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Abstract

This paper develops a general framework in which the stock market risk, interest rate 

risk, inflation risk and longevity risk of variable pension products can be quantified. 

The paper starts by analyzing the risk of a basic pension product, taking each of these 

risk factors into account. Under the Koijen et al. (2010) model, we show that interest 

rate risk can be substantial for the participant, and we derive the interest rate risk 

hedge. Under the additional assumption of a Lee-Carter model, we conclude that 

financial market risk is dominant compared to longevity risk. The paper ends by 

showing that the results can be generalized for a wide variety of pension products. 

A pension product which includes smoothing of financial shocks reduces the average 

year-on-year volatility substantially compared to a basic variable annuity.
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Samenvatting

Analyse van de inkomensrisico’s in variabele uitkeringen 

In dit paper analyseren we de inkomensrisico’s van variabele uitkeringen ingevolge 

de Wet Verbeterde Premieregeling (WVP). Deze risico’s kunnen het gevolg zijn van 

fluctuaties op financiële markten of van veranderingen in (ingeschatte) sterftekansen.  

De eerste belangrijke bevinding van dit paper is dat het financieel marktrisico bijna 

altijd veel groter is dan het effect van veranderingen in sterftekansen. Dit langleven-

risico kan wél substantieel zijn bij een vaste pensioenuitkering. De pensioenuitkering 

van een vaste annuïteit zonder verzekering van het langlevenrisico ligt vijftien jaar 

na de pensioendatum in pessimistische scenario’s 2,6 procent lager dan dat van een 

vaste annuïteit met verzekering van dat langlevenrisico als we de verzekeringspremie 

buiten beschouwing laten. 

 De tweede bevinding betreft het kwantificeren van de implicaties van verschil-

lende strategieën om het renterisico in variabele pensioenproducten te beheersen. 

We laten zien dat een jaarlijkse herbalancering significante onzekerheid toevoegt aan 

de pensioenuitkering, terwijl een adequate rentehedge bijna dezelfde pensioenuit-

kering genereert als een situatie zonder renterisico.

 De derde bevinding is dat het over meerdere jaren spreiden van uitkeringsschok-

ken die ontstaan als gevolg van financieel marktrisico tot sterke vermindering leidt 

van de schommelingen van jaar op jaar in pensioeninkomen. In het bijzonder kan 

dit aantrekkelijk zijn voor een deelnemer bij wie de preferenties zich kenmerken 

door gewoontevorming. Wij concluderen dat de jaar-op-jaar-verandering voor een 

pensioen product met een aandelenexposure van 35 procent en een spreidingsperiode 

van tien jaar 1,2 procent is, terwijl de volatiliteit van jaar op jaar van een pensioen-

product met eenzelfde verwachte pensioenuitkering zonder spreiding van financiële 

schokken 3,1 procent is. 
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1 Introduction

Guaranteed pension products in the decumulation phase are being debated worldwide,
see Balter et al. (2018). The European Insurance and Occupational Pensions Authority
(EIOPA) has furthermore challenged the sustainability of such products. This has resulted
in proposals for a Pan European Personal Pension Product (PEPP) available for every Eu-
ropean resident, which would no longer aim at guaranteed pension income. In the im-
plementation process, some lessons might be learned from the recent developments
and challenges that the Dutch pension system has faced and indeed continues to face.
Dutch Defined Contribution (DC) schemes include the option nowadays of taking invest-
ment risks to decumulate pension capital, using life-long variable annuities that carry
both financial market risk and longevity risk. Pension products under the new legislation
- (Wet Verbeterde PremieregelingWVP) - can offer a significantly higher first pension pay-
ment compared to a pension product without equity exposure.1. However, this comes at
the cost of uncertainty regarding pension income.
As from 2019, pension providers in the Netherlands are required to show retirees the
pension income distribution (in nominal and real terms) using a uniform economic sce-
nario set, based on Koijen, Nijman and Werker (KNW, 2010). However, not all risks are
covered by this legislation. For example, macro-longevity risk is not included in the KNW
scenario set. This implies that pension providers can leave this risk in the pool without
quantifying the increased risk for participants. Based on the introduction of some styl-
ized pension products, this paper provides guidelines on how to interpret the risks as-
sociated with these WVP pension products. Step by step, we take risks related to stocks,
bonds, inflation, and longevity into account. This project is timely in showing how pen-
sion providers can communicate to participants with respect to micro- and macro-longevity
risk since this is not yet included in the consumer information that is prescribed. We
extend this information so that all future retirees can make a well-informed choice be-
tween a fixed and variable annuity.
To analyze the risks in these variable annuity pension products, this paper develops an
integrated framework in which we can quantify the financial and longevity risks for a
wide variety of variable annuities. We develop a framework in which we can quantify the

1Currently, the market for variable annuities in the Netherlands is relatively small. In a survey con-
ducted in 2017 by the Authority for the Financial Markets (AFM), 6% of 15,000 retirees chose the variable
annuity, see https://www.afm.nl/nl-nl/nieuws/2019/apr/wvp-onderzoek. However, this market is expected
to grow rapidly. More retirees are faced with the decision for a variable annuity; currently 1.3 million em-
ployees participate ‘in premie- of kapitaalregelingen’ corresponding to 20% of pension plan participants. The
number of participants in these schemes has doubled compared to 2009, and their participation is expected
to grow further, from 6% to 19% according to the AFM.
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risk of pension products under almost any financial model, and in which we can account
for stock market risk, interest rate risk, inflation risk, and longevity risk. Finally, we de-
velop some intuition as to which product features can be attractive for different types of
participants, although without performing a formal welfare comparison between pen-
sion products.
This paper uses the ‘money pot’ approach to analyze pension products. This involves
modeling the problem as if we set aside a fraction of accumulated pension wealth (the
money pots) for the consumption at each age. This method of modeling pension prod-
ucts is inspired by Balter and Werker (2020). Their methodology has several advantages.
In particular, it gives the participant intuition for product characteristics, such as the as-
sumed interest rate and smoothing of financial shocks. Within this approach, incorporat-
ing economic risk factors (i.e. financial market risk, longevity risk) is a matter of scaling
the money pots.
To obtain analytical expressions for the pension income distribution, and to provide in-
tuition for these expressions, we start the analysis by quantifying the risks of a basic
variable annuity (i.e. no smoothing, no guaranteed benefit level) in a Black and Scholes
financial market. Contrary to Balter and Werker (2020), we assume an unknown date
of death, which we model using deterministic (cohort) survival probabilities. We will
present the risks associated with WVP pension products in line with the mandatory com-
munication by Dutch pension providers. This means that the risks associated with pen-
sion products will be communicated via pessimistic, expected, and optimistic scenarios2.
We then extend the analysis of Balter and Werker (2020) by analyzing the risk of pension
products under the KNW model. This is the underlying model of the scenario set pre-
scribed by the regulatory authorities. On the one hand, this allows us to quantify the risk
of pension products in a setting with time-varying stock returns and to add interest rate
risk and inflation risk as economic risk factors. On the other hand, it allows us to quan-
tify the risk of pension products in line with Dutch legislation.
Using a Lee-Carter (1992) model, De Waegenaere et al. (2019) outline how to calculate
the implications of a one-year micro- and macro-longevity shock for both pension funds
and WVP contracts. They do not consider financial market risk. We extend their setting
by integrating both risk factors in a multi-period setting, to present the pension income
distribution under financial market risk and longevity risk. We can then quantify the ad-
ditional risk of macro-longevity in a basic variable annuity that currently only quantifies
financial market risk.
We repeat this analysis for a wide variety of pension products, for example products that
incorporate smoothing, a guaranteed benefit level, and a high-low setting, where the re-

2This reflects the 5%, 50%, and 95% quantiles, respectively.
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tiree can get a higher pension income in the initial years of retirement. We also analyze
the impact of smoothing of financial shocks.
The first main finding of this paper is that financial market risk dominates the macro-
longevity risk in variable annuities. However, the stand-alone longevity risk can be sub-
stantial in fixed annuities. Pension income for a variable annuity with an asset alloca-
tion of 35% with or without longevity insurance is approximately similar in a 5% quan-
tile in the absence of an insurance premium. Pension income for a fixed annuity with-
out longevity insurance is 2.6% lower than a fixed annuity with longevity insurance in a
5% quantile fifteen years after retirement in the absence of an insurance premium. The
second main finding is the quantifiability of the financial market risk for a wide variety
of pension products, when the financial market model is able to generate scenarios for
stock, bond, and inflation returns. In particular, we show the implications of different
strategies regarding interest rate risk in variable annuities. We show that a yearly rebal-
ancing strategy adds significant uncertainty to the pension income stream, whereas a
perfect hedge yields almost the same pension income stream as in the basic setting. The
third finding is that smoothing of financial market risk, as proposed by Balter and Werker
(2020), reduces the average year-on-year volatility of pension income. This can be an at-
tractive pension product for an agent who exhibits habit formation. We conclude that
the average year-on-year volatility for a pension product with an asset allocation of 35%
and a smoothing period of ten years is 1.2%, whereas the average year-on-year volatility
for a pension product that gives the same expected income without smoothing is 3.1%.
Our work is related to Bonekamp et al. (2017) and Balter and Werker (2020), who show
how to incorporate stock market risk in WVP variable annuities. Their analysis was con-
ducted in a simple financial market model without interest rate risk and inflation. They
show that, for a variable annuity with 35% equity exposure and a maximum assumed in-
terest rate, the expected pension income stream is 14% higher than for a fixed annuity.
In WVP pension products, macro-longevity risk has been quantified by De Waegenaere et
al. (2019), assuming a Lee-Carter model, as a one-year longevity shock. Their focus on a
one-year longevity shock means that their paper did not quantify the aggregate macro-
longevity risk for pension payments more than one period into the future. They find for
a fixed annuity that a one-year longevity shock can lead to roughly 1.1% pension income
drop in a 2.5% quantile for a participant at retirement age without risk sharing. Balter et
al. (2019) calculated macro-longevity risk based on multiple historical realized updates
in the longevity tables. There is reason to question how informative these historical up-
dates are for future longevity shocks. They calculate that a participant at retirement age
in 2007 would incur a pension income drop of approximately 10% in 2010 based on in-
creased life expectancy. They find an even sharper drop in pension income for the up-



Variable annuities with financial risk and longeVity risk 9

tiree can get a higher pension income in the initial years of retirement. We also analyze
the impact of smoothing of financial shocks.
The first main finding of this paper is that financial market risk dominates the macro-
longevity risk in variable annuities. However, the stand-alone longevity risk can be sub-
stantial in fixed annuities. Pension income for a variable annuity with an asset alloca-
tion of 35% with or without longevity insurance is approximately similar in a 5% quan-
tile in the absence of an insurance premium. Pension income for a fixed annuity with-
out longevity insurance is 2.6% lower than a fixed annuity with longevity insurance in a
5% quantile fifteen years after retirement in the absence of an insurance premium. The
second main finding is the quantifiability of the financial market risk for a wide variety
of pension products, when the financial market model is able to generate scenarios for
stock, bond, and inflation returns. In particular, we show the implications of different
strategies regarding interest rate risk in variable annuities. We show that a yearly rebal-
ancing strategy adds significant uncertainty to the pension income stream, whereas a
perfect hedge yields almost the same pension income stream as in the basic setting. The
third finding is that smoothing of financial market risk, as proposed by Balter and Werker
(2020), reduces the average year-on-year volatility of pension income. This can be an at-
tractive pension product for an agent who exhibits habit formation. We conclude that
the average year-on-year volatility for a pension product with an asset allocation of 35%
and a smoothing period of ten years is 1.2%, whereas the average year-on-year volatility
for a pension product that gives the same expected income without smoothing is 3.1%.
Our work is related to Bonekamp et al. (2017) and Balter and Werker (2020), who show
how to incorporate stock market risk in WVP variable annuities. Their analysis was con-
ducted in a simple financial market model without interest rate risk and inflation. They
show that, for a variable annuity with 35% equity exposure and a maximum assumed in-
terest rate, the expected pension income stream is 14% higher than for a fixed annuity.
In WVP pension products, macro-longevity risk has been quantified by De Waegenaere et
al. (2019), assuming a Lee-Carter model, as a one-year longevity shock. Their focus on a
one-year longevity shock means that their paper did not quantify the aggregate macro-
longevity risk for pension payments more than one period into the future. They find for
a fixed annuity that a one-year longevity shock can lead to roughly 1.1% pension income
drop in a 2.5% quantile for a participant at retirement age without risk sharing. Balter et
al. (2019) calculated macro-longevity risk based on multiple historical realized updates
in the longevity tables. There is reason to question how informative these historical up-
dates are for future longevity shocks. They calculate that a participant at retirement age
in 2007 would incur a pension income drop of approximately 10% in 2010 based on in-
creased life expectancy. They find an even sharper drop in pension income for the up-

dates in 2013 and 2016. Steenkamp (2016) shows, using a model assumed by the Dutch
Actuarial Association, that pension income of a fixed annuity without longevity insurance
in a 5% percentile at the age of 120 is 2.5 percentage points lower in terms of replace-
ment rate compared to a fixed annuity with longevity insured for a 5% premium.
This paper also fits within the broader literature on variable annuities. Davidoff et al.
(2005) derive conditions under which it is optimal to annuitize pension wealth. Koijen
et al. (2011) show that adding equity exposure to the annuity leads to greater welfare in
many cases. Balter et al. (2018) show where and to what extent variable annuities are
available internationally, and they describe an international transition from guaranteed
pension products to variable annuities. For example, Horneff et al. (2015) show that vari-
able annuities, in the form of Guaranteed Minimum Withdrawal Benefits, are one of the
fastest growing financial innovations in the US and are preferred above fixed annuities.
Chen et al. (2015) also identify that a retiree might prefer a variable pension product
with guarantees. Maurer et al. (2013) show that in many cases it can be attractive for
participants to bear the systematic longevity risk in variable annuities themselves, since
insuring is costly due to solvency requirements. Boon et al. (2019) find similar results
with respect to bearing the longevity risk in group self-annuitization products.
The structure of this paper is as follows. Section 2 quantifies the risk of variable annu-
ities in a standard financial market model. In section 3 we develop a general framework
in which we can express the risk of pension products under any financial market model.
In section 4 we extend this analysis by taking into account (macro-) longevity risk as a
risk factor in these variable annuities. In section 5 we show that the results from earlier
sections can be applied to a wide variety of variable annuities (high-low, smoothing, and
products with guaranteed benefit level). Section 6 provides conclusions.
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2 Pension income distribution with stock market risk

In this section we present the pension income distribution for a basic variable annuity,
taking into account financial market risk only. Balter and Werker (2020) and Bonekamp
et al. (2017) provide an elaborate description of the setting, assuming a deterministic
date of death. This section starts by taking into account deterministic (cohort) survival
probabilities. In the empirical results, we use gender-neutral survival probabilities from
the Dutch Actuarial Association (AG, 2018).3

At retirement age T, a person has accumulated pension wealthWT. This person can de-
cide on the investment mix w. The Black and Scholes financial market contains an asset
with a return at the risk-free rate r and an asset with an uncertain return. The return of
this asset is log-normal with mean r + λσ − 1

2σ
2, volatility σ, and sharpe ratio λ. We set

the maximum age for this person at L. We allocate the available pension wealth to L − T
money pots, denoting this by Vh(T). We define Vh(T) as the part ofWT that we set aside
for consumption at age T + h. The assumed interest rate AIR determines the allocation
to money pots, through the allocation rule.4 The higher the AIR, the larger the fraction of
WT that will be allocated to Vh(T) for smaller h. This is typically referred to as front load-
ing. We allow the assumed interest rate to be horizon-dependent (AIRh). The assumed
interest rate and the money pot allocation satisfies

Vh(T) = WT ·
ph(T)exp(−h · AIRh)∑L−T−1

k=0 pk(T)exp(−k · AIRk)
(1)

where ph(T) is the probability that a person is still alive h years after retirement. The re-
turn on money pot Vh(T), h periods after retirement age, follows a log-normal distribu-
tion with mean h(r + wλσ − 1

2w
2σ2) and variance hw2σ2. This implies the expectation and

quantiles for the pension income distribution.

Et(Vh(T + h)) = Vh(T) · exp(h · (r +wλσ)) ·
(

1
ph(T)

)

= WT ·
exp(−h · AIRh) exp(h · (r +wλσ))∑L−T−1

k=0 pk(T)exp(−k · AIRk)
(2)

3To simply the computation, a maximum age of 100 will be assumed. In all figures the pension income
stream will be presented up to the age of 90. Note that this way of presenting pension income distribution is
in line with the communication by pension providers.

4The AIR can be expressed as the sum of the risk-free rate and a parameter that is often referred to as
fixed decrease in the Dutch policy discussions.
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Qα
t (Vh(T + h)) = Vh(T) · exp

(
h · (r +wλσ − 1

2
w2σ2) + zα

√
hwσ

)
·
(

1
ph(T)

)

= WT ·
exp(−h · AIRh) exp

(
h · (r +wλσ − 1

2w
2σ2) + zα

√
hwσ

)

∑L−T−1
k=0 pk(T)exp(−k · AIRk)

(3)

Formula (2) shows that, given a constant asset allocation (w) in order to obtain a flat con-
sumption pattern in expectation, the AIR should be set as

AIRmean = r +wλσ (4)

Note that the AIR in (4) is independent of the horizon. In the Dutch setting there is a re-
striction on the assumed interest rate set by the regulatory authorities, such that in ex-
pectation the pension income stream is non-decreasing.
We can plot the pension income distribution of a basic variable annuity with w=35 % and
AIR=2.01 % calculated in line with (4). Table 1 reports the parameter assumptions.5

Name Parameter Value

Retirement age T 67

Pension wealth WT 233,000

Risk-free rate r 0.43%

Volatility of stock returns σ 16.75%

Excess stock returns λσ 4.52%

Table 1: Overview of parameter values

In line with Dutch pension providers, we scale pension income to a monthly basis. We
consider an individual6 who has accumulated a deterministic amount of wealth at retire-
ment age. Figure 1 presents the pension income stream of this participant from retire-
ment age onwards.7

5We set the parameters in such a way as to create equivalence with the current calibration of the KNW
model prescribed by the regulatory authorities.

6For simplicity purposes, we assume that this individual does not have a partner to allow us to abstract
from partner pension.

7In line with the communication by Dutch pension providers, state pension income is not included in
these figures.
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Figure 1: Pension income distribution in a Black and Scholes financial market with w=35%,
AIR=AIRmean=2.01%, and parameter assumptions in line with Table 1.

Note that we get a constant expected pension income stream by setting the assumed in-
terest rate in line with (4). This implies that median pension income decreases, as a low
probability on a high pension income stream heavily influences the expected pension
income stream in the skewed distribution (log-normal). Grebenchtchikova et al. (2017)
present conditions under which this variable annuity is optimal, assuming an individual
with constant relative risk aversion preferences. Figure 1 shows that the variable annu-
ity has a significantly higher mean payment compared to a fixed annuity. As a rule of
thumb, we approximate (1) with h=0 and calculate this higher pension income (in per-
centage terms) by multiplying it with the duration (approximately 10) with the difference
between AIR and risk-free rate (i.e. 10 · 1.58% = 15.8%).
Assume that we set the assumed interest rate equal to the risk-free rate (AIR = r). The
first pension payment is then equal to that of a fixed annuity. The pension income is
then expected to grow by the excess returns wλσ. Figure 2 shows this result.
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terest rate in line with (4). This implies that median pension income decreases, as a low
probability on a high pension income stream heavily influences the expected pension
income stream in the skewed distribution (log-normal). Grebenchtchikova et al. (2017)
present conditions under which this variable annuity is optimal, assuming an individual
with constant relative risk aversion preferences. Figure 1 shows that the variable annu-
ity has a significantly higher mean payment compared to a fixed annuity. As a rule of
thumb, we approximate (1) with h=0 and calculate this higher pension income (in per-
centage terms) by multiplying it with the duration (approximately 10) with the difference
between AIR and risk-free rate (i.e. 10 · 1.58% = 15.8%).
Assume that we set the assumed interest rate equal to the risk-free rate (AIR = r). The
first pension payment is then equal to that of a fixed annuity. The pension income is
then expected to grow by the excess returns wλσ. Figure 2 shows this result.
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Figure 2: Pension income distribution in a Black and Scholes financial market with w=35%, AIR=r=0.43%,
and parameter assumptions in line with Table 1.

In sections 3 and 4 we focus on a pension product with constant asset allocation, tak-
ing into account interest rate risk, inflation risk, and/or longevity risk. We compare this
to the basic variable annuity in Figure 1. In section 5 we will discuss the risks for sev-
eral non-basic pension products, a high-low pension product, a pension product with a
guaranteed benefit level, and a pension product that incorporates smoothing of financial
shocks.
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3 Pension income distribution with interest rate and inflation risk

In this section we analyze the risk of pension products, in line with the Koijen et al. (2010)
model (KNW model). This is the underlying model prescribed by the Dutch regulatory
authorities, and Dutch pension providers need to quantify the risk of pension products
in accordance with this model. Schotman et al. (2020) used this model to make welfare
comparisons among different pension products, where they extend Bonekamp et al.
(2017), by also taking interest rate risk into account as well. The framework that we in-
troduce in this section to calculate the risk of pension products applies to any financial
market model, so long as the model can generate scenarios for stock, bond, and inflation
returns.
One of the major changes compared to the Black-Scholes model in Section 2 is that we
no longer assume a constant interest rate. In linear affine models the yield yht , which is a
function of the state variables Xt and A(h) and B(h) (see Brennan and Xia (2002)), satisfies

yht =
−A(h)− B(h)Xt

h
(5)

To allocate wealth to money pots accordingly, defined in (1), we replace the constant in-
terest rate in (4) by the yield as follows

AIRh = yh0 +wλσ (6)

We define a recursive relation for each money pot to calculate the pension income stream.
We let this recursive relation run over horizon j, where obviously 1 ≤ j ≤ h. This is
presented in a general form, independent of the scenario set, for different investment
strategies.
Investment strategy 1 (time-varying stock returns, one year bonds): We start to ex-
tend the results by taking into account a time-varying return on stocks S, and we invest
1 − w recursively in a one-year bond. The price of a nominal zero coupon bond at time t
with a single payout at time t + h is defined as P(Xt, t,h).

Vh(T + j) =
({

w · Vh(T + j− 1) ·
Sj(Xj)

Sj−1(Xj−1)︸ ︷︷ ︸
stock return

+ (1−w) · Vh(T + j− 1) · 1
P(Xj−1, j− 1, 1)︸ ︷︷ ︸
one year bond return

})
·
(

1
p1(T + j− 1)

)
(7)

For application in this project, we insert the stochastic scenarios for stocks from the KNW
model. In the prescribed parameterization of the model there is an increasing (expected)
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return on stocks, due to an increasing (expected) nominal instantaneous interest rate.
We calculate the (one-year) bond prices implied by the state variables from the model.
Investment strategy 2 (partial interest rate hedge): We invest 1 − w of each money
pot that is needed h periods from retirement onwards in a bond with a maturity of h
years. The corresponding price is P(Xj−1, j − 1,h) at time j − 1. After one year, at time j,
the price of this bond is equal to P(Xj, j,h− 1). This we incorporate as follows by changing
the ‘one-year bond return’ in (7) to a matching portfolio

P(Xj, j,h− j)
P(Xj−1, j− 1,h + 1− j)

(8)

Under this investment strategy we are still exposed to interest rate risk via the stock mar-
ket, so we refer to this as partial interest rate hedge.
Investment strategy 3 (full interest rate hedge): This strategy invests the full present
value of the money pot Vh(T) in a bond with maturity h and thus hedges all the long-term
interest rate risk of the money pot Vh(T). Additionally, we allocate a fraction w towards
the stock market, and we have a short position of fraction -w in a short-term (one-year)
bond. Because the risk premium on stocks in our model is constant, the excess stock
return (stock return minus the short-term bond return) carries no interest rate risk. We
calculate the pension income stream by letting the following recursive relation run over
j, where obviously 1 ≤ j ≤ h.

Vh(T + j) =
({

Vh(T + j− 1) ·
P(Xj, j,h− j)

P(Xj−1, j− 1,h + 1− j)︸ ︷︷ ︸
return on matching bonds

+w · Vh(T + j− 1) ·
( Sj(Xj)
Sj−1(Xj−1)

− 1
P(Xj−1, j− 1, 1)

)

︸ ︷︷ ︸
excess return on short position

})
·

(
1

p1(T + j− 1)

)
(9)

Pension income in real terms: We add inflation Π to the model. In our application, in-
flation is only relevant for converting the pension income stream from nominal to real
terms. This implies that we abstain from investment options in inflation-linked bonds.
We do this by multiplying the general recursive relation, defined in (7) by

{
Πj(Xj)

Πj−1(Xj−1)

}−1
(10)
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We will take w=35 %, the assumed interest rate in line with (6), and the parameters and
state variables in the model are those from the third quarter of 2019. We refer to the
pension product described in section 2 as basic in the upcoming figures.
In Figure 3 we extend the setting by taking into account time-varying stock returns and
invest 1−w in one-year bonds.
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Figure 3: Pension income distribution in a KNW financial market with w=35%, AIRh in line with (6) and the
setting extended by time-varying expected stock returns and one-year bond returns in line with (7). This is
defined as investment strategy 1. Pension income distribution in a Black and Scholes financial market with
w=35%, AIR=AIRmean=2.01% and parameter assumptions in line with Table 1. This is defined as the basic
variable annuity.

Note that we calibrated the risk-free rate from Table 1 such that the first pension income
in the KNW setting is similar to that in the Black and Scholes setting. Figure 3 shows that
the expected pension income stream is no longer constant but increases. This is because
the (nominal) instantaneous interest rate and the return on one-year (nominal) bonds
are expected to increase over time. More specifically, the term structure of interest rates
is expected to be higher in the future than the initial term structure that was used in the
allocation of accumulated pension wealth towards money pots.
The volatility of stock returns in the KNW model is 16.75%8, with the parameters being
based on Draper (2014) and prescribed by the Dutch regulatory authorities. This is iden-
tical to the volatility of stock returns in the Black Scholes setting (see Table 1).
In Figure 4 we extend the setting by considering investing in the bond portfolio that par-
tially hedges the interest rate risk.

8σS =
√

σ2S(1) + σ2S(2) + σ2S(3) + σ2S(4) =
√
(−0.53)2 + (−0.76)2 + (−2.1)2 + (16.59)2 ≈ 16.75%
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Figure 4: Pension income distribution in a KNW financial market with w=35%, AIRh in line with (6), set-
ting extended by partial interest rate hedge by replacing the one-year bond return in (7) by the matching
portfolio of (8). This is defined as investment strategy 2. Pension income distribution in a Black and Scholes
financial market with w=35%, AIR=AIRmean=2.01%, and parameter assumptions in line with Table 1. This is
defined as the basic variable annuity.

Figure 4 shows a small increase in expected pension income. However, the increase is
smaller compared to the previous setting. This is because the bond portfolio will not
profit from the expected increase in the return of one-year bonds, since this is matched.
Still, there is some interest rate exposure via the allocation towards the stock market be-
cause of the nominal instantaneous interest rate. Therefore, we refer to this setting as
the partial interest rate hedge.
In Figure 5 we extend the setting, also hedging against changes in the nominal instanta-
neous interest rate. Therefore, we refer to this setting as the full interest rate hedge.
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Figure 5: Pension income distribution in a KNW financial market with w=35%, AIRh in line with (6), setting
extended by full interest rate risk hedge in line with (9). This is defined as investment strategy 3. Pension
income distribution in a Black and Scholes financial market with w=35%, AIR=AIRmean=2.01%, and parameter
assumptions in line with Table 1. This is defined as the basic variable annuity.

Figure 5 shows that we can get a constant pension income stream under the KNW model
in expectation. This result more or less overlaps with the Black and Scholes setting. The
conditions under which such a pension income distribution is optimal, assuming CRRA
preferences, are identified in Grebenchtchikova et al. (2017).
In Figure 6 we express the pension income stream in real terms to determine the pur-
chasing power of the pension income. This we do by multiplying inflation (9) with the
pension income stream following the full interest rate hedge strategy (10).
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Figure 6: Pension income distribution in a KNW financial market with w=35 %, AIRh in line with (6), setting
extended by comparing the pension income following the full interest rate hedge strategy in nominal (9) and
real terms, where we need to multiply by (10).

Figure 6 shows that in nominal terms the expected pension income is constant, whereas
in real terms this is no longer the case. In particular, we observe a sharp decrease in real
expected pension income. Therefore, Figure 6 shows that communication in nominal or
real terms, as mandated for Dutch consumers, really matters.
Although currently not required, a different goal could be to require a constant expected
pension income in real terms. We can achieve this by lowering the assumed interest rate
in (1). Then we will end up with a horizon-dependent assumed interest rate, since the ex-
pected inflation increases over time. A way to achieve a constant pension income stream
in real terms is by defining an investment strategy with adequate allocation towards real
bonds. We do not present this because perfect inflation-linked bonds are not available
for the Netherlands.
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4 Pension income distribution with longevity risk

In this section we consider longevity risk. We distinguish between micro- and macro-
longevity risk. Micro-longevity risk quantifies the risk related to uncertainty as to the
time of death if survival probabilities are known with certainty, while macro-longevity
risk is due to uncertain future survival probabilities (Hari et al., 2008). Macro-longevity
risk (changes in survival probabilities) is fundamentally different because it does not di-
versify. We assume that longevity risk is shared within one’s own age group9. We also
assume that longevity risk is uncorrelated with financial market risk that is described in
the previous sections.
Throughout this section we assume a pension fund that has J(T) participants at retire-
ment age T and no new inflow. This means that we plot the pension income stream of a
participant at retirement age in this simplified pension fund10. In subsection 4.1 we will
quantify the micro-longevity risk, shared within one’s own age group, for different num-
bers of participants in the pension fund and different asset allocations. In subsection
4.2 we will quantify the macro-longevity risk, shared withing one’s own age group, for
different asset allocations. In this setting, the size of the pool is irrelevant since macro-
longevity risk does not diversify, contrary to micro-longevity risk. Therefore, we assume
that the pool of participants is large enough such that micro-longevity risk is diversified.
In section 2 we were able to present the pension income stream using analytical solu-
tions. In this section, we need simulation and use 10,000 scenarios. To keep the setting
as simple as possible, we return to the Black and Scholes setting of section 2.

9We do not consider risk-sharing mechanisms.
10This means that this set-up implies that the pool becomes smaller over time.
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4.1 Pension income distribution with micro-longevity risk

In De Waegenaere et al. (2019) the one-year implications of a micro-longevity shock for
a fixed annuity are calculated under several risk sharing mechanisms and different com-
positions and sizes of the pension fund. Their recommendation is to spread this risk over
all participants in the pension fund (accumulation and retirement phase), since this risk
diversifies for a large group of participants.
We extend the setting of De Waegenaere et al. (2019) by taking into account multiple pe-
riods. We start by simulating the remaining number of participants J(T + j), with age T + j,
in the pool recursively from the binomial distribution.

J(T + j) ∼ BIN
(
J(T + j− 1),p1(T + j− 1)

)
(11)

We can then simulate the pension income stream, taking into account financial market
risk and micro-longevity risk shared within one’s own age group by the following iterative
relation for 1 ≤ j ≤ h, where Rfin(T + j− 1) is the financial return at age T + j− 1 and J(T + j)
is simulated from (11).

Vh(T + j) =
{
Vh(T + j− 1) · Rfin(T + j− 1) · 1

p1(T + j− 1)

}
· p1(T + j− 1) · J(T + j− 1)

J(T + j)︸ ︷︷ ︸
Rmicro(T+j)

(12)

Note that for a large pool of participants, the variable that denotes the micro-longevity
risk Rmicro(T + j) is close to 1. Note also that we can easily take interest rate and inflation
risk into account by inserting for Rfin(T + j− 1) in (12) what we have derived in Section 3.
The pension income stream is presented for different asset allocation strategies w and
different sizes of the pool of participants J(T) uassuming no new inflow, as defined in Ta-
ble 2. Please note the scale difference on the vertical axis for an annuity with w=0% (Fig-
ure 7-8 versus an annuity with w=35% (Figure 9-10).

w AIR J(T)

Figure 7 w=0% AIR=r J(T)=500

Figure 8 w=0% AIR=r J(T)=2,500

Figure 9 w=35% AIR=2.01% J(T)=500

Figure 10 w=35% AIR=2.01% J(T)=2,500

Table 2: Overview of different cases of financial market risk and micro-longevity risk.
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Figure 7: Simulated pension income distribution in a Black and Scholes financial market with w=0%,
AIR=r=0.43%, J(T)=500, and parameter assumptions in line with Table 1. This is compared to the pension
income distribution of a basic variable annuity calculated in a Black and Scholes financial market with w=0%,
AIR=r=0.43%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞.
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Figure 8: Simulated pension income distribution in a Black and Scholes financial market with w=0%,
AIR=r=0.43%, J(T)=2,500, and parameter assumptions in line with Table 1. This is compared to the pension
income distribution of a basic variable annuity calculated in a Black and Scholes financial market with w=0%,
AIR=r=0.43%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞.
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Figure 8: Simulated pension income distribution in a Black and Scholes financial market with w=0%,
AIR=r=0.43%, J(T)=2,500, and parameter assumptions in line with Table 1. This is compared to the pension
income distribution of a basic variable annuity calculated in a Black and Scholes financial market with w=0%,
AIR=r=0.43%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞.
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Figure 9: Simulated pension income distribution in a Black and Scholes financial market with w=35%,
AIR=AIRmean=2.01%, J(T)=500, and parameter assumptions in line with Table 1. This is compared to the pen-
sion income distribution of a basic variable annuity calculated in a Black and Scholes financial market with
w=35%, AIR=AIRmean=2.01%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞.
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Figure 10: Simulated pension income distribution in a Black and Scholes financial market with w=35%,
AIR=AIRmean=2.01%, J(T)=2,500, and parameter assumptions in line with Table 1. This is compared to the
pension income distribution of a basic variable annuity calculated in a Black and Scholes financial market
with w=35%, AIR=AIRmean=2.01%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞.
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If the participant opts for the fixed annuity, micro-longevity risk can be substantial in a
small pool of participants (with no new inflow). This result is in line with De Waegenaere
et al. (2019). If the participant chooses the variable annuity, then the micro-longevity
risk is dominated by the financial risk already for a small pool of participants. The group
of participants that currently have a variable annuity is still relatively small (Hers et al.,
2019).
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4.2 Pension income distribution with macro-longevity risk

It is well known, the (population) life expectancy in the overall Dutch population has
grown substantially in the last century, and this trend is expected to continue in the com-
ing years. According to AG (2018), a man currently 65 years old has an average remain-
ing life expectancy of 20.3 years; for a woman this is 23.1 years. In 2069, a 65-year-old
man is projected to have a remaining life expectancy of 25.6 years; for a woman this is
28.0 years. This is a significant increase, although these projections obviously contain
a measure of uncertainty. A real life example is the increased mortality rate because of
COVID-19, which may lead to an overall decrease in future life expectancy. For the vari-
able annuities considered in this setting it is important to consider the uncertainty con-
cerning the aggregate life expectancies of retirees.
In this paper a Lee-Carter (1992) model is assumed. This is a somewhat simpler model
than the model used by AG, but nevertheless a highly accepted longevity model in the
literature. However, of course longevity shocks can occur that fall outside the scope of
this model. Richards et al. (2014) quantify longevity risk by simulating data from the cur-
rent calibration of the longevity model. The longevity trend risk is then measured by re-
estimating the model including the simulated data. De Waegenaere et al. (2019) use a
similar approach in analyzing macro-longevity risk. Their paper only took one longevity
shock into account for a fixed annuity. Abstracting from equity exposure, the implica-
tions of a one-year shock lead to a drop of approximately 1.1% in pension income in a
2.5% quantile for a participant at retirement age without risk sharing. Balter et al. (2019),
however, argue, using historical data11 from the Danish setting, that the macro-longevity
risk can be significant in variable annuities. This should be interpreted as an extremely
negative scenario that occurred in the past and is not representative regarding expected
future longevity shocks. Still, they calculate, for a participant at retirement age in 2007
with an annuity bearing longevity risk, a decrease in pension income of more than 10%
after the updates in 2010, 2013, and 2016. Piggot et al. (2005) calculate the longevity risk
in group self-annuitization products (GSA) and use the changed expectation adjustment
(CEA) factor to adjust for mortality changes. This factor reflects the interpretation of the
changed value of the annuity based on a mortality update. Steenkamp (2016) shows un-
der the AG model that the pension income of a fixed annuity in a 5% quantile is 2.5 per-
centage points lower in replacement rate at the age of 120 if the longevity risk is not in-
sured.
In this paper, in order to be in line with the modeling approach of financial market risk,
we choose not to recalibrate the parameters from the Lee-Carter model based on new
years of simulated data. We also do not allow for revision of the KNW model and the in-

11Therefore, Balter et al. (2019) differ for obvious reasons from Richards et al. (2014).
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put parameters. In reality, every five years a parameters committee reconsiders the fi-
nancial market model and calibration in order to be in line with financial market expecta-
tions at that point in time. In that sense we differ from the actuarial literature described
above.
The pension income stream can be defined by the following recursive relation, where
1 ≤ j ≤ h, where pold1 (T + j − 1), and pnew1 (T + j − 1) represent the one-year survival
probability at age T + j− 1 under the old and new survival tables, respectively.

Vh(T + j) =
{
Vh(T + j− 1) · Rfin(T + j− 1) · 1

pold1 (T + j− 1)

}
·
(
pold1 (T + j− 1)
pnew1 (T + j− 1)

)

︸ ︷︷ ︸
Rmacro

(13)

The Appendix contains a description of the Lee-Carter model, where we present calibra-
tion results. Note that the variable denoting the macro-longevity risk Rmacro(T + j) is ex-
pected to be close to 1. This reflects the interpretation that ex ante we do not expect de-
viations from the best estimate of future survival probabilities. Note that we can easily
take into account interest rate risk and inflation risk by inserting for Rfin(T + j − 1) in (12)
what we derived in Section 3.
Therefore, we can present the pension income stream, taking into account financial mar-
ket risk and macro-longevity risk shared within one’s age group12. The pension income
stream will be calculated for an equity exposure of w=0% and w=35% in Figures 11 and
12, respectively.

12In Figure 11 and Figure 12 a pension product, in which the macro-longevity risk is borne by the pen-
sion provider, is compared to a pension product in which this risk is borne by the pool of participants. If the
macro-longevity risk is borne by the pension provider a premium needs to be paid. For simplicity purposes,
we abstract from this by setting it at 0%.
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Figure 11: Simulated pension income distribution in a Black and Scholes financial market with w=0%,
AIR=r=0.43%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞, and including macro-
longevity risk. In the Lee-Carter model, we have calibrated the expected life improvements and volatility
of life improvements with C=-1.8979 and σk = 2.3198, respectively. This is compared to the pension in-
come distribution of a basic variable annuity calculated in a Black and Scholes financial market with w=0%,
AIR=r=0.43%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞.
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Figure 12: Simulated pension income distribution in a Black and Scholes financial market with w=35%,
AIR=AIRmean=2.01%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞, and includ-
ing macro-longevity risk. In the Lee-Carter model, we have calibrated the expected life improvements and
volatility of life improvements with C=-1.8979 and σk = 2.3198, respectively. This is compared to the pen-
sion income distribution of a basic variable annuity calculated in a Black and Scholes financial market with
w=35%, AIR=AIRmean=2.01%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞.

Figure 12 shows that, for higher equity exposure, the financial market risk dominates
the quantiles for the pension income distribution13. However, the stand-alone longevity
risk is substantial (see Figure 11). Gielen and De Waegenaere (2014) quantify the cost of
insuring longevity risk, within the Solvency II framework, as 4.6% in excess of the fair an-
nuity price. We can easily extend Figures 11 and 12 with a premium for insuring longevity
risk of around 4.6% and conclude that bearing this risk is attractive for the participant.

13Overlapping quantiles obviously do not exclude the possibility, in individual scenarios where financial
returns are in line with expectations, that an increase in life expectancy would lead to a significant decrease
in pension income.
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Figure 12: Simulated pension income distribution in a Black and Scholes financial market with w=35%,
AIR=AIRmean=2.01%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞, and includ-
ing macro-longevity risk. In the Lee-Carter model, we have calibrated the expected life improvements and
volatility of life improvements with C=-1.8979 and σk = 2.3198, respectively. This is compared to the pen-
sion income distribution of a basic variable annuity calculated in a Black and Scholes financial market with
w=35%, AIR=AIRmean=2.01%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞.

Figure 12 shows that, for higher equity exposure, the financial market risk dominates
the quantiles for the pension income distribution13. However, the stand-alone longevity
risk is substantial (see Figure 11). Gielen and De Waegenaere (2014) quantify the cost of
insuring longevity risk, within the Solvency II framework, as 4.6% in excess of the fair an-
nuity price. We can easily extend Figures 11 and 12 with a premium for insuring longevity
risk of around 4.6% and conclude that bearing this risk is attractive for the participant.

13Overlapping quantiles obviously do not exclude the possibility, in individual scenarios where financial
returns are in line with expectations, that an increase in life expectancy would lead to a significant decrease
in pension income.

4.3 Pension income distribution with macro-longevity risk, robustness

The previous analysis was based on a Lee-Carter model, with historically calibrated ex-
pected longevity improvements and calibrated volatility of historical changes in survival
probabilities. Of course, there could be much larger changes, and we therefore investi-
gate the robustness of our results to the estimates. We therefore also run simulations
that reflect much higher volatility of the survival probabilities. We quantify the macro-
longevity risk by assuming a higher volatility of life improvements, for example σ̃k = 3 ·σk,
σ̃k = 5 · σk. This is presented in Figures 13a and 13b for an asset allocation of w=35%,
abstracting from micro-longevity risk. We then see that longevity risk becomes a more
important risk factor, although marginal differences can be observed in the 5% quantile.
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(a) Volatility of life improvements in Lee-Carter set to
σ̃k = 3 · σk.
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(b) Volatility of life improvements in Lee-Carter set to
σ̃k = 5 · σk.

Figure 13: Simulated pension income distribution in a Black and Scholes financial market with w=35%,
AIR=AIRmean=2.01%, parameter assumptions in line with Table 1, implicitly assuming J(T)=∞, and including
macro-longevity risk. We have increased the volatility in the Lee-Carter model by σ̃k = 3 · σk in Figure 13a and
by σ̃k = 5 · σk in Figure 13b. This is compared to the pension income distribution of a basic variable annuity
calculated in a Black and Scholes financial market with w=35%, AIR=AIRmean=2.01%, parameter assumptions
in line with Table 1, implicitly assuming J(T)=∞.
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5 Extensions of the pension income distribution to additional 
product features

In this section we present an analysis of the dynamics of a high-low pension product.
Also, we discuss a guaranteed benefit level pension product that, is a combination of
a variable and a fixed annuity. We end this subsection with a description of a pension
product that incorporates smoothing of financial shocks. We analyze these pension prod-
ucts in a Black and Scholes financial market without longevity risk.

5.1 High-low pension product

In a high-low pension product the retiree can get a higher pension income during the ini-
tial years of retirement. As a consequence, at a later age the retiree receives less pension
income compared to a basic variable annuity. In the Dutch institutional setting, there are
two important restrictions in a high-low pension product.

1. A high-low construction implies that there is some variation between the highest
and lowest pension income levels. The difference between the highest and lowest
pension income levels is maximized at 100:75. This means that the lowest payment
must be at least 75% of the highest payment.

2. The period that a person can acquire a higher pension income stream is not maxi-
mized. However, for practical reasons pension providers typically set this at 5 or 10
years.

To allocate the wealth to money pots, defined in (1), we should introduce some nota-
tion. We define �low as an indicator function with value 1 when we are in the low period
and with value 0 when we are in the high period. zh will be a function of the length of
the high period and the relative difference in pension income between the high and the
low period. We assume that the lowest pension income is 75% of the highest pension
income. We then define zh�low as follows, where the derivation can be found in the Ap-
pendix.

zh�low = −1
h
log(0.75) (14)

After this, the pension income distribution can be easily calculated using (2) and (3) by
increasing the assumed interest rate in (4) with zh�low, which changes the allocation to-
wards money pots in (1).

AIRh = r +wλσ + zh�low (15)



Variable annuities with financial risk and longeVity risk 31

5 Extensions of the pension income distribution to additional 
product features

In this section we present an analysis of the dynamics of a high-low pension product.
Also, we discuss a guaranteed benefit level pension product that, is a combination of
a variable and a fixed annuity. We end this subsection with a description of a pension
product that incorporates smoothing of financial shocks. We analyze these pension prod-
ucts in a Black and Scholes financial market without longevity risk.

5.1 High-low pension product

In a high-low pension product the retiree can get a higher pension income during the ini-
tial years of retirement. As a consequence, at a later age the retiree receives less pension
income compared to a basic variable annuity. In the Dutch institutional setting, there are
two important restrictions in a high-low pension product.

1. A high-low construction implies that there is some variation between the highest
and lowest pension income levels. The difference between the highest and lowest
pension income levels is maximized at 100:75. This means that the lowest payment
must be at least 75% of the highest payment.

2. The period that a person can acquire a higher pension income stream is not maxi-
mized. However, for practical reasons pension providers typically set this at 5 or 10
years.

To allocate the wealth to money pots, defined in (1), we should introduce some nota-
tion. We define �low as an indicator function with value 1 when we are in the low period
and with value 0 when we are in the high period. zh will be a function of the length of
the high period and the relative difference in pension income between the high and the
low period. We assume that the lowest pension income is 75% of the highest pension
income. We then define zh�low as follows, where the derivation can be found in the Ap-
pendix.

zh�low = −1
h
log(0.75) (14)

After this, the pension income distribution can be easily calculated using (2) and (3) by
increasing the assumed interest rate in (4) with zh�low, which changes the allocation to-
wards money pots in (1).

AIRh = r +wλσ + zh�low (15)

We assume w=35%, assumed interest rate in line with (15), and a product where the pen-
sion income is lower after 10 years. Figure 14 illustrates this.
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Figure 14: Pension income distribution of a high-low product with lower income after 10 years, in a Black
and Scholes financial market with w=35%, AIR in line with (15), and parameter assumptions in line with Ta-
ble 1. The pension income distribution of the basic variable annuity is calculated in a Black and Scholes fi-
nancial market with w=35%, AIR=AIRmean=2.01%, and parameter assumptions in line with Table 1.

Figure 14 shows that the expected pension income for a high-low pension product is no
longer constant. The shorter the high period, the higher the pension income compared
to a basic variable annuity. As a consequence, in later years the total pension income
distribution (high-low) is lower compared to a basic variable annuity.



netspar design paper 168 32

5.2 Pension product with guaranteed benefit level

Guaranteed pension products are under discussion everywhere. Cochrane (2007) derives
that for an agent who exhibits a subsistence level a pension product with a guaranteed
benefit level is to be preferred. In the setting of Van Bilsen et al. (2019), the reference
level leads to a demand for guarantees. Also, Chen et al. (2015) conclude that a variable
annuity with a guaranteed component can be optimal. Horneff et al. (2015) show the
existence of variable annuities with a guaranteed income in the American setting. Calvet
et al. (2019) show that focus on the guaranteed component in a financial product can
increase the overall allocation towards the stock market.
In the Dutch setting, everyone in principle implicitly has a guaranteed pension income
via the state pension of roughly 1,000 euros per month. The exact amount depends on
household composition. In addition, some pension providers offer a pension product
with a guaranteed benefit level, where they allocate the accumulated pension assets as a
linear combination of a fixed and variable annuity. The provider allocates a fraction 1− v
to a fixed annuity and a fraction v to a variable annuity. Hence, participants can increase
the guaranteed component by decreasing v in line with their personal preferences. The
pension income distribution can then be calculated, using (2) and (3), by making a linear
combination of a fixed annuity with AIR=r and a variable annuity with AIR, for example
in line with (4). This product is also analyzed in Balter and Werker (2020). We assume
r=0.43% and λσ=4.52% as defined in Table 1.
We take a pension product with guaranteed benefit level with v=35% and w=100%, where
w refers to the fraction allocated to stocks in the variable part of the pension product. To
get a constant expected pension income stream, the assumed interest rate in the vari-
able part is 4.95 %, in line with (4). This pension product is compared to the basic vari-
able annuity with v=100 %, w=35%, and an assumed interest rate of 2.01% in line with
(4). Figure 15 shows the results.14

14In Figure 15 the results will be presented until the maximum age of 100. We do this in order to show
explicitly that the pension income of a pension product with guaranteed benefit level is never below the
guarantee.
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Figure 15: Pension income distribution of a product with guaranteed minimum benefit level, in a Black
and Scholes financial market with v=35%, w=100%, AIR = AIRmean = 4.95%, and parameter assumptions in
line with Table 1. The pension income distribution of the basic variable annuity is calculated in a Black and
Scholes financial market with w=35%, AIR=AIRmean=2.01%, and parameter assumptions in line with Table 1.

A pension product with a guaranteed benefit level obviously leads to a guaranteed com-
ponent, as can be seen from Figure 15. This implies that a pessimistic scenario (and lower
quantiles) in a product with a guaranteed benefit level can never be lower than the guar-
anteed component. This is a clear advantage compared to a basic variable annuity, where
the participant can end up with less than the guaranteed component in the competing
product. For example, in 29 and 118 scenarios out of 10,000, the basic variable annuity is
below this guarantee at the age of 80 and 85, respectively.
Since a pension product with a guaranteed benefit level does not need to rebalance be-
tween stocks and bonds, the related optimistic pension income exceeds the optimistic
pension income in a basic variable annuity. Also, note that this pension product is ex-
pected to yield a higher pension income compared to a basic variable annuity. The dif-
ference is approximately 1%.
The above suggests that a pension product with a guaranteed benefit level is always bet-
ter than a similar basic variable annuity, in terms of v and w. This is obviously not the
case, as we will illustrate by showing the probability distribution function (PDF) and the
cumulative distribution function (CDF) of the pension income at the age of 85 in Figures
16b and 16b, respectively.
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(a) Cumulative Distribution Function of pension in-
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in Figure 15.
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(b) Probability Distribution Function of pension in-
come at the age of 85, of pension products presented
in Figure 15.

The CDF in Figure 16a shows that, in approximately the 8% quantile to the 80% quan-
tile, the basic variable annuity yields a higher pension income compared to the product
with guaranteed benefit level at the age of 85. This implies, among other things, that at
the age of 85 the median pension income of a basic variable annuity is higher than the
median pension income of a pension product with guaranteed benefit level. Similar con-
clusions can be drawn from the PDF in Figure 16b.
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5.3 Smoothing of financial shocks in pension products

Balter and Werker (2020) describe a pension product which includes smoothing of fi-
nancial shocks. Smoothing of financial shocks in a pension product reduces the average
year-on-year volatility of pension income. This can be attractive for participants who ex-
hibit habit formation (see, for example, Van Bilsen et al. (2019)).
In line with Balter and Werker (2020) we define N as the smoothing period. In each time
period we need to determine the remaining investment horizon of all money pots. If this
remaining investment horizon is shorter than the smoothing period, we will not have the
asset allocation w for this money pot. Instead, the asset allocation will be a fraction of
w. This fraction is 1+h−j

N , where h refers to the horizon of the money pot, while j indicates
the time. Generalizing, we can present the asset allocation at time j − 1, for a pension
income stream during h periods from retirement age onwards, as

wj−1(h) = w ·min
(
1,
1 + h− j

N

)
, j = 1, ...,h (16)

which shows that we will end up with a horizon-dependent asset allocation strategy. This
means that we no longer have a constant asset allocation during the retirement phase.
We can calculate15 the expectation of the pension income distribution as follows:

Et(Vh(T + h)) = Vh(T)exp
( h∑

j=1

(
r +wj−1(h)λσ

))
·
(

1
ph(T)

)
(17)

When we insert the definition of Vh(T), defined in (1), in (17), we see that the expected
pension income stream is constant if the assumed interest rate satisfies the following:

AIRh = r + λσ · 1
h

h∑
j=1

wj−1(h) (18)

15The return on money pot Vh(T), h periods from retirement age onwards, still follows a log-normal dis-
tribution. The mean and variance of the log return are

∑h
j=1 r + wj−1(h)λσ − 1

2w
2
j−1(h)σ2 and

∑h
j=1 w

2
j−1(h)σ2,

respectively.
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Figure 17 presents the horizon-dependent assumed interest rate that will yield a con-
stant expected pension income in (17).
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Figure 17: Horizon-dependent assumed interest rate per money pot from (18), with w=35%, N=10 and
parameter assumptions in line with Table 1.

Figure 17 shows that the assumed interest rate, defined in (18), increases as the horizon
extends farther in the future. Intuitively this means that, for pension payments farther
in the future, a higher assumed interest rate can be used, because a higher equity expo-
sure is chosen for these money pots since more time is left to smooth financial shocks.
Also, the assumed interest rate in the case of smoothing of financial shocks is for any
horizon below the level of the assumed interest rate in the case without smoothening. At
some point in time when the money pot tends to expire, we need to reduce the equity
exposure (in line with (16)). If this is a money pot for a payment with a distant horizon,
we can approach the assumed interest rate in the case without smoothing. Figure 17
shows this, where we add a horizontal line of the assumed interest rate of 2.01% in the
case without smoothing of financial shocks.
A pension provider can calculate the expected pension income stream, to act in accor-
dance with the law, by choosing the assumed interest rate from (18) and calculate the
expectation of the pension income stream in line with (17).
The pension income streams (with and without smoothing of financial shocks) are pre-
sented in Figure 18.
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Figure 18: Pension income distribution of a product which includes smoothing, in a Black and Scholes fi-
nancial market with w=35%, N=10, AIR horizon-dependent in line with (18), and parameter assumptions in
line with Table 1. The pension income distribution of the product without smoothing (=basic variable annu-
ity) is calculated in a Black and Scholes financial market with w=35%, AIR=AIRmean=2.01%, and parameter
assumptions in line with Table 1.

In Figure 18 we show that the retiree will have lower initial pension income compared to
the case without smoothing. The expected pension income stream is constant, as pre-
scribed by Dutch law.
We also determine the constant asset allocation w (which includes smoothing, implying a
horizon-dependent asset allocation) that leads to the same expected pension income as
the constant asset allocation w̃. We will do this in three steps as described below.

L−T−1∑
k=0

pk(T)exp
(
−

k∑
j=1

r +wj−1(k)λσ
)
=
L−T−1∑
k=0

pk(T)exp
(
− k(r + w̃λσ)

)
(19)

Step 1: Assume an asset allocation w and smoothing period N.
Step 2: We then calculate the term on the left-hand side of (19).
Step 3: Equation (19) then enables us to identify the constant asset allocation without
smoothing, w̃ that yields the same constant expected pension income stream, as the
horizon-dependent asset allocation implied by the smoothing mechanism.
Equation (19) can be derived if we set the expected pension income stream which in-
cludes smoothing (where we assume a w) (17) equal to the expected pension income
stream with constant asset allocation w̃ (2). Then we need to solve for w̃.
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w 0% 35% 66%

w̃ (N=5, r=0.43%, λσ=4.52%) 0% 28.99% 54.01%

w̃ (N=10, r=0.43%, λσ=4.52%) 0% 22.93% 42.38%

Table 3: The relation between the asset allocation which includes smoothing (with w and N) and constant
asset allocation w̃, such that the expected pension income stream from (17) and (2), respectively, overlaps.

For the example presented in Table 3, an asset allocation strategy of 35% with a smooth-
ing period of ten years implies a similar constant expected consumption stream com-
pared to an asset allocation strategy of 22.93%. Figure 19 presents this graphically. Note
that (1), using the asset allocation w̃, defines the first pension payment for these prod-
ucts.
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Figure 19: Pension income distribution of a product which includes smoothing, in a Black and Scholes fi-
nancial market with w=35 %, N=10, AIR is horizon dependent in line with (18) and parameter assumptions in
line with Table 1. The pension income distribution of the product without smoothing (=basic variable annu-
ity) is calculated in a Black and Scholes financial market with w=22.93 %, AIR=AIRmean=1.45 % and parameter
assumptions in line with Table 1.

Figure 19 shows that, with smoothing of financial shocks, the yearly fluctuations in pen-
sion income are less compared to a pension product without smoothing of financial
shocks. We define the average year-on-year volatility of a pension product as the av-
erage yearly change in pension income in absolute terms, in line with the Association
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Figure 19 shows that, with smoothing of financial shocks, the yearly fluctuations in pen-
sion income are less compared to a pension product without smoothing of financial
shocks. We define the average year-on-year volatility of a pension product as the av-
erage yearly change in pension income in absolute terms, in line with the Association

of Insurers (2017). We quantify the average year-on-year volatility of a pension product
with an asset allocation of 35% and a smoothing period of ten years to be 1.2%. The av-
erage year-on-year volatility of a pension product with asset allocation of 22.93% without
smoothing is 3.1%. Although these products yield a similar expected pension income,
the average year-on-year volatility for a product with smoothing is substantially lower.
However, in absolute terms the risk will be higher at later ages in the case which includes
smoothing of financial shocks. It is a matter of individual preferences which pension
product is preferred by a participant. For example, a participant who exhibits habit for-
mation preferences, a pension product that incorporates a smoothing mechanism can
be attractive since it reduces the average year-on-year fluctuations in pension income.
However, in the Merton model the average year-on-year fluctuations in pension income
do not play a role in optimal product choice.
In principle, we can extend the analysis of non-basic pension products by taking into ac-
count time-varying stock returns, interest rate risk, inflation risk, and longevity risk. How-
ever, this would not add additional insights to the results presented in earlier sections.
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6 Conclusion

We have quantified the risk level of a basic variable annuity that is exposed to stock mar-
ket fluctuations. We have extended this setting with interest rate risk in line with the
KNW model, the underlying model of the scenario set prescribed by the Dutch regula-
tory authorities. We have shown that, with a full interest rate hedge, the participant faces
similar risks as in the Black and Scholes setting which only takes equity risk into account.
Also, we have derived the horizon-dependent assumed interest rate that yields a con-
stant expected pension income in nominal terms. Furthermore, we can quantify the pen-
sion income stream in real terms.
The additional risk for pension products when taking macro-longevity risk into account
depends on the asset allocation in the product. For a fixed annuity the longevity risk can
be substantial, although the first-year shock is less than in De Waegenaere et al. (2018).
In a 5% quantile, pension income is 2.6% lower fifteen years after retirement when ig-
noring the insurance premium. For a variable annuity that involves equity exposure,
financial risk will dominate the longevity risk. Roughly speaking, the 5% quantile over-
laps for a variable annuity with and without longevity insurance. By assuming a higher
volatility on future life improvements than a one factor Lee-Carter model would calibrate
based on historical data, we show that macro-longevity risk becomes a higher risk factor,
even though the additional risk in a 5% quantile is marginal (< 0.4% fifteen years after
retirement). Assuming that the Lee-Carter model is the true longevity model and a real-
istic cost of insuring longevity risk of 4.6% (Gielen and De Waegenaere (2014)), it would
be attractive for participants and pension providers to leave the longevity risk in the pool
of participants. Steenkamp (2016) comes to a similar conclusion for a fixed annuity with
longevity risk. However, as stated before, we cannot guarantee that in the near future no
longevity shocks will come about that are beyond the scope of this model as in Balter et
al. (2019).
A wide variety of Dutch pension products, several discussed in Balter and Werker (2020)
as well, can be written in the methodology used in this paper. Although not explicitly
presented, we argue that for these pension products the financial market risk dominates
the longevity risk, given that there will be some equity exposure. For pension products
that incorporate smoothing of financial shocks, it is possible, depending on the length of
the smoothing period, to reduce the average year-on-year volatility of pension income
by a factor three compared to a basic variable annuity. This is in line with the results of
Balter and Werker (2020) and Bonekamp et al. (2017).
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Appendix

In this Appendix we present mathematical derivations. The derivations for each section
are presented separately.

Derivations in section 4

Lee-Carter model
Before we can discuss the implications of a macro-longevity shock, we should first dis-
cuss the Lee-Carter model. In this model, one-year survival probabilities (in continuous
time) can be calculated from the force of mortality qx,t as follows.

px,t = exp(−qx,t) (20)

The (natural logarithm) of the force of mortality can be described as follows, where
∑

x βx =
1 and

∑
t κt = 0 ensures uniqueness.

ln(qx,t) = αx + βxκt (21)

The vectors for αx, βx and κt will be estimated via (22), wheremx,t represents the central
death rate between ages x and x + 1 at time t with ζx,t Gaussian i.i.d.

ln(mx,t) = αx + βxκt + ζx,t (22)

If we denote the first year of the sample with t0 and the last year of data with tintermediate,
we obtain for αx the following estimate.

αx =
1

tintermediate − t0 + 1
∑
t
ln(mx,t) (23)

Now we perform a singular value decomposition (SVD) on ln(mx,t)− αxι as follows, where
ι = (1, 1, ..., 1)T.

SVD(ln(mx,t)− αxι) = λ1Ux,1Vt,1 + λ2Ux,2Vt,2 + ... + λkUx,kVt,k (24)

Then we can estimate βx, κt, where the scaling must be in line with the constraints
∑

x βx =
1 and

∑
t κt = 0.

βx =
1∑
x Ux,1

Ux,1 (25)

κt = λ1Vt,1
∑
x
Ux,1 (26)
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Next, we should calibrate σk and C in the random walk formula for κt+1 in (27), where ηt+1

has the standard normal distribution.

κt+1 = κt + C + σkηt+1 (27)

Now we are able to present the evolutions of κt over time (i.e. the best estimate and the
corresponding quantiles). Note that we are extrapolate for h periods.

κbet+h = κt + Ch (28)

κ
up
t+h = κt + Ch + zασk

√
h (29)

κdownt+h = κt + Ch− zασk
√
h (30)

Substituting (21) in (20) and replacing t by t + h, we can write px,t+h as follows.

px,t+h = exp(−qx,t+h) = exp(−exp(αx + βxκt+h)) (31)

We now have the tools to construct the best estimate (be) and the quantiles (up and
down) for the future survival probabilities.

pbex,t+h = exp(−exp(αx + βxκ
be
t+h)) (32)

pupx,t+h = exp(−exp(αx + βxκ
up
t+h)) (33)

pdownx,t+h = exp(−exp(αx + βxκdownt+h )) (34)

Discussing the Lee-Carter model enables us to explain the implications of a macro-longevity
shock. Note though that, since we do not take into account the ζx,t in the calibration, we
underestimate the variance.
An overview of the αx, βx and κt, based on gender-neutral survival probabilities, is pre-
sented below. Note that we make a minor adjustment to the Lee-Carter calibration of αx
to create equivalence with the mortality rates of the Actuarial Association (AG). We solve
the following equation for αx.

αx + βx(κt + iC) = log(qAGx ) (35)

In (35) we have to insert for i=3. This is because we use the data from the Human Mortal-
ity Database until 2016 and the AG (expected) mortality rates from 2019, in line with the
assumption that the annuity is purchased this year.
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Figure 20: The calibration of αx in the Lee-Carter model based on gender-neutral data from the Human
Mortality Database with sample period 1970-2016. The αx is marginally adjusted to create equivalence with
the survival probabilities of the Dutch Actuarial Association as described in (35).
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Figure 21: The calibration of βx in the Lee-Carter model based on gender-neutral data from the Human
Mortality Database with sample period 1970-2016.

For σk, the volatility of life improvements, we have estimated a value of 2.3198. For C,
the expected life improvement over time, we have estimated a value of -1.8979. This is
based on gender-neutral data from the Human Mortality database (Netherlands), where
the sample period is taken from 1970-2016.
In the specific setting of section 4.2, we must calculate each year the survival probabili-
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Figure 22: The calibration of κt in the Lee-Carter model based on gender-neutral data from the Human
Mortality database with sample period 1970-2016. We have also included simulated values of κt from (27),
with C=-1.8979 and σk = 2.3198.

ties under the old and new survival tables, as defined below.

Pold(x) = exp(−exp(αx + βx{κt + iC}))

Pnew(x) = exp(−exp(αx + βx{κt+1 + (i− 1)C}))

(36)

For the same reason as in (35), we will use i=3.

Derivations in section 5

The unknown zh�low is for simplicity derived in the setting of a fixed annuity. Therefore,
the pension income stream, incorporating high-low, is presented as follows.

Et(V
high-low, fixed
h (T + h)) = WT

ph(T)exp(−h(r + zh�low))∑L−1
k=0 pk(T)exp(−k(r + zk�low))

· exp(hr) ·
(

1
ph(T)

)

= WT
exp(−h · zh�low)∑L−1

k=0 pk(T)exp(−k(r + zk�low))
(37)

To get a constant pension income stream in the lower period, we need to make this zh
(and we did that already) horizon dependent. This is done as follows.

zh�low =
1
h
· Z�low (38)
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Figure 22: The calibration of κt in the Lee-Carter model based on gender-neutral data from the Human
Mortality database with sample period 1970-2016. We have also included simulated values of κt from (27),
with C=-1.8979 and σk = 2.3198.

ties under the old and new survival tables, as defined below.

Pold(x) = exp(−exp(αx + βx{κt + iC}))

Pnew(x) = exp(−exp(αx + βx{κt+1 + (i− 1)C}))

(36)

For the same reason as in (35), we will use i=3.

Derivations in section 5

The unknown zh�low is for simplicity derived in the setting of a fixed annuity. Therefore,
the pension income stream, incorporating high-low, is presented as follows.

Et(V
high-low, fixed
h (T + h)) = WT

ph(T)exp(−h(r + zh�low))∑L−1
k=0 pk(T)exp(−k(r + zk�low))

· exp(hr) ·
(

1
ph(T)

)

= WT
exp(−h · zh�low)∑L−1

k=0 pk(T)exp(−k(r + zk�low))
(37)

To get a constant pension income stream in the lower period, we need to make this zh
(and we did that already) horizon dependent. This is done as follows.

zh�low =
1
h
· Z�low (38)

By inserting 38, we can simplify the expected pension income stream from 37.

Et(V
high-low, fixed
h (T + h)) = WT

exp(−Z · �low)∑L−1
k=0 pk(T)exp(−k(r + zk · �low))

(39)

Note that we can now write the fraction (i.e. difference between highest and lowest pen-
sion income) as follows in this setting.

Difference high-low = exp(−Z · �low)

−log(Difference high-low) = Z · �low (40)

So we can also write as follows.

zh�low =
1
h
Z�low

= −1
h
log(Difference high-low) (41)
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