
 

The Impact of Stemming and 
Lemmatization Applied to Word 
Vector Based Models in Sentiment 
Analysis 

A Comparison of Stemming and Lemmatization 
Methods 
 
Youri Senders 
 

MSc 06/2021‐010 



THE IMPACT OF STEMMING AND
LEMMAT I Z AT ION APPL I ED TO

WORD VECTOR BASED MODELS IN
SENT IMENT ANALYS I S

A COMPAR I SON OF STEMMING AND
LEMMAT I Z AT ION METHODS

YOUR I SENDERS

THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE IN DATA SCIENCE & SOCIETY
AT THE SCHOOL OF HUMANITIES AND DIGITAL SCIENCES

OF TILBURG UNIVERSITY



STUDENT NUMBER

2018966

COMMITTEE

prof. dr. E.O. Postma
C.D. Emmery MSc

LOCATION

Tilburg University
School of Humanities and Digital Sciences
Department of Cognitive Science &
Artificial Intelligence
Tilburg, The Netherlands

DATE

June 25, 2021

ACKNOWLEDGMENTS

Many thanks to Tilburg University and its professors for teaching the courses I
took during the Master’s program. With special thanks to prof. dr. E.O. Postma
for supervising me during my thesis.



THE IMPACT OF STEMMING AND
LEMMAT I Z AT ION APPL I ED TO WORD

VECTOR BASED MODELS IN
SENT IMENT ANALYS I S

A COMPAR I SON OF STEMMING AND LEMMAT I Z AT ION METHODS

YOURI SENDERS

Abstract

Sentiment analysis is a commercially attractive field in which a great
deal of research has already been conducted. Millions of people across the
world share their opinion on the web, which makes it a popular subject
among researchers. The first step in sentiment analysis is text preprocess-
ing. This research focuses on the methods stemming and lemmatization.
These are text normalization methods that attempt to obtain root forms of
inflected words. Prior work highlighted the importance of preprocessing.
However, while preprocessing in classification models is studied exten-
sively, little work has been done towards preprocessing in word vector
based models. Therefore, the goal of this work is to examine the role
of stemming and lemmatization when applied at the training phase of
word vector based models. The following research question is addressed:
"Which stemming or lemmatization method is most suitable for predict-
ing sentiment polarity when integrated at the training phase of word vector
based models?" This thesis uses a training corpus consisting of 142.570
news articles and the IMDB movie review dataset for classification. First,
stemming and lemmatization are applied to the training corpus. Second,
Word2Vec’s CBOW and Skip-gram models are trained. Hereafter, stem-
ming and lemmatization are applied to the classification dataset to obtain
a compatible vocabulary. Finally, sentiment is classified using a LSTM
model with embedding layer. The results of the experiments show that all
methods outperformed the baseline for both word embedding models.
Lemmatization is the preferred method for the CBOW model, whereas
the Snowball stemmer is the preferred stemming method. The Snowball
stemmer achieved the best performance for the Skip-gram model, while
the Porter stemmer and lemmatization are close behind. Therefore, this
research concludes that the Snowball stemmer is the best performing
stemming method, while lemmatization achieves similar results.

1



1 INTRODUCTION 2

1 INTRODUCTION

Affective tasks in natural language processing such as sentiment analysis are
a popular research field in which a great deal of research has already been
conducted (Babanejad, Agrawal, An, & Papagelis, 2020). In sentiment analysis,
an opinion from a writer towards a specific event, personality or product is
identified and categorized (Alam & Yao, 2019). Identifying sentiment can be
beneficial for consumers before making a purchase, but also the other way
around: organizations that want to know how consumers think about them
(Go, Bhayani, & Huang, 2009). Traditional sentiment analysis started more
than a decade ago by focusing on large amounts of text such as movie reviews.
The rise of social media provided the opportunity for users to express their
view on topics (Jianqiang & Xiaolin, 2017; Krouska, Troussas, & Virvou, 2016;
Symeonidis, Effrosynidis, & Arampatzis, 2018).

Predicting the polarity of a piece of text in order to find out whether the
writer expresses a positive, neutral or negative opinion is a common task in
sentiment analysis (Alam & Yao, 2019; Angiani et al., 2016). Machine learning
classification algorithms are mostly involved to solve a task like this. A machine
learning classifier aims to associate a given input with the correct class. To
illustrate, if a product review is given to the classifier, it could predict that the
review has a positive sentiment. An algorithm needs to be trained on a set of
inputs and their corresponding classes. Then, the classifier becomes capable of
recognizing the correct class by extracting features from input data (Angiani et
al., 2016).

The quality of the data is a major factor for machine learning classification
algorithms. Inadequate data could result in a classifier that produces less ac-
curate results (Kotsiantis, Kanellopoulos, & Pintelas, 2006). A corpus of raw
text data can be unstructured. Thus, the first step in sentiment analysis is pre-
processing the data (Angiani et al., 2016; Camacho-Collados & Pilehvar, 2017;
Jianqiang & Xiaolin, 2017; Symeonidis et al., 2018). Within this phase, a series
of techniques are applied to make the data more uniform and structured in
preparation for training a machine learning algorithm. Preprocessing is consid-
ered as a crucial phase in order to achieve valuable results (Angiani et al., 2016;
Babanejad et al., 2020; Kotsiantis et al., 2006; Krouska et al., 2016; Symeonidis
et al., 2018). However, the disposal of noisy instances is a challenging task in
machine learning (Kotsiantis et al., 2006).

Stemming and lemmatization are text normalization techniques that can
be used to handle mismatches in language and are widely used in natural
language processing tasks such as sentiment analysis, web search results, and
information retrieval. Stemming is a technique that equate several variants
of word forms to the root word called a "Stem". A stemmer uses rule-based
heuristics in order to remove prefixes and suffixes to create matching Stems.



1 INTRODUCTION 3

For example, the words "automatic", "automate", and "automation" all get the
Stem "automat" (Asghar, Khan, Ahmad, & Kundi, 2014). It is possible that a
Stem is a non-valid word in language (Asghar et al., 2014; Hickman, Thapa, Tay,
Cao, & Srinivasan, 2020; Jivani et al., 2011).

Lemmatization is a similar technique. The main difference is that lemmati-
zation takes the part of speech of words into account and returns a root word,
called a "Lemma", by indexing through a dictionary. For instance, the words
"plays", "played", and "playing" all get the Lemma "play" (Asghar et al., 2014). As
a result, the lemmatization technique returns a valid word in language. Hence,
lemmatization replaces all the words with their root form, whereas stemming
only removes word inflections (Asghar et al., 2014; Hickman et al., 2020; Mhatre,
Phondekar, Kadam, Chawathe, & Ghag, 2017).

According to Asghar et al. (2014), lemmatization is more accurate but com-
putationally more expensive due to its dictionary lookup. To illustrate, the
words "cars" and "caring" are both reduced to the stem "car", while lemmatiza-
tion reduces "cars" into "car" and "caring" into "care". As a result, stemming
reduces the dimensionality in a corpus more than lemmatization. Dimension-
ality reduction saves memory space and computation time (Asghar et al., 2014;
Hickman et al., 2020; Mhatre et al., 2017). However, errors might occur during
analysis because a stemmer can make the same Stem of semantically distinct
words (Hickman et al., 2020). Although none of the stemmers give 100% output,
they are appropriate for natural language processing applications. Stemming
methods have a lot in common but it might be possible that one of them scores
better in a specific application (Jivani et al., 2011).

Preprocessing methods such as stemming and lemmatization are part of
the pipeline of many improved classification models in affective systems (Ba-
banejad et al., 2020). However, there is an inconsistency in the stemmers being
used by prior work. Table 1 provides an overview of the methods used in related
work. The Porter stemmer and the Snowball stemmer are used in emotion
classification, movie reviews, sarcasm detection, news, and e-mail. The Lovins
stemmer is used by Angiani et al. (2016) for Twitter sentiment analysis. Hence, it
is unclear which stemmer is most suitable. The characteristics of the stemming
methods are discussed in section 3.

In addition, while preprocessing methods are well-studied in affective sys-
tems, little work has been done when applied to the training phase of word
embedding models (Babanejad et al., 2020). According to Babanejad et al.
(2020), most models of affect analysis make use of pretrained word embeddings.
Pretrained word embedding models are trained on a large corpus. To illustrate,
Google’s pretrained Word2Vec model is trained on a part of the Google News
Dataset, which consists of approximately 100 billion words. The actual model
contains 300-dimensional vectors for three million words (Mikolov, Chen, Cor-
rado, & Dean, 2013).



1 INTRODUCTION 4

Paper Method(s) Application(s)

Agrawal and An 2012 Snowball stemmer Emotion

Angiani et al. 2016 Lovins stemmer Twitter

Babanejad et al. 2020 Snowball stemmer

Movie reviews
Twitter
Emotion
Sarcasm

Bakliwal et al. 2012 Porter stemmer Twitter

Bao et al. 2014 Unkown stemmer TwitterLemmatization

Camacho-Collados and Pilehvar 2017 Lemmatization Topic categorization
Movie reviews

Danisman and Alpkocak 2008 Porter stemmer Emotion

Mulki et al. 2018 Snowball stemmer EmotionLemmatization

Symeonidis et al. 2018 Porter stemmer Twitter
Lemmatization

Uysal and Gunal 2014 Porter stemmer News
E-mail

TABLE 1: Stemming and lemmatization methods used in related work



1 INTRODUCTION 5

To address this limitation, Babanejad et al. (2020) performed an extensive
analysis of preprocessing methods and measured their effect when integrating
earlier in word embedding models. Hence, instead of only applying preprocess-
ing on the classification dataset, preprocessing is also applied before training
the word embeddings. The results of the study showed that incorporating pre-
processing into the training phase appears to be more beneficial than applying
them on the classification dataset (Babanejad et al., 2020).

This thesis builds upon the work of Babanejad et al. (2020) by adding stem-
ming and lemmatization methods that have not been employed in their work.
Therefore, the goal of this research is to examine the effectiveness of stemming
and lemmatization when applied independently to the training corpus before
training the word embeddings. This makes it possible to compare stemming
and lemmatization methods with each other and other preprocessing methods
investigated by Babanejad et al. (2020). This leads to the following research
question:

Which stemming or lemmatization method is most suitable for pre-
dicting sentiment polarity when integrated at the training phase of
word vector based models?

To address the research question, the architecture of Babanejad et al. (2020)
is used. Stemming and lemmatization methods are used to preprocess the
training corpus. Then, the word embedding method Word2Vec (Mikolov et al.,
2013) is trained on the training corpus. The classification dataset is prepro-
cessed in the same way as the training corpus in order to obtain a compatible
vocabulary. A long short-term memory (LSTM) model with embedding layer is
used to classify sentiment polarity. The model is evaluated in terms of weighted
F-score. This architecture is further explained in section 4.

The experiment has been carried out four times. The results reported in
this research show that all the methods outperformed the baseline for both
models. For the CBOW model, the Porter stemmer, Lancaster stemmer and
lemmatization achieved F-scores of 85.67%, 85.21%, and 86.00%, respectively.
Babanejad et al. (2020) yielded a F-score of 83.99% for the baseline, while the
Snowball stemmer had an F-score of 86.92%. However, a F-score of 85.86% is
achieved when reproducing the results of the Snowball stemmer. This indicates
that lemmatization is the best performing method in terms of F-score. For the
Skip-gram model, the Porter stemmer, Lancaster stemmer, and lemmatization
achieved F-scores of 85.90%, 83.10%, and 85.89%, respectively. Babanejad et al.
(2020) produced a F-score of 83.07% for the baseline and a F-score of 86.00% for
the Snowball stemmer. The Snowball stemmer had a F-score of 86.18% when
reproducing the results. Hence, the Snowball stemmer is preferred method.

Babanejad et al. (2020) claim that their analysis is the first that provides
insight of preprocessing methods when applied at the training phase of a word



2 RELATED WORK 6

embedding model. Only the Snowball stemmer is investigated in their work.
Therefore, the contribution of this thesis is twofold. First, the impact of different
stemming methods are evaluated, which makes it possible to compare them
with each other. Second, the impact of lemmatization is examined. This makes
it possible to compare the stemming methods with lemmatization.

This work could be beneficial from both societal and scientific points of
view. Millions of people across different countries share their opinion about
topics of interest, which makes sentiment analysis a commercially attractive
field (Acosta, Lamaute, Luo, Finkelstein, & Andreea, 2017; Alam & Yao, 2019; Go
et al., 2009). The results of this thesis give insight in the impact of stemming
and lemmatization when applied before training a word embedding model.
The outcome could be valuable for future research as well. Researchers can
motivate their choice for stemming and lemmatization, and use the preferred
method in their own research.

The remainder of this paper is organized as follows: section 2 discusses the
related work. Section 3 provides information about the stemming methods,
lemmatization, word embedding and classification methods. In section 4, the
experimental setup is described. Section 5 presents the results of this study.
Finally, section 6 provides the discussion and conclusion.

2 RELATED WORK

2.1 Stemming and lemmatization

Natural language texts often contain different variants of a word. It is also possi-
ble that words are misspelled, abbreviated or have alternative spellings (Willett,
2006). Stemming and lemmatization are approaches to handle inflectional
forms and derivationally related forms of a word by reducing them to their root
form. Stemming has its roots in the domain of information retrieval. The main
idea is that the effectiveness of searching should be increased in terms of recall
by conflating multiple variants of a word in order to retrieve documents, instead
of only the specific variant of the search query (Jivani et al., 2011; Willett, 2006).
As explained in section 1, stemming and lemmatization are practically the same
except that lemmatization takes the part-of-speech and the context of the word
into account (Jivani et al., 2011).

Two types of errors can occur during the stemming process, namely under-
stemming and over-stemming. In under-stemming, two words that should be
stemmed into the same Stem are actually stemmed into different Stems. On
the contrary, over-stemming is when two words are stemmed into the same
Stem where they should be stemmed into different Stems (Balakrishnan &
Lloyd-Yemoh, 2014; Jivani et al., 2011).



2 RELATED WORK 7

Multiple flavors of stemming algorithms exist. The first stemmer was de-
veloped by Lovins in 1968 (Lovins, 1968). The Porter stemmer (Porter, 1980),
Lancaster stemmer (Paice, 1990), and Snowball stemmer (Porter, 2001) followed.
Kazmaier and van Vuuren (2020) investigated the impact of the Porter stemmer,
Snowball stemmer, Lancaster stemmer, and lemmatization build upon WordNet
on the vocabulary size. Out of a corpus of 5,385 words, the Lancaster stemmer
appeared to be the most aggressive stemmer by yielding a vocabulary size of
3,484 words. The Porter stemmer and Snowball stemmer yielded almost the
same vocabulary size with 3,951 and 3,920 words, respectively. Lemmatization
only reduced the vocabulary size to 4,948.

In recent years, stemming and lemmatization have been applied to other
natural language processing applications such as sentiment analysis, emotion
classification and sarcasm detection (Babanejad et al., 2020). Stemming and
lemmatization are also frequently used in foreign languages such as Indonesian
(Adriani, Asian, Nazief, Tahaghoghi, & Williams, 2007), Arabic (Aljlayl & Frieder,
2002; Kadri & Nie, 2006), and French (Savoy, 1993), to name a few.

2.2 Preprocessing used in machine learning methods

Pang, Lee, and Vaithyanathan (2002) introduced the first approach to classify
sentiment of movie reviews with machine learning classification algorithms.
A bag-of-words approach is used to create feature vectors. Naïve Bayes (NB),
Maximum Entropy (MaxE), and Support Vector Machines (SVM) classifiers
were used for classification. The authors concluded that all the classifiers out-
performed human-produced baselines based on indicator words with about
20%. A unigram approach was the basis of the best performances. The SVM
performed best with an accuracy score of 82.9%, followed by the NB and MaxE
with scores of 81.5% and 81%, respectively.

Go et al. (2009) showed that the same results can be yielded when classifying
polarity of Twitter messages using the same machine learning classifiers as Pang
et al. (2002). Data is collected manually through an Application Programming
Interface (API). Then, they reduced the feature space by replacing any mention
(i.e. "@") with the tag "USERNAME" and any link with the tag "URL". Also,
letters that are repeated more than two times in a row are replaced by two
occurrences. Usage of unigram and unigram + bigram resulted in the best
results. The best result was yielded by MaxE, followed by NB and SVM with 83%,
82.7%, and 82.2%, respectively.

Bakliwal et al. (2012) tested the effect of preprocessing methods individually
on the accuracy of a SVM classifier. Multiple preprocessing methods includ-
ing stopwords removal, the Porter stemmer, and spell correction were one by
one employed to measure their impact on accuracy scores on two different
datasets, including the sentiment140 dataset created by Go et al. (2009). Each



2 RELATED WORK 8

preprocessing filter is compared to a baseline which consisted of basic cleaning
operations such as the removal of special characters, URLs, mentions, emoti-
cons, and hashtags. The authors used a NB method to determine the polarity
of a token. Then, the positive and negative probabilities of all tokens in a tweet
are added and their difference is calculated. If the score is > 0, the tweet is
positive. Otherwise it is negative. The results show that each preprocessing
method improved the accuracy score on both datasets. For the sentiment140
dataset, baseline + stemming achieved the best result with an accuracy score
of 81.9%, whereas baseline + emoticons + punctuations yielded the highest
accuracy score of 80.3% on the Mejaj dataset.

Bao, Quan, Wang, and Ren (2014) investigated the individual impact of
multiple preprocessing methods on the sentiment140 Twitter dataset created
by Go et al. (2009). The effects of repeated letters, negation, URLs, stemming
and lemmatization were examined using WEKA’s Liblinear logistic regression.
The authors used unigrams and a combination of unigrams and bigrams in
order to structure the feature space. Term frequency, information gain, and chi-
square statistics were applied to select bigram features. Preprocessing methods
were compared to a baseline consisting of some basic cleaning steps such as
the removal of usernames, hashtags, and punctuations. First, stopwords and
negation handling were added towards the baseline. Accuracy improved by
0.28% as a result. The impact of negation is much bigger. The accuracy score
improved with 2.78%. Hereafter, repeated letter handling was added resulting
in an increase of 0.28%. Finally, stemming and lemmatization were added to
the pipeline. The accuracy score decreased for both methods with 3.07% and
3.32%, respectively.

Preprocessing methods for Twitter sentiment analysis are also compared
individually by Angiani et al. (2016) on the SemEval 2015 and SemEval 2016
datasets. A selection of preprocessing methods, namely stemming, stopwords,
negation, emoticon, and a dictionary of slang words were investigated. First,
basic cleaning operations including the removal of URLs, hashtags, mentions,
punctuations, and extra blank spaces are applied. After the cleaning process,
the authors applied preprocessing methods individually and measured their ac-
curacy using a Naïve-Bayes Multinomial classifier. Only the dictionary of slang
words did not improve accuracy. It turned out that basic cleaning operations in
combination with stemming resulted in the highest accuracy score. An accuracy
score of 68,68% was achieved on the test set of 2016, while an accuracy score
of 76.4% was obtained on the test set of 2015. This means that the accuracy
score increased by 3.28% and 2.32% compared to the baseline, respectively.
The authors concluded that accuracy increased because the stemming meth-
ods equate several word variants to their root form. As a result, words can be
selected as useful features by the classifier.



2 RELATED WORK 9

Uysal and Gunal (2014) studied the impact of tokenization, the Porter stem-
mer, lowercasing and stopword removal on the accuracy of a Support Vector
Machine in two different domains, namely news and e-mail. Features were
selected using the chi-square method. All possible combinations of the four
preprocessing methods were considered to reveal possible interactions. The
authors concluded that stemming is required for both domains. For the e-mail
domain, which is a binary classification problem, the best combination is tok-
enization, lowercasing, and stemming. This combination achieved a Micro-F1
score of 98.88%. For the news domain, which is a multi-class classification prob-
lem, a combination of lowercasing and stemming yielded the best performance
with a Micro-F1 score of 87.19%.

Danisman and Alpkocak (2008) investigated the effect of stemming in clas-
sifying emotion on the SemEval 2007 dataset. The authors used Naïve Bayes
(NB), Support Vector machines (SVM), and Vector Space Model (VSM) for clas-
sification. The authors found that stemming removes the emotional meaning
from words. For instance, the word ’marry’ is classified as joy whereas ’married’
is classified as sad. However, these samples are rare in the test sets. As a result,
stemming increased classification performance for all classifiers. Accuracy
scores for NB, SVM, and VSM increased with 4.5%, 0.8%, and 4%, respectively.
F1 scores are measured as well. The F1 scores increased with 3.8%, 2.1%, and
2.6%, respectively.

Agrawal and An (2012) also evaluated the effect of stemming in predicting
emotion on two different corpora, namely Wikipedia and Gutenberg. Stemming
did improve the accuracy scores with 5.28% and 0.58%, respectively. The authors
suggested that although stemming reduces emotional meaning of words, the
roots of words are related close enough to a particular emotion.

Mulki, Ali, Haddad, and Babaoğlu (2018) investigated the impact of prepro-
cessing in multi-label emotion classification. The authors tackled task 1 in the
SemEval-2018 contest, which requires to classify one or more of 11 emotion
labels embedded in Tweets for the English, Arabic, and Spanish language. The
multi-label classification (MLC) problem is transformed into binary classifica-
tion problems using Binary Relevance (BR). Hereafter, a term frequency-inverse
document frequency weighting scheme is applied to create feature vectors.
A Multi-label SVM classifier (one-Vs-All) with linear kernel is used for classi-
fication. Finally, an amount of binary SVMs equally to the number of labels
were trained to recognize emotions in a Tweet. Stemming improved the ac-
curacy score by 5.1% compared to removing stopwords in Arabic. For English
and Spanish, stemming improved the accuracy by 0.3% and 0.8%, respectively.
For Arabic, the best combination is emoticon tagging, stemming, and stop-
words removal. This combination achieved an accuracy score of 44.9%. For
both English and Spanish, emoticon tagging, lemmatization, and stopwords
removal achieved the best performance. Accuracy scores of 48% and 43.1%



2 RELATED WORK 10

were obtained for English and Spanish, respectively. The authors concluded
that lemmatization is a better choice compared to stemming for the English
language, because lemmatization is better in handling informal Tweets due to
its implicitly parts-of-speech tagging.

To conclude, stemming and lemmatization improve classification perfor-
mance in many occasions across multiple applications such as Twitter (Angiani
et al., 2016; Bakliwal et al., 2012), emotion classification, (Agrawal & An, 2012;
Danisman & Alpkocak, 2008; Mulki et al., 2018), news, and e-mail (Uysal &
Gunal, 2014). However, prior work used different stemming algorithms, which
is indicated in table 1. Also, prior work lacks a comparison of different stem-
ming algorithms. Therefore, it would be worthwhile to investigate if there is a
stemming method which yields the best performance.

2.3 Preprocessing used in Neural Networks

Camacho-Collados and Pilehvar (2017) investigated the role of lemmatization,
lowercasing and multiword grouping on the performance of a convolutional
neural network (CNN). Their work was motivated because text preprocessing in
deep learning has not received much attention. A total of nine datasets over two
tasks (topic categorization and sentiment polarity detection) were evaluated.
The preproccesing methods were compared to a vanilla model which consists
of only the tokenized corpus. The authors concluded that a simple tokenized
corpus achieves a similar or even higher accuracy score than lemmatization and
multiword grouping on non domain-specific datasets. Zooming in on sentiment
analysis, the highest accuracy scores were obtained when an embedding layer
(pretrained Word2Vec (Mikolov et al., 2013)) and LSTM layer were included in
the model. To illustrate, an accuracy score of 88.9% was achieved on the IMDB
dataset when using only a tokenized corpus.

Symeonidis et al. (2018) performed an extensive comparison of 16 com-
monly preprocessing methods including the Porter stemmer and lemmatization
for two Twitter sentiment analysis datasets. Four algorithms, namely Logistic
Regression, Linear SVC, Bernoulli Naïve Bayes, and a Convolutional Neural Net-
work have been employed for classification. In general, the authors concluded
that lemmatization, replacing contractions, and removing numbers improved
model accuracy. For the SS-Twitter dataset, the best performing methods are
replacing contractions, remove numbers, replace repetitions of punctuations,
lemmatization, stemming, and handling negations. For the SemEval dataset,
the best performing methods are replacing contractions, remove numbers,
replace repetitions of punctuations, and the removal of stopwords.

When zooming in on stemming and lemmatization, lemmatization out-
performed the baseline results in both datasets. For the SS-Twitter dataset,
accuracy improved with 0.3% for Logistic regression, 0.8% for Bernoulli Naïve



2 RELATED WORK 11

Bayes, 0.2% for Linear SVC. However, accuracy decreased with 1.5% for the
CNN. For the SemEval dataset, accuracy scores increased with 0.2% and 0.3%
for Logistic Regression and Bernoulli Naïve Bayes, respectively. Accuracy scores
decreased with 0.7% and 2.2% for Linear SVC and CNN, respectively. Stemming
only outperformed the baseline on the SS-Twitter dataset. Accuracy scores
increased for the Logistic Regression, Bernoulli Naïve Bayes, and Linear SVC
with 1.1%, 2.7%, and 0.1%, respectively. The accuracy decreased with 2% for
the CNN. Stemming performed worse on the SemEval dataset. All the accuracy
scores decreased, namely with 0.1% for Logistic Regression, 0.1% for Bernoulli
Naïve Bayes, 0.9% for Linear SVC, and 3.9% for CNN, respectively.

Babanejad et al. (2020) claims to be the first that investigated preprocessing
in word vector based models. Their work was motivated by the fact that pre-
processing methods are part of nearly every improved text classification model.
Spellcheck, negation, parts-of-speech, stopwords, and stemming were investi-
gated. The word embedding methods CBOW and Skip-gram from Word2Vec
(Mikolov et al., 2013) and BERT-large (Devlin, Chang, Lee, & Toutanova, 2018)
were trained from scratch on two different training corpora, namely News and
Wikipedia. Then, the word vectors are used in a LSTM model on nine classifica-
tion datasets over three different affective tasks (sentiment analysis, emotion
classification, and sarcasm detection). Performance was measured in terms of
weighted f-score.

First, the effect of each preprocessing method is investigated when applied
at the training phase of the word vector model. This is only carried out for CBOW
and Skip-gram on the News corpus. The authors concluded that only a single
preprocessing method improves the performance of the LSTM model. Negation
was the best performing method on all datasets for both CBOW and Skip-gram
followed by parts-of-speech. The other methods yielded mixed results, but still
performed better than the baseline on all sentiment analysis datasets. Also, an
ablation study (i.e. all methods minus one) has been carried out in order to
find useful combinations. For CBOW, the best results were obtained with "all -
stop" combination. The best combination for Skip-gram is either "all - stop"
or "all - stem", depending on the dataset. For the Wikipedia corpus, which is
about 64 times bigger than the News corpus, only an ablation study has been
carried out. The best results were achieved with "all - stem" for CBOW, while
"all - stop" yielded the best performance for both Skip-gram and Bert large.

Second, the difference between applying preprocessing methods only on the
training corpus and applying preprocessing methods only on the classification
dataset has been examined for the Wikipedia corpus. The authors concluded
that incorporating preprocessing into the training corpus before generating
word vectors outperforms preprocessing on the classification datasets.

Finally, the authors compared their best result for each of the three word
embedding methods (i.e. BERT-large "all - stop") with several pretrained word



3 METHODS 12

embedding models such as GloVe, SSWE, and FastText. BERT achieved the best
result on eight out of nine datasets. Word2Vec’s CBOW is the second best on
four datasets.

To conclude, the work of Babanejad et al. (2020) showed that incorporating
preprocessing methods in training corpora is more beneficial than applying
them on classification datasets. The best performing method is "all - stop". The
authors suggest that exploring the space of preprocessing methods might yield
in interesting results. Hence, this thesis builds upon their work by investigating
the effectiveness of stemmers and lemmatization available in Python’s NLTK
library. These are the Porter stemmer, Lancaster stemmer and Wordnet Lem-
matizer (Bird, Klein, & Loper, 2009). The Snowball stemmer is also available in
the NTLK library, but is already employed in the work of Babanejad et al. (2020).

3 METHODS

3.1 Porter stemmer

The Porter stemmer is considered as a simplistic truncating stemmer proposed
by Porter (1980). The main idea is to remove common morphological and
inflectional endings. The algorithm applies a set of five algorithmic steps with
corresponding rules in order to decide to remove the suffix of a word (Porter,
1980). The rules are utilized in the following order (Patil & Patil, 2013; Porter,
1980):

1. Plurals and participles handling (i.e. ponies –> poni).

2. Patterns are matched on the same common suffixes (i.e. conditional –>
condition).

3. Special word endings handling (i.e. formalize –> formal).

4. Check the stripped word again for suffixes in case the word is compounded
(i.e. revival –> reviv)

5. Check whether the stripped word ends with a vowel. If yes, fix appropri-
ately (i.e. probate –> probat).

Compared to other stemmers, the Porter stemmer returns the best output
and has less error rate (Jivani et al., 2011). The Porter stemmer only supports
the English language (Bird et al., 2009).

3.2 Lancaster stemmer

The Lancaster (or Paice/Husk) stemmer is an iterative algorithm developed in
1990 and is frequently used at Lancaster University (Paice, 1990). This stemming



3 METHODS 13

algorithm has a set of 120 rules. The result of each rule is either a deletion or
replacement of an ending, and is executed on the final letter of a suffix in every
iteration. The Lancaster stemmer terminates in three occasions. First, when
none of the rules can be applied. Second, if a word starts with a vowel and only
has two letters left. Finally, if a word starts with a consonant and there are only
three characters left (Jivani et al., 2011; Paice, 1990). The Lancaster stemmer is
considered as an aggressive stemmer since it continuously applies its rules until
it terminates. Hence, it could be the case that words are not meaningful due to
over-stemming (i.e. destabilize –> dest) (Benghuzzi & Elsheh, 2020; Jivani et al.,
2011).

3.3 Lemmatization

In contrast to stemming, lemmatization requires a supportive dictionary for in-
dexing in order to return a valid word in language (Asghar et al., 2014). Lemmati-
zation gives more accurate results for inflection removal compared to stemming,
because it takes the part of speech and the context of the word into account (i.e.
runs, running, ran –> run). However, it is a more time-consuming process (As-
ghar et al., 2014; Mhatre et al., 2017). WordNet is a dictionary with 155,287 words
and 117,659 synonym sets. The WordNet Lemmatizer only removes affixes if
the word is in the dictionary. If the word cannot be found in the dictionary, it
returns the input unchanged. (Bird et al., 2009).

3.4 Word2Vec

Word2Vec is a word embedding method developed by Mikolov et al. (2013). It
can be trained on a corpus of words and produces a vector for each unique
word in the corpus. Words that occur frequently in similar linguistic contexts
are positioned close to each other in the embedding space. The output of the
network is a vector with probability scores that a randomly selected nearby
word is that vocabulary word (Babanejad et al., 2020; Mikolov et al., 2013).

The Word2Vec method has two architectures: Continuous Bag-Of-Words
(CBOW) and continuous Skip-gram (SG). CBOW and Skip-gram are the oppo-
sites of each other. CBOW predicts the target word from its neighbouring words,
whereas Skip-gram predicts potential neighbouring words based on the single
word being analyzed (Mikolov et al., 2013).

3.5 Long short-term memory

Long short-term memory (LSTM) is an artificial recurrent neural network (RNN)
architecture developed by Hochreiter and Schmidhuber (1997). LSTM enables



4 EXPERIMENTAL SETUP 14

the hidden state of an RNN to span over long sequences and as a result prevent
the vanishing gradient problem (Hochreiter & Schmidhuber, 1997; Xiao & Cho,
2016).

The main intuition of LSTM is its cell state and gates. The cell state refers
to the memory of the network and transfers information during the entire
sequence. Throughout the processing, the gates add or remove information
from the cell state. First, the forget gate decides what information is relevant
from the previous steps. Second, the input gate decides what information
should be added from the current step. Finally, the output gate decides what
the next hidden state is (Hochreiter & Schmidhuber, 1997; Xiao & Cho, 2016).

4 EXPERIMENTAL SETUP

4.1 Data

Two datasets are used in this thesis, namely the News corpus and the IMDB
dataset. The News corpus consists of 142,570 articles from 15 American pub-
lications. The news articles were collected from 2013 to 2018. The dataset is
publicly available in CSV format on Kaggle1.

The classification dataset used for this thesis is the IMDB movie reviews
dataset created by Maas et al. (2011). The dataset consists of 25k positive reviews
and 25k negative reviews and can be obtained in CSV format on Kaggle2. The
dataset consists of only two columns, namely review and sentiment. No more
than 30 reviews per movie are included in the dataset. Sentiment polarity is
based on review scores on a scale from 1 out of 10. Negative reviews have a
score of less than 4 while positive reviews have a score of at least 7 (Maas et al.,
2011).

4.2 Training corpus setup

Word vector models are trained on the News corpus. First, some basic prepro-
cessing operations are applied on the dataset. These include the removal of
common punctuations, numbers, extra space, HTML tags, and lowercasing.
Then, words are tokenized using NLTK’s word_tokenize (Bird et al., 2009). This
is considered as the baseline in the work of Babanejad et al. (2020). Second,
the tokens are stemmed using NLTK’s PorterStemmer and LancasterStemmer.
Also, NLTK’s WordNetLemmatizer is used to create Lemma’s (Bird et al., 2009).
Finally, CBOW and Skip-gram models are created for every stemming method
and lemmatization using the gensim.models package (Srinivasa-Desikan, 2018).

1 https://www.kaggle.com/snapcrack/all-the-news/code
2 https://www.kaggle.com/lakshmi25npathi/imdb-dataset-of-50k-movie-reviews



5 RESULTS 15

This means that we have a total of six models. Each model has the same pa-
rameter settings, namely a minimum word count of 5, vector size of 300 and a
window of 5. These parameters are used in the work of Babanejad et al. (2020).

4.3 Classification setup

The IMDB dataset is preprocessed in the same way as in section 4.2 in order to
have a compatible vocabulary. Sentiment labels are recoded such that negative
tweets have the label 0 and positive tweets have the label 1. Train and test sets
are created using the train_test_ split function from the scikit-learn machine
learning library (Pedregosa et al., 2011). The ratio between training and testing
is 80% training (with 10% validation) and 20% test. For classification, a LSTM
model from the Keras library is used (Chollet et al., 2015). The network starts
with an embedding layer, followed by a LSTM layer of 128 hidden units. Fi-
nally, the output layer is a Dense layer of a single-unit with a sigmoid activation
function. The Adam optimizer (Kingma & Ba, 2014) is used along with binary
cross-entropy as loss function. Finally, the model has a batch size of 128 and
runs for 6 epochs. Model performance is reported in terms of weighted F-score
(Pedregosa et al., 2011). We used the source code of the authors3. Close inspec-
tion revealed that the source code deviated from the method reported in the
paper in the following ways: basic preprocessing, batch size, and epochs. The
above classification setup is used, because this setup yielded the closest results
in terms of reproducibility. The code used in this research can be obtained via
Github4.

5 RESULTS

5.1 CBOW model

This section provides the experimental results of the CBOW model. First, an
overview of the amount of unique words in the training corpus and word em-
bedding models are presented in table 2. A total of 111,003,223 words are in the
news corpus of which 118,561 are unique words. The reduction of the number
of unique words is in line with the work of Kazmaier and van Vuuren (2020). The
Lancaster stemmer is the most aggressive stemming algorithm by reducing the
amount of unique words to 88,340. The Porter stemmer and Snowball stemmer
have almost an equal amount of unique words with 100,394 and 100,383 words,
respectively. Lemmatization slightly reduces the amount of unique words. The
amount of unique words is reduced to 115,609 words.

3 https://github.com/NastaranBa/preprocessing-for-word-representation
4 https://github.com/ysenders/DSS_thesis



5 RESULTS 16

A word is incorporated in the Word2Vec model if it occurred at least five
times. When no stemming or lemmatization is applied, the Word2Vec models
have a vocabulary of 113,916 words. The Lancaster stemmer has a vocabulary
size of 69,697, which is by far the smallest. Again, the Porter stemmer and
Snowball stemmer have comparable vocabulary sizes of 82,639 and 82,273
words, respectively. Finally, lemmatization has a vocabulary size of 103,007
words. These vocabulary sizes are the same for both CBOW and Skip-gram.

Method News corpus Word embedding model

No stemming or lemmatization 118,561 113,916
Porter stemmer 100,394 82,639
Lancaster stemmer 88,340 69,697
Lemmatization 115,609 103,007
Snowball stemmer 100,383 82,273

TABLE 2: Number of unique words in training corpus and word embedding model by
method

The baseline of Babanejad et al. (2020) achieved an F-score of 83.99%
whereas the Snowball stemmer yielded an F-score of 86.92%.

Method Accuracy Precision Recall F-score

Porter stemmer 85.41 84.87 86.64 85.67
Lancaster stemmer 84.70 83.19 87.39 85.21
Lemmatization 85.49 83.73 88.45 86.00

TABLE 3: Mean accuracy, precision, recall, and weighted F-score percentages by method
for the CBOW model (N=4).

Table 3 displays the classification performance in terms of accuracy, preci-
sion, recall, and weighted F-score for each method. The experiment has been
carried out four times. Hence, mean scores are presented. The Porter stemmer
achieved an F-score of 85.47%. The Lancaster stemmer is the worst performing
method with an F-score of 85.21%. On the contrary, lemmatization is the best
performing method of this study with an F-score of 86.00%. If we compare the
F-scores with the baseline and Snowball stemmer in the work of Babanejad et
al. (2020), it can be concluded that the each method outperformed the base-
line. However, the Snowball stemmer still has the best performance across all
methods.

Table 4 shows the performance of the Snowball stemmer when trying to
reproduce the results of Babanejad et al. (2020). Mean percentages are also
presented based on four runs. The mean F-score of the Snowball stemmer is



5 RESULTS 17

Method Accuracy Precision Recall F-score

Snowball stemmer 85.45 84.17 87.67 85.86

TABLE 4: Mean accuracy, precision, recall, and weighted F-score percentages for the
Snowball stemmer for the CBOW model (N=4).

85.86%. This is about 1% lower than the score in the work of Babanejad et al.
(2020) while running the same script four times. However, if we compare the
results of the Snowball stemmer in table 4 with the results of the other methods,
the Snowball stemmer is the second best performing method. Although the
scores are close to each other, lemmatization is the best performing method in
terms of F-score.

When comparing the other evaluation metrics from table 3, the Porter stem-
mer achieved an accuracy score of 85.41%, precision score of 84.77%, and a
recall score of 86.64%. The Lancaster stemmer yields scores of 84.70%, 83.19%,
and 87.39%, respectively. Lemmatization had scores of 85.49%, 83.73%, and
88.45%, respectively. Finally, the snowball stemmer in table 4 achieved an accu-
racy score of 85.45%, a precision score of 84.17%, and a recall score of 87.67%.
Hence, lemmatization has the best performance in terms of accuracy, recall
and F-score. The Porter stemmer achieved the highest precision score. The
results for each run of the experiment are in Appendix A (page 25).

Confusion matrices from one run of the experiments are shown in table 5.
In general, stemming and lemmatization have more false negatives (FN) than
false positives (FP). Only the Porter stemmer has more FP than FN in this run.
However, the mean recall score is higher than the mean precision score. This is
in line with the literature, which indicated that the effectiveness of searching
should be increased in terms of recall (Jivani et al., 2011; Willett, 2006).

Finally, the F-score of the best performing method lemmatization can be
compared to the other preprocessing methods in the work of Babanejad et al.
(2020). Out of 7 different preprocessing methods, lemmatization is placed fifth.
However, we were unable to reproduce the exact same results of the Snowball
stemmer. Therefore, lemmatization might climb because it actually produced
better results than the Snowball stemmer in this thesis.

5.2 Skip-gram model

This section provides the experimental results of the Skip-gram model. The
baseline of Babanejad et al. (2020) achieved an F-score of 83.07%, whereas the
Snowball stemmer yielded an F-score of 86.00%.

Table 7 shows the mean classification performance in terms of accuracy,
precision, recall, and weighted F-score for each method. The experiment has



5 RESULTS 18

(A) CM of Lancaster stemmer

actual

Predicted
0 1

0 TN
4046

FP
915

1 FN
554

TP
4485

(B) CM of Lemmatization

actual

Predicted
0 1

0 TN
4160

FP
801

1 FN
653

TP
4386

(C) CM of Porter stemmer

actual

Predicted
0 1

0 TN
4354

FP
607

1 FN
867

TP
4172

(D) CM of Snowball stemmer

actual

Predicted
0 1

0 TN
3967

FP
994

1 FN
504

TP
4535

TABLE 5: Confusion matrices of CBOW models

been carried out four times. The Porter stemmer achieved an F-score of 85.90%.
The Lancaster stemmer is the worst performing method with an F-score of
83.10%. Finally, lemmatization had a F-score of 85.89%. If we compare the
F-scores with the baseline and Snowball stemmer in the work of Babanejad et
al. (2020), it can be concluded that each method outperformed the baseline
again. However, the Snowball stemmer is still the best performing method in
terms of F-score.

Table 8 provides the performance of the reproduced Snowball stemmer
from the work of Babanejad et al. (2020). Percentages are also presented based
on the mean of four runs. The Snowball stemmer achieved an F-score of 86.18%.
In contrast to the CBOW model, the F-score of the Snowball stemmer for the
Skip-gram model is much closer. Regardless of which F-score is taken, both
Snowball stemmer scores performed better than the methods in table 7.

When comparing the other evaluation metrics from table 7, the Porter stem-
mer achieved an accuracy score of 85.86%, precision score of 86.33%, and a
recall score of 85.57%. The Lancaster stemmer yields scores of 82.09%, 80.57%,



6 DISCUSSION AND CONCLUSION 19

Method Accuracy Precision Recall F-score

Porter stemmer 85.86 86.33 85.57 85.90
Lancaster stemmer 82.09 80.57 87.42 83.10
Lemmatization 86.00 87.26 84.72 85.89

TABLE 7: Mean accuracy, precision, recall, and weighted F-score percentages by method
for the Skip-gram model (N=4).

Method Accuracy Precision Recall F-score

Snowball stemmer 85.77 84.50 88.05 86.18

TABLE 8: Mean accuracy, precision, recall, and weighted F-score percentages for the
Snowball stemmer for the Skip-gram model (N=4).

and 87.42%, respectively. This is by far the worst performing method. Lemma-
tization had scores of 86.00%, 87.26%, and 84.72%, respectively. Finally, the
snowball stemmer from table 8 achieved an accuracy score of 85.77%, a preci-
sion score of 84.50%, and a recall score of 88.05%. To conclude, lemmatization
has the best performance in terms of accuracy and recall while the Snowball
stemmer produced the highest recall and F-score.

Confusion matrices of one run of the experiment for each method is pre-
sented in table 9. The stemming methods have more FP than FN, which indi-
cates that the recall score is higher. Remarkably, the Lancaster stemmer has
very few FN. The precision score of lemmatization is higher than the recall score,
which is in line with the mean precision score and mean recall score.

Finally, we can compare the F-score of lemmatization with the other prepro-
cessing methods in the work of Babanejad et al. (2020). Out of 7 preprocessing
methods, lemmatization gets a sixth place. However, spellcheck and parts-of-
speech scored slightly higher with 85.90%, and 85.91%, respectively.

6 DISCUSSION AND CONCLUSION

6.1 Findings

The goal of this study was to investigate the effectiveness of different stem-
ming and lemmatization algorithms when applied at the training phase of a
word vector model. To address the research question "Which stemming or
lemmatization method is most suitable for predicting sentiment polarity when
integrated at the training phase of word vector based models?", the architecture
of Babanejad et al. (2020) is used. The Porter stemmer, Lancaster stemmer, and



6 DISCUSSION AND CONCLUSION 20

(A) CM of Lancaster stemmer

actual

Predicted
0 1

0 TN
3316

FP
1645

1 FN
281

TP
4758

(B) CM of Lemmatization

actual

Predicted
0 1

0 TN
4381

FP
580

1 FN
846

TP
4193

(C) CM of Porter stemmer

actual

Predicted
0 1

0 TN
4180

FP
781

1 FN
592

TP
4447

(D) CM of Snowball stemmer

actual

Predicted
0 1

0 TN
4120

FP
841

1 FN
584

TP
4455

TABLE 9: Confusion matrices of Skip-gram models

lemmatization were examined and compared to the Snowball stemmer which
was already employed in the work of Babanejad et al. (2020). Word2Vec’s CBOW
and Skip-gram architectures were used to create word embeddings which were
trained on the News corpus. A LSTM model with embedding layer is used to pre-
dict sentiment polarity on the IMDB movie reviews dataset. The experiments
have been carried out four times. Mean percentages were reported in this study.

In the case of the CBOW model, lemmatization yielded a F-score of 86.00%
and outperformed the Porter stemmer and Lancaster stemmer. These stem-
mers had F-scores of 85.67% and 85.21%, respectively. Although lemmatization
performed worse than the Snowball stemmer in the work of Babanejad et al.
(2020), it yielded better results when the results were reproduced using the
same script. The Snowball stemmer had an F-score of 86.92% in the work of
Babanejad et al. (2020). However, it achieved a mean F-score of 85.86% when
reproducing the script. Also, the results were systematically lower each run.
The authors did not specify how many times the experiment has been carried



6 DISCUSSION AND CONCLUSION 21

out. A possible reason could be that the the authors only ran the experiment
once and obtained a very high performance.

The results for the Skip-gram model showed that the Snowball stemmer is
the best performing method in terms of F-score, even when reproducing the
results. The Snowball stemmer in the work of Babanejad et al. (2020) produced
a F-score of 86.00%. When reproducing the results, the Snowball stemmer
achieved a F-score of 86.18%. The Porter stemmer, Lancaster stemmer and
lemmatization yielded F-scores of 85.90%, 83.10% and 85.89%.

The Lancaster stemmer was the worst performing method for both models,
especially in the case of the Skip-gram model. The Lancaster stemmer had the
smallest vocabulary size, which might be a result of either over-stemming or by
making the same Stem of many different words.

To conclude, the results of the stemming and lemmatization methods are
quite close to each other in terms of F-score except for the Lancaster stemmer.
However, lemmatization and the Snowball stemmer yielded the best results.
This is also the case for other evaluation metrics including accuracy, precision,
and recall.

6.2 Implications

While preprocessing methods such as stemming and negation are part of the
pipeline of many improved text classification methods, little work has been car-
ried out when applied at the training phase of word vector models in affective
systems. This was the main reason that motivated Babanejad et al. (2020) to
perform a comprehensive analysis of preprocessing methods in word vector
based models. This thesis builds upon their work by investigating different
preprocessing methods, namely the Porter stemmer, Lancaster stemmer, and
lemmatization when applied to Word2Vec’s CBOW and Skip-gram architectures.
Therefore, the contribution of this thesis to existing literature is twofold. First,
the impact of different stemming methods are evaluated, which makes it possi-
ble to compare them with each other. Second, the impact of lemmatization is
examined, which is a new method in the spectrum of preprocessing methods
in the work of Babanejad et al. (2020). This makes it possible to compare the
stemming methods with lemmatization.

6.3 Limitations and future work

The work of Babanejad et al. (2020) was extensive. Because of limited time and
computational resources, it was not feasible to replicate the entire study for the
stemming and lemmatization methods. Therefore, the following things could
be done in future work.



REFERENCES 22

First, this thesis showed that although close, lemmatization outperformed
the Snowball stemmer in the CBOW model. It would be interesting to perform
an ablation study (i.e. all - 1) in order to see how lemmatization works together
with other preprocessing methods. If yes, than the best performing combination
("all - stop") would have a better performance.

Second, we only used one classification dataset. Babanejad et al. (2020)
employed a total of nine datasets with different characteristics such as imbal-
anced classes and multi-label classification problems in their work. Therefore,
it would be interesting to perform the same analysis in order to verify if the
results generalize. It might be possible that one stemming algorithm is better
in a specific application (Jivani et al., 2011).

Third, Babanejad et al. (2020) also used a Wikipedia corpus to train Word2Vec’s
CBOW and Skip-gram model. The Wikipedia corpus is a very large corpus with
8.1 billion words, which is much bigger than the News corpus that consists of
123 million words. Although the authors only performed an ablation study, it
would be interesting to see if the results generalize on a much bigger corpus.

Finally, we wanted to include more state-of-the-art models such as BERT
(Devlin et al., 2018). However, Babanejad et al. (2020) used a BERT-large model
and explained that training a BERT model on such a large corpus as Wikipedia
could take 4-5 days for each run. Reproducing that might cost more time given
that they had more computational resources. Therefore, it was not feasible
to train BERT-large for each stemming and lemmatization method. However,
the results of Babanejad et al. (2020) showed that stemming is part of the best
performing combination ("all - stop"). With this combination, the BERT-large
model achieved the best performance in terms of F-score on 8 out of 9 datasets.
Therefore, it would be worthwhile to investigate the stemming and lemmatiza-
tion methods when training BERT from scratch.

REFERENCES

Acosta, J., Lamaute, N., Luo, M., Finkelstein, E., & Andreea, C. (2017). Sentiment
analysis of twitter messages using word2vec. Proceedings of student-faculty
research day, CSIS, Pace University, 7 , 1–7.

Adriani, M., Asian, J., Nazief, B., Tahaghoghi, S. M., & Williams, H. E. (2007).
Stemming indonesian: A confix-stripping approach. ACM Transactions
on Asian Language Information Processing (TALIP), 6(4), 1–33.

Agrawal, A., & An, A. (2012). Unsupervised emotion detection from text using
semantic and syntactic relations. In 2012 ieee/wic/acm international con-
ferences on web intelligence and intelligent agent technology (Vol. 1, pp.
346–353).

Alam, S., & Yao, N. (2019). The impact of preprocessing steps on the accuracy of
machine learning algorithms in sentiment analysis. Computational and



REFERENCES 23

Mathematical Organization Theory, 25(3), 319–335.
Aljlayl, M., & Frieder, O. (2002). On arabic search: improving the retrieval

effectiveness via a light stemming approach. In Proceedings of the eleventh
international conference on information and knowledge management (pp.
340–347).

Angiani, G., Ferrari, L., Fontanini, T., Fornacciari, P., Iotti, E., Magliani, F., &
Manicardi, S. (2016). A comparison between preprocessing techniques
for sentiment analysis in twitter. In Kdweb.

Asghar, M. Z., Khan, A., Ahmad, S., & Kundi, F. M. (2014). A review of feature
extraction in sentiment analysis. Journal of Basic and Applied Scientific
Research, 4(3), 181–186.

Babanejad, N., Agrawal, A., An, A., & Papagelis, M. (2020). A comprehensive
analysis of preprocessing for word representation learning in affective
tasks. In Proceedings of the 58th annual meeting of the association for
computational linguistics (pp. 5799–5810).

Bakliwal, A., Arora, P., Madhappan, S., Kapre, N., Singh, M., & Varma, V. (2012).
Mining sentiments from tweets. In Proceedings of the 3rd workshop in
computational approaches to subjectivity and sentiment analysis (pp. 11–
18).

Balakrishnan, V., & Lloyd-Yemoh, E. (2014). Stemming and lemmatization: A
comparison of retrieval performances.

Bao, Y., Quan, C., Wang, L., & Ren, F. (2014). The role of pre-processing in twitter
sentiment analysis. In International conference on intelligent computing
(pp. 615–624).

Benghuzzi, H., & Elsheh, M. M. (2020). An investigation of keywords extraction
from textual documents using word2vec and decision tree. International
Journal of Computer Science and Information Security (IJCSIS), 18(5).

Bird, S., Klein, E., & Loper, E. (2009). Natural language processing with python:
analyzing text with the natural language toolkit. " O’Reilly Media, Inc.".

Camacho-Collados, J., & Pilehvar, M. T. (2017). On the role of text preprocessing
in neural network architectures: An evaluation study on text categorization
and sentiment analysis. arXiv preprint arXiv:1707.01780.

Chollet, F., et al. (2015). Keras. https://github.com/fchollet/keras.
GitHub.

Danisman, T., & Alpkocak, A. (2008). Feeler: Emotion classification of text using
vector space model. In Aisb 2008 convention communication, interaction
and social intelligence (Vol. 1, p. 53).

Devlin, J., Chang, M.-W., Lee, K., & Toutanova, K. (2018). Bert: Pre-training
of deep bidirectional transformers for language understanding. arXiv
preprint arXiv:1810.04805.

Go, A., Bhayani, R., & Huang, L. (2009). Twitter sentiment classification using
distant supervision. CS224N project report, Stanford, 1(12), 2009.

https://github.com/fchollet/keras


REFERENCES 24

Hickman, L., Thapa, S., Tay, L., Cao, M., & Srinivasan, P. (2020). Text preprocess-
ing for text mining in organizational research: Review and recommenda-
tions. Organizational Research Methods, 1094428120971683.

Hochreiter, S., & Schmidhuber, J. (1997). Long short-term memory. Neural
computation, 9(8), 1735–1780.

Jianqiang, Z., & Xiaolin, G. (2017). Comparison research on text pre-processing
methods on twitter sentiment analysis. IEEE Access, 5, 2870–2879.

Jivani, A. G., et al. (2011). A comparative study of stemming algorithms. Int. J.
Comp. Tech. Appl, 2(6), 1930–1938.

Kadri, Y., & Nie, J.-Y. (2006). Effective stemming for arabic information retrieval.
In Proceedings of the challenge of arabic for nlp/mt conference, londres,
royaume-uni (pp. 68–74).

Kazmaier, J., & van Vuuren, J. (2020). Sentiment analysis of unstructured
customer feedback for a retail bank. ORiON , 36(1), 35–71.

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization.
arXiv preprint arXiv:1412.6980.

Kotsiantis, S. B., Kanellopoulos, D., & Pintelas, P. E. (2006). Data preprocessing
for supervised leaning. International Journal of Computer Science, 1(2),
111–117.

Krouska, A., Troussas, C., & Virvou, M. (2016). The effect of preprocessing tech-
niques on twitter sentiment analysis. In 2016 7th international conference
on information, intelligence, systems & applications (iisa) (pp. 1–5).

Lovins, J. B. (1968). Development of a stemming algorithm. Mech. Transl.
Comput. Linguistics, 11(1-2), 22–31.

Maas, A., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., & Potts, C. (2011). Learning
word vectors for sentiment analysis. In Proceedings of the 49th annual
meeting of the association for computational linguistics: Human language
technologies (pp. 142–150).

Mhatre, M., Phondekar, D., Kadam, P., Chawathe, A., & Ghag, K. (2017). Di-
mensionality reduction for sentiment analysis using pre-processing tech-
niques. In 2017 international conference on computing methodologies and
communication (iccmc) (pp. 16–21).

Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of
word representations in vector space. arXiv preprint arXiv:1301.3781.

Mulki, H., Ali, C. B., Haddad, H., & Babaoğlu, I. (2018). Tw-star at semeval-2018
task 1: Preprocessing impact on multi-label emotion classification. In
Proceedings of the 12th international workshop on semantic evaluation
(pp. 167–171).

Paice, C. D. (1990). Another stemmer. In Acm sigir forum (Vol. 24, pp. 56–61).
Pang, B., Lee, L., & Vaithyanathan, S. (2002). Thumbs up? sentiment classifica-

tion using machine learning techniques. arXiv preprint cs/0205070.
Patil, C. G., & Patil, S. S. (2013). Use of porter stemming algorithm and svm



REFERENCES 25

for emotion extraction from news headlines. International Journal of
Electronics, Communication and Soft Computing Science & Engineering
(IJECSCSE), 2(7), 9.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., . . .
others (2011). Scikit-learn: Machine learning in python. the Journal of
machine Learning research, 12, 2825–2830.

Porter, M. F. (1980). An algorithm for suffix stripping. Program.
Porter, M. F. (2001). Snowball: A language for stemming algorithms.
Savoy, J. (1993). Stemming of french words based on grammatical categories.

Journal of the American Society for Information Science, 44(1), 1–9.
Srinivasa-Desikan, B. (2018). Natural language processing and computational

linguistics: A practical guide to text analysis with python, gensim, spacy,
and keras. Packt Publishing Ltd.

Symeonidis, S., Effrosynidis, D., & Arampatzis, A. (2018). A comparative evalua-
tion of pre-processing techniques and their interactions for twitter senti-
ment analysis. Expert Systems with Applications, 110, 298–310.

Uysal, A. K., & Gunal, S. (2014). The impact of preprocessing on text classifica-
tion. Information Processing & Management , 50(1), 104–112.

Willett, P. (2006). The porter stemming algorithm: then and now. Program.
Xiao, Y., & Cho, K. (2016). Efficient character-level document classifica-

tion by combining convolution and recurrent layers. arXiv preprint
arXiv:1602.00367 .

APPENDIX A: SCORES OF EACH EXPERIMENT

Method Accuracy Precision Recall F-score

Porter stemmer 85.10 81.54 91.05 86.03
Lancaster stemmer 84.29 81.78 88.55 85.03
Lemmatization 85.09 81.72 90.69 85.96
Snowball stemmer 85.66 84.76 87.23 85.97

TABLE 11: Experiment 1: accuracy, precision, recall, and weighted F-score percentages
by method for the CBOW model.



REFERENCES 26

Method Accuracy Precision Recall F-score

Porter stemmer 85.90 85.99 86.03 86.01
Lancaster stemmer 85.67 86.37 84.98 85.67
Lemmatization 85.90 85.49 86.74 86.11
Snowball stemmer 85.52 86.03 85.08 85.55

TABLE 12: Experiment 2: accuracy, precision, recall, and weighted F-score percentages
by method for the CBOW model.

Method Accuracy Precision Recall F-score

Porter stemmer 85.37 84.64 86.70 85.66
Lancaster stemmer 83.54 81.55 87.02 84.20
Lemmatization 85.50 83.16 89.30 86.12
Snowball stemmer 85.59 83.88 88.39 86.08

TABLE 13: Experiment 3: accuracy, precision, recall, and weighted F-score percentages
by method for the CBOW model.

Method Accuracy Precision Recall F-score

Porter stemmer 85.26 87.30 83.30 84.99
Lancaster stemmer 85.31 83.06 89.01 85.93
Lemmatization 85.46 84.56 87.04 85.78
Snowball stemmer 85.02 82.02 90.00 85.83

TABLE 14: Experiment 4: accuracy, precision, recall, and weighted F-score percentages
by method for the CBOW model.

Method Accuracy Precision Recall F-score

Porter stemmer 86.09 85.04 87.85 86.42
Lancaster stemmer 79.17 72.04 95.87 82.26
Lemmatization 86.66 85.67 88.29 86.96
Snowball stemmer 85.00 81.38 91.07 85.96

TABLE 15: Experiment 1: accuracy, precision, recall, and weighted F-score percentages
by method for the Skip-gram model.



REFERENCES 27

Method Accuracy Precision Recall F-score

Porter stemmer 85.50 86.47 84.44 85.44
Lancaster stemmer 82.68 89.40 74.46 81.25
Lemmatization 85.43 90.14 79.82 84.66
Snowball stemmer 85.92 84.81 87.78 86.27

TABLE 16: Experiment 2: accuracy, precision, recall, and weighted F-score percentages
by method for the Skip-gram model.

Method Accuracy Precision Recall F-score

Porter stemmer 85.58 88.75 81.74 85.10
Lancaster stemmer 85.75 86.54 84.92 85.73
Lemmatization 86.18 85.37 87.58 86.46
Snowball stemmer 86.41 87.70 84.94 86.30

TABLE 17: Experiment 3: accuracy, precision, recall, and weighted F-score percentages
by method for the Skip-gram model.

Method Accuracy Precision Recall F-score

Porter stemmer 86.27 85.06 88.25 86.63
Lancaster stemmer 80.74 74.31 94.42 83.17
Lemmatization 85.74 87.85 83.21 85.47
Snowball stemmer 85.75 84.12 88.41 86.21

TABLE 18: Experiment 4: accuracy, precision, recall, and weighted F-score percentages
by method for the Skip-gram model.


	P20210625_MSc010_Senders
	Youri Senders 
	Introduction
	Related Work
	Stemming and lemmatization
	Preprocessing used in machine learning methods
	Preprocessing used in Neural Networks

	Methods
	Porter stemmer
	Lancaster stemmer
	Lemmatization
	Word2Vec
	Long short-term memory

	Experimental Setup
	Data
	Training corpus setup
	Classification setup

	Results
	CBOW model
	Skip-gram model

	Discussion and conclusion
	Findings
	Implications
	Limitations and future work



