
 

 

Robust Hedging of Terminal Wealth 

under Interest Rate Risk and 

Inflation Risk 
 
 
 
 
Anne Balter, Lieske Coumans, Frank de Jong 
 

DP 11/2021‐023 



Robust Hedging of Terminal Wealth under
Interest Rate Risk and Inflation Risk*

Anne G. Balter
Tilburg University

and Netspar

Lieske Coumans�

Tilburg University

and Netspar

Frank de Jong
Tilburg University

and Netspar

This Version: November 9, 2021

Abstract

Investors often hedge their liabilities against nominal interest rate risk. However,
inflation risk also plays an important role for real wealth outcomes, especially in
the long-run. If both risks follow a bivariate mean-reverting process, optimal allo-
cations in nominal bond strategies typically turn out to be extreme, in particular
when the bond maturities lay close to each other. We show that this makes the
investment strategy sensitive to small changes in the mean-reversion parameters
and the feedback parameter that takes into account the impact of the inflation
rate level on the nominal interest rate drift. We perform a numerical analysis to
demonstrate that small estimation errors of these parameters might have a large
impact on terminal real wealth. A range of values of the feedback parameter is
applied to compare the resulting investment strategies to Brennan and Xia (2002),
Van Bilsen et al. (2020), and Munk et al. (2004). We find that the optimal two
bond strategies involve one medium term bond and one very long-term bond, but
these strategies are very sensitivity to parameter uncertainty. One bond strategies
are more robust, but cannot completely hedge inflation risk, which results in a large
loss in the Certainty Equivalent Wealth of a risk averse investor.
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1 Introduction

Long-term investors typically hedge against nominal interest rate risk by positive posi-

tions in nominal bonds. However, inflation decreases the real value of wealth over time,

especially when the investment horizon is long. Therefore, it is highly relevant to hedge

both the real interest rate risk and the inflation risk on the long-term. In theory, this can

be done by investing in an Index Linked Bond (ILB) that protects the real value of the

principal (or coupon) in case of inflation. However, in practice ILBs are quite illiquid in

both the US and the Eurozone (Ciocyte and Westerhout, 2017). Even if they are traded,

not many maturities are present which can leave a significant share of real interest rate

risk if the maturities do not match the investment horizon (Beetsma et al., 2020).

The academic literature has developed several strategies to invest in either one or two

nominal bonds, aiming to hedge both the interest rate risk and inflation risk. An example

is the model of Sangvinatsos and Wachter (2005) (SW), where both risk factors follow a

mean-reverting process, with correlated shocks, and there is feedback from the level of

the expected inflation rate to the change in the interest rate. Earlier studies show that

the optimal investment strategy are substantially affected by the market prices of risk,

e.g. Flor and Larsen (2011), Garlappi and Uppal (2007), and Feldhütter et al. (2012).

We find that the feedback parameter, the mean-reversion parameters, and choice of bond

maturities have a substantial impact as well. For example, specific values of the feedback

parameter lead to considerable different models investigated by Brennan and Xia (2002),

Munk et al. (2004) and Bilsen et al. (2020) (BX, MSV, and BBB respectively). The

impact of the parameters is especially large if the investor invests in two bonds, resulting

in extreme long-short positions.1 When applying a one bond strategy, the position is not

so extreme and less sensitive to the parameters, but it fails to sufficiently hedge inflation

risk.

This paper makes several contributions to the existing literature. First, we show that

the extreme positions in the two bond strategies can lead to a large sensitivity of the

investor’s utility to parameter uncertainty.2 Second, we show that the extreme positions

have an advantage though: for a risk averse investor, they lead to considerably higher

utilities than a one bond strategy. Third, we show that one bond strategies lead to

1This sensitivity is noted in the study of Brennan and Xia (2002), and Martellini et al. (2015).
Moreover, it is analysed in a related paper by Benzoni et al. (2007) where the optimal asset allocation is
very sensitive to the speed of cointegration between dividends and wages.

2As specific values of the feedback parameter lead to special cases of the model such as the BX-
model, parameter uncertainty about the feedback parameter can also be seen as a specific type of model
uncertainty.
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the opposite results: they are more robust to parameter uncertainty, but fail to hedge

inflation risk well. Fourth, we show that it is important to determine the maturity of the

bond(s). A robust choice turns out to be different from the average liability duration.

This choice does not only affect the magnitude of the bond allocations, but can also

enlarge the impact of parameter uncertainty.

We study investment strategies when only nominal bonds are available, but the in-

vestor wants to hedge both the real interest rate risk and inflation risk. In particular,

this paper focuses on the impact of changes in bond maturities and model parameters

on the (sub)optimal hedge demands for nominal bonds and on wealth. To determine the

optimal demand in the maximising expected utility setting, we use the SW-model. It

results in a simultaneous long-short composition of two nominal bonds that fully hedges

inflation risk. We use a framework with no stocks, no borrowing constraints, no transac-

tion costs, nor unhedgeable inflation.3 In this way, we focus on the main advantage and

disadvantage of the optimal allocations in a two bond strategy: they allow to fully hedge

inflation risk, but they are extreme in absolute magnitude.4

The results in this paper are based on a numerical analysis using an initial parameter

set, originated from Brennan and Xia (2002), and a variety of sensitivity parameter sets

that impact the optimal hedge demand. We show that the bond allocations in the (two

bond) SW-strategy are extreme, especially when the bond maturities or mean-reversion

parameters lay close to each other, or the feedback parameter is close to zero. For example,

if the feedback parameter equals −0.001, the optimal bond allocations for a speculative

investor equal 7,632% and -4,818% of her wealth. But even when the feedback parameter

is sufficiently far from zero, the allocations are large in absolute value and result in a large

sensitivity of the investor’s utility to parameter uncertainty: for small estimation errors of

relevant parameters, the investor will face a considerable loss in her Certainty Equivalent

(CE) of wealth compared to investing according to the correct parameter values. In an

extreme case where the investor incorrectly believes that the mean-reversion parameters

of the risk factors double, she looses even 90 − 100% of her CE, depending on her risk

aversion and the feedback parameter. Uncertainty about the feedback parameter appears

to be relevant as well: if she has a relative risk aversion of 2, she can loose 15% of her

3In the literature, inflation risk is split into unhedgeable and hedgeable inflation. Two examples of
unhedgeable risks and corresponding numerical solutions for optimal consumption and asset allocations
are studied by Beetsma et al. (2020). However, we do not include unhedgeable inflation in our model, as
we focus on hedging strategies. We verified analytically and numerically that this does not change the
relative results, i.e. the percentage of loss in the Certainty Equivalent of wealth.

4Both this advantage and disadvantage are analysed by Martellini et al. (2015) for the nested BX-
strategy, where leverage constraints are proposed to tackle the issue of extreme weights.
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CE if she incorrectly believes that the feedback parameter is twice as large or small as it

actually is.

As one bond strategies result in less extreme bond demands, these turn out to be

more robust to parameter uncertainty than two bond strategies. As a consequence, if

the investor has incorrect parameter beliefs, applying a one bond strategy might even

lead to a higher CE than applying the two bond strategy. However, the disadvantage of

one bond strategies is that these do not fully hedge inflation risk, so that the risk averse

investor faces large losses in her CE compared to the two optimal bond strategies.5 For

example, we consider an investor with a relative risk aversion of 2 who invests according

to the one bond SW-strategy. She looses about 25% of her CE compared to the two bond

SW-strategy, slightly depending on the feedback parameter. She looses even more if the

feedback parameter or the risk aversion increases. A final observations is that all results

regarding parameter uncertainty depend on the chosen bond maturities.

Related work from Feldhütter et al. (2012) analyses these (dis)advantages of robust-

ness against parameter uncertainty and the ability to hedge inflation of the one and three

bond SW-strategy.6 However, the analysis does not take into account inflation as a risk

factor nor the impact of the bond maturities, which are important aspects of hedging

long-term real wealth. Moreover, the loss in utility is measured by a Bayesian approach

over the posterior distribution of the data generating process parameters.

We now briefly discuss some remaining related literature. Baker et al. (2020) show

that based on swap markets in the United States it is likely that long-short bond construc-

tions reflect the demand of pension funds, that represent long-term investors. In both

practice and life-cycle investment literature, the problem of extreme demands is usually

solved by applying lower and upper allocation constraints. Constraints of 0-100% prevent

leverage ‘funded’ by non-tangible human capital. Bilsen et al. (2020) argue that reason-

able negative positions can yet be possible in practice through applying swap contracts.

A short position can then be replicated by a payer interest swap contract, receiving larger

floating legs when the interest rate increases. Blommestein (2007) confirms that swaps

are often preferred over bonds by investor as less capital is required. However, with con-

straints the maximised utility problem cannot be solved analytically anymore. Another

way to decrease the positions in absolute magnitude is to invest in a long-term bond.7

5Mkaouar et al. (2017) note the large loss in utility due to not fully hedging inflation with one bond
in the nested BX-model.

6In case of the one bond SW-strategy, the hedging strategy hedges the short rate. In case of the three
bond strategy, it hedges the short rate, slope, and curvature of the yield curve.

7As long-term swaps are more liquid than long-time bonds, the positions in bonds in the BX-model
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Quaedvlieg and Schotman (2020) empirically show that a naive hedging strategy that

consists of a long position in a bond with the maturity equal to the Last Liquid Point

(20-years) not only leads to less sensitive demands, but also outperforms multi-factor

interest models in terms of fit and turnover. Yet, about 50% of the interest rate risk

remains unhedged based on a horizon investment of 50 years (Quaedvlieg and Schotman,

2020)[p.22].

The structure of the paper is as follows. In Section 2, we explain the SW-model and the

corresponding extreme long-short positions in the optimal nominal bond demands. We

also show the corresponding optimal demands if the investor invests in only one bond,

or if the model simplifies to the BX-, MSV-, or BBB-model. In Section 3, we derive

an approximated robust bond maturity combination that minimises the sum of these

positions. In Section 5, we explore the effect of parameter uncertainty by computing

the impact of deviations in the feedback parameter on the bond allocations and CE. In

Section 4, we explore this impact due to deviations in the mean-reversion parameters.

Section 6 concludes.

2 Model description

We introduce the long-term optimisation problem of the investor in Section 2.1, the

financial market in Section 2.2 and the optimal one and two bond investment strategies

in Section 2.3. Section 2.4 explains three suboptimal strategies. Section 2.5 shows how

we will measure the impact of parameters in (sub)optimal strategies on utility of terminal

wealth.

2.1 Optimisation problem

As the investor cares about the real value of her wealth, the objective is to maximise

expected utility from her terminal price-deflated wealth

max
WT

E0

[
u

(
WT

ΠT

)]
(1)

can be translated to long-term swaps in practice. Long-term swaps are sometimes debated because they
can lock-in a fund, and they can be costly and complex. However, this is not the focus of our research.
Furthermore, investing in these long-term swaps is commonly used in practice and complies with e.g.
Dutch pension fund regulations (Blommestein, 2007)[p.181].
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where u() is the utility function of the investor, Wt is the nominal wealth at t, Πt is the

realised inflation at t, and T is some large number to represent a long-term investment.

She optimises taking into account her budget constraint 8 with nominal pricing kernel ζt

E0[ζTWT ] = W0 (2)

dζt
ζt

= −Rf
t dt− λ̃RdBR

t − λ̃πdBπ
t (3)

where λ̃ = (λ̃R, λ̃π) are the factor loadings. Moreover, we assume that the investor has

a constant relative risk aversion (CRRA) utility function with coefficient of relative risk

aversion γ

u(x) =

x1−γ−1
1−γ if γ 6= 1

log(x) if γ = 1
(4)

The investor aims to hedge two risks: the nominal interest rate Rt and the realised

inflation Πt. A low Rt is disadvantageous for the investor as it will lead to a low return

on wealth. A high Πt is a risk for the investor as it will erode the real value of wealth.

We assume that the increase in Πt equals the compounded stochastic expected infla-

tion: dΠt
Πt

= πtdt. Hence, hereinafter inflation risk refers to the risk in πt, unless explicitly

referred to Πt.
9 Furthermore, we assume that both risk factors follow an Ornstein-

Uhlenbeck (OU) process

d

[
Rt

πt

]
= −

[
κR κRπ

0 κπ

][
Rt − R̄
πt − π̄

]
dt+

[
σR 0

0 σπ

]
d

[
BR
t

Bπ
t

]

≡ −K

[
Rt

πt

]
dt+ σXd

[
BR
t

Bπ
t

]
(5)

For the remainder of this paper, we define κR and κπ as the mean-reversion parameters

and κRπ as the feedback parameter that corresponds to the relation between the level of

πt and the drift adjustment of Rt. We assume that the mean-reversion parameters and

volatilities of the factors are positive: κR, κπ, σR, σπ > 0; and κR 6= κπ. Furthermore,

we assume that the feedback parameter is negative: κRπ < 0. This means that if πt is

8Note that this budget constraint is expressed in the nominal wealth. It can be redefined in terms of
real wealth and a real pricing kernel, but that will lead to the same optimal investment strategy.

9This distinction between the risk in Πt and the risk in πt is mentioned for comparison to the realised
inflation risk in Πt and expected inflation risk in πt mentioned in the literature, where Πt is not just the
compounded value of πt. (e.g. Brennan and Xia (2002)).
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below its long-term average π̄, it will decrease the drift adjustment of Rt.
10 The economic

intuition is that if the inflation rate is low, the investor expects a lower nominal interest

rate at the long-term since the nominal interest rate can be seen as the sum of the real

inflation and the inflation. Finally, the Brownian Motion processes of the risk factors,

BR
t and Bπ

t , are correlated by the correlation matrix ρR expressed in ρRπ ∈ (−1, 1)

ρR =

[
1 ρRπ

ρRπ 1

]
(6)

2.2 Financial market

To focus on bond allocations, we consider a market without stocks. As we assume that

no Index Linked Bonds are available, the investor can only invest in cash and nominal

bonds with different maturities Ti for bond i. We denote the time to maturity at time t

as τi = Ti − t. The corresponding bond price Pt(τi) is:

Pt(τi) = e
−a(τi)−bR(τi)Rt+

κRπ
κπ

(
bR(τi)+

1
κR−κπ

(e−τiκR−e−τiκπ )
)
πt (7)

The derivations of Pt(τi) and a(τi) can be found in Appendix A of Sangvinatsos and

Wachter (2005).11 For later comparisons with nested models we define a function cπ(τi)

as well. The functions bR(τi) and cπ(τi) are given by

bR(τi) =
1

κR
(1− e−κR(τi)) (8)

cπ(τi) =
1

κπ
(1− e−κπ(τi)) (9)

The remaining wealth that is not invested in nominal bonds is allocated to a bank account

with the nominal interest rate Rt as return. As can be seen in equation (7), as a result of

the two-factor model the bond price is affected by the risk factors Rt and πt by different

sensitivities. Under our assumptions about the negative feedback parameter and the

positive mean-reversion parameters, and the additional assumption that κR > κπ, it

can be derived that both sensitivities (the factors in front of Rt and πt) are negative.12

Therefore, an infinitely risk averse investor can fully hedge πt by investing in two nominal

10i.e. if Rt < R̄, the nominal interest rate will increase with a slower rate to R̄, or Rt will even decrease.
If Rt > R̄, it will decrease with a faster rate to R̄.

11Sangvinatsos and Wachter (2005) show that the bond price equals eA(τi)X(t)+A1(τi), where A1(τi) is
a scalar, and we derive the vector A(τi) in Appendix A.

12The additional assumption that κR > κπ is argued to be plausible in Section 3.
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bonds. To see why, consider an investor that only cares about nominal wealth and hence

fully hedges Rt, where we consider an infinitely risk averse investor to focus on the hedge

demand. She will invest in only one nominal bond with time to maturity τ1 to hedge

against a low interest rate, because the bond price Pt(τ1) increases if Rt decreases. Now

suppose that the investor wants to optimise her real wealth. Only going long in one

nominal bond exposes her to inflation risk, as a high πt both decreases Pt(τ1) and her

real wealth. Therefore, simultaneously she goes short in a second nominal bond with

time to maturity τ2 to benefit from an increasing πt due to the decreased Pt(τ2). Based

on her risk aversion, she can balance these long and short bond demands to result in

optimal exposures to the risk factors.13

We now formalise some definitions in matrix notation. We let σ correspond to the

factor exposures, expressed in the matrix A and factor volatility matrix σX , in line with

Sangvinatsos and Wachter (2005). If the investor invests in two bonds, A is a 2x2 matrix

and σ is defined as

σ = AσX =

−bR(τ1)σR

(
κRπ

κR−κπ
· cπ(τ1) + κRπ

κπ
bR(τ1)− κRπ

κπ(κR−κπ)
(1− e−τ1κR)

)
σπ

−bR(τ2)σR

(
κRπ

κR−κπ
· cπ(τ2) + κRπ

κπ
bR(τ2)− κRπ

κπ(κR−κπ)
(1− e−τ2κR)

)
σπ


(10)

where the expression of A can be found in Appendix A. If the investor only invests in one

bond, A and therefore σ are 1x2 vectors only containing the upper row. The definitions

and sizes of the remaining relevant variables x∗t , λ,Ω,Λ, and λ̃ can be found in Table 1.

2.3 Optimal bond allocations

Sangvinatsos and Wachter (2005) derive the optimal portfolio weights x∗t and express

these in a speculative and a hedge demand

x∗t =
1

γ
Ω−1Λ− (1− 1

γ
)Ω−1σ′ρRσXB(τ)′ (11)

where τ = T − t and B(τ) is the vector with exposures to the shocks in Rt and πt.

The definition of B can be found in Appendix A. This section will analyse the resulting

optimal bond allocations for two cases: if the investor uses either one or two nominal

bonds as hedging assets.

When applying a two bond strategy, the matrix σ is invertible. In that case, using

13Section 2.3 gives an example for an infinitely risk averse investor.
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the definitions in equations (5) and (10), and Table 1, we can simplify x∗t to

x∗t =
1

γ
(σ′)−1(ρR)−1λ−

(
1− 1

γ

)
(A′)−1B(τ)′ (12)

It shows that the hedge demand is independent of ρR and σX , and dependent on the mean-

reversion parameters and time to maturities τ1 and τ2 (through (A′)−1 and B(τ)). Hence,

the bond maturity choice is not straightforward anymore: in case of hedging nominal

wealth, she could just invests in a bond with maturity T . However, when hedging her real

wealth the investor chooses τ1 and τ2, where τ1 6= τ2. She then increases (decreases) the

bond maturity to increase (decrease) the sensitivity of the bond price to the risk factors.

Moreover, the factor (A′)−1 implies the short-long composition of bonds as explained

in Section 2.2 and leads to extreme positions if κR ≈ κπ, or τ1 ≈ τ2. The intuition is

as follows: consider an infinitely risk averse investor that wants to fully hedge πt. She

aims to match the optimal exposures to the shocks in Rt and πt respectively. When she

increases her long position to increase her exposure to shocks in Rt, she needs to hold

a larger short position to decrease her exposure to shocks in πt, and vice versa. She

needs to increase or decrease the positions more if the sensitivity of the bond is small. If

the mean-reversion parameters or bond maturities lay close to each other, the difference

between the sensitivities of the bonds is small. Therefore, in that case she needs large

demands to exactly match the different risk exposures to the two risk factors.

For completeness, we analytically explain why the inverse of A′ can result in such

extreme positions. Recall that the formula of A is given in equation (10). The determinant

equals

Det (A) =
κRπ

κR − κπ
(bR(τ2)cπ(τ1)− bR(τ1)cπ(τ2)) (13)

This shows that the determinant converges to zero if one of the following conditions holds:

κRπ ≈ 0, τ1 ≈ τ2, κR ≈ κπ, or τi ≈ 0 (which results in bR(τ2)cπ(τ1) ≈ bR(τ1)cπ(τ2)). As a

result, the long and short position will become extremely large in absolute values.

Now, we shortly analyse the resulting optimal bond allocations if the investor uses

only one nominal bond as hedging asset to partly hedge the inflation risk. In that case, σ

is not invertible and the simplification to equation (12) does not hold anymore. Therefore,

in contrast to the case with two nominal bonds, ρR and σX become relevant to compute

the hedging demand. In line with the two bond strategy, the mean-reversion parameters

and time to maturities remain relevant as well. The advantage of the optimal one bond

strategy is that the position in the bond will not be so extreme as in the two bonds
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strategy. This can be seen by considering the determinant of A for the one bond case

Det (A) = b2
R(τ1)σ2

R +
κRπ

κR − κπ
[κRπσπ(c2

π(τ1) + b2
R(τ1))

− 2bR(τ1)
(
cπ(τ1)ρRσR(κR − κπ) + cπ(τ1)σπκRπ + bR(τ1)κπρ

RσR − bR(τ1)κRρ
RσR

)
] (14)

This shows that even if κRπ ≈ 0 or τ1 ≈ τ2, the determinant does not converge to zero

as in the two bond strategy. As a result, the long and short position will not become so

extremely large in absolute values.

2.4 Suboptimal bond allocations

This section explains three suboptimal bond allocations. These are interesting to study,

because those are optimal for specific settings within our general SW-model. First, we

consider the two bond strategy derived by Brennan and Xia (2002) (BX) that is widely

accepted in the literature. It is optimal in the BX-setting which is obtained if κRπ =

κπ−κr and κR = κr in our model, where rt = Rt−πt is the real interest rate that follows

an OU-process. This results in a two-factor model where the factors rt and πt are only

linked through their possibly correlated shocks, and not by a feedback parameter term

in one of the drift terms. Converging ρR to ρr and σR to σr as explained in Appendix B,

the optimal strategy in the BX-setting equals14

xBXt =
1

γ
Ω−1Λ− (1− 1

γ
)
(
Ω−1σρr

) [σrbR(T − t)
0

]
(15)

In line with the optimal two bond strategy, the hedge demand depends on the mean-

reversion parameters and the bond maturities, but is independent of ρ and σX . This is

less evident from the solution of Brennan and Xia (2002).

The second suboptimal strategy is derived by Bilsen et al. (2020) (BBB) that is

optimal for the same parameters as the BX-setting, but now the investor only invests in

one nominal bond instead of two. The intuition is similar as in the optimal one bond

strategy versus the two bond strategy: the BX-strategy fully hedges inflation risk, but

can result in extreme positions. The BBB-strategy can only partly hedge inflation risk,

but results in less extreme positions. Converging ρRπ to ρrπ as explained in Appendix B,

14See equation (34) of their paper. Note that their vector ξ only contains zeros in our market setting
where realised inflation equals the compounded value of expected inflation.
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the optimal strategy in the BBB-setting equals (Bilsen et al., 2020)[Appendix A.5]

xBBBt = 1
b2r(τ1)σ2

r+c2π(τ1)σ2
π+2ρrπbr(τ1)cπ(τ1)σrσπ

· (16)[
1
γ

(
−br(τ1)σrλ̃r − cπ(τ1)σπλ̃π

)
+
(

1− 1
γ

)
(b2
r(τ1)σ2

r + ρrπbr(τ1)cπ(τ1)σrσπ) br(τ)
br(τ1)

]
As the formula shows, the demand exists of a speculative demand and a hedging demand

(the terms with 1
γ

and (1 − 1
γ
) respectively). We recognize the simple strategy when no

inflation risk is present: the hedging term then equals (1 − 1
γ
)br(τ)/br(τ1). When the

investor is infinitely risk averse and chooses a bond with maturity T1 − t = T − t, she

invests 100% in that bond. However, when inflation risk enters, the investor cannot fully

hedge that risk. She lowers the total bond demand, which decreases the risk of lower

bond prices in case of high inflation. Note that in this way she cannot fully inflation risk

anymore.

The third suboptimal strategy is derived by Munk et al. (2004) (MSV) and is optimal

for an extreme case where κRπ = 0. In that case, the nominal interest rate is only affected

by one factor, and inflation cannot be fully hedged anymore by a long-short position in

bonds. Therefore, the optimal strategy becomes a one bond strategy that contains a less

extreme position than the positions in two bond strategies. Munk et al. (2004) show that

the optimal strategy equals

xMSV
t = −1

γ

λR
bR(τ1)σR

+

(
1− 1

γ

)
bR(T − t)
bR(τ1)

−
(

1− 1

γ

)
c(T − t)ρRπσπ
bR(τ1)σR

(17)

The optimal investment strategy consists of three terms: a speculative term, a nominal

interest rate hedge term, and an inflation hedge term. As a consequence of the one factor

model, the inflation hedge term can only partially hedge inflation risk. The investor

makes a trade-off between increasing the bond demand to hedge against a low Rt (by the

positive nominal interest rate hedge term) and decreasing the bond demand to decrease

the exposure to risks in πt (by the negative inflation hedge term if ρRπ > 0).

2.5 Certainty Equivalent Wealth

This section explains how we measure the impact of (input parameters for) investment

strategies on utility. Consider a market with the data generating processes based on the

parameters in set Θ = {κRπ, κR, σR, λR, κπ, σπ, λπ, ρRπ}. The investor however thinks the

correct parameters are in an alternative set k denoted by Θ̂k and applies her perceived
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optimal strategy xδ,k

xδ,kt = arg max
xt

E0


(
WT |xt

ΠT

)1−γ
− 1

1− γ

∣∣∣∣∣Θ̂k

 (18)

where δ indicates if a one (δ = 1) or two (δ = 2) bond strategy is applied. This is only

the actual optimal one or two bond strategy if Θ = Θ̂k. We express the impact of this

strategy on expected utility from terminal real wealth by the Certainty Equivalent (CE)

of wealth, i.e. the amount of wealth at t = 0 that makes the investor indifferent between

receiving the CE for certain or investing according to xδ,kt

CEδ,k = u−1

(
E0

[
u

(
WT |xδ,kt

ΠT

)∣∣∣∣∣Θ
])

(19)

Recall that the utility function u() is given in equation (4). To compute the nominal

wealth based on xδ,kt , we plug the bond allocations into the Stochastic Differential Equa-

tion (SDE) of the nominal wealth process

dWt

Wt

=

[
Rt +

(
xδ,kt

)′
Λ

]
dt+

(
xδ,kt

)′
σ
[
dBR

t dBπ
t

]′
(20)

where Λ and σ are based on the parameters of the data generating process in Θ. The

wealth process with respect to a suboptimal investment strategy cannot be exactly dis-

cretised.15 Therefore, we apply the Euler approximation to compute it in discrete form

Wt+1 = Wt · [1 + (Rt + (xδ,kt )′Λ)∆ + xδ,kt σ
√

∆εt+1] (21)

where the definition of σ is given in equation (10), the step size is given by ∆, and

εt+1 ∼ N(0,Ω) = N(0, σρσ′), where ρ is based on Θ.

3 Impact bond maturities on optimal portfolio weights

We study the impact of the bond maturities on the demands in both the one- and two

bond optimal strategies. In Section 3.1, we discuss the initial parameter set. In Section

15In case of an optimal strategy, writing out the expression of x∗t shows that the model can be exactly
discretised. However, this is not possible in case of suboptimal strategies. We choose the time step to
be small to prevent large discretisation errors.
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3.2, we show the impact of bond maturities on the optimal bond allocations.

3.1 Initial parameters

All results will be investigated for three relevant risk aversion coefficients γ ∈ {1, 2, 25},
where γ = 1 represents the ‘log utility’ or ‘speculative’ investor that only has a speculative

demand, and γ = 25 is the ‘hedge’ investor corresponding to the almost infinitely risk

averse investor who only has a hedge demand. The investor with γ = 25 is not only

useful to investigate the hedge demand, but can also be related to practice in the case

of a hedge fund. In reality, an investor will often be interested in both demands and

therefore we include the moderately risk averse investor with γ = 2 as well which implies

a sort of average bond demand of the speculative and hedge investor.

We assume that the investment horizon equals T = 30 years to represent a long-term

investment. For simplification of notation we split the parameter set Θ into κRπ and

ΘR ≡ {κR, σR, λR, κπ, σπ, λπ, ρRπ}. In this section we initially set κRπ = −0.078 ( leading

to the BX-model), where we mention the impact of other values of κRπ as well. Moreover,

we set the initial parameter set ΘR equal to the values given in the first column of Table

2. These values are based on the empirical results of Brennan and Xia (2002).16 Note

that the estimates for the mean-reverting interest rate are based on the real interest rate

rt = Rt − πt. Appendix B explains how we convert these values to estimates for the

mean-reverting nominal interest rate Rt. Although the parameter values from the initial

parameter set 0 will not be examined in detail, we performed a plausibility check on

them. The magnitude of κR > κπ is supported by empirical evidence in the literature, as

the mean-reversion of expected inflation tends to be low (e.g. Brennan and Xia (2002)

and Van den End (2011)). Furthermore, it is economically intuitive that λR and λπ are

negative: Table 1 and equation (10) show that negative market prices of risk lead to

positive risk premiums.

3.2 Results

We now show the most relevant results about the impact of the bond maturities on x∗t . It

appears that plausible bond maturities in practice lead to extreme bond allocations. For

16We use the second set of Table 1 of Brennan and Xia (2002) that are based on yearly observations
from 1890-1985, as they argue that the first set based on monthly observations from 1970-1995 led to
unrealistic much oscillations in the estimated real interest rate. Furthermore, we set ρrπ=0, because that
estimate tends to be very low and we did not see considerable differences between using either ρrπ = 0
or the estimated (very small) value.
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example; for τ1 = 3, τ2 = 10, and γ = 2 the investor should invest 1,850% of her wealth in

bond 1 and -566% in bond 2. Therefore, it is relevant to analyse the impact of τ1 and τ2

by studying the ‘extremeness’ of bond allocations for different bond combinations. In the

analysis, we assume that the possible bond maturities are in the range τi ∈ {1, 2, ..., 50}
for i ∈ {1, 2}. This maximum maturity of 50 is in line with the maximum available swap

maturity data.

To approach the ‘least extreme’ bond allocations by changing τ1 and τ2, we define a

‘robust’ combination of bond maturities (τmin1 , τmin2 ). We let it minimise the sum of the

absolute values of x∗0 of both bonds17

(τmin1 , τmin2 ) = arg min
τ1,τ2

(
|x∗0,1|+ |x∗0,2|

)
(22)

where x∗0,1 and x∗0,2 denote the optimal bond allocations to bond 1 and 2 respectively.

This leads to four main results that hold for all γ ∈ {1, 2, 25}. Furthermore, the example

allocations mentioned in this section are based on κRπ = −0.078, but the conclusions

remain valid for some sensitivity values κRπ ∈ {−0.117,−0.039,−0.001}.
First, the robust combination according to the definition in equation (22) equals

(τmin1 , τmin2 ) = (11, 50). So if the investor can choose both τ1 and τ2, she will choose this

combination to minimise the sum of absolute values of x∗0. The choice of τ1 = 11 is roughly

in line with the maturity of 10 years, shown in Figure 4 of the paper of Brennan and Xia

(2002). Moreover, τ2 = 50 is in line with the common practice of long-term investors that

invest in very long-term bonds.18 Note that these maturities do not solve the issue of

large allocations, for example at t = 0 these still are equal to |349%|+ | − 107%| = 457%

of wealth for γ = 2.

Second, we compute the ‘robust’ choice of τ2 that minimises the sum of absolute values

of x∗0 of both bonds when τ1 is fixed to a certain value τ1 ∈ {5, 10, ..., 50}. The results

are shown in Table 3. It shows that for all fixed values of τ1, the robust choice includes

one long-term bond maturity of at least 30 years. Intuitively, this can be explained by

the fact that a long-term bond is more sensitive to changes in Rt and πt. Therefore, a

smaller allocation to this bond is necessary to result in a certain risk exposure compared

17For t > 0, the problem can be considered as a new problem at t = 0, but with a decreased investment
horizon T . We verified that for smaller T ∈ {1, 5, 10, 20}, the robust choice did not change. Therefore,
it is sufficient to consider the bond allocations at t = 0 instead of for all t ∈ [0, T ].

18Note that long-term bonds are not very liquid in practice. However, as explained in Section 1, the
long (short) position in a long-term bond can be replicated by an interest rate swap contract. These
swaps are available for high maturities and therefore commonly used by long-term investors.
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to bonds with smaller bond maturities.

Third, if the investor deviates from this robust choice substantially, this heavily affects

the optimal bond allocations. For example, Figure 1 shows the optimal allocations for

τ2 = 50, a τ1 equal to the value of the x-axis, and several values of κRπ. As we know

from the ‘robust’ choice, the sum |x∗0,1| + |x∗0,2| is the smallest for τ1 = 11. When the

investor chooses a slightly different τ1 than τmin1 = 11, this does not lead to large changes

in the sum of absolute allocations. However, as Figure 1 shows, when τ1 is considerably

lower or higher than τmin1 , the increase in the allocations can be large. This is in line

with approaching the condition τ1 ≈ 0 or τ1 ≈ τ2 respectively. Recall that Section 2.3

explains that these conditions lead to extreme bond demands below (13). For example,

for τ1 = 5 << τmin1 = 11, γ = 2 and κRπ = −0.078 the sum of absolute bond allocations

already increases to about 570%. And even more striking, when τ1 is increased to more

than 30 years, the sum becomes larger than 960% for γ = 2.

Fourth, all three results above not only hold for T = 30, but for the horizon invest-

ments T ∈ {1, 5, 10, 20} as well. This is because under the initial parameters the extreme

allocations are a result of the large (dominating) term (A′)−1 in the optimal demand given

in equation (12). This term only depends on the bond maturities and mean-reversion

parameters.

Hence, the results show that the bond maturities can have a large impact on the bond

demand. We define a robust choice of bond maturities. Under the initial parameters,

this choice always includes a long-term bond. If both maturities can be chosen, the

robust choice equals (τ1, τ2) = (11, 50). However, as it is just an approximation of a

robust strategy, to prevent false accuracy we choose to use (τ1, τ2) = (10, 50) instead

for the remainder of this paper. As explained in the third result, this does not lead to

substantial different results.

4 Impact feedback parameter

Because the optimal bond allocations of the SW-strategy are large in absolute numbers,

they are expected to be sensitive to changes in parameters. This may lead to large utility

losses due to small estimation errors, emphasizing the relevance of parameter uncertainty.

This section shows the impact of the feedback parameter on the optimal bond allocations

and the resulting Certainty Equivalent (CE) of wealth. Note that parameter uncertainty

can be seen as model uncertainty, as Section 2.4 shows that specific values of the feedback

parameter lead to special cases of the SW-model.
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4.1 Impact on optimal portfolio weights

We use the initial parameters of set ΘR as given in the first column of Table 2, and

the robust bond maturity combination (τ1, τ2) = (10, 50) as supported in Section 3.2.19

We compute the optimal bond allocations for different values of the feedback parameter,

namely κRπ ∈ {−0.117,−0.078,−0.039,−0.001, 0}. The value of κRπ = 0 is relevant

because in this case the SW-strategy equals the MSV-strategy. Similarly, applying the

SW-strategy based on κRπ = −0.078 results in the BX-strategy (two bonds) or BBB-

strategy (one bond).20 The first and third values of κRπ = −0.117 and κRπ = −0.039 are

corresponding to 150%- and 50%-sensitivities of the value of κRπ = −0.078. The value of

κRπ = −0.001 is added to study the impact when the feedback parameter converges to 0.

Table 4 shows the optimal bond allocations in the two bond and one bond SW-

strategy for the different values of κRπ. For κRπ = 0, the investor cannot apply the two

bond strategy.21 The table shows considerable differences between the extreme short-long

positions in the two bond strategies and the less extreme (long) positions in the one bond

strategies. This difference increases when κRπ converges to 0. The intuition is that in

this case the investor needs these extreme positions in the two bond strategy to hedge the

risks, because of the weaker relationship between the inflation rate level and the nominal

interest rate drift. The impact of the feedback parameter on the one bond SW-strategy

is less significant, because the investor cannot fully hedge the inflation rate anyway.

4.2 Impact on Certainty Equivalent Wealth

The large sensitivity of bond allocations with respect to the feedback parameter may

result in a large impact on the CE. Recall that Section 2.5 explains how the CE is com-

puted.22 The data generating process is based on the actual parameters Θ = {κRπ,ΘR},
while the investment strategy is based on the investor’s beliefs Θ̂ = {κ̂Rπ, Θ̂R}. To isolate

the effect of the feedback parameter we let the investor have correct beliefs of Θ̂R = ΘR,

but she may have incorrect beliefs about the feedback parameter when κ̂Rπ 6= κRπ.

19In case of a one bond strategy, we choose τ1 = 10 to keep the one and two bond strategies comparable.
20The value of −0.078 is based on κπ − κR.
21In this case, the 2x2 matrix σ given in equation (10) is not invertible anymore, while the optimal

allocations in equation (11) are based on this inverse.
22We assume a constant time to maturity of the bond τi. Furthermore, we assume that ∆ = 1/12

and that the investor rebalances her bond allocation to the perceived optimal strategy every time step.
If γ = 25, we cannot directly apply equation (19) because of numerical inaccuracy. Therefore, for this
risk aversion coefficient we compute the CE by assuming that WT is log-normally distributed over all
simulations at time T , where the mean and volatility of WT are determined numerically.
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Table 5 shows the impact on the CE if the investor applies the one or two bond SW-

strategy based on κ̂Rπ given in the first column, while the actual κRπ in the GDP equals

the value given in the top row. We start to analyse the results for κRπ = −0.078. In

this case, the correct belief of κ̂Rπ = −0.078 results in the optimal investment strategy.

This corresponds to the BX- or BBB-strategy in case of a two or one bond investment

strategy respectively. However, if she has incorrect beliefs about the feedback parameter,

she applies a suboptimal strategy not equal to the BX- or BBB-strategy. Note that this

suboptimality can therefore also be interpreted as model uncertainty.

We observe two main results. First, having an incorrect belief about the feedback

parameter leads to a considerable loss in CE for the two bond SW-strategy, especially

when κ̂Rπ is lower than κRπ. For example, if κ̂Rπ = −0.039, this leads to a decrease in

the CE from 2, 517 to 0 for a hedge investor (γ = 25). Second, this sensitivity to κ̂Rπ

considerably decreases if this investor would apply the one bond SW-strategy. For the

same example with κ̂Rπ = −0.039 and γ = 25, the loss in CE would be smaller, i.e.

decreasing from 251 to 200. Moreover, if κ̂Rπ = −0.039 and γ = 2 the one bond SW-

strategy even leads to a higher CE of 2, 316 than the two bond SW-strategy with a CE

of 1, 592, when these strategies are based on the incorrect belief about κRπ. Hence, the

one bond SW-strategy performs bad in hedging inflation, but is robust against parameter

uncertainty about the feedback parameter.

We make two additional observations for other actual feedback parameter values of

the GDP. First, for κRπ ∈ {−0.039,−0.001, 0}, the one bond SW-strategy performs better

than the two bond SW-strategy in case of incorrect beliefs about the feedback parameter:

for all three risk aversion coefficients and κ̂Rπ 6= κRπ, the CE is higher if the investor

applies the one bond SW-strategy than if she applies the two bond SW-strategy. Second,

the CE of the two bond SW-strategy is very sensitive to κ̂Rπ if the actual κRπ = −0.001.

For example, having incorrect beliefs κ̂Rπ 6= κRπ always leads to a loss in the CE of 100%,

even for γ ∈ {1, 2} which lead to less sensitive CE for other κRπ. Moreover, if the investor

has the exact correct belief of κ̂Rπ = −0.001, the investor can still apply the two bond

SW-strategy. However, if she makes a very small error in the estimation of κRπ by having

the belief κ̂Rπ = 0, the two bond SW-strategy is not defined anymore, as mentioned in

Section 4.1. The investor does not face this issue if she invests in one bond only, which

is another advantage of the one bond SW-strategy.

For completeness, the analysis has been repeated with alternative combinations of

bond maturities (τ1, τ2).23 For both the one and two bond strategies, the bond positions

23The results are available upon request.
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became more extreme, as the combinations differ from the derived robust combination

used in the initial analysis. For the two bond strategies, this does not affect the CE for

all values of κRπ. However, it does impact the CE under the one bond strategies in two

ways. First, an increasing bond maturity leads to a larger loss in the CE under a one bond

strategy compared to a two bond strategy, although this is less visible if κRπ increases.

Second, it makes the one bond SW-strategy more robust to parameter uncertainty about

the feedback parameter: the optimal CE lays closer to the CE with a strategy where

κ̂Rπ 6= κRπ.

Hence, because the feedback parameter has a considerable impact on the optimal

investment strategy, an estimation error in this parameter can result in a large loss in

CE. As the underlying model changes with the feedback parameter as well, this can be

seen as either parameter uncertainty or model uncertainty. Due to the less extreme bond

positions, the one bond strategies are more robust for this uncertainty, although the

results of the one bond strategies are dependent of the chosen bond maturity.

5 Robustness with respect to remaining parameters

In Section 4 we investigate the sensitivity of (sub)optimal investment strategies to the

feedback parameter, keeping the remaining parameters constant. However, based on our

earlier analytical analysis we expect the strategies to also be sensitive to changes in the

mean-reversion parameters and to changes in the correlation between the shocks in the

risk factors. Therefore, this section will show the impact of changes in these parameters

on the optimal nominal bond demands and Certainty Equivalent (CE) of wealth.

5.1 Impact on optimal portfolio weights

This section shows the impact on the optimal bond allocations of changes in the param-

eters in ΘR. To analyse this, we use the (robust) bond maturity combination (τ1, τ2) =

(10, 50) in line with Section 4.1 and we set κRπ = −0.078.24 We apply 8 alternative

sensitivity sets Θ̂k
R(k ∈ {1, 2, ..., 8}), shown in Table 2. As Section 2.3 shows that the

mean-reversion parameters affect the hedge demand, sets 1 till 6 correspond to changes in

κR and κπ with respect to the initial parameters in set Θ. The corresponding volatilities

24This value of κRπ is relevant for the analysis in Section 5.2. Results for the other values of the
feedback parameter can be delivered upon request.
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σR and σπ are changed simultaneously to keep the unconditional variance constant.25

Sets 1 till 4 decrease or increase one mean-reversion parameter, sets 5 and 6 decrease

or increase the variable for both risk factors instead of one. Moreover, sets 7 and 8 ap-

ply changes to the correlation between the shocks in the risk factors, ρRπ. Recall that

this factor is relevant, because Section 2.3 shows that this factor impacts the one bond

strategies.26

We first analyse the impact on the two bond strategies, shown in Table 6. The two

bond SW-strategy contains more extreme positions in particular for the sets where κR

doubles. In these cases, the investor believes that Rt is less persistent than it actually

is. Therefore, she holds more extreme positions, especially regarding the short position.

Similarly, she holds less extreme (short) positions in case she thinks κR is smaller than it

actually is. Moreover, in line with the mean-reversion parameter for Rt, for an increasing

κπ she holds more extreme (short) positions, and less extreme (short) positions when

she thinks κπ is smaller than it actually is. When ρRπ changes, based on the analytical

analysis in Section 2.3 we expect that only the speculative demand changes. The small

changes in the hedge demand for γ = 25 are just a result of the difference between γ = 25

and γ =∞. The BX-strategy appears to change in the opposite direction of the two bond

SW-strategy when the mean-reversion parameters change, i.e. it contains less extreme

(short) positions for increases in κR and decreases in κπ. The effect of an adjusted ρRπ is

exact the same as for the two bond SW-strategy, as expected.

Consecutively, we analyse the optimal demands in the one bond strategies. Table 6

show that the one bond strategies are considerably more robust to parameter changes

than the two bond strategies. This is especially the case if the investor has incorrect

beliefs about κR or a higher ρRπ (k = {1, 3, 5, 6, 8}). The intuition is as follows. Suppose

an investor with γ > 1 who invests in only one bond and believes that κR is less persistent

than it actually is. Then she decreases her bond demand due to her smaller (positive)

Rt-hedge demand. Because her demand is less extreme in absolute terms than when

she would invest in two bonds, this decrease in her bond demand is also less extreme

than when she would use a two bond strategy. A final observation is that the changes

compared to set 0 are non-monotone in γ. For example, if κR doubles, the speculative

demand increases compared to set 0 but the hedge demand decreases. This is because

the decreasing (positive) Rt-hedge demand is only relevant if the investor is at least

25For example, set 1 contains a doubling of κR and an increase of
√

200% in σR simultaneously. Hence,
the unconditional variance of Rt(Var(Rt) = σ2

R/2κR) is in line with set 0.
26The factor ρRπ also affects the speculative demand of two bond strategies, but we focus on the hedge

demand.
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moderately risk averse (γ > 1).

5.2 Impact on Certainty Equivalent Wealth

Similar as in Section 4.2, we compute the impact on the CE. Recall that the CE-

computations are explained in Section 2.5 and that the investor believes that the data gen-

erating process is based on Θ̂ = {Θ̂R, κ̂Rπ}, while it is actually based on Θ = {ΘR, κRπ}.
Since we are now interested in the impact of the parameters in ΘR, we set κ̂Rπ = κRπ =

−0.078.27 Hence, the investor knows the correct value of the feedback parameter, but

can have incorrect beliefs about the parameters in ΘR. Table 7 shows the impact on the

CE for every belief set Θ̂k. It is shown for the five different strategies: the two bond

SW-strategy, the BX-strategy, the one bond SW-strategy, the BBB-strategy, and the

MSV-strategy. The corresponding CE-values are denoted by CE∗, CEBX , CE ∗̃, CEBBB,

and CEMSV respectively.

We first analyse the results for the two bond strategies. The CE under the SW-

strategy appears to be most sensitive to incorrect beliefs about κR, compared to changes

in the other parameters in ΘR. The most extreme loss in CE is present when κ̂R > κR for

k = {1, 5}. In these cases, Section 5.1 shows that the investor holds too extreme positions

and therefore is exposed to more risk than under the actual optimal bond positions.28

Similar as for κR, the SW-strategy appears to be more sensitive to beliefs of a higher κπ

(κ̂π > κπ) than those of a lower κπ (κ̂π < κπ). The loss in CE due to incorrect beliefs

about κπ are particularly present for an at least moderately risk averse investor (γ > 1).

Interestingly, the BX-strategy is more (less) robust to parameter uncertainty in κR (κπ).

For example, for the hedge investor (γ = 25) and κ̂R > κR(k = 1) the SW-strategy leads

to a loss in CE of 100%, while the BX-strategy leads to a smaller loss of 27%. Finally,

both the SW- and BX-strategy are almost insensitive to beliefs of ρ̂Rπ > ρRπ, but beliefs

of ρ̂Rπ < ρRπ lead to a significant loss in CE for an investor with risk aversions γ = 1, 2.

This is in line with the large changes in the speculative demands shown in Section 5.1.

Considering the results of Table 7 regarding the one bond strategies, we see that

the CE appears to be less sensitive to incorrect parameter beliefs than the two bond

strategies, in line with the less sensitive bond demands explained in Section 5.1. 29 This

is especially the case if the investor has incorrect beliefs about κR or ρ̂Rπ > ρRπ. However,

27The results for the other values of κRπ are in line with κRπ = −0.078 and can be delivered upon
request.

28This observation is even more relevant when κRπ = −0.001 or κRπ = 0.
29This effect is even more visible when κRπ = −0.001 or κRπ = 0.
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even while the one bond strategies appear to be more robust to parameter uncertainty

than the two bond strategies, the CE remains considerably lower than the CE of 2, 157

under the optimal two bond strategy without parameter uncertainty. This is because

the one bond strategy fails to fully hedge the inflation risk. For the investor with risk

aversions γ = 1, 2 the one bond SW-, BBB-, and MSV-strategy lead to similar CE-values.

However, for the hedge investor with γ = 25, the BBB-strategy appears to be slightly

more (less) robust than the other one bond SW-strategy to parameter uncertainty about

κR(κπ). This is in in line with the results of the BX-strategy with respect to the two

bond SW-strategy.

A final interesting aspect to consider is the worst-case scenario for the hedge investor

γ = 25. Over all sensitivity sets, the two bond strategies lead to a CE of 0 in the worst

cases, due to the large sensitivity to parameter changes. The MSV-strategy appears to

have a low CE in the worst case as well, namely a CE of 8. However, the one bond SW-

strategy performs better with a worst-case value of 70 and the BBB-strategy appears to

be have the best worst-case CE of 128.

Hence, although the two bond strategies lead to considerable higher CE-values when

the investor knows the correct parameters, they are very sensitive to parameter uncer-

tainty. Especially when the risk aversion of the investor increases, incorrect beliefs about

the mean-reversion parameters of Rt and πt lead to large losses in CE. The advantage

of the one bond strategies is that they are more robust for this parameter uncertainty.

Moreover, for the hedge investor the BBB-strategy leads to the ‘best worst case’ CE

among all sensitivity sets and strategies.

6 Conclusion

For long-term investors it is important to hedge both the real interest rate risk and

inflation risk. Since Index Linked Bonds are illiquid in practice, and their supply is

limited, we consider the optimal hedging strategy of Sangvinatsos and Wachter (2005)

(SW-strategy). This strategy hedges the real terminal wealth by using a short-long

composition of two nominal bonds. The bond demands of the SW-strategy are typically

extreme: the absolute value of the portfolio weights typically exceed 100%. This happens

especially when the time to maturity of the two bonds lay close to each other. To minimise

the sum of absolute values of the bond demands, we define a robust combination of the

bond maturities. This results in a robust choice of a 10-year and a 50-year bond. However,

even with this specific maturity combination the strategy contains extreme demands.
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Our main finding is that the optimal nominal bond investment strategy is heavily

dependent on the parameters of the mean reversion matrix of the process driving the

short-term nominal interest rate and expected inflation. When the mean reversion co-

efficients of nominal interest rate and expected inflation process are close to each other,

or when the feedback from expected inflation to the nominal interest rate is close to

zero, we find more extreme demands. We find that incorrect investor beliefs about these

parameters can lead to large losses in the utility of her terminal real wealth, compared

to knowing the correct parameters. The utility losses are particularly high when the in-

vestor has incorrect beliefs about the feedback parameter or when she overestimates the

mean reversion of the nominal interest rate process. As it is difficult to estimate these

parameter values precisely, parameter uncertainty is relevant.

To explore possible solutions for the extreme bond demands and the SW-strategy’s

sensitivity to parameter values, we study four alternative strategies based on restricted

versions of the general Sangvinatsos and Wachter (2005) model. The first alternative

is based on the model of Brennan and Xia (2002) (BX), which restricts the feedback

from expected inflation to real interest rates to zero. Moreover, we study three one bond

strategies: the one bond SW-strategy, and two alternatives based on the studies of Bilsen

et al. (2020) (BBB) and Munk et al. (2004) (MSV). The one bond strategies lead to less

extreme bond positions than the two bond strategies. As a result, these are more robust to

parameter uncertainty. Overall, applying the BBB-strategy leads to smaller utility losses

compared to correct beliefs about mean-reversion parameters than the other strategies.

However, the one bond strategies fail to fully hedge the inflation risk which causes the

utility to be low even in the case of correct beliefs, especially for a very risk averse investor.

If the investor therefore wants to apply a two bond strategy, it is not straightforward

whether the BX- or SW-strategy is more robust against parameter uncertainty, as this

depends on the interplay of uncertainty of the mean-reversion parameters and other

parameters.

In future research we plan to formalize the trade-off between robustness against pa-

rameter uncertainty and the ability to hedge inflation risk, depending on the investor’s

ambiguity aversion. Moreover, the results regarding the hedging ability and parameter

uncertainty are highly dependent on the choice of the time to maturity of the bonds.

Therefore, another relevant topic for future research is to let the investor also optimally

choose the time to maturity of the bonds.
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Table 1. Relevant definitions regarding the optimal bond allocations. The third column shows the size
in case of 2 risk factors.

Variable Definition Size

x∗t Optimal nominal bond allocations at time t 2x1
λ Market prices of risk of nominal asset returns 2x1

Ω = σρσ′ Variance-covariance matrix of risks 2x2
Λ = σλ Risk premium vector 2x1

λ̃ = ρ−1λ Factor loadings of nominal pricing kernel 30 2x1

Table 2. The risk factor characteristics for the initial and several sensitivity parameter sets applied in
this study. Set 0 corresponds to the initial set ΘR, sets k ∈ 1, 2, .., 8 represent the sensitivity sets Θ̂k

R.
The bold numbers of the parameters correspond to changes with respect to Θ.

k 0 1 2 3 4 5 6 7 8

κR 0.105 0.210 0.105 0.053 0.105 0.210 0.053 0.105 0.105

σR 0.019 0.027 0.019 0.014 0.019 0.027 0.014 0.019 0.019

λR -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219 -0.219

κπ 0.027 0.027 0.054 0.027 0.014 0.054 0.014 0.027 0.027

σπ 0.014 0.014 0.020 0.014 0.010 0.020 0.010 0.014 0.014

λπ -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105 -0.105

ρRπ 0.733 0.733 0.733 0.733 0.733 0.733 0.733 0.600 0.900

Table 3. For several values of a fixed τ1, the resulted τmin2 and minimised sum of absolute bond
allocations at t = 0 are shown under ΘR. Recall that τmin2 is computed according to the definition of a
robust bond maturity as in equation (22). Furthermore, the allowed range for the second bond maturity
is τ2 ∈ {1, 2, ..., 50}. τmin2 appears to be independent of T and γ. Except for κRπ = −0.117 and γ = 1,
the robust choice for τ2 does not change among κRπ ∈ {−0.117,−0.078,−0.039,−0.001}. To compute
the example of |x∗0,1|+ |x∗0,2|, we assume κRπ = −0.078, γ = 2 and T = 30.

τ1 (fixed) 5 10 15 20 25 30 35 40 45 50
τmin2 50 50 50 50 50 8 9 10 10 11
|x∗0,1|+ |x∗0,2| 5.7 4.6 4.8 5.7 7.2 6.5 5.7 5.2 4.8 4.6

30As the formula shows, these take into account the correlation between the risk factors, included in
ρR. Recall that the definition of ρR is given in equation (6).
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Table 4. The optimal bond allocations at t = 0 under ΘR (given in Table 2), for different values for κRπ,
and (τ1, τ2) = (10, 50). For readability, we suppress the subscript of t = 0. The allocations in the two
bond SW-strategy are denoted by x∗1 and x∗2 respectively. The allocation in the one bond SW-strategy
is denoted by x̃∗.

κRπ -0.117 -0.078 -0.039 -0.001 0

γ 1 2 25 1 2 25 1 2 25 1 2 25 1 2 25

x∗1 395% 304% 221% 426% 357% 294% 520% 516% 513% 7,632% 12,597% 17,165%

x∗2 -88% -66% -45% -109% -100% -93% -170% -204% -236% -4,818% -8,099% -11,118%

x̃∗ 120% 100% 81% 138% 91% 48% 160% 83% 13% 185% 77% -22% 185% 77% -22%

Table 5. The Certainty Equivalent (CE) when the SW-strategy is applied, under ΘR (given in Table
2), the actual feedback parameter κRπ of the GDP (given in the second row), the feedback parameter
belief κ̂Rπ (given in the first column), and (τ1, τ2) = (10, 50). Recall that the definition of the CE is
given in equation (19). The upper and lower table show the CE corresponding to the two and one
bond SW-strategy respectively. The results on the diagonal correspond to the optimal strategies and are
written in bold.

γ 1 2 25 1 2 25 1 2 25 1 2 25 1 2 25
HH

HHHκ̂Rπ

κRπ -0.117 -0.078 -0.039 -0.001 0

-0.117 3,718 3,165 2,722 3,520 2,694 153 1,565 227 0 0 0 0 3,012 1,371 0

-0.078 3,639 2,835 649 3,725 3,041 2,517 2,998 1,592 0 0 0 0 3,012 1,371 0

-0.039 3,392 2,146 11 3,537 2,430 109 3,730 2,843 2,204 0 0 0 3,012 1,371 0

-0.001 3,023 1,390 0 3,029 1,398 0 3,045 1,421 0 3,735 2,593 1,835 3,012 1,371 0

0

γ 1 2 25 1 2 25 1 2 25 1 2 25 1 2 25
H
HHHHκ̂Rπ

κRπ -0.117 -0.078 -0.039 -0.001 0

-0.117 2,912 2,442 620 3,017 2,319 203 3,083 2,127 29 3,105 1,892 2 3,105 1,885 2

-0.078 2,876 2,434 487 3,048 2,324 251 3,171 2,142 50 3,236 1,911 4 3,237 1,904 4

-0.039 2,739 2,406 217 3,002 2,316 200 3,209 2,148 60 3,342 1,926 6 3,345 1,920 6

-0.001 2,470 2,347 60 2,840 2,285 105 3,156 2,139 51 3,386 1,933 7 3,391 1,927 7

0 2,461 2,344 57 2,833 2,283 103 3,153 2,139 51 3,386 1,933 7 3,391 1,927 7
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Table 6. The optimal bond allocations at t = 0 under Θ̂k
R for every k ∈ {1, 2, ..., 8} (given in Table

2), κRπ = −0.078, and (τ1, τ2) = (10, 50). For readability, we suppress the subscript of t = 0. The
allocations to bond 1 and bond 2 in the two bond strategies are denoted by x1 and x2 respectively.
The investment strategies correspond to the two bond SW-strategy, the BX-strategy, the one bond SW-
strategy, the BB-strategy, and the MSV-strategy. The SW-strategies in case of two bond and one bond
investments are based on the correct feedback parameter belief κ̂Rπ = κRπ and written in bold. The
BX- and BBB-strategy are based on κ̂Rπ = κ̂π − κ̂R, and the MSV-strategy is based on κ̂Rπ = 0.

k 0 1 2 3 4

(Initial) (κR, σR ↑) (κπ, σπ ↑) (κR, σR ↓) (κπ, σπ ↓)
γ 1 2 25 1 2 25 1 2 25 1 2 25 1 2 25

x∗1 426% 357% 294% 485% 422% 365% 483% 403% 329% 463% 377% 297% 415% 344% 278%

x∗2 -109% -100% -93% -187% -201% -215% -146% -130% -116% -75% -59% -43% -102% -92% -83%

xBX1 426% 357% 294% 410% 294% 188% 542% 504% 470% 637% 672% 704% 401% 322% 249%

xBX2 -109% -100% -93% -121% -89% -60% -184% -197% -208% -152% -189% -223% -92% -77% -64%

x̃∗ 138% 91% 48% 153% 65% -16% 127% 85% 47% 142% 126% 112% 149% 103% 62%

xBBB 138% 91% 48% 115% 77% 42% 144% 80% 22% 183% 108% 38% 143% 106% 71%

xMSV 185% 77% -22% 194% 61% -62% 185% 75% -26% 209% 101% 2% 185% 91% 4%

k 0 5 6 7 8

(Initial) (κR, σR, κπ, σπ ↑) (κR, σR, κπ, σπ ↓) (ρRπ ↓) (ρRπ ↑)
γ 1 2 25 1 2 25 1 2 25 1 2 25 1 2 25

x∗1 426% 357% 294% 565% 498% 437% 452% 367% 289% 296% 292% 288% 1089% 688% 320%

x∗2 -109% -100% -93% -257% -268% -278% -71% -55% -40% -59% -75% -91% -349% -221% -102%

xBX1 426% 357% 294% 484% 358% 242% 544% 505% 470% 296% 292% 288% 1089% 688% 320%

xBX2 -109% -100% -93% -186% -145% -107% -111% -115% -120% -59% -75% -91% -349% -221% -102%

x̃∗ 138% 91% 48% 144% 59% -19% 156% 138% 121% 146% 99% 56% 129% 82% 39%

xBBB 138% 91% 48% 110% 66% 26% 180% 126% 77% 146% 99% 56% 129% 82% 39%

xMSV 185% 77% -22% 194% 58% -66% 209% 116% 31% 185% 93% 9% 185% 57% -62%
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Table 7. The (changes in) the Certainty Equivalent (CE) for five different strategies when the GDP is
based on Θ = {κRπ,ΘR}, κRπ = −0.078, and the investment strategy is based on Θ̂k

R (given in Table 2)
and a κ̂Rπ depending on the strategy. Furthermore, (τ1, τ2) = (10, 50). Recall that the definition of the
CE is given in equation (19). For readability, we suppress the superscripts of indicator δ and parameter
set k. The variable ∆ corresponds to the relative change in CE under the belief set Θ̂k compared to
the CE under the actual parameters of Θ. For k = 0, the investor has correct parameter beliefs about
ΘR. The underlying strategies are given in Table 6 and correspond to the two bond SW-strategy the
BX-strategy, the one bond SW-strategy, the BB-strategy, and the MSV-strategy. The CE corresponding
to the SW-strategies are based on the correct feedback parameter belief (κ̂Rπ = κRπ) and are written in
bold.

k 0 1 2 3 4

(Initial Θ) (κ̂R, σ̂R ↑) (κ̂π, σ̂π ↑) (κ̂R, σ̂R ↓) (κ̂π, σ̂π ↓)
γ 1 2 25 1 2 25 1 2 25 1 2 25 1 2 25

CE∗ 3,725 3,041 2,517 1,657 571 0 3,436 2,712 937 2,171 1,501 4 3,715 3,013 2,061

CEBX 3,725 3,041 2,517 3,449 2,882 1,849 2,673 1,409 0 2,638 1,981 30 3,669 2,916 1,185

CE∗′
3,048 2,324 251 3,025 2,297 106 3,037 2,309 232 3,046 2,291 139 3,037 2,302 212

CEBBB 3,048 2,324 251 2,995 2,304 249 3,044 2,315 182 2,851 2,284 232 3,045 2,304 193

CEMSV 2,833 2,283 103 2,750 2,247 20 2,833 2,299 57 2,590 2,239 155 2,833 2,248 190

∆∗ -56% -81% -100% -8% -11% -63% -42% -51% -100% 0% -1% -18%

∆BX -7% -5% -27% -28% -54% -100% -29% -35% -99% -2% -4% -53%

∆∗′
-1% -1% -58% 0% -1% -8% 0% -1% -45% 0% -1% -15%

∆BBB -2% -1% -1% 0% 0% -28% -6% -2% -8% 0% -1% -23%

∆MSV -3% -2% -80% 0% 1% -44% -9% -2% 51% 0% -2% 85%

k 0 5 6 7 8

(Initial Θ) (κ̂R, σ̂R, κ̂π, σ̂π ↑) (κ̂R, σ̂R, κ̂π, σ̂π ↓) (ρ̂Rπ ↓) (ρ̂Rπ ↑)
γ 1 2 25 1 2 25 1 2 25 1 2 25 1 2 25

CE∗ 3,725 3,041 2,517 313 24 0 2,126 1,445 3 3,574 2,979 2,511 1,291 1,802 2,425

CEBX 3,725 3,041 2,517 1,692 1,330 26 2,454 1,847 48 3,574 2,979 2,511 1,291 1,802 2,425

CE∗′
3,048 2,324 251 3,045 2,271 70 3,014 2,226 87 3,042 2,318 243 3,041 2,315 242

CEBBB 3,048 2,324 251 2,970 2,259 211 2,876 2,212 200 3,042 2,318 243 3,041 2,315 242

CEMSV 2,833 2,283 103 2,750 2,257 8 2,590 2,153 242 2,833 2,257 200 2,833 2,273 18

∆∗ -92% -99% -100% -43% -52% -100% -4% -2% 0% -65% -41% -4%

∆BX -55% -56% -99% -34% -39% -98% -4% -2% 0% -65% -41% -4%

∆∗′
0% -2% -72% -1% -4% -65% 0% 0% -3% 0% 0% -4%

∆BBB -3% -3% -16% -6% -5% -20% 0% 0% -3% 0% 0% -4%

∆MSV -3% -1% -92% -9% -6% 135% 0% -1% 95% 0% 0% -82%
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Figure 1. The optimal bond allocations at t = 0 under Θ given in the first column of Table 2 and four
values of κRπ. The blue (orange) line shows the long (short) positions in bond 1 (2) for T = 30, τ2 =
T2 = 50, and all τ1 = T1 ∈ {1, 2, ..., 49}.

(a) κRπ = −0.117 (b) κRπ = −0.087

(c) κRπ = −0.039 (d) κRπ = −0.001
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A Definitions of matrices A and B

Sangvinatsos and Wachter (2005) derive the optimal nominal bond strategy to hedge the

nominal interest rate risk and inflation rate risk, given in equation (11). The solution in

the paper of Sangvinatsos and Wachter solution contains row vectors A2(τ) and B2(τ),

which we will suppress to A(τi) and B(τ) for convenience. These vectors are found by

solving the Ordinary Differential Equation (ODE) below in case of constant risk premi-

ums31 (Sangvinatsos and Wachter, 2005)[eq.(A3) and (B8)]:

A′(τi) = −A(τi) ·K − δR
= −A(τi) ·K − 1

B′(τ) = −B(τ) ·K + (δR − δπ)

= −B(τ) ·K +
[
1 −1

]
Which results in the solutions

A(τi) = δR(e−Kτi − I)K−1

B(τ) = (−δR + δπ)(e−Kτ − I)K−1

To express these vectors in the mean-reversion parameters and bond maturities, let V

be a matrix that contains the column vectors of the right eigenvectors of mean-reversion

parameter matrix K from equation (5), and let Kd be a diagonal matrix with the eigen-

values of K corresponding to these eigenvectors on the diagonal entries. Since K is a

diagonalizable matrix, we know by linear algebra that we can express K in these matrices:

K = V KdV
−1

→ −τK = V · −τKdV
−1

→ exp(−τK) = V · exp(−τKd)V
−1

31Note that we leave out the term ‘(1− γ)’ that is given in the equation of Sangvinatsos and Wachter
(2005) in front of (δR − δπ). This is because of convenience. Including this term increases B(τ) by
factor (1− γ). Because Sangvinatsos and Wachter multiply the hedge term with 1

γ in the optimal asset

allocations (see their equation (44)), this results in a total factor of 1
γ · (1 − γ) = −(1 − 1

γ ) which we

recognize from the literature, e.g. in the hedge allocation in the BX-model, −(1− 1
γ )b(T − t)σr.)
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Furthermore, since K is upper triangular, the eigenvalues are κR and κπ. Therefore:

Kd =

[
κR 0

0 κπ

]
;V =

[
1 − κRπ

κR−κπ
0 1

]

And the matrix exp(−τKd) equals

exp(−τKd) =

[
e−τκR 0

0 e−τκπ

]

This results in:

A(τi) = δR(e−Kτi − I)K−1

=
(
V · exp(−τiKd)V

−1 − I
)
K−1

=
[
− 1
κR

(1− e−τiκR); κRπ
κRκπ

(1− e−τiκR) + κRπ
κπ(κR−κπ)

(e−τiκR − e−τiκπ)
]

B(τ) = (−δR + δπ)(e−Kτ − I)K−1

=
[
−1 1

] (
V · exp(−τKd)V

−1 − I
)
K−1

=
[

1
κR

(1− e−τκR); − κRπ
κRκπ

(1− e−τκR)− 1
κπ

(1− e−τκπ)− κRπ
κπ(κR−κπ)

(e−τκR − e−τκπ)
]

In the main text of this paper, we use the notation of matrix A which corresponds to

A ≡ [A(τ1);A(τ2)] in case of the two bond strategy, and A ≡ A(τ1) in case of the one

bond strategy.
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B Conversion rt-parameters to Rt-parameters

For the initial parameter set 0 in Table 2 we use the estimates of Brennan and Xia (2002).

However, these estimates are based on the real interest rate characteristics κr;σr; ρrπ; and

λr for rt = Rt−πt. This section shows how we convert these values to risk characteristics

for Rt : κR;σR; ρRπ; and λR. Because the nominal interest rate equals the sum of the real

interest rate and the expected inflation, the parameters σR and ρRπ are given by:

σR =
√

Var(rt + πt) =
√
σ2
r + σ2

π + 2ρrπσrσπ

σRπ = ρRπσRσπ = Cov(R, π) = Cov(r + π, π) = ρrπσrσπ + σ2
π

→ ρRπ =
ρrπσr + σπ

σR

Consecutively, we determine κR by matching the approximated unconditional variances:

σ2
R

2κR
=

σ2
r

2κr
+

σ2
π

2κπ
+ 2ρrπ

σr√
2κr

σπ√
2κπ

→ κR =
σ2
R

2 ∗
(
σ2
r

2κr
+

σ2
π

2κπ
+
ρrπσrσπ√
κrκπ

)
Finally, we match the market prices of risk to compute λR:

λRσR = λrσr + λπσπ

→ λR =
λrσr + λπσπ

σR

Using these converted values of σR; ρRπ;κR; and λR as input values leads to the same

wealth process simulations based on shocks in Rt and πt as using the original σr; ρrπ;κr;

and λr in simulations based on shocks in rt and πt.
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