent Coverage (2-pool CDT) 0.244
Cost of Care-dependent Coverage (CDA) 76.616

Table 5.6: Cost of care-dependent coverage. Other parameters are taken from the baseline
setting table (i.e. Table 5.1). Net premium P oc1

0 = P oc2
0 = P ac

0 = v = 10000 , pool size
n = 1000 , subjective discount rate ρ = 0.02 , risk-free rate r = 0.02 , initial age x = 60 ,
risk aversion coefficient γ = 2 , and payment weighting factor α = 0.5 .

the care-dependent tontines that maximize the policyholder’s expected lifetime utility.

Further, by taking account of the realistic risk loadings, we are able to make product

comparison in a setting closer to the realistic world. Our results reveal that by purchasing

a care-dependent tontine, the policyholders benefit from lower risk loadings comparing

with the care-dependent annuity proposed by predecessors. The results are robust when

following the capital requirement of Solvency II, the insurance regulation in EU coun-

tries. In addition, two-pool care-dependent tontines draw attractions to the policyholder

with a smaller risk aversion coefficient, while one-pool care-dependent tontines are more

appealing to the more risk-averse policyholders. Further, we find that for insurers, under

the baseline parameter setting, constructing a care-dependent tontine in a one-pool struc-

ture may cost more for adding the care-dependent coverage compared with the two-pool

case. The (care) insurance for the old age is an increasingly concerning topic for now and

future, our findings enrich the related existing literature and are helpful to improve the

penetration of elderly care insurance with appealing care-dependent insurance products.

In this article, in order to get analytical forms of the product structure as well as simplify

the analysis, we construct our products by pooling the policyholders of homogeneous

cohorts. It will also be interesting to go with pooling heterogeneous cohorts from the

policyholder’s side. We will leave it for future research.
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A Appendix

A.1 Proofs for Care-dependent Tontines in One-pool Case

To obtain the optimal payout functions doc11 (t) and doc12 (t) to the care-dependent ton-

tine, we maximize the expected state-dependent utility (3.8) subject to (3.3). First, we

compute the policyholder’s expected utility U oc1
0 . In case of power utility, u(x) = x1−γ

1−γ ,

γ > 0 and γ 6= 1 . We find that

U oc1
0 = E

[∫ ∞
0

e−ρt
(
u1

(
ndoc11 (t)

N(t)

)
1{Sx+t=1} + u2

(
ndoc12 (t)

N(t)

)
1{Sx+t=2}

)
dt

]
= E

[∫ ∞
0

e−ρt
(
u1

(
ndoc11 (t)

N(t)

)
1{Sx+t=1}

)
dt

]
+ E

[∫ ∞
0

e−ρt
(
u2

(
ndoc12 (t)

N(t)

)
1{Sx+t=2}

)
dt

]
=

∫ ∞
0

e−ρtE
[
11
tpxu1

(
ndoc11 (t)

N(t)

)]
dt+

∫ ∞
0

e−ρtE
[
12
tpxu2

(
ndoc12 (t)

N(t)

)]
dt

=

∫ ∞
0

e−ρt
11
tpx

tpx

n∑
k=1

(
n

k

)(
k

n

)γ
(tpx)

k (1− tpx)
n−k · u(doc11 (t))dt

+ α1−γ ·
∫ ∞
0

e−ρt
12
tpx

tpx

n∑
k=1

(
n

k

)(
k

n

)γ
(tpx)

k (1− tpx)
n−k · u(doc12 (t))dt. (A.1)

Then, we write down the Lagrangian function as follows. For easy reading, we simplify

the notations doc11 (t) and doc12 (t) as d1(t) , d2(t) respectively.

L(d1(t), d2(t), λoc1)

= E
[∫ ∞

0

e−ρt
(
u1

(
nd1(t)

N(t)

)
1{Sx+t=1} + u2

(
nd2(t)

N(t)

)
1{Sx+t=2}

)
dt

]
+ λoc1(v − P oc1

0 )

=

∫ ∞
0

e−ρt
11
tpx

tpx

n∑
k=1

(
n

k

)(
k

n

)γ
(tpx)

k (1− tpx)
n−k · u(d1(t))dt

+ α1−γ
∫ ∞
0

e−ρt
12
tpx

tpx

n∑
k=1

(
n

k

)(
k

n

)γ
(tpx)

k (1− tpx)
n−k · u(d2(t))dt

+ λoc1

(
v −

(∫ ∞
0

e−rt
11
tpx

tpx
(1− (1− tpx)

n) · d1(t)dt

+

∫ ∞
0

e−rt
12
tpx

tpx
(1− (1− tpx)

n) · d2(t)dt
))

. (A.2)

In order to obtain the maximum of Lagrangian function, we take derivatives with respect
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to d1(t) and d2(t) , i.e.

∂L(d1(t), d2(t), λoc1)

∂d1(t)

= e−ρt
11
tpx

tpx

n∑
k=1

(
n

k

)
(tpx)

k (1− tpx)
n−k
(
nd1(t)

k

)−γ
− λoc1 · e−rt

11
tpx

tpx
(1− (1− tpx)

n)
!

= 0, (A.3)

∂L(d1(t), d2(t), λoc1)

∂d2(t)

= α1−γ · e−ρt
12
tpx

tpx

n∑
k=1

(
n

k

)
(tpx)

k · (1− tpx)
n−k
(
nd2(t)

k

)−γ
(A.4)

− λoc1 · e−rt
12
tpx

tpx
(1− (1− tpx)

n)
!

= 0. (A.5)

Denote κn,γ(tpx) =
∑n

k=1

(
n
k

) (
k
n

)γ
(tpx)

k (1− tpx)
n−k .

The Lagrangian function takes the global optima when

doc1∗1 (t) =
e1/γ(r−ρ)t

(λ∗oc1)
1/γ
· (κn,γ(tpx))

1/γ

(1− (1− tpx)
n)

1/γ
, (A.6)

doc1∗2 (t) = α1/γ−1 · e
1/γ(r−ρ)t

(λ∗oc1)
1/γ
· (κn,γ(tpx))

1/γ

(1− (1− tpx)
n)

1/γ
. (A.7)

The λ∗oc1 > 0 is chosen satisfying the budget constraint, i.e.

λ∗oc1 =

(
1

v

(∫ ∞
0

e(
r−ρ
γ
−r)t ·

(
11
tpx

tpx
· κn,γ(tpx)

)1/γ

(
11
tpx

tpx
· (1− (1− tpx)

n)

)1/γ−1dt

+

∫ ∞
0

e(
r−ρ
γ
−r)t · α1/γ−1 ·

(
12
tpx

tpx
· κn,γ(tpx)

)1/γ

(
12
tpx

tpx
· (1− (1− tpx)

n)

)1/γ−1dt

))γ
. (A.8)
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A.2 Proofs for Care-dependent Tontines in Two-pool Case

When we distinguish two pools at each time t > 0 , the policyholder’s state-dependent

expected utility U oc2
0 could be written as

U oc2
0 = E

[∫ ∞
0

e−ρt
(
u1

(
ndoc21 (t)

N1(t)

)
1{Sx+t=1} + u2

(
ndoc22 (t)

N2(t)

)
1{Sx+t=2}

)
dt

]
=

∫ ∞
0

e−ρt
n∑
k=1

(
n

k

)(
k

n

)γ (
11
tpx
)k (

1− 11
tpx
)n−k · u(doc21 (t))dt

+ α1−γ ·
∫ ∞
0

e−ρt
n∑
k=1

(
n

k

)(
k

n

)γ (
12
tpx
)k (

1− 12
tpx
)n−k · u(doc22 (t))dt. (A.9)

Afterwards, we write down the Lagrangian function. Here, we also simplify the notations

doc21 (t) and doc22 (t) as d1(t) , d2(t) respectively.

L(d1(t), d2(t), λoc2)

= E
[∫ ∞

0

e−ρt
(
u1

(
nd1(t)

N1(t)

)
1{Sx+t=1} + u2

(
nd2(t)

N2(t)

)
1{Sx+t=2}

)
dt

]
+ λoc2(v − P oc2

0 )

=

∫ ∞
0

e−ρtκn,γ(
11
tpx)u(d1(t))dt+ α1−γ ·

∫ ∞
0

e−ρtκn,γ(
12
tpx)u(d2(t))dt

+ λoc2

(
v −

(∫ ∞
0

e−rt
(
1−

(
1− 11

tpx
)n)

d1(t)dt+

∫ ∞
0

e−rt
(
1−

(
1− 12

tpx
)n)

d2(t)dt

))
.

(A.10)

As denoted, κn,γ(
ij
tpx) =

∑n
k=1

(
n
k

) (
k
n

)γ (ij
tpx
)k (

1− ij
tpx
)n−k

, i, j ∈ S .

Then we take derivatives with respect to d1(t) and d2(t) to maximize the Lagrangian

function

∂L(d1(t), d2(t), λoc2)

∂d1(t)
= e−ρtκn,γ(

11
tpx) (d1(t))

−γ

− λoc2e−rt
(
1−

(
1− 11

tpx
)n) !

= 0, (A.11)

∂L(d1(t), d2(t), λoc2)

∂d2(t)
= α1−γ · e−ρtκn,γ(12tpx) (d2(t))

−γ

− λoc2e−rt
(
1−

(
1− 12

tpx
)n) !

= 0. (A.12)
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The Lagrangian function takes the global optima when

d∗1(t) =
e1/γ(r−ρ)t

(λ∗oc2)
1/γ
· (κn,γ(

11
tpx))

1/γ

(1− (1− 11
tpx)

n
)
1/γ
, (A.13)

d∗2(t) = α1/γ−1 · e
1/γ(r−ρ)t

(λ∗oc2)
1/γ
· (κn,γ(

12
tpx))

1/γ

(1− (1− 12
tpx)

n
)
1/γ
. (A.14)

The λ∗oc2 > 0 is chosen satisfying the budget constraint, i.e.

λ∗oc2 =

(
1

v

(∫ ∞
0

e(
r−ρ
γ
−r)t

·

[
(κn,γ(

11
tpx))

1/γ

(1− (1− 11
tpx)

n
)
1/γ−1 +

α1/γ−1 · (κn,γ(12tpx))
1/γ

(1− (1− 12
tpx)

n
)
1/γ−1

]
dt

))γ
. (A.15)

A.3 Proofs for Care-dependent Annuities

For simplicity, we use c1(t) and c2(t) to represent cac1 (t) and cac2 (t) separately. Then,

the Lagrangian function is given by

L(c1(t), c2(t), λac)

=

∫ ∞
0

e−ρt 11tpx · u(c1(t))dt+ α1−γ ·
∫ ∞
0

e−ρt 12tpx · u(c2(t))dt

+ λac ·
(
v −

∫ ∞
0

e−rt 11tpxc1(t)dt−
∫ ∞
0

e−rt 12tpxc2(t)dt

)
. (A.16)

Next, by optimal conditions ∂L(c1(t), c2(t), λac)/∂c1(t)
!

= 0 and ∂L(c1(t), c2(t), λac)/∂c2(t)
!

=

0 , the optimal payoffs for care-dependent annuities are yielded, i.e.

cac∗1 (t) =
(
λ∗ac · e(ρ−r)t

)−1/γ
, (A.17)

cac∗2 (t) = α1/γ−1 ·
(
λ∗ac · e(ρ−r)t

)−1/γ
. (A.18)

Through the budget constraint, we obtain

λ∗ac =

(
1

v

∫ ∞
0

e(
r−ρ
γ
−r)t(11tpx + α1/γ−1 · 12tpx)dt

)γ
. (A.19)
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A.4 Proofs for Utility Inequalities

By Equations (3.27), (3.13) and (3.21), and let P ac
0 = P oc1

0 = P oc2
0 = v , then we have

Uac∗
0 =

∫ ∞
0

e−ρt 11tpx · u1(cac∗1 (t))dt+

∫ ∞
0

e−ρt 12tpx · u2(cac∗2 (t))dt

=
1

1− γ

∫ ∞
0

e−ρt 11tpx · (cac∗1 (t))1−γ dt+
α1/γ−1

1− γ

∫ ∞
0

e−ρt 12tpx · (cac∗2 (t))1−γ dt

=
λ∗acv

1− γ
, (A.20)

U oc1∗
0 =

∫ ∞
0

e−ρt
11
tpx

tpx

n∑
k=1

(
n

k

)(
k

n

)γ
(tpx)

k (1− tpx)
n−k · u1(doc1∗1 (t))dt

+

∫ ∞
0

e−ρt
12
tpx

tpx

n∑
k=1

(
n

k

)(
k

n

)γ
(tpx)

k · (1− tpx)
n−k · u2(doc1∗2 (t))dt

=
1

1− γ

∫ ∞
0

e−ρt
11
tpx

tpx
κn,γ(tpx) (doc1∗1 )1−γ dt+

α1/γ−1

1− γ

∫ ∞
0

e−ρt
12
tpx

tpx
κn,γ(tpx) (doc1∗2 )1−γ dt

=
λ∗oc1v

1− γ
, (A.21)

U oc2∗
0 =

∫ ∞
0

e−ρt
n∑
k=1

(
n

k

)(
k

n

)γ (
11
tpx
)k (

1− 11
tpx
)n−k · u1(doc2∗1 (t))dt

+

∫ ∞
0

e−ρt
n∑
k=1

(
n

k

)(
k

n

)γ (
12
tpx
)k · (1− 12

tpx
)n−k · u2(doc2∗2 (t))dt

=
1

1− γ

∫ ∞
0

e−ρtκn,γ(
11
tpx) (doc2∗1 )1−γ dt+

α1/γ−1

1− γ

∫ ∞
0

e−ρtκn,γ(
12
tpx) (doc2∗2 )1−γ dt

=
λ∗oc2v

1− γ
. (A.22)

To prove (3.28), we only need to demonstrate by

Uac∗
0 ≥ U oc1∗

0 ⇔

{
λ∗ac ≥ λ∗oc1 , if γ ∈ (0, 1)

λ∗ac ≤ λ∗oc1 , if γ > 1
. (A.23)

Before going towards the proofs, we define

a :=

(
1

n
,

2

n
, · · · , n− 1

n
, 1

)
,

b := (1, 1, · · · , 1, 1) .
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Such that

‖ a ‖L∞= 1, ‖ a ‖L1= p,

‖ b ‖L∞= 1, ‖ b ‖L1= 1− (1− p)n.

the Lγ -norm of x is written as

‖ x ‖Lγ :=

[
n∑
k=1

xγk

(
n

k

)
pk(1− p)n−k

]1/γ
. (A.24)

Here we take the proof for (3.28) as an example:

Proof. For γ > 1 , define γ̃ = γ
γ−1 , s.t. 1

γ
+ 1

γ̃
= 1 .

λ∗ac ≤ λ∗oc1

⇔ 11
tpx + α1/γ−1 · 12tpx ≤

(
11
tpx

tpx
· κn,γ(tpx)

)1/γ

(
11
tpx

tpx
· (1− (1− tpx)

n)

)1/γ−1 + α1/γ−1 ·

(
12
tpx

tpx
· κn,γ(tpx)

)1/γ

(
12
tpx

tpx
· (1− (1− tpx)

n)

)1/γ−1

⇔ 11
tpx + α1/γ−1 · 12tpx ≤

(
11
tpx + α1/γ−1 · 12tpx

)
· (1− (1− tpx)

n)

tpx
· (κn,γ(tpx))

1/γ

(1− (1− tpx)
n)

1/γ

⇔ tpx ≤ (κn,γ(tpx))
1/γ · (1− (1− tpx)

n)
1−1/γ

HoelderInequality⇐=========⇒ tpx = ||a||L1 ≤ ||a||Lγ ||b||Lγ̃ .

And for γ ∈ (0, 1) ,

λ∗ac ≥ λ∗oc1

⇔ tpx ≥‖ a ‖Lγ‖ b ‖Lγ̃
HoelderInequality⇐=========⇒ tpx =‖ a ‖L1≥‖ a ‖Lγ‖ b ‖Lγ̃ .

Analogously, for (3.29), it can be proved that

Uac∗
0 ≥ U oc2∗

0 ⇔

{
λ∗ac ≥ λ∗oc2 , if γ ∈ (0, 1)

λ∗ac ≤ λ∗oc2 , if γ > 1
. (A.25)
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A.5 GLM Approximation

After obtaining the crude transition intensities, we use a GLM model to smooth them.

We build up estimations for mentioned 12µy , 13µy , and 23µy . To avoid lengthy, here we

take 12µy for example.

GLM model

The GLM model is composited by three parts: the link function, linear predictor, and

probability distribution.

Link function: Here we adopt a log link function g(·) (Hanewald et al. (2019)).

g(12µy) = ln(12µy) = ηy, (A.26)

where ηy is the linear predictor.

Linear predictor: Suppose the transition intensity is only relevant to age and gender.

For each gender, the linear predictor can be estimated by

ηy =
k∑

m=0

βmy
m = β0 + β1x+ β2y

2 + · · ·+ βky
k. (A.27)

With reference to Fong and Feng (2016), we set k ≤ 3 to avoid model overfitting.

Probability distribution: We further assume the transition intensity is constant for each

one-year age group in a given time interval. Suppose transition number follows an inde-

pendent Poisson distribution between two consecutive survey waves, i.e.

12Cy ∼ Poisson(1Yy · 12µy), (A.28)

where 12Cy is the transition number that one transiting from healthy to severely sick at

age y . And 1Yy represents the year(s) of risk exposure in healthy state at age y .

Estimation and Model Selection

Moreover, we use Maximization Likelihood Estimation (MLE) to approximate the coef-

ficients βm . The log-likelihood function is given by

ln F =
∑
y

− 1Yy
12µy + 12Cy ln

(
1Yy

12µy
)

+ A, (A.29)

where A is a constant and F represents the likelihood function.
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Finally, we use AIC and BIC criteria to decide the optimal k . Based on the estimated

βm , we can forecast the transition intensity for every agegroup, then the transition

probabilities can be further computed.

A.6 Risk Loading Computation w.r.t. Solvency II

We further compute the risk loadings following the capital requirements of Solvency II.

Applying a cost of capital (CoC) ratio of 0.06 which is currently used by Solvency II

(see, e.g. EIOPA (2014)), we get the risk loadings for different care-dependent products.

Similar to the results computed under the requirement of C-ROSS, care-dependent an-

nuity charges the highest risk loading, while under the baseline parameter setting (see

Table 5.1), the two-pool care-dependent tontine still requires the least (see Table A.1).

CoC F oc1
0 F oc2

0 F ac
0

0.06 58.6 0.38 653

Table A.1: Risk loadings for various care-dependent products w.r.t the capital require-
ment of Solvency II, using the baseline parameter setting from Table 5.1. Net premium
P oc1
0 = P oc2

0 = P ac
0 = v = 10000 , pool size n = 1000 , subjective discount rate ρ = 0.02 ,

risk-free rate r = 0.02 , initial age x = 60 , risk aversion coefficient γ = 2 , and payment
weighting factor α = 0.5 .

As already known from subsection 5.2.2, under the baseline parameter setting (Table 5.1),

the utility indifference number Q1 = 1.000896 and Q2 = 1.003010 . Thus, combined with

risk loadings in Table A.1, the comparable gross premiums for different care-dependent

products are given by

Q1 · P̂ oc1 = 1.000896× (10000 + 58.6) = 10067.613,

Q2 · P̂ oc2 = 1.003010× (10000 + 0.38) = 10030.481,

P̂ ac = 10000 + 653 = 10653.

From the above results we can learn that regarding the comparable gross premiums,

people’s preference order for these three care-dependent products stays the same as pre-

viously computed under the C-ROSS, i.e. two-pool CDT > one-pool CDT > CDA.

This holds of course only for given parameters in Table 5.1.
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A.7 Additional Tables of Sensitivity Analysis

How do the risk loadings vary with different coefficients (α , γ , r )?

F oc10 F oc20 F ac0

α ∈ (0, 1), γ > 1

α
γ

2 5 8 2 5 8 2 5 8

0.2 103.09943 192.84282 218.4911 0.2477858 0.3088327 0.3682938 729.2807 916.3349 969.8961
0.5 37.58904 65.09438 72.68008 0.2552838 0.3308881 0.4024555 595.1179 650.9564 666.1752
0.8 11.06583 18.20009 20.07213 0.2583212 0.3390165 0.4148757 541.0479 555.5173 559.2484

α > 1, γ ∈ (0, 1)

α
γ

0.2 0.5 0.8 0.2 0.5 0.8 0.2 0.5 0.8

1.5 264.9986 44.9172 10.00598 0.191409 0.2187796 0.2288318 1070.098 610.1457 538.9051
2 531.6991 85.31641 17.58199 0.1657416 0.2148421 0.2280768 1641.7743 692.7645 554.3612
5 837.1008 262.20912 44.52996 0.1376781 0.1975901 0.2253912 2301.2606 1064.105 609.3379

Table A.2: Sensitivity analysis of risk loadings w.r.t risk aversion coefficient γ and
payment weighting factor α . Other parameters are taken from the baseline setting table
(i.e. Table 5.1). Net premium P oc1

0 = P oc2
0 = P ac

0 = v = 10000 , pool size n = 1000 ,
risk-free rate r = 0.02 , subjective discount rate ρ = 0.02 , and initial age x = 60 .

r F oc10 F oc20 F ac0 F oc10 F oc20 F ac0

γ = 2, α = 0.5 γ = 0.5, α = 2

0.00 40.28555 0.339966 690.5326 74.80001 0.1196744 515.2861
0.01 38.91467 0.2948221 641.068 79.88006 0.160809 597.377
0.02 37.58904 0.2552838 595.1179 85.31641 0.2148421 692.7645
0.03 36.30882 0.2207213 552.4653 91.1043 0.2852828 803.2663
0.04 35.07392 0.1905645 512.9012 97.23027 0.3763815 930.8164
0.05 33.88404 0.1642992 476.225 103.67105 0.4932094 1077.4339

Table A.3: Sensitivity analysis of risk loadings w.r.t risk-free rate r . Other parameters
are taken from the baseline setting table (i.e. Table 5.1). Net premium P oc1

0 = P oc2
0 =

P ac
0 = v = 10000 , pool size n = 1000 , subjective discount rate ρ = 0.02 , initial age
x = 60 , risk aversion coefficient γ = 2 , and payment weighting factor α = 0.5 .

How do the utility indifference numbers vary with different coefficients (α ,

γ , r )?
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Q1 Q2

α ∈ (0, 1), γ > 1

α
γ

2 5 8 2 5 8

0.2 1.001053 1.003059 1.004994 1.00394 1.012662 1.021157
0.5 1.000896 1.002335 1.003723 1.00301 1.008264 1.013327
0.8 1.000833 1.00207 1.003265 1.002634 1.006652 1.010508

α > 1, γ ∈ (0, 1)

α
γ

0.2 0.5 0.8 0.2 0.5 0.8

1.5 1.000149 1.000233 1.000337 1.000638 1.000792 1.001061
2 1.000215 1.000258 1.000344 1.001027 1.000938 1.001105
5 1.000292 1.000368 1.000371 1.001472 1.001579 1.00126

Table A.4: Sensitivity analysis of utility indifference numbers w.r.t risk aversion coeffi-
cient γ and payment weighting factor α . Other parameters are taken from the baseline
setting table (i.e. Table 5.1). Net premium P oc1

0 = P oc2
0 = P ac

0 = v = 10000 , pool size
n = 1000 , risk-free rate r = 0.02 , subjective discount rate ρ = 0.02 , and initial age
x = 60 .

r Q1 Q2 Q1 Q2

γ = 2, α = 0.5 γ = 0.5, α = 2

0.00 1.00106 1.003316 1.000184 1.000798
0.01 1.000974 1.003157 1.000217 1.000863
0.02 1.000896 1.00301 1.000258 1.000938
0.03 1.000825 1.002875 1.000307 1.001027
0.04 1.00076 1.002751 1.000365 1.001132
0.05 1.0007 1.002636 1.000434 1.001255

Table A.5: Sensitivity analysis of utility indifference numbers w.r.t risk-free rate r .
Other parameters are taken from the baseline setting table (i.e. Table 5.1). Net premium
P oc1
0 = P oc2

0 = P ac
0 = v = 10000 , pool size n = 1000 , subjective discount rate ρ = 0.02 ,

initial age x = 60 , risk aversion coefficient γ = 2 , and payment weighting factor α =
0.5 .
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