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Abstract

Solvency II prescribed two shock methodologies to determine the Solvency capital require-
ment for longevity risk, namely the 99.5% one-year VaR and the standard formula. However,
since longevity risk lies in the long-term trend of mortality rates, it is more fitting to measure
longevity risk over a multi-year horizon instead of a one-year horizon. The terminal VaR ap-
proach or in other words, the multi-year approach, measures longevity risk over a multi-year
horizon as opposed to the one-year VaR. The aim of this thesis is to investigate and compare
the shock methodologies prescribed by Solvency II and the terminal VaR approach and to see
if the one-year VaR meets the multi-year requirements. For the implementation of the shock
methodologies, the Lee-Carter and the Li-Lee model are used for the forecasting of mortality
rates.

The results obtained indicate that the one-year VaR does not meet the multi-year require-
ments when considering the whole portfolio. However, when considering two different funds
with different age groups, this is not necessarily the case. We find that for older individuals
that have already retired the one-year VaR does meet the multi-year requirement.

KEYWORDS: longevity risk, Solvency II, solvency capital requirement, stochastic mortal-
ity modeling, Lee-Carter, Lee-Li, Value-at-Risk, run-off approach, terminal VaR
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1 Introduction

Insurance companies and pension funds are exposed to changes in the value of their liabilities
caused by longevity risk. Due to the increasing life expectancy in the Netherlands over the past
decades and also due to the expectation that life expectancy will continue to rise, the costs and
thus the liabilities of the pension funds are also expected to increase. One way to deal with the
increasing liabilities is to increase the premium of the contracts. In the case of the Netherlands, the
pension system has responded by increasing the retirement age from 65 to 67 in 2014. Estimating
the increases in life expectancy is not a problem, but the main issue is the uncertainty around
these increases in life expectancy, caused by the uncertainty in mortality projections. This risk is
defined as longevity risk. As a consequence of having uncertainties in mortality projections, future
pension payments will also become uncertain, leading to the risk that the pension fund might not
have enough capital for the future pension payments. Longevity risk can actually be decomposed
into macro-longevity risk and micro-longevity risk. Macro-longevity risk refers to the systematic
risk that is not diversifiable, which result from the uncertainty around future mortality rates. On
the other hand, micro-longevity risk refers to the idiosyncratic risk, resulting from non-systematic
deviations from a person’s expected remaining lifetime. This risk is diversifiable, i.e. by increasing
the number of participants in the portfolio. Throughout this thesis, we will only focus on macro-
longevity risk, i.e. the systematic risk.

The way longevity risk is modeled depends on how future mortality rates are modeled, since
it lies in the long-term trend taken by mortality rates. The most popular approach in the litera-
ture to model mortality is by using an extrapolative model. In this approach, mortality rates are
projected into the future using historical data. In this thesis, two extrapolative models will be em-
ployed, namely the Lee and Carter (1992) model, which is known for its simplicity and reasonable
accuracy, and the Li and Lee (2005) model, an extension of the Lee-Carter model which is selected
by the Royal Dutch Actuarial Association for Projection Table AG2018. With these stochastic
models, the best estimates from both models are obtained. The best estimate is referred to the
central projection of the future trend. Next is to model the uncertainty around the best estimate,
i.e. longevity trend risk. Solvency II plays a major role for insurance companies when modeling
longevity risk in Europe.

As of 2016, Solvency II has been officially implemented and it requires insurance companies to have
a risk based capital, so in other words extra capital for unexpected losses. This is referred to as the
Solvency Capital Requirement (SCR). Under Solvency II, the definition of the SCR is as follows:
“the potential amount of own funds that would be consumed by unexpected large events whose
probability of occurrence within a one-year time frame is 0.5%”. The SCR can either be calculated
using the standard formula, which is based on a one time permanent shock on all mortality rates,
or an internal model that has been approved by the insurer’s supervisor or lastly, a combination
of both, i.e. a partial internal model. It is shown by Gylys and Šiaulys (2019) that the standard
formula is often used by small and medium sized companies, since it was constructed in a way to
represent the risk profile of the average insurer and can also be seen as a benchmark. On the other
hand, the internal model consists of a stochastic model which models the uncertainty around the
mortality rates. For insurance companies, the most popular way to model the uncertainty is by
basing it on a one year 99.5% value-at-risk methodology since it is consistent with the definition
of the SCR as defined under Solvency II. Mostly larger firms can invest in an internal model, since
it is much more costly. Both these methods are widely used for quantifying longevity risk and
quite a few literature have been dedicated on a one year value-at-risk approach, i.e. Richards et
al. (2013), Plat (2011), etc. (see following section). However, Richards et al. (2013) argued that
some risks, including longevity risk, do not fit naturally in a one year value-at-risk framework,
since it is a risk that unfolds over many years. It makes more sense to take a multi-year framework
when dealing with longevity risk. This leads us to the following questions; Can the one-year value-
at-risk approach meet the multi-year requirement? How does it compare to a multi-year approach?
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The aim of this thesis is to compare the three shock methodologies, i.e. the standard formula
introduced by Solvency II, a one-year VaR methodology and the multi-year VaR, so-called ter-
minal VaR. This is done by comparing the SCRs that these shock methodologies generate. The
one-year VaR and terminal VaR will be computed using stochastic mortality models. First, we
will consider the Lee-Carter model for the forecasting of Dutch mortality rates, since again, it is
simple and gives reasonable results. With this, the trend as well as age-specific parameters are
estimated for the Dutch population. After obtaining the model estimates, forecasting of future
mortality rates can be done. The central projection, also referred to as the best estimate, of the
mortality rates is used to compute the best estimate of the liabilities (BEL).

When considering the case of the one-year VaR approach, the methodology introduced by Richards
et al. (2013) is used. This approach includes generating a random next year mortality data point
after estimating the model, and then using this data point as the newly obtained data for the next
year. Then, a refit is done with the new data set, giving us new model estimates and then the best
estimate is forecasted as of the following year. As a result, mortality will not only drop in the first
year, but will also be updated in subsequent years. The present value of the liabilities is then com-
puted for that specific simulation. Finally this whole process is repeated multiple times and the
99.5% quantile is taken as the 99.5% VaR. With this, the SCR is then calibrated according to the
definition that Börger (2010) provided. The terminal VaR approach is much simpler compared to
the chosen one-year VaR framework. It is the prediction interval of the best estimate. So, in other
words, multiple scenarios are simulated as of the current year and and let them develop over the
future time horizon up to the terminal year. These scenarios can be seen as actual developments
of future mortality. Then the present value of the liabilities are calculated for each simulation.
Finally, the 99.5% quantile is taken of the present value of the liabilities, which gives us the ter-
minal VaR. The SCR is then computed as the difference between the terminal VaR and the BEL.
After this is done for the Lee-Carter model, the Li-Lee model is considered for the forecasting
and simulations of future mortality rates. When simulating the uncertainty around the best esti-
mate, we will only take into account longevity trend risk, i.e. the uncertainties present in the trend.

When comparing the results, it is expected that the SCR of the multi-year VaR of both mod-
els will be greater than the SCR of both the standard formula and the one-year VaR of both
models, since both the standard formula and the one-year VaR are only meant to capture the risk
for one year. It is also interesting to see how the simple Lee-Carter model differs from the Li-Lee
model, which is more accurate to model Dutch mortality. It is also expected that the SCR of the
one-year VaR of both models are lower compared to that of the standard formula.

This thesis is structured as follows: Section 2.1 discusses literature on mortality modeling, with
focus on stochastic models and section 2.2 discusses literature models designed to model longevity
risk under solvency II. In section 3, the preliminaries are described, where some notations and
definitions are introduced. In chapter 4, mortality modeling is discussed, where in section 4.1
and in section 4.2, the Lee-Carter and the Li-Lee model is discussed, respectively. In chapter 5,
the main focus is longevity risk where in section 5.1, Solvency II is introduced together with the
specification on how to calculate the SCR. In section 5.2, the one-year VaR framework, terminal
VaR framework and the standard formula are explained and discussed. In section 5.3, the results
of the three shock methodologies are shown and investigated. And we give our conclusions and
summary in section 6.
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2 Literature review

For the calibration of the SCR for longevity risk using a VaR framework, i.e. either a one-year or
multi-year framework, stochastic modeling of mortality is required. Thus we first do a literature
review on different stochastic mortality models in the literature. After discussing several stochastic
models, we do a literature review on several models that are designed to model longevity risk under
Solvency II.

2.1 Mortality Modeling

When forecasting mortality rates into the future, three broad approaches can be used according
to Booth and Tickle (2008). The first one is the expectation approach, the second one is the
explanation approach and the third one is the extrapolation approach. In the case of the ex-
pectation approach, mortality forecasting is based on the judgement and opinion of experts. In
the explanation approach, on the other hand, mortality rates are forecasted either by means of a
cause of death model or an explanatory model. As for the extrapolation approach, it consists of
using historical regularities observed in age patterns as well as mortality trends over time for the
forecasting of mortality rates. It assumes that future trends are basically a continuation of the
historical trends. One thing to consider is that some mortality forecasting methods may contain
aspects of more than one approach. The extrapolation approach is considered more objective and
more likely to give accurate forecasts in the long-term compared to the other two approaches.

Most developments of mortality forecasting happened in the field of the extrapolation approach,
where standard statistical methods are applied. One of the most popular extrapolative models
out there is the Lee-Carter model, developed by Lee and Carter (1992). This dynamic mortality
model is a two-factor mortality model which takes age and period into account. It models the
mortality for a single population as follows: log µx,t = αx + βxκt + εx,t, where µx,t is the force of
mortality, the αx refers to the age pattern of mortality averaged over time, βx is the sensitivity to
κt, which in turn describes the change in mortality over time. As for εx,t, it is the error term, which
reflects the age-period effect that is not captured by the model. These parameters are estimated
using the singular value decomposition (SVD). When forecasting mortality rates, the age-specific
parameters are kept fixed, while extrapolating the time-varying parameter using standard time
series methods. There are a couple of advantages the Lee-Carter model has to offer according to
Booth and Tickle (2008): it is a simple model, i.e. it only has one time-varying parameter, and
gives reasonable forecast trends and allows for changing age pattern of mortality.

Ever since the Lee-Carter model had been published, it received a number of criticism and since
then, many extensions and variants of the Lee-Carter model has been developed. Quite a few
papers proposed alternatives to improve the fit of the model. For example, Brouhns et al. (2002)
assume that the number of deaths have a poisson distribution, since the number of deaths should
be an integer random variable. They later on determine the model parameters of the Lee-Carter
model, i.e. αx, βx and κt, by using conditional maximum likelihood estimation as opposed to
using the SVD for estimation. There is also Lee and Miller (2001), who made the adjustment to
use actual (observed) mortality rates in the jump-off year when forecasting future mortality rates
instead of fitted rates and in this way, jump-off bias is avoided. Booth et al. (2002) optimizes the
fit of the model by basing the forecast on the optimal fitting period, which in turn is determined
by a goodness of fit of the model. Other than improving the fit of the model, another adjustment
that has been proposed by Li et al. (2013) is the introduction of a subtle rotation in the projected
age pattern of mortality decline, i.e. βx, when life expectancy is expected to be high over a long
projection horizon. This is to deal with the much criticised Lee-Carter assumption that βx is fixed.

Another variant of the Lee-Carter model is the Cairns-Blake-Dowd (CBD) model introduced
by Cairns et al. (2006). This model includes two stochastic processes that represents the two
time indices of the model, where the first one affects mortality at all ages equally and the sec-
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ond one affects mortality at higher ages much more than lower ages. It models the logit of the
one-year mortality probabilities (logit transformation) as a linear function of age, i.e. logit qx,t =

k
(1)
t + k

(2)
t (x− x̄) + εx,t, where k

(1)
t , the intercept, and k

(2)
t , the slope, are the two aforementioned

stochastic processes, x̄ is the mean age of the age interval that is chosen and εx,t is the error term.
According to Pitacco et al. (2009), since the CBD model includes two time factors, it is able to
capture imperfect correlation in mortality rates at different ages from one year to another, unlike
the Lee-Carter model, which only includes one time factor. The Lee-Carter model has also been
extended such that in can include a cohort effect, making it a three factor model, with the goal of
improving the forecasting performance. Such a model is referred to as an age-period-cohort (APC)
model, which was first introduced by Renshaw and Haberman (2006). They are particularly de-

signed to fit higher ages. The mortality rate is modeled as follows: log(µx,t) = αx+β
(0)
x ii−x+β

(1)
x κt,

where β
(0)
x ii−x refers to the cohort effect. Cairns et al. (2009) also introduced cohorts effect in

the CBD model, i.e. logit qx,t = k
(1)
t + k

(2)
t (x − x̄) + γ

(3)
t−x + εx,t, where γ

(3)
t−x is the cohort effect.

They also introduce another model which includes a cohort effect and a quadratic term of the age
effect. Plat (2009) proposed a model, which combines some nice features of different models, i.e.
the Lee-Carter model, the Renshaw-Haberman and Cairns versions of the CBD model, with the
aim of discarding the disadvantages they have. This way the model captures the cohort effect and
it also becomes suitable for all age ranges.

Currently, the model that has been chosen by the The Royal Dutch Actuarial Association, Actu-
arieel Genootschap (2018), to forecast Dutch mortality rates is the Li-Lee model proposed by Li
and Lee (2005). This is a multi-population forecasting model. The purpose for the development
of the Li-Lee model is to avoid divergence in future mortality rates between populations that have
commonalities. This is done by first identifying the central tendencies within the group, which is
the joint trend process κt, also referred to as the common trend process, and then identifying the
group specific trend process κgt , which is the group’s deviation from the common trend process in
the short term. Enchev et al. (2017) reviews and compares four multi-population models, which
include two Li-Lee model extensions. There are many more literature out there on modeling and
forecasting mortality rates and also many researchers that made reviews of these different methods
and extensions, i.e. Booth and Tickle (2008), Cairns et al. (2009), Cairns et al. (2011), Shang et
al. (2011), Janssen (2018) and more.

2.2 Solvency II Framework: Longevity risk

Ever since the Solvency II directive has been published, it has been the topic of research with the
main focus on longevity risk. Within this framework, the SCR is defined as the amount of capital
the insurer must have as a reserve such that it covers 99.5% of situations which might arise over a
horizon of one year. The way it is calibrated is through a one-year 99.5% VaR framework. Richards
et al. (2013) proposed a new value-at-risk framework and also discussed two other approaches to
reserving longevity risk, namely the stressed trend approach and the mortality-shock method. The
stressed trend approach, also referred to as the run-off approach is a long-term stress projection
applied over the lifetime of, for example a pensioner. It is the confidence envelope for the central
projection over many years, where the central projection is derived from the maximum-likelihood
estimate. The mortality-shock method refers to the standard-formula approach where the current
and future projected mortality rates fall by 20%, which is specified in QIS5 (CEIOPS, 2010). The
VaR framework that Richards et al. (2013) proposed makes use of a stochastic model to simulate
mortality rates one year in the future. Then the simulated mortality rates are added as data,
which in turn is used to refit the model and see how the central projection is affected. This pro-
cess is repeated many times and the 99.5% quantile is taken of the liabilities. Jarner and Møller
(2015) also uses a similar VaR methodology for the Danish partial internal model for longevity
risk. First they model the national mortality rates using a stochastic model and then simulate the
mortality rates one year ahead. With these simulated national mortality rates, sector-specific and
company-specific one-year ahead mortality rates are calibrated. The stress is then determined by
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taking the 99.5% quantile of the liabilities calculated by the simulated mortality rates.

The stochastic models used in the aforementioned papers are categorised as so-called spot mod-
els, i.e. models that have instantaneous rates such as mortality rates as output. These type of
models requires simulation of sample paths for the empirical derivation of τpg,x,t. Most models in
the previous section fall under this category. Börger (2010) on the other used a different type of
stochastic model, i.e. so-called forward models, which they used from Bauer et al. (2008). These
type of models have the multi-year survival probabilities as output. And unlike spot models, for-
ward models specify directly a distribution for τpg,x,t. The main advantage that forward models
have is that they avoid nested simulations. The drawback is that it is more complex and more
difficult to interpret.

Plat (2011) proposed a new stochastic trend model as opposed to using the typical spot mod-
els, where the trend is fixed and which only model the realized mortality. This way, mortality
trend risk is modeled directly. The trend is defined by a reduction factor λx, which is age-specific.
This reduction factor is estimated by using historical mortality rates. After obtaining these es-
timates, they can be used as input for modeling mortality. In this case, they are plugged in a
3-factor model, which is based on the model introduced by Plat (2009). The resulting time series
estimates are then jointly modeled for both gender in a 6-factor time-series model. With this, sim-
ulations are done to obtain projected mortality rates for one year ahead. From each simulation,
the liabilities are calculated and then the one-year VaR is taken. Another approach that directly
models mortality trend risk is proposed by Börger et al. (2014). They include a stochastic trend
component in their model so that changes in the long-term trend can be modeled. Also they model
mortality rates unlike Plat (2011), who models reduction factors. The added stochastic trend pro-
cess can also be implemented in other stochastic mortality model and is not only applicable in a
one year setting but also in a run-off setting.

Other than using the VaR as a risk measure, one can consider analyzing the effects of other
risk measures as well. This is because the VaR is not sub-additive, i.e. it does not reward diver-
sification. Also, the VaR does not take into account the shape of the tail beyond the confidence
level, which means that it does not consider worst case scenarios. Boonen (2017) analyzed the
effects on several risk factors, one of them being longevity risk, of the total SCR if the Solvency
II SCR calibration is based on expected shortfall instead of VaR.
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3 Preliminaries

In this section, we briefly discuss some notations and definitions that play a role in the modeling
and forecasting of mortality trends.

3.1 Notations and Definitions

First, let us consider an individual aged x in calendar year t with gender g ∈ G={male,female}.
The changes in mortality will be analyzed as a function of both age and time for each gender.
Hence, we define the following,

• T (g)
x,t is the remaining lifetime of an individual aged x, gender g at the beginning of year t.

This means that the individuals will die in year t+ T
(g)
x,t with age x+ T

(g)
x,t .

• q(g)
x,t is the one-year death probability of an individual aged x, gender g, in year t. This

individual dies before becoming age x+ 1, i.e. q
(g)
x,t = P(T

(g)
x,t ≤ 1).

• p(g)
x,t is the one-year survival probability of an individual aged x, gender g, in year t, i.e.

p
(g)
x,t = P(T

(g)
x,t > 1). In other words, we have

p
(g)
x,t = 1− q(g)

x,t . (3.1)

• µ(g)
x,t is the force of mortality of an individual aged x in year t, gender g, formally defined as

µ
(g)
x,t = lim

∆→0

P (x < T
(g)
0,t−x ≤ x+ ∆|T0,t−x > x)

∆
= lim

∆→0

P (0 < T
(g)
x,t ≤ ∆|Tx,t > 0)

∆
. (3.2)

It is assumed that the age-specific forces of mortality are constant within bands of age and time.
To be more precise, given an integer age x and calendar year t, it holds that

µ
(g)
x+ξ,t+ν = µ

(g)
x,t for ξ ≥ 0 and ν < 1. (3.3)

Since we assume that equation (3.3) holds, we have

p
(g)
x,t = exp(−µ(g)

x,t), (3.4)

for interger age x and calendar year t.

Next, we introduce the notion of the exposure-to-risk. It refers to the total number of ’person-
years’ in a population over calendar year t. It can be seen as the average number of individuals
in the population over a calendar year adjusted to the amount of time they are alive in the popu-

lation. To be more precise, let τ
(g)
i be the the amount of time that individual i with gender g is

alive in [t, t+ 1) with age [x, x+ 1). Then the exposure to risk is

E
(g)
x,t =

n
(g)
xt∑
i=1

τ
(g)
i , (3.5)

where n
(g)
xt is the number of individuals aged x, gender g in year t. Next, let D

(g)
x,t denote the

number of deaths in a population during year t, i.e. [t, t+ 1), for person aged x at the beginning

of year t with gender g. Pitacco (2009) shows that the maximum likelihood estimator m̂
(g)
x,t for the

force of mortality µ
(g)
x,t is

µ̂
(g)
x,t =

D
(g)
x,t

E
(g)
x,t

= m̂
(g)
x,t . (3.6)
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The m̂
(g)
x,t ’s are also referred to as (unsmoothed) mortality rates.

Next, we give the formal definition following McNeil et al. (2005) of the value-at-risk (VaR),
which is a risk measure that is widely used in regulatory practice. For a given portfolio and given
a confidence level α ∈ (0, 1) the VaR of the portfolio at confidence α is given by the smallest
number x such that the probability that the loss X is greater than x is lower of equal to (1− α).
Thus, the VaR can be defined as:

V aRα(X) = min{x ∈ R |P (X > x) ≤ 1− α}, (3.7)

which is the α-quantile of the loss-distribution in probabilistic terms.

4 Mortality Modeling

In this thesis, two extrapolative stochastic models are considered to forecast future Dutch mortality
rates. The first one that is discussed is the Lee-Carter model introduced by Lee and Carter (1992),
which is discussed in section 4.1 and the second one is the Li-Lee model introduced by Li and Lee
(2005), which is discussed in section 4.2.

4.1 The Lee-Carter Model

As introduced in the literature review, according to Booth and Tickle (2008), the Lee-Carter model
is a two-factor stochastic model that is a function of age and period that uses historical data to
forecast future mortality rates. The Lee-Carter is very well-known and is used for its simplicity
and for the very fact that it performs quite well.

4.1.1 Data

The data of the Netherlands is taken from the Human Mortality Database (HMD). To model
Dutch mortality rates, the total death per year and total exposure per year is needed. This is
exactly what can be found on the HMD. For each gender g, age x and year t we can obtain the

total number of deaths, D
(g)
x,t , as well as the total number of exposures, E

(g)
x,t , in the Netherlands.

Since the data available on the HMD is up to year 2016, we obtain the data for 2017 and 2018 from
CBS (Statline). The data range for the Netherlands is selected such that it starts from 1970 up
until the most recent year of which CBS has the total number of deaths, which is currently 2018.
The year 1970 is chosen, such that it is aligned with the Projections Table AG2018 data range.
The reason why year 1970 is chosen, is because ever since then, a stable development is observed
in the mortality probabilities for both men and women of some West-European countries. Thus,
the number of years used as historical data in this time period is 48. The age range available in
the HMD start from age 0 up to 110+. However, the selected age range will be x ∈ {0, 1, . . . , 90}
so that it can match the chosen age set in the Projections Table AG2018. For older ages, the
Kannistö extrapolation is applied. This will be discussed later on.

4.1.2 Model and Calibration Common Parameters

The Lee-Carter model specifies the logarithm of mortality rates for the Netherlands as:

log µ
(g)NL
x,t = α(g)NL

x + β(g)NL
x κ

(g)NL
t , (4.1)

where µNLg,x,t denotes the force of mortality of the Netherlands for a person with age x ∈ X =
{x1 = 0, x2 = 1, . . . , xm = 90}, for gender g ∈ {males, females} in year t ∈ T = {t1 = 1970, t2 =
1971, . . . , tn = 2018}. Note that the force of mortality is modeled separately for each gender. To

simplify the notation, we will exclude the subscript ”NL” on the parameters. α
(g)
x and β

(g)
x are

age specific constants and κ
(g)
t the time varying index. The constant α

(g)
x is the base shape across
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age of the mortality profile. β
(g)
x is the sensitivity of age x to κ

(g)
t , so in other words it tells us

which rate decreases slowly and which one decreases rapidly when there is a change in κ
(g)
t . Now

to estimate these parameters, we need to impose additional constraints. If model (4.1) does not
have constraints on the parameters, then the model is not identified. The following constraints
ensure that there is identification:

tn∑
t=t1

κ
(g)
t = 0 and

xm∑
x=x1

β(g)
x = 1. (4.2)

The maximum likelihood estimators of the Dutch force of mortality µ̂
(g)
x,t , i.e. the Dutch mortality

rates, is obtained as in equation (3.6) using the observed number of deaths and exposure at age
x, for gender g during year t from the data set. Then the Dutch mortality rates are

µ̂
(g)
x,t =

D
(g)
x,t

E
(g)
x,t

. (4.3)

The model then becomes:

log µ̂
(g)
x,t = α(g)

x + β(g)
x κ

(g)
t + ε

(g)
x,t , (4.4)

where ε
(g)
x,t denotes the error terms which refer to the age-specific historical influences which were

not captured by the model. The error terms are assumed to be independent over x, t and g with
mean zero and homoskedastic variance σ2

ε,g. The common parameters are then calibrated using
least squares estimation. This is done fitting equation (4.4) to the observed force of mortality by
using the singular value decomposition. After obtaining the estimates of the common parameters

α̂
(g)
x , β̂

(g)
x and κ̂

(g)
t , Lee and Carter (1992) proposed that the κ̂

(g)
t should be adjusted such that in

each year t, the observed number of deaths are reproduced.

As mentioned before, in the classical Lee-Carter model, the error terms are assumed to be ho-
moskedastic, i.e. the errors have the same variance over all ages x and time t. This is due to the
assumption that the errors are normally distributed, which in turn lead to less precise estimates
of the mortality rates for very old ages, since it ignores the fact that the mortality rates are much
more volatile at older ages. The high variability is caused by the lack of observations of people
being alive. To deal with this problem, Brouhns et al.(2002) assumed that the number of deaths,

D
(g)
x,t is assumed to be modeled from a Poisson distribution. This is also plausible, since the number

of deaths should be an integer random variable. Hence, we get:

Dg,x,t ∼ Poisson(λg,x,t) with λg,x,t = Eg,x,tµg,x,t (4.5)

With µg,x,t = exp(αg,x + βg,xκg,t). Then the following log-likelihood function, which is based on
the Poisson distribution assumption, is maximized:

max
{αg,x,βg,x,κg,t}

L(α, β, κ) =

xm∑
x=x1

tn∑
t=t1

Dg,x,tlog(λg,x,t)− λg,x,t − log(Dg,x,t!), (4.6)

which is also subject to the same constraints as the original Lee-Carter model, i.e. equation (4.2).
To solve this maximization problem, the Newton-Raphson algorithm is implemented. With this
algorithm the estimates of the common parameters are obtained recursively. To get the parameter
estimates, the system that needs to be solved is by taking the partial derivative of the total squared
deviance and setting it to zero. Following the notation of Pitacco et al. (2009) and initializing the

parameter estimates α̂
(0)
g,x = 0, β̂

(0)
g,x = 1 and κ̂

(0)
g,t = 0, where random values can also be used for
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initialization, we get:

α̂(k+1)
g,x = α̂(k)

g,x −
∑tn
t=t1

(Dg,x,t − Eg,x,t exp(α̂
(k)
g,x + β̂

(k)
g,xκ̂

(k)
g,t ))

−
∑tn
t=t1

Eg,x,t exp(α̂
(k)
g,x + β̂

(k)
g,xκ̂

(k)
g,t )

(4.7)

κ̂
(k+1)
g,t = κ̂

(k)
g,t −

∑xm

x=x1
(Dg,x,t − Eg,x,t exp(α̂

(k+1)
g,x + β̂

(k)
g,xκ̂

(k)
g,t ))β̂

(k)
g,x

−
∑xm

x=x1
Eg,x,t exp(α̂

(k+1)
g,x + β̂

(k)
g,xκ̂

(k)
g,t )(β̂

(k)
g,x)2

(4.8)

β̂(k+1)
g,x = β̂(k)

g,x −
∑tn
t=t1

(Dg,x,t − Eg,x,t exp(α̂
(k+1)
g,x + β̂

(k)
g,xκ̂

(k+1)
g,t ))κ̂

(k)
g,t

−
∑tn
t=t1

Eg,x,t exp(α̂
(k+1)
g,x + β̂

(k)
g,xκ̂

(k+1)
g,t )(κ̂

(k)
g,t )

2
(4.9)

Here k is the number of iterations. To stop this algorithm, a specific criterion need to be met.
In this case, we continue to iterate if the improvement in log-likelihood exceeds 0.0001. So the
moment that the improvement is less than or equal to 0.0001, then the algorithm stops. For
this thesis, the Lee-Carter alteration of Brouhns et al. (2002) is chosen for the calibration of the
common parameters. When modeling the time series κg,t, Lee and Carter (1992) use a random
walk with drift to generate mortality projections. This will be discussed in the following section.

The common parameter estimates for the Lee-Carter model are shown in figures 1 to 3. The
model is applied separately to Dutch males and females. The chosen age range is again from 0 to
90 and in the years 1970 to 2018. The estimates were calibrated by solving the optimization prob-
lem of the Poisson likelihood in equation (4.6) by utilizing the aforementioned Newton-Raphson
algorithm. First, when observing the pattern of the historical average of the logarithm of the
mortality rates, αx, it can be seen that for both male and female that mortality during the first
year of a new born, i.e. x = 0, is relatively high. It then decreases very fast for children up
until age 10. Afterwards the logarithm of the mortality rates has almost a linearly increase up to
age 90. For the ages in the early twenties, a hump can be seen for both male and female. This
is also called the accident hump, where deaths are mainly caused by accidents. Males are more
likely to live more dangerously compared to females at those ages, hence why the hump is much
higher. Next, in figure 3, the development of the historical mortality trend can be observed for
male and female respectively. From this it can be seen that both mortality trends are decreasing.
Between year 1975 and year 2000, the estimated mortality trend for females has a faster decline
compared to the estimated trend for males. This is over all ages. However, after year 2000, the
estimated trend for males starts to decline faster than that of females. Over the whole horizon,
it can be concluded that the estimated trend for females looks more like a straight line compared
to the estimated trend for males. As we established that the mortality trends are decreasing, the
sensitivity parameter βx indicate how each age group reacts to the decreasing trend. With a de-
creasing trend, a higher βx indicates a stronger or faster decrease for people in age group x. If βx
is low, this indicates the opposite, i.e. slower decrease. The estimate of the sensitivity parameter
for both male and female can be seen in figure 2. This leads to the conclusion that mortality for
older males increase at a slower rate than for younger males and for the oldest ages there are no
improvement at all. For the females on the other hand, the mortality for younger females increase
at a faster rate, but also around age 75 there is a faster increase that cannot be ignored.
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Figure 1: The Lee-Carter estimates of αx for both male (blue) and female
(red) of the Dutch population from 1970 up to and including 2018.

Figure 2: The Lee-Carter estimates of βx for both male (blue) and female (red)
of the Dutch population from 1970 up to and including 2018.
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Figure 3: The Lee-Carter estimates of κt for both male (blue) and female (red)
of the Dutch population from 1970 up to and including 2018.

After obtaining the common parameters estimates, the next step is to forecast mortality rates
into the future.

4.1.3 Forecasting Mortality

When projecting mortality rates into the future, the time-varying variable is the one that needs
to be projected into the future. As briefly mentioned in the previous section, the trend processes
κg,t1 , . . . , κg,tn are modeled as a random walk with drift (RWD), which is defined as

κg,t = κg,t−1 + θg + eg,t, (4.10)

with

eg,t =

(
eM,t

eF,t

)
∼ N

((
0
0

)
,

(
σ2
M,e rσM,eσF,e

rσM,eσF,e σ2
F,e

))
, (4.11)

where t = t2, ..., tn and θg denotes the drift term. The gender specific drift term refers to the annual
average change in κg,t. The trend processes for both male and female are jointly estimated, which
in turn generates errors which are normally distributed with mean zero and covariance matrix,
denoted by C, i.e.

C =

(
σ2
M,e rσM,eσF,e

rσM,eσF,e σ2
F,e,

)
where σ2

M,e refers to the variance of the errors of males and σ2
F,e refers to the variance of the errors

of females. Then rσM,eσF,e is the product of the standard deviations of male and female with the
correlation coefficient r. In this way, correlation between the errors are captured, which in turn
captures the correlation between the genders. We assume different trend processes for the genders,
because there are still differences between male and female, i.e. men started smoking earlier than
women or take gender specific diseases into account. To jointly estimate the trend processes, the
seemingly unrelated regression (SUR) is used, which in turn generates the estimates of the gender

specific drift term, θ̂g and covariance matrix, Ĉ. The RWD is also known as ARIMA(0,1,0), which
belongs to the autoregressive integrated moving average (ARIMA) class of time series modeling.
These type of models make use of the history and past shocks to explain the time series.
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After fitting the time series model, we can use the obtained estimates to project future mortality
rates. From equation (4.10), we estimate the future trend processes as follows:

κ̂g,tn+k = κg,tn + kθ̂g +

k∑
j=1

eg,k, (4.12)

where k is the number of years projected in the future. The point forecast of the trend parameter,
which will also be referred to as the best estimate (BE) of the future trend parameters is the
expectation of the future trend conditional on the past trends, i.e.:

κ̂BEg,tn+k = E[κ̂g,tn+k|κg,t1 , κg,t2 , . . . , κg,tn ] = κg,tn + kθ̂g. (4.13)

Hence, the best estimate of the future trends per gender g has intercept κg,tn and slope θg on
projection horizon k.

In reality, the actual forecast is subject to both stochastic and parameter uncertainty. The stochas-
tic uncertainty, also known as volatility risk, refers to the ARIMA standard error, i.e. eg,t. On
the other hand, the parameter uncertainty, also known as parameter risk, refers to the ARIMA
parameters themselves, i.e. the drift estimate θ̂g. To construct an appropriate prediction interval,
both uncertainties need to be taken into account.

First, we consider stochastic uncertainty only and thus fixing the drift term to θ̂g. To construct
a prediction interval, M trajectories are simulated of the stochastic error terms, which are drawn
from the normal distribution in equation (5.38). And for each of these error simulations, the future
trend process is projected over time horizon k, i.e.:

κ̂
(m)
g,tn+k = κg,tn + kθ̂g +

k∑
j=1

e
(m)
g,j (4.14)

After plugging the simulated errors in, we get M simulations of future trends. For the prediction
interval, the 5%-quantile and the 95%-quantile is taken from the simulations. In figure 4, the
best estimate of the trend process is shown for both male and female. For the prediction inter-
val, M = 1000 simulations were generated and the projection horizon is k = 120 years in the future.

Next, we will consider only taking parameter uncertainty into account. This is done by set-
ting the errors to zero, i.e. εg,tn+k = 0, and the drift is assumed to be normally distributed with
the drift estimate obtained from the SUR regression as the mean, and the standard error of the
estimate as the variance, i.e.

θg ∼ N
(
θ̂g, se(θ̂g)

)
. (4.15)

By drawing the drift terms M times from this distribution, we generate future possible scenarios:

κ̂
(m)
g,tn+k = κg,tn + kθ(m)

g (4.16)
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Figure 4: On the left: Forecasted best estimate male trend with prediction interval. On the right:
Forecasted best estimate female trend with prediction interval. The number of simulations used
is M = 1000. The prediction interval consists of taking the 5%-quantile and 95%-quantile of the
simulations. The projection horizon is k = 120

By taking the 5%-quantile and 95%-quantile, we can again construct a prediction interval
including only parameter uncertainty. In figure 5 the best estimate of the trend for both the
Dutch male population and female population is shown, together with the prediction interval
consisting only of parameter uncertainty.

Figure 5: On the left: Forecasted best estimate male trend with prediction interval containing
only parameter risk. On the right: Forecasted best estimate female trend with prediction interval
containing only parameter risk. The number of simulations used is M = 5000. The prediction
interval consists of taking the 5%-quantile and 95%-quantile of the simulations. The projection
horizon is k = 120.

Now that both stochastic uncertainty and parameter uncertainty have been introduced, com-
bining them both leads to:

κ̂
(m)
g,tn+k = κg,tn + kθ(m)

g +

k∑
j=1

e
(m)
g,j (4.17)

In figure 5, it can be observed that in the long run, parameter risk is the main cause of uncertainty,
while in the short run, volatility risk is the main cause. In figure 6, the best estimate of the trend
for both the Dutch male population and female population is shown, together with the prediction
interval consisting of both stochastic and parameter uncertainty. For the prediction interval, the
5%-quantile and 95%-quantile of the simulations are taken.
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Figure 6: On the left: Forecasted best estimate male trend with prediction interval containing
both volatility and parameter risk. On the right: Forecasted best estimate female trend with
prediction interval containing both stochastic and parameter risk. The number of simulations
used is M = 5000. The prediction interval consists of taking the 5%-quantile and 95%-quantile of
the simulations. The projection horizon is k = 120

Now that we have obtained the best estimate trend process κ̂BEg,tn+k for the Dutch population, it
can be plugged in equation (4.1) to obtain the best estimate of the future log mortality rates, i.e.:

log µ̂BEg,x,tn+k = α̂g,x + β̂g,xκ̂
BE
g,tn+k, (4.18)

Next we apply Kannisto’s (1992) method to log µ̂BEg,x,tn+k. When estimating the mortality prob-

abilities of older individuals, i.e. individuals aged x in age group X̃ = {91, ..., 120}, fluctuations
may arise in the estimations. This is due to the lack of observations at high ages or if there aren’t
any observations available for specific high ages. In the case of the data obtained from HMD, there
is data available for ages up until age x = 110. To fill the table or ”close” the mortality table, an
extrapolation method is used to determine the mortality probabilities of high ages, namely Kan-
nistö’s closing method. This method is also used in the Royal Dutch Actuarial Association’s(AG)
(2018), ”Projection table AG2018”.

The Kannistö’s closing method is used for the aforementioned age group x ∈ X̃ = {91, ..., 120}.
This is done by using a logistic regression obtained from the table for ages y ∈ XKan = {80, 81, ..., 90},
which is similar to AG2018. Then counting the number of years underlying the regression yk, we
get n = 11. Then taking the mean of the ages and then the squared sum of deviations, we get
ȳ = 1

n

∑n
k=1 yk and SSD =

∑n
k=1(yk − ȳ)2 respectively. The extrapolation of the mortality rates

according to Kannistö is thus as follows:

µx,t = L

(
n∑
k=1

wk(x)L−1(µyk,t)

)
, (4.19)

for x ∈ X̃ and for evert t. wk(x) are the regression weigths and the functions L(x) and its inverse
L−1(x) are defined as

L(x) =
1

1 + e−x
, L−1(x) = −log

(
1

x
− 1

)
. (4.20)

As for the regression weights, they are defined as

wk(x) =
1

n
+

(yk − ȳ)(x− ȳ)

SSD
(4.21)
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4.2 The Li-Lee Model

Unlike the Lee-Carter model, which is a single-population model, the Li and Lee model is a
multi-population model. It is a Lee-Carter extension that allows for the use of multiple countries.
Currently, the Royal Dutch Actuarial Association (2018) is using it for the forecasting of the
Dutch mortality rates, where 13 other countries, i.e. West-European countries, are included for
fitting the model. This is because they observed a decrease in the differences in mortality proba-
bilities between the selected European countries and they also have a similar upward trend in life
expectancy. Because of these similarities, the choice was made to model Dutch mortality based
on the development of these countries. By including these countries, the mortality forecast won’t
have to rely on Dutch data alone. This is a major advantage, since in the past there may have
been specific fluctuations that occurred in Dutch data that is not useful for future developments.
By including the selected countries, it greatly increases the amount of observations, which in turn
leads to a more robust model and more stable projections.

4.2.1 Data

As Li and Lee (2005) mentioned, the population, i.e. in this case countries, should have similar
socioeconomic conditions and close connection which are also expected to continue in the future.
The Royal Dutch Actuarial Association (2018) made the choice based on Gross Domestic Product
(GDP). The reasoning for this is because there is a positive correlation prosperity and aging.
So European countries with similar GDP as the Netherlands. Since the Netherlands has an
above-average GDP, similar countries with above-average GDP were chosen. These countries are
Belgium, Denmark, Germany, Finland, France, Ireland, Iceland, Luxembourg, Norway, Austria,
United Kingdom, Sweden and Switzerland. The data of the Netherlands is also included. The
mortality data of these countries can all be found on HMD. The data range is from 1970 to 2016
for the European countries. This is because 2016 is the most recent data available on the HMD
website for all the selected countries. When referring to European data, we mean the observed
total number of deaths, DEU

g,x,t and exposures EEUg,x,t of all these European countries.

4.2.2 Model and Calibration Model Parameters

The Li-Lee model specifies the logarithm of the Dutch mortality rates as follows:

log µNLx,g,t = log µEUx,g,t + log µ̃NLx,g,t, (4.22)

with

log µEUx,g,t = αEUx,g + βEUx,g κ
EU
g,t (4.23)

log µ̃NLx,g,t = αNLx,g + βNLx,g κ
NL
g,t , (4.24)

where µNLx,g,t denotes the Dutch mortality rate for an individual aged x ∈ {0, 1, . . . , 90} in calen-
der year t ∈ {1970, . . . , 2016} and gender g ∈ {male, female}. The European mortality rate is
denoted as µEUx,g,t and µ̃NLx,g,t denotes the Dutch deviation relative to the European mortality rate.

βEUx,g κ
EU
g,t is the common factor that models the long term trend and age specific movement that all

the the selected European countries share. βNLx,g κ
NL
g,t describes the short term deviations from the

common trend, which is specific to the Netherlands. The κEUg,t describes the change of mortality

over time and βEUx,g is the sensitivity to κEUg,t for all the European countries. The βNLx,g describes
the differences between the patterns of change by age in mortality for the Dutch population and
for the selected European countries. Originally, Li and Lee (2005) use a two step approach for the
calibration of the model parameters by using singular value decomposition. However, the Poisson
maximum likelihood method is used for the parameter calibration in this thesis.

The Poisson maximum likelihood method is also used in the Projection table AG2018 to calibrate
the model parameters. The assumption that the number of deaths of the European population,
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DEU
g,x,t, is modeled as a Poisson distribution. First the maximization of the likelihood function is

done for European data, so that we can determine the estimates of αEUg,x , β
EU
g,x and κEUg,t :

max
{αEU

g,x ,β
EU
g,x ,κ

EU
g,t }

xm∏
x=x1

tn∏
t=t1

(EEUg,x,tµ
EU
g,x,t)

DEU
g,x,t exp(−EEUg,x,tµEUg,x,t)
DEU
g,x,t!

. (4.25)

To ensure a unique solution, we set the constraints:

tn∑
t=t1

κEUg,t = 0 and

xm∑
x=x1

βEUg,x = 1. (4.26)

The same method that was introduced in section 4.1.2, namely the Newton-Raphson algorithm,
is implemented to obtain the estimates. Since the data of Europe is up to and including 2016 for
the chosen countries, a linear extrapolation method is used to compute κEUg,2017 and κEUg,2018, i.e.

κEUg,2017 = κEUg,2016 +
κEUg,2016 − κEUg,1970

2016− 1970
and κEUg,2018 = κEUg,2017 +

κEUg,2017 − κEUg,1970

2017− 1970
(4.27)

So after obtaining κEUg,2017, we use it to calculate κEUg,2018. After obtaining the estimates of the EU
data, the next step is to model for the Netherlands. The number of deaths in the Netherlands has
the following Poisson distribution:

DNL
g,x,t|µ̃NLg,x,t, µEUg,x,t ∼ Poisson

(
ENLg,x,tµ

EU
g,x,tµ̃

NL
g,x,t

)
(4.28)

Next, the maximum log-likelihood method is applied to the Dutch data:

max
{αNL

g,x ,β
NL
g,x ,κ

NL
g,t }

xm∏
x=x1

tn∏
t=t1

(ENLg,x,tµ
NL
g,x,t)

DNL
g,x,t exp(−ENLg,x,tµNLg,x,t)
DNL
g,x,t!

, (4.29)

where µNLg,x,t = µEUg,x,t · µ̃NLg,x,t = µEUg,x,t · exp(αNLg,x + βNLx,g κ
NL
g,t ). Again we set the constraints∑tn

t=t1
κNLg,t = 0 and

∑xm

x=x1
βNLg,x = 1 and we use the Newton-Raphson algorithm for the esti-

mation of the parameters.

In figure 7, the Li-Lee estimates of αNLg,x and αEUg,x are shown. In the case of αEUg,x , which has
a similar shape to the previous Lee-Carter estimate, the interpretation is the same as well as in
the case of the Lee-Carter model. An example of this is the high mortality for new borns or the
accident hump that occurs for individuals in their early twenties. This is also the case with the
βEUg,x estimate as shown in figure 8, i.e. it has the same shape as with the Lee-Carter estimates.

However, the estimates of αNLg,x and βNLg,x represents the deviation from the estimates of the Euro-
pean countries and the Dutch population, hence it has a different interpretation. In the case of
the estimate of αNLg,x , in the early ages, it fluctuates around zero. Then for the most of the ages it
is below zero, so the general pattern of mortality in the Netherlands lie for the most part below
that of the European countries. For the older ages, the difference tends to zero, which means
the mortality pattern for the older ages in the Netherlands are similar to the selected European
countries. As for the trend process κNLg,t , which can be seen in figure 9, tends to not be equal to
zero, which is especially clear for females. This means that there is definitely deviation from the
European trend.
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Figure 7: On the left: The Li-Lee estimates of αNLx for both male (blue) and female (red) of the
Dutch population from 1970 up to and including 2018. On the right: he Li-Lee estimates of αEUx
for both male (blue) and female (red) of the European countries from 1970 up to and including
2018.

Figure 8: On the left: The Li-Lee estimates of βNLx for both male (blue) and female (red) of the
Dutch population from 1970 up to and including 2018. On the right: he Li-Lee estimates of βEUx
for both male (blue) and female (red) of the European countries from 1970 up to and including
2018.

Figure 9: On the left: The Li-Lee estimates of κNLx for both male (blue) and female (red) of the
Dutch population from 1970 up to and including 2018. On the right: The Li-Lee estimates of κEUx
for both male (blue) and female (red) of the European countries from 1970 up to and including
2018.

4.2.3 Forecasting Mortality

As mentioned before, βEUx,g κ
EU
g,t is the common long term trend that all countries share. This means

that the country specific trend, i.e. Dutch trend, should converge to this common trend in the long
run. Li and Lee (2005) chose that the random walk with drift should be used for the forecasting
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of the whole group, i.e. all of the selected EU countries, since it is known for its simplicity and
straightforwardness when interpreting. Hence we have the following for the European trend:

κEUg,t = κEUg,t−1 + θg + εg,t, (4.30)

where θg is the drift and εg,t the error term.

As for κNLg,t , according to Li and Lee (2005), it should converge to some constant level over time.
This way, this approach can be successful. If it doesn’t converge, and thus the differences remain
in the long run, it will lead to divergence in the forecasts. Now for this approach to be successful,
the random walk with drift cannot be assumed for κNLg,t , since it will generate a trending long-term

mean. To get it to tend to a constant, the κNLg,t are assumed to follow a first-order autoregressive
AR(1) model without the constant term:

κNLg,t = ρgκ
NL
g,t−1 + δg,t, (4.31)

where ρg is a coefficient and δg,t refers to the error term.

Both time series process, i.e. for EU and NL, are jointly estimated for both genders using
the SUR regression, which in turn generates the correlated error terms as follows:

εM,t

εF,t
δM,t

δF,t

 ∼ N



0
0
0
0

 , C̃

 , (4.32)

where C̃ is the covariance matrix. The error terms (εM,t, εF,t, δM,t, δF,t) are assumed to be inde-
pendent and identically distributed following the multi dimensional distribution given in equation
(4.32). When simulating the trend processes in the future, error terms are drawn from the covari-
ance matrix C̃. The future trend process for the European countries is estimated in the same way
as equation (4.12), i.e.

κ̂EUg,tn+k = κEUg,tn + kθ̂g +

k∑
j=1

εg,k. (4.33)

The future trend process for the Dutch deviation on the other hand, is estimated using:

κNLg,tn+k = ρkgκ
NL
g,tn +

k∑
j=1

δg,k, (4.34)

To obtain for the point forecast for the trend parameters, i.e. the best estimate of the future
trend processes, on the horizon k, we again take the conditional expectation of the estimates of
the future trend processes:

κ̂EU,BEg,tn+k = E[κ̂EUg,tn+k|κEUg,t1 , κ
EU
g,t2 , . . . , κ

EU
g,tn ] = κEUg,tn + kθ̂g, (4.35)

κ̂NL,BEg,tn+k = E[κ̂NLg,tn+k|κNLg,t1 , κ
NL
g,t2 , . . . , κ

NL
g,tn ] = ρ̂kgκ

NL
g,tn . (4.36)

Next, the prediction interval for both trend processes is constructed. Again, it is constructed in
a way to include both stochastic uncertainty and parameter uncertainty. For the European trend
process, it is similar to equation (4.17), i.e.

κ̂
EU(m)
g,tn+k = κEUg,tn + kθ(m)

g +

k∑
j=1

ε
(m)
g,j , (4.37)

where the drift is assumed to have a normal distribution with the drift estimate as the mean and
standard error of the drift estimate as the volatility, i.e. θg ∼ N

(
θ̂g, se(θ̂g)

)
and m ∈ {1, . . . ,M},
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where M is the number of simulations. As for the prediction interval for the Dutch deviation, we
have:

κ̂
NL(m)
g,tn+k = ρkg,(m)κ

NL
g,tn +

k∑
j=1

δ
(m)
g,j , (4.38)

where the coefficient ρg is assumed to have a normal distribution with the coefficient estimate
as mean and the standard error of the estimate of the coefficient, which is also obtained in the
SUR regression, as the volatility. In other words, we have ρg ∼ N (ρ̂g, se(ρ̂g)). One problem that
occurs when simulating parameter uncertainty this way is some of the simulated coefficients will
be larger or equal to one, i.e. ρ ≥ 1, which in turn leads to divergence. To avoid divergence, every
simulated coefficient that is larger or equal to one will be changed to the coefficient estimate ρ̂g.
In figure 10, the best estimate together with a 95% prediction interval is shown for both κ̂NL and
κ̂EU . The prediction interval includes both stochastic errors and parameter uncertainty.

Figure 10: On the left: The Li-Lee simulations of κNLx for the male population from 2018 up to
and including 2138, i.e. N=120. The best estimate with a 95% prediction interval is shown. On
the right: The Li-Lee simulations of κEUx for the European male population. The best estimate
and a 95% prediction interval can be seen. The number of simulations used is M = 1000. The
prediction interval consists of parameter uncertainty and stochastic errors.

Now, the next step is to obtain the best estimate future Dutch log mortality rates. This is done
as follows:

log µ̂EU,BEx,g,tn+k = α̂EUx,g + β̂EUx,g κ̂
EU,BE
g,tn+k (4.39)

log ˆ̃µNL,BEx,g,tn+k = α̂NLx,g + β̂NLx,g κ̂
NL,BE
g,tn+k , (4.40)

which ultimately gives us

log µ̂NL,BEx,g,tn+k = log µ̂EU,BEx,g,tn+k + log ˆ̃µNL,BEx,g,tn+k. (4.41)

The Kannistö’s closing method is also applied in this case to log µ̂NL,BEx,g,tn+k.
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5 Longevity Risk

In the previous chapter, both the Lee-Carter model and the Li-Lee model had been introduced.
Future mortality rates can be simulated by both models, and we have also shown the uncer-
tainty that dwells around the best estimate. This uncertainty is referred to as longevity trend
risk. Longevity risk in itself refers the uncertainty in mortality projections which is caused by
long term deviations from the deterministic mortality projection. These deviations can be due to
changes in the level, trend or volatility in mortality rates. As was introduced previously, longevity
risk can be distinguished into micro-longevity risk and macro-longevity risk. Micro-longevity risk
is the idiosyncratic risk that can be fully diversified by increasing the number of participants
in a pension fund. Macro-longevity risk is the non-diversifiable systematic risk. According to
Broeders et al. (2018) there are three sources of macro-longevity risk. These consists of stochastic
variation, which is the random variation in aggregate observed number of deaths, parameter risk,
which refers to the uncertainty around the true value of the model parameters, and lastly, model
risk, which refers to the uncertainty that the chosen stochastic model is actually correct. On the
other hand, Richards et al. (2013) considers several components more of longevity risk, which are
also non-diversifiable, i.e. basis risk and trend risk. Basis risk arises because models are usually
calibrated to population data and not the data of the portfolio that is considered. So, there is
the risk that the mortality trend of the participants in the pension fund is different from that of
the population used for the model calibration. Trend risk arises due to the fact that the trend
estimate that we would have for, say next year, could differ from the current estimated trend.
Longevity trend risk will be the main focus of the analysis done in this chapter.

Now that the simulated mortality rates have been acquired from the previous chapter, we can
compute the amount of capital needed for insurers to cover this risk. In section 5.1, the Solvency
II framework will be discussed and how the solvency capital requirement has to be computed
under Solvency II. In section 5.2, the three shock methodologies will be discussed and compared.
And lastly, the results of the three shock methodologies are discussed in section 5.3.

5.1 Solvency II

Solvency II is a regulatory framework for insurance companies in Europe. It consists of three
pillars that need to be satisfied. The first pillar covers capital requirements, the second covers
corporate governance and the third one covers disclosure and transparency. For the calculation
of capital requirements, there are two levels at which capital is measured: The Minimum Capi-
tal Requirements (MCR) and the Solvency Capital Requirements (SCR). The SCR is the target
capital (in excess of their total capital) which an insurance company should have to cover risk.
It is used to determine if a company has enough capital to cover all losses over the course of one
year with probability 99.5%. The MCR on the other hand represents the threshold below which
a national regulatory agency would have to intervene.

It is preferable for insurance companies to implement internal models for their risk assessment,
since it values risks that are company specific. So this leads to better accuracy in their risk
assessment. However, as mentioned before, it is quite costly if an insurance company chooses
to implement an internal model. For this reason, the European Commission with support of
the Committee of Insurance and Occupational Pension Supervisors (CEIOPS) has allowed an-
other way for the approximation of the capital requirements, namely the standard formula. The
standard formula is a scenario based standard model, where the overall risk split into several cat-
egories or modules. These consist of are market risk, credit risk, non-life underwriting risk, life
underwriting risk and operational risk. For each of these risks, the SCR needs to be computed
individually. Then, the SCRs are aggregated. Mostly small to medium sized companies make
use of the standard formula. Some larger companies also make use of the standard formula for a
couple of the modules and thus implementing a partial internal model. Longevity risk falls under
life underwriting risk. For each of the modules, it is required that an insurance company is able
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to cover their liabilities with a certainty of 99.5% over the course of one year. For longevity risk,
the SCR is computed as the change in liabilities by assuming a shock that permanently reduces
the mortality rates by 20%. In CEIOPS(2008), it has been argued by QIS4 participants who have
not incorporated the standard formula that the reason they chose to do so is because the way the
longevity stress is calculated with the standard formula failed to appropriately reflect the actual
longevity risk. To be more specific, the standard formula does not allow for the risk of increases in
the future mortality developments, i.e. longevity trend risk. This means that if a company chooses
to implement the standard formula, it could lead to unnecessarily high capitalization of insurance
companies if the current longevity shock overstates longevity risk. If the opposite happens, i.e. in
case of underestimation of longevity risk, it could lead to a higher default probability than 0.5%.
Since the standard formula is structured under solvency II to cover more than just longevity risk,
it is expected to produce higher capital requirement. In the next section, the standard formula
will be compared to two stochastic models using V aR frameworks as possible internal models.
First, we will provide the SCR definition following Börger (2010).

First, let ACt be the company’s available capital at the end of year t, which is the difference
between the market value of the company’s assets, At, and the market value of the company’s
liabilities, Lt, at time t, i.e.

ACt = At − Lt (5.1)

This amount of capital could be used to cover future losses. Unlike the market value of the assets
which is easily determined, the market value of the liabilities is much more complex to obtain.
This is due to the fact that there is no liquid market for liabilities and also due to options and
guarantees that are in the insurance contracts. Solvency II proposes to estimate the value of
liabilities by the so-called Technical Provisions, which is composed of the Best Estimate Liabilities
(BEL) and a Risk Margin (RM). At the end of year t, we have:

Lt = BELt +RMt. (5.2)

The (BEL) is the expected present value of the liabilities of the portfolio conditional on all survival
rates up to time t and the value of these liabilities depend on stochastic future payments i.e.

BELt =
∑
s≥1

E[L̃t+s|Ft] · P (s)
t , (5.3)

where L̃t+s is the liability payment at time t + s, P
(s)
t denotes the discount factor for payments

at time t+ s discounted to time t and Ft denotes the information set which contains the survival
rates up to time t, i.e. Ft = {px+s,t+s| ∀s}.

The risk margin needs to be added to the best estimate since it represents the non-hedgeable
risks which the insurance company bears. These are risks that can not be fully hedged with in-
struments traded in an active market. To value these non-hedgeable risks, Solvency II prescribes
that the risk margin should be calculated using the cost of capital approach. More specifically
the capital base in Solvency II is the Solvency Capital Requirement (SCR) regarding the non-
hedgeable risks. The cost of capital rate (CoC), which is an additional rate above the risk-free
interest rate, reflects the return which an investor should receive if he were to purchase the liabil-
ities over. The cost of capital rate is set according to the Solvency II standard model calibration,
which is a fixed rate of 6%. The risk margin (RM) is then calculated as follows:

RMt =
∑
s≥1

CoC ∗ SCRt+s
(1 + rft+s)

t+s
, (5.4)

where CoC is the cost of capital rate, rft+s is the risk-free rate at time t with maturity t+ s and
SCRt is the SCR at time t. As was introduced before, the SCR is the 99.5% VaR of the available
capital over a one year time span. So, under Solvency II a insurance company is considered solvent
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if at time t = 1 the present value of the available capital is positive with a probability of at least
99.5 %. In other words, the smallest amount of x for which the following condition holds:

P(AC1 > 0|AC0 = x) ≥ 99.5%, (5.5)

where AC0 is the available capital at time t = 0 and AC1 is the available capital after one year, i.e.
at time t = 1. However, in practice Bauer et al.(2010) shows that a simpler but roughly equivalent
notion of the SCR is used:

SCR = min

{
x|P

(
AC0 −

AC1

1 + rf1
≤ x

)
≥ 0.995

}
. (5.6)

Let the difference between the current available capital (t = 0) and the available capital one year
from now discounted to t = 0, i.e. AC0 − AC1

1+rf1
, be the one-year loss function observed at time

t = 0. The probability that this loss over one year is less than or equal to the SCR has to be
greater or equal to 99.5 %. As one can observe from the definitions, the SCR and the available
capital have a mutual dependence. This leads to a loop in calculating the SCR and the available
capital, since the SCR is calculated as the VaR of the available capital and in turn the available
capital depends on the SCR through the risk margin. To obtain a solution for this, CEIOPS (2009)
suggests that a risk margin should not be taken into account in the liabilities when calculating the
SCR. This applies when a life underwriting risk stress is based on the change in value of assets
minus liabilities. In conclusion, the assumption that the risk margin does not change in stress
scenarios holds and thus the the AC can be estimated by the change in Net Asset Value (NAV ):

NAVt = At −BELt. (5.7)

Hence, the SCR for longevity risk is

SCRV aR = min

{
x| P

(
NAV0 −

NAV1

1 + rf1
≤ x

)
≥ 0.995

}
. (5.8)

In the case of the Solvency II standard formula, the SCR of longevity risk is calculated in a
simplified way that is an approximation of SCRV aR, i.e.

SCRSF = NAV0 − (NAV0| longevity shock). (5.9)

Now that we have a general idea of how the SCR should be calculated under Solvency II, we can
compute the SCRs for the different shock methodologies.

5.2 Shock Methodologies: VaR Approach

In the previous section, both the standard formula and the internal model are discussed and
how the SCR is defined under Solvency II. If an insurance company develops an internal model,
they should to base their shock model on a one-year 99.5% value-at-risk. Richards et al. (2013)
developed a one-year VaR methodology that can be used for the construction of an internal model.
However, he still argues that it is not appropriate to measure longevity risk over a one year horizon,
since longevity risk lies in the long-term trend taken by mortality rates. So in this section, we will
also introduce a terminal VaR methodology. In this section we will discuss and compare the three
shock methodologies, i.e. the one-year VaR approach, the standard formula and the terminal VaR
approach, for both the Lee-Carter model and the Li-Lee model. In section 5.2.1, the data of the
pension fund as well as the portfolio setup is discussed. In section 5.2.2, an expression of the best
estimate of the liabilities is derived for the chosen portfolio. In section section 5.2.3, the one-year
VaR approach is discussed and in 5.2.5, the terminal VaR approach is discussed.
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5.2.1 Data and Portfolio Setup

In order to measure the effects of the shocks due to longevity risk, we consider a model portfolio,
which includes two annuity funds. The first fund, fund Green consist of mostly younger individuals
that have yet to retire, while the second fund, fund Grey, consists of mostly older individuals that
have already retired. This can be observed in figure 11. Both funds consist of 45% male and 55%
female. In both funds, there are no new entrants into the funds. Also, no premiums are paid
after time t = 0. All individuals enter at the age of x = 20 and the maximum age in the fund is
x = 100. The term structure of interest rate is assumed to be flat and deterministic in this case.
The retirement age is set to age 67.

Figure 11: Fund Green has a high percentage of people in their twenties and thirties, while fund
Grey has a high percentage of people that are over the age of 60.

The salary Wx of the individuals with the youngest age, i.e. x = 20, is W20 = 20, 000 per year,
while the salary of the individuals aged x = 66, i.e. individuals that are almost at the retirement
age, is W66 = 41, 957 per year. Throughout the working lifetime, which is assumed to be from age
20 to 66, of these individuals, a certain amount of pension rights will be build up. Then, when
an individual reaches the retirement age, he or she will receive a benefit as a percentage of their
accumulated salary of their working years. The annual rate of accrual of pension rights is 1.75%.
Assuming that the salary increases with age, an individual aged x has built up

Bx =

min{x,66}∑
i=20

1.75% ·Wi. (5.10)

As one can observe, the salary and the pension benefits are gender neutral, i.e. it is the same
for both male and female. Note that for individuals that have reached the retirement age, i.e.
individuals aged x ≥ 67, the benefit Bx will remain the same until death. In other words, for
individuals older that age 66, we can denote Bx as B. The contracts which are considered are
pension annuities, where annual payments are done while the pensioner is still alive. Now that
we have a general idea of the model portfolio, we can continue with the estimation of the future
liabilities.

5.2.2 Best Estimate Liabilities

The best estimate of the liabilities (BEL) introduced in section 5.1 is the expected present value
of the liabilities given the survival rates up until time t, i.e.

BELt =
∑
s≥1

E[L̃t+s|Ft] · P (s)
t , (5.11)
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where P
(s)
t denotes the discount factor for payments at time t + s discounted to time t, which is

a function of the interest rate i:

P
(s)
t =

(
1

1 + i

)t+s
(5.12)

As mentioned before in the previous section, we consider pension annuity contracts, which pay a
specific amount B for an individual aged x ≥ 67 at time t on an annual basis. The first payment
to the insured happens at the beginning of the following year after the individual has reached the
retirement age, x = 67. The last payment is at the beginning of the year in which the insured
dies. So in other words, the amount of future payments depends on the remaining lifetime of an
individual.

Let T
(g)
x,t be the remaining lifetime of an individual aged x at time t with gender g and let τp

(g)
x,t

be the probability that a person aged x at time t and gender g will survive another τ years, i.e.:

τp
(g)
x,t = p

(g)
x,t · p

(g)
x+1,t+1 · · · · · p

(g)
x+τ−1,t+τ−1, (5.13)

where the one-year survival probability p
(g)
x,t is obtained using equation (3.1), i.e. p

(g)
x,t = 1 − q(g)

x,t .

The one-year death probability q
(g)
x,t is assumed to have the following relationship with the force

of mortality:

q
(g)
x,t = 1− exp(−µ(g)

x,t). (5.14)

Let F̃t be the information set containing all future survival probabilities as of time t, i.e. F̃t =

{p(g)
x+1,t+1, p

(g)
x+2,t+2, ..., p

(g)
x+τ,t+τ} = {p(g)

x+τ,t+τ |∀τ}. The expected remaining lifetime at time t of a
person aged x and gender g at time t given all future survival probabilities as of time t is

E[T
(g)
x,t |F̃t] =

MaxAge−x∑
τ=0

τp
(g)
x,t (5.15)

Next, let V
(g)
x≥67,t be the present value of the payments at time t for a person who is aged 67 or

older at time t with gender g, i.e.

V
(g)
x≥67,t = B · Pt +B · P (1)

t +B · P (2)
t + ...+B · P (T

(g)
x,t )

t , (5.16)

where P
(s)
t is the aforementioned discount factor for payments at time t+ s discounted to time t.

The expected present value of the future payments at time t conditional on the survival rates up
until time t+ τ for a person who is aged 67 or older that will survive another τ years with gender
g is :

E[V
(g)
x≥67,t|F̃t] =

MaxAge−x∑
τ=0

τp
(g)
x,t ·B · P

(τ)
t . (5.17)

In the case where a person is younger than the age 67, the payments start in 67− x years. So the
present value will depend on whether the person reaches the retirement age or not. The expected
present value conditional on the survival rates up until t+ τ for a person younger than age 67 at
time t that will survive another τ years with gender g is

E[V
(g)
x<67,t|F̃t] =

MaxAge−x∑
τ=67−x

τp
(g)
x,t ·B · P

(τ)
t . (5.18)

The expected present value of the payments for a person aged x at time t can be written as

E[V
(g)
x,t |F̃t] =

MaxAge−x∑
τ=max{67−x,0}

τp
(g)
x,t ·Bx · P

(τ)
t . (5.19)
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With this we have defined the age-specific expected present value of the future payments for both
genders, or in other words, the expected present value of the liability payments per individual
aged x with gender g. So for the valuation of the expected present value of liabilities in each fund,

we need to take the sum over the total amount of participants in each fund. Let I
(g,j)
x,t be the

number of participants with gender g, aged x at time t in fund j ∈ {green, grey}. Then we have
the following for the expected present value of the liabilities per fund:

E[L
(j)
t+τ |F̃t] =

∑
g,x

E[V
(g)
x,t |F̃t] · I

(g,j)
x,t . (5.20)

Then the total expected present value of the portfolio is obtained by adding the expected present
value of both funds.

E[Lt+τ |F̃t] =
∑
j,g,x

E[V
(g)
x,t |F̃t] · I

(g,j)
x,t . (5.21)

For the survival rates, which are used to determine the best estimate of liabilities, we use the
best estimate of the force of mortality, which we obtained in the previous sections for the Dutch
population through simulation using the Lee-Carter model and the Li-Lee model. So the best
estimate force of mortality of the Dutch population µ̂NL,BEx,g,tn+k is plugged in equation (5.14), such
that we obtain the best estimate one-year death probabilities for person aged x and gender g at
time tn+k, i.e. q̂BEg,x,tn+k, for ∀k. Plugging this in equation (3.1), we get the best estimate one-year

survival probabilities p̂BEg,x,tn+k, which in turn we use to get the k-year survival rates
k
p̂BEg,x,t with

t = tn by using equation (5.13). Hence the best estimate of the liabilities is calculated by

BELt =
∑
j,g,x

100−x∑
k=max(67−x,0)

kp̂
BE
g,x,t ·B · P

(k)
t · I(g,j)

x,t . (5.22)

The results of the best estimate of the liabilities for each fund is shown in table 1. For both funds,
the Li-Lee model gives a larger BEL compared to the Lee-Carter model. In other words, the
Lee-Carter underestimates the present value of the liabilities given that the Li-Lee model models
the Dutch mortality rates more accurately.

Table 1: Best Estimate of the Liabilities of fund Green and fund Grey.

Present Value Liabilities Fund Green Fund Grey

BEL LC 1,277,280,106 1,489,449,331
BEL LL 1,339,527,204 1,529,623,646

5.2.3 One-Year VaR Approach

In this section, longevity risk will be modeled using a one-year VaR framework. Richards et al.
(2013) introduces a method for the one-year VaR approach, where the main idea is to simulate a
single scenario of the stochastic mortality rates in the first projected year. This is then considered
a new data point, which in turn is used to refit the model. Then, the new best estimate of mortal-
ity rates is estimated for the rest of the projected years. In other words, after including the new
data point, the best estimate is observed to see how it is affected. After obtaining the new best
estimate, the present value of the liabilities for this single simulation is calibrated. This process
is repeated M times, where M is the number of simulations. The VaR is then the 99.5th quantile
of the simulated liabilities.

This method is applicable to a wide range of stochastic projection models. First, the method
will be applied to the Lee-Carter model, where the trend process follows a random walk with drift.
After fitting the model, one simulation of the trend process is projected in the following year. The
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simulation contains both stochastic and parameter uncertainty, i.e.

κ̂LCg,tn+1 = κLCg,tn + θg + eg,tn+1, (5.23)

with θg drawn from N(θ̂g, se(θ̂g)) and eg,1 drawn from N(0, Ĉ), as in the previous section. With
κ̂LCg,tn+1, the stochastic mortality rates µ̂LCg,x,tn+1 are computed for the first projected year. After
obtaining the simulated mortality rates of the first projected year, the corresponding one-year

death probabilities q̂
(g)
x,tn+1 are computed. Next, the number of deaths D

(g)
x,tn+1 is simulated as a

binomial random variable, i.e.

D
(g)
x,tn+1 ∼ Bin(E

(g)
x,tn , q̂

(g)
x,tn+1),

for each age x. For simplicity, the subscript NL is removed from the notation for the number of
deaths and exposure. To simulate the number of deaths for the projected year, it is assumed that
the population exposure is the same in year tn+1 as in year tn. If the simulated number of deaths

equates to zero, then it will be changed to the expected number of deaths, i.e. E
(g)
x,tn · q̂

(g)
x,tn+1,

since this is essential for the Newton-Raphson algorithm to work. The next step is to add the
simulated data to the real current data set, creating a simulated data set we would have one year
from now. Then the model is refitted to the simulated data set. After the refit, we obtain the new

common parameter estimates ˆ̃αg,x,
ˆ̃
βg,x and ˆ̃κg,tn+1. Next, the SUR regression is applied to the

trend processes, which estimates the new drift terms
ˆ̃
θg. Then when forecasting the trend process

at time tn + 1, we have

ˆ̃κg,tn+1+k = ˆ̃κg,tn+1 + kθ̃g +

k∑
j=1

ẽg,tn+1+j , (5.24)

where ẽg,j ∼ N(0, ˆ̄C) and θ̃g ∼ N(
ˆ̃
θg, se(

ˆ̃
θg)), with ˆ̄C the new co-variance matrix estimate obtained

from the SUR regression and
ˆ̃
θg the new drift estimate also obtained from the same SUR regression.

However, the rest of the projection is based on the best estimate, i.e.

ˆ̃κBEg,tn+1+k = ˆ̃κg,tn+1 + k
ˆ̃
θg. (5.25)

Finally, the new best estimate mortality rates are simulated as of year tn + 1, i.e.

log ˆ̃µBEg,x,tn+N = ˆ̃αg,x +
ˆ̃
βg,x ˆ̃κBEg,tn+N . (5.26)

With this, the one-year survival probabilities and thus the τ -year survival probabilities
τ

ˆ̄pBEg,x,t can
be computed. Using this we can compute the best estimate of the liabilities as of t+1, with t = tn:

BELt+1 =
∑
j,g,x

100−x∑
τ=max(67−x−1,0)

τ
ˆ̄pBEg,x+1,t+1 ·B · P

(τ)
t+1 · I

(g,j)
x,t+1, (5.27)

where the number of participants aged x in the fund at time t + 1 is binomially distributed con-

ditional on the survival probabilities in year t, i.e. I
(g,j)
x,t+1|p̂

(g)
x,t ∼ Bin(p̂

(g)
x,t , I

(g,j)
x,t ). In other words,

in one year not everyone in the fund will survive. Hence, I
(g,j)
x,t+1 ∼ E[I

(g,j)
x,t+1|p̂

(g)
x,t ] = p̂

(g)
x,tn · I

(g,j)
x,t .

Next, the present value of the liabilities need to be computed. In this case, there are two factors
that play a role in the computation of the present value of the liabilities, namely the cash outflow
due to payments of death in year t+ 1 and the best estimate of the liabilities at time t+ 1. There
is payment only if the individual is retired and alive, hence the cash outflow CFt,t+1 at time t+ 1
discounted to time t is

CFt,t+1 = 1{x≥67}
∑
g,j,x

p̂
(g)
x,t ·Bx,t · P

(1)
t · I(g,j)

x,t . (5.28)
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The present value of the liabilities at time t is as follows:

Lshockt =
1

1 + r
(CFt,t+1 +BELt+1) . (5.29)

This whole process is counted as one simulation. To obtain the one-year VaR, this whole process
is repeated M times. After repeating this process M times and obtaining M simulations of the
present value of the liabilities, the 99.5th quantile, i.e. Q0.995(~Lt), where ~Lt is the vector with the
simulated present value of the liabilities, is taken to get the 99.5% one-year value-at-risk.

Next, the SCR needs to be calculated. As stated in section 5.1, the SCR of the one-year VaR is
computed according to equation 5.8, i.e.

SCRV aR = min

{
x| P

(
NAV0 −

NAV1

1 + r
≤ x

)
≥ 0.995

}
,

where NAVt = At − BELt. Assuming assets pay out a return r, we have the following at time
t+ 1,

At+1 = At(1 + r)− CFt,t+1. (5.30)

In this case we are only considering the cash outflow, hence why the cash flow is subtracted. Now
this implies

NAV0 −
NAV1

1 + r
= A0 −BEL0 −

A1 −BEL1

1 + r

= A0 −BEL0 −
A0(1 + r)− CF0,1 −BEL1

1 + r

=
BEL1 + CF0,1

1 + r
−BEL0

= Lshock0 −BEL0

(5.31)

which in turn leads to the SCR formula:

SCRV aR = min
{
x| P

(
Lshock0 −BEL0 ≤ x

)
≥ 0.995

}
. (5.32)

Hence, SCR can be obtained by first taking the differences between the M simulated present value

of the liabilities and the best estimate of the liabilities at time t = 0, i.e. L
(m)
0 −BEL0, and then

taking the 99.5th quantile of the differences between the simulated present value of the liabilities
and the best estimate of the liabilities at time t = 0. This is equivalent to subtracting the best
estimate of the liabilities at time t = 0 from the 99.5 % VaR, i.e. Q99.5(Lt)−BEL0, since BEL0

is deterministic. In algorithm 1, an overview of the one-year VaR methodology is given.

In figure 12, the simulations of the trend processes of the Dutch male population are shown
when applying the one-year VaR framework to the Lee-Carter model. One can observe how the
best estimate is affected after a new data point is simulated and added to the data set and then
refitted.
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Algorithm 1 One-year VaR algorithm: Lee-Carter

• For j = 1, ...,M

– Load/select the observed deaths D
(g)
x,t and population exposures E

(g)
x,t for t = t1, ..., tn.

– Fit data to the Lee-Carter model, obtaining estimates for µ̂LCx,g,t.

– Run SUR regression to obtain estimates of θg and the co-variance matrix.

– Simulate κ̂
LC(j)
g,tn+1 = κLCg,tn + θ

(j)
g + e

(j)
g,tn+1.

– Compute log µ̂
LC(j)
x,g,tn+1 = α̂x + β̂xκ̂

LC(j)
g,tn+1.

– Compute q̂
(g,j)
x,tn+1 = 1− exp(−µ̂LC(j)

x,g,tn+1).

– Simulate D
(g,j)
x,tn+1 ∼ Bin(E

(g)
x,tn , q̂

(g,j)
x,tn+1).

– Append the simulated mortality rates to the current data set.

– Refit the model to the newly appended data set, obtaining ˆ̃αg,x,
ˆ̃
βg,x and ˆ̃κg,tn+1.

– Compute the best estimate of the future trend process ˆ̃κBEg,tn+1+k = ˆ̃κg,tn+1 + k
ˆ̃
θg for

k = 1, ..., N .

– Compute log ˆ̃µBEg,x,tn+1+k = ˆ̃αg,x +
ˆ̃
βg,x ˆ̃κBEg,tn+1+k for k = 1, ..., N .

– Compute ˆ̄pBEg,x+1,tn+1+k = exp(− ˆ̃µBEg,x,tn+1+k) for k = 1, .., N .

– Forecast the BEL
(j)
t+1.

– Compute the present value of the liabilities L
(j)
t = 1

1+r (BEL
(j)
t+1 + CF

(j)
t,t+1).

• Take 99.5th quantile of the M present values of the liabilities, i.e. Lshockt = Q99.5( ~L′t).

• Compute SCR = Lshockt −BELt
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Figure 12: Simulations of the trend processes for the Dutch Male population using the one-year
approach. For both figure, M = 20 simulations are shown. In the first projected year, i.e. t = 2019,
a data point is generated. The model is then refitted every time there is a simulated data point in
year t = 2019. For each simulation, the change in the best estimate can be seen and how it can be
affected over the course of one year. The top figure shows us the newly simulated best estimate
50 years in the future, while the bottom figure has a horizon of 20 years in the future. This way
the one-year simulations are better observed.

Next, we consider the Li-Lee model. In this case we need to simulate a sample path for both
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the common (European) trend κEUg,t and the country-specific (Dutch) trend κNLg,t . The sample
paths are projected one year into the future, i.e.

κ̂EUg,tn+1 = κEUg,tn + θEUg + εg,tn+1, (5.33)

where θEUg ∼ N
(
θ̂EUg , se(θ̂EUg )

)
and

κ̂NLg,tn+1 = ρgκ
NL
g,tn+1 + δg,tn+1, (5.34)

with ρg ∼ N (ρ̂g, se(ρ̂g)) and both error terms follow the same distribution, i.e. N(0, C̃). As shown
previously, this allows us to get the simulated mortality rates for Europe µ̂EUx,g,tn+1 and the Dutch

deviation ˆ̃µNLg,x,tn+1 and thus allowing us to compute the simulated Dutch mortality rates µ̂LLg,x,tn+1.

One thing to take note of, is when parameter risk is included in the ARIMA model, it can lead to
divergence. This is because the trend simulations of the Dutch deviation can exceed one, which
in turn leads to divergence. To avoid this problem, the condition is set such that if the coefficient
exceeds one, it is set to ρg = 0.9999. The next step is to compute the corresponding one-year

death probabilities for the Dutch population q̂
LL(g)
x,tn+1 = 1− exp(−µ̂LLg,x,tn+1) and then simulate the

number of deaths in year tn + 1 by

D
NL(g)
x,tn+1 ∼ Bin(E

NL(g)
x,tn , q̂

LL(g)
x,tn+1).

Of course this also needs to be done for the European number of deaths, i.e. simulate

D
EU(g)
x,tn+1 ∼ Bin(E

EU(g)
x,tn , q̂

EU(g)
x,tn+1),

where q̂
EU(g)
x,tn+1 = 1 − exp(−µ̂EUx,tn+1). With this we can append the simulated observations to the

European and Dutch data set and refit the model. After the refit, the best estimate of the mor-
tality rates are computed as was shown in section 4.2.3 at time tn + 1, where we obtain the best
estimate Dutch mortality rates ˆ̃µLL,BEx,tn+1+N .

The following steps are similar to the Lee-Carter model, i.e. the computation of the best es-
timate survival rates and inserting them in equation (5.27) and thus computing the best estimate
of the liabilities as of time t + 1, BELt+1, with t = tn. The present value of the liabilities are
also then easily obtained as discussed before using equation (5.28) and (5.29) using the estimated

survival probabilities of the Li-Lee model in year t, p̂
LL(g)
x,t , prior to the refit. Again, this whole

process is repeated M times, which gives us M present values of the liabilities. The 99.5th quantile
is taken of these M liabilities, which is then the 99.5% VaR, giving us the stressed present value
of the liabilities. The one-year VaR methodology for the Li-Lee model is summarized in algorithm
2.
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Algorithm 2 One-year VaR algorithm: Li-Lee

• For j = 1, ...,M

– Load/select D
NL(g)
x,t , E

NL(g)
x,t , D

EU(g)
x,t and E

EU(g)
x,t for t = t1, ..., tn.

– Fit data to the Li-Lee model, obtaining estimates for µ̂LLx,g,t.

– Simulate κ̂
EU(j)
g,tn+1 = κEUg,tn + θ

EU(j)
g + ε

(j)
g,tn+1.

– Simulate κ̂
NL(j)
g,tn+1 = ρ

(j)
g κ

NL(j)
g,tn + δ

(j)
g,tn+1

– If ρ
(j)
g ≥ 1, then the coefficient is changed to ρ

(j)
g = 0.9999

– Compute log µ̂
EU(j)
g,x,tn+1 = α̂EUg,x + β̂EUg,x κ̂

EU(j)
g,tn+1 and log ˆ̃µ

NL(j)
g,x,tn+1 = α̂NLg,x + β̂NLg,x κ̂

NL(j)
g,tn+1.

– Then, log µ̂
LL(j)
g,x,tn+1 = log µ̂

EU(j)
g,x,tn+1 + log ˆ̃µ

NL(j)
g,x,tn+1

– Compute q̂
LL(g)
x,tn+1 = 1− exp(−µ̂LLg,x,tn+1) and q̂

EU(g)
x,tn+1 = 1− exp(−µ̂EUg,x,tn+1).

– Simulate D
NL(g)
x,tn+1 ∼ Bin(E

NL(g)
x,tn , q̂

LL(g)
x,tn+1) and D

EU(g)
x,tn+1 ∼ Bin(E

EU(g)
x,tn , q̂

EU(g)
x,tn+1).

– Append the simulated mortality rates to the current data set.

– Refit the model to the newly appended data set, obtaining ˆ̃αEUg,x ,
ˆ̃
βEUg,x , ˆ̃κEUg,t and

ˆ̃αNLg,x ,
ˆ̃
βNLg,x , ˆ̃κNLg,t .

– Estimate the new drift
ˆ̃
θ
EU(j)
g and time coefficient ˆ̃ρkg(j) through the SUR regression.

– Calculate the best estimate of the trend processes ˆ̃κ
BE,EU(j)
g,tn+1+k = ˆ̃κ

BE,EU(j)
g,tn+1 + k

ˆ̃
θ
EU(j)
g

and ˆ̃κBE,NLg,tn+1+k = ˆ̃ρkg(j)
ˆ̃κNLg,tn+1 for k = 1, ..., N .

– Compute log ˆ̃µLL,BEg,x,tn+1+k = log ˆ̃µEU,BEg,x,tn+1+k + log ˆ̃µNL,BEg,x,tn+1+k for k = 1, ..., N .

– Compute ˆ̄pLL,BEg,x+1,tn+1+k = exp(− ˆ̃µLL,BEg,x,tn+1+k) for k = 1, .., N .

– Forecast the BEL
(j)
t+1 using ˆ̄pLL,BEg,x+1,tn+1+k for k = 1, .., N .

– Compute the present value of the liabilities L
(j)
t = 1

1+r (BEL
(j)
t+1 + CF

(j)
t,t+1).

• Take 99.5th quantile of the M present values of the liabilities, i.e. Lshockt = Q99.5( ~Lt).

• Compute SCR = Lshockt −BEL0

In table 3, the results of the SCR as a percentage of the best estimate of the liabilities are
shown for the one-year VaR for both the Lee-Carter and the Li-Lee model. The SCRs for the
other approaches will also be presented in this way, i.e.

SCR percentage =
Lshockt −BELt

BELt
. (5.35)

As it can be observed, the Lee-Carter model generates a smaller SCR for both funds compared to
the Li-Lee model. Also both SCRs of fund Green are smaller than that of fund Grey in this case.

Table 2: SCR percentage of one-year VaR for both the Lee-Carter model and the Li-Lee model.

Fund Green Fund Grey Total
SCR LC 2.30% 5.21% 7.50%
SCR LL 4.355% 7.57% 11.93%

33



5.2.4 Standard Formula

For the sake of completeness and for comparison, this subsection is dedicated to the shock calcula-
tion according to the aforementioned standard formula. The standard formula approach assumes
an immediate fall of f = 20% in the current and future best estimate of mortality rates, i.e.

µSFx,t = (1− f)µBEx,t . (5.36)

As mentioned in section 5.1, the SCR formula for the standard formula is

SCRSF = NAV0 − (NAV0| longevity shock),

with NAV0 = A0 −BEL0. This leads to

SCRSF = A0 −BEL0 − (A0 −BEL0| longevity shock)

= (BEL0| longevity shock)−BEL0.

The way in which (BEL0| longevity shock) is computed, is by obtaining µSFx,t and transforming it

into k-year survival probabilities kp
(SF )(g)
x,t with k = 1, ..., N . Plugging these survival probabilities

into equation 5.22 leads to obtaining (BEL0| longevity shock). In table 3, the results of the
SCRSF are shown.

Table 3: SCR results of Standard Formula for Lee-Carter and Li-Lee model

Fund Green Fund Grey Total
SCRSF LC 6.59% 8.21% 14.79%
SCRSF LL 6.17% 8.09% 14.26%

5.2.5 Run-off Approach: Terminal VaR

The run-off approach, also referred to the multi-year approach or the stressed trend approach, is
according to Richards et al. (2013) the most appropriate way to investigate longevity trend risk,
since the risk lies in the long term trend taken by the mortality rates. The main idea behind this
approach is to consider the fluctuations in mortality rates over the potential lifetime of an annui-
tant/pensioner or until the maturity date of a policy. Basically, in the run-off approach, the stress
scenario is the prediction interval for the best estimate of liabilities. Recall that in section 4.1.3
and 4.2.3, we discussed the prediction interval for the Lee-Carter model and the Li-Lee model.
Using these prediction intervals, we can calculate the run-off VaR or in other words terminal VaR.

First we consider the Lee-Carter model. The first step is to simulate trajectories of the trend
processes, κ̂LCg,t , into the future. As discussed before, both parameter uncertainty and stochastic
uncertainty is taken into account when simulating the trajectories. Recall that the trend process
is modeled as a random walk with drift, i.e.

κLCg,t = κLCg,t−1 + θg + eg,t, (5.37)

with normally distributed error terms:

eg,t =

(
eM,t

eF,t

)
∼ N

((
0
0

)
,

(
σ2
M,e rσM,eσF,e

rσM,eσF,e σ2
F,e

))
(5.38)

The SUR regression is used to obtain the drift estimates θ̂g and the estimate of the co-variance

matrix Ĉ. The subscript LC refers to the Lee-Carter model, g ∈ {M,F} which refers to male and
female, and t = t2, ..., tn as defined in the previous chapter.

To include stochastic uncertainty, the errors are drawn from the normal distribution with mean
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zero and co-variance matrix Ĉ and to include parameter uncertainty the drifts are drawn from
the normal distribution with mean θ̂g and variance se(θ̂g). Both the error terms and the drift are
simulated M times. The drift is constant over time for each sample path, but the errors are drawn
over each future year.

κ̂
LC(m)
g,tn+k = κLCg,tn + kθ(m)

g +

k∑
j=1

e
(m)
g,j m = 1, ...,M and k = 1, ..., N (5.39)

where N is the terminal year. In this case, the terminal year refers to the year that the youngest
individual at time t dies with certainty or in other words, the year in which the youngest individ-
ual at time t reaches the maximum age. With this we get an NxM matrix of simulated future
trend processes. Plugging the trend processes in equation (4.1), we obtain a NxM matrix of log
mortality rates and thus obtaining the mortality rates. After applying Kannistö’s extrapolation
to obtain mortality rates for older people, we insert the mortality rates in equation (5.14), which
gives us the simulated one-year death probabilities and thus the one-year survival probabilities as

well, i.e. p
(m)(g)
x+k,t+k, k ∈ {1, ..., N}.

Using these simulated survival probabilities, the k-year survival probabilities, kp
(m)(g)
x,t , are cal-

culated and thus we can simulate the corresponding present value of the liabilities. This is done

by calculating the present value of the liabilities for each trajectory. Let L
(m)
t be the present value

of the liabilities at time t for trajectory m. Then we have

L
(m)
t =

∑
j,g,x

N−x∑
k=max(67−x,0)

kp
(m)(g)
x,t ·B · P (k)

t · I(g,j)
x,t , (5.40)

for m = 1, ...,M . So this gives us M simulations of the present value of the liabilities. Then the
terminal V aR is obtained by simply taking the 99.5th quantile of the simulated liabilities that the
compandy would have in year t = N :

Lshockt = Q0.995(~Lt), (5.41)

where ~L is the vector with the M simulated liabilities. An overview of the terminal VaR calculation
is shown in Algorithm (3). For the calculation of the SCR, we take the difference between the
present value of the stressed liabilities and the present value of the best estimate of the liabilities:

SCRt = Lshockt −BELt (5.42)
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Algorithm 3 Terminal VaR algorithm: Lee-Carter

• Simulate M drift terms {θ(1), θ(2), ..., θ(M)}

• For k = 1, ..., N

– Simulate M stochastic errors, i.e. {e(1)
k , e

(2)
k , ..., e

(M)
k }

– Forecast κ̂
(m)
tn+k = κtn + kθ(m) +

∑k
j=1 e

(m)
j for all M trajectories.

• Obtain the simulated log mortality rates; log µ̂
LC(m)
x,tn+k = α̂x + β̂xκ̂

LC(m)
tn+k for k = 1, ..., N

• Calculate the one-year survival probabilities p
(m)
x+k,tn+k = exp(−µ̂LC,(m)

x,tn+k ) and thus obtaining

the k-year survival probabilities kp
(m)
x,t for k = 1, ..., N .

• Calculate the present value of the liabilities of each trajectory L
(m)
t using equation (5.40)

• Take the 99.5th quantile of the M liabilities in year N , i.e. Lshockt = Q0.995(~Lt)

• Compute the SCRshockt = Lshockt −BELt

Next, we will consider the Li-Lee model. In this case, trajectories for both the common
(European) trend, i.e. κEUg,t , and the country-specific (Dutch) trend, i.e. κNLg,t need to be simulated.
We will keep using this notation for the Li-Lee model. As was discussed in the previous chapter, the
common trend is modeled as a random walk with drift and the country-specific trend is modeled as
an AR(1) model. For the simulation of the trajectories of the European trend processes including
both parameter and stochastic uncertainty, we have

κ̂
EU(m)
g,tn+k = κEUg,tn + kθEU(m)

g +

k∑
j=1

ε
(m)
g,j m = 1, ...,M and k = 1, ..., N (5.43)

where the simulated drift terms are drawn from the normal distribution, i.e. θEUg ∼ N
(
θ̂EUg , se(θ̂EUg )

)
and the simulated error terms are drawn from the normal distribution with mean zero and co-
variance matrix C̃ as discussed in section 4.2.3, i.e.

εM,t

εF,t
δM,t

δF,t

 ∼ N



0
0
0
0

 , C̃

 . (5.44)

Next, the trajectories of the country specific (Dutch) trend are simulated. The coefficients ρg,(m)

are drawn from a normal distribution, i.e. ρg ∼ N (ρ̂g, se(ρ̂g)), which generates a coefficient per
trajectory. The error terms are drawn from the same normal distribution with mean zero and
co-variance matrix C̃.

κ̂
NL(m)
g,tn+k = ρkg,(m)κ

NL
g,tn +

k∑
j=1

δ
(m)
g,j m = 1, ...,M and k = 1, ..., N. (5.45)

After obtaining the simulations of both trend processes, the future mortality rates for the Dutch
population are then calculated. And with this, the one-year survival probabilities are also obtained.

Let p̃
(m)(g)
x+k,t+k denote the simulated one-year survival probabilities obtained from the Li-Lee model.

With this the k-year survival probabilities are calculated and inserted in equation (5.40) for k =
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1, ..., N :

L̃
(m)
t =

∑
j,g,x

N−x∑
k=max(67−x,0)

kp̃
(m)(g)
x,t ·B · P (N)

t · I(g,j)
x,t . (5.46)

Then the terminal value at risk and SCR are calculated using equation (5.41) and (5.42). In
Algorithm 4, an overview of how the approach is done for the Li-Lee model is shown.

Algorithm 4 Terminal VaR algorithm: Li-Lee

• Simulate M drift terms {θEU(1), θEU(2), ..., θEU(M)}

• Simulate M coefficients {ρ(1), ρ(2), ..., ρ(M)}

• For k = 1, ..., N

– Simulate M stochastic errors for the European trend, i.e. {ε(1)
k , ε

(2)
k , ..., ε

(M)
k }

– Simulate M stochastic errors for the Dutch trend, i.e. {δ(1)
k , δ

(2)
k , ..., δ

(M)
k }

– Forecast κ̂
EU(m)
tn+k = κEUtn + kθEU(m) +

∑k
j=1 ε

(m)
j for all M trajectories.

– Forecast κ̂
NL(m)
tn+k = ρk(m)κ

NL
tn +

∑k
j=1 δ

(m)
j for all M trajectories.

• Obtain simulated mortality rates through log µ̂
LL(m)
x,tn+k = log µ̂

EU(m)
x,tn+k + log ˆ̃µ

NL(m)
x,tn+k , with

log µ̂
EU(m)
x,tn+k = α̂EUx + β̂EUx κ̂

EU(m)
tn+k and log ˆ̃µNLx,tn+k = α̂NLx + β̂NLx κ̂

NL,(m)
tn+k for k = 1, ..., N and

m = 1, ...,M

• Calculate the one-year survival probabilities p̃
(m)
x+k,tn+k = exp(−µ̂LLx,tn+k) and thus obtaining

the k-year survival probabilities kp̃
(m)
x,t for k = 1, ..., N and m = 1, ...,M .

• Calculate the present value of the liabilities of each trajectory L̃
(m)
t using equation (5.40)

• Take the 99.5th quantile of the M liabilities in year N , i.e. Lshockt = Q0.995(~Lt)

• Compute the SCRt = Lshockt −BELt

In table 4, the resulting SCRs as percentages of the best estimate (BEL) of the multi-year
approach can be seen. The SCR generated by the Lee-Carter model is larger in fund Green
compared to the Li-Lee model, however in fund Grey, it is the opposite, i.e. the Li-Lee model
generates a larger SCR. The total SCR of both funds of the Li-Lee model is larger than the
Lee-Carter. So, the Lee-Carter model indeed underestimates the total SCR in this case.

Table 4: SCR of 99.5% Terminal VaR for both the Lee-Carter model and the Li-Lee model.

Fund Green Fund Grey Total
SCR LC 8.11% 4.84% 12.95%
SCR LL 8.01% 5.96% 13.97%

5.3 Discussion

In this section, we will compare and discuss the results that were obtained and shown in the
previous section, namely the SCRs for longevity risk of the three shock methodologies.
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5.3.1 Comparison of SCR

As was previously shown, for each model, the SCRs for longevity trend risk were calculated through
the one-year VaR approach, the terminal VaR approach and the standard formula. This was done
for the two different funds, i.e. fund Green and fund Grey. The same portfolio assumptions from
the previous section holds, i.e. the same number of participants as well as the same male to female
ratio. In table 5, table 6, and table 7 the three SCRs from the shock methodologies for each fund
are summarized as well as the total SCR, i.e. the portfolio SCR containing both funds. Again,
the SCRs shown in percentages of the best estimate of the liabilities.

When comparing the results of fund Green in table 5, i.e. the SCRs of the one-year VaR, the
terminal VaR, and the standard formula, it is apparent that the terminal VaR is much larger
compared to the one-year VaR. As for the standard formula, it generates SCRs that are larger
than the one-year VaR but smaller than the Terminal VaR. However, in table 6 it can be seen that
it is the other way around for fund Grey. The one-year VaR framework generates larger SCRs
compared to the terminal VaR framework and the standard formula generates the largest SCRs
of them all. If we look at the total SCRs in table 7, the one-year VaR generates the smallest
SCR, then it is followed by the terminal VaR, leaving the largest generating SCRs to the standard
formula. This is the result for both the Lee-Carter model and the Li-Lee model. Note that since
the Li-Lee model is assumed to be the ”correct” model, we can conclude that the Lee-Carter model
very much underestimates the SCRs, especially in the case of the one-year VaR.

The results of table 7 have come out as expected when looking at the totals of the three method-
ologies, i.e. the one-year VaR framework has the smallest SCR of the three and the standard
formula has the largest SCR. In other words, the standard formula requires more capital than
the one-year VaR and the terminal VaR. This does not come off as a surprise, since every one-
year death rate decreases by the 20% in this case, and also considering the fact that the older
individuals have a relatively high death rate, the mortality rates in return decrease significantly.
And considering that it is specifically the older population, where the liabilities need to be paid
and thus is the main age group in the portfolio concerning the results, the SCR increases at a
much faster rate over time and is thus larger to begin with. Fernando et al. (2017) confirms
that the shock implemented by the standard formula does not adequately reflect longevity risk
that life annuity portfolios face, stating that the shock will tend to overestimate or underestimate
the current longevity risk for all ages. However, one should also keep in mind that the standard
formula considers other risks, for example the risk of using the ”wrong” model. It also considers
deviations in the level of the mortality rates, or in other words, the probability that the mortality
rates of the people considered are not the same as those of the entire population. In the case of
the one-year VaR or terminal VaR framework, only the trend risk is considered.

Table 5: SCRs from fund Green of all three shock methodologies for both the Lee-Carter model
and the Li-Lee model.

Fund Green One-year 99.5% V aR Terminal 99.5% V aR Standard Formula
Model LC SCR 2.30% 8.11% 6.59%
Model LL SCR 4.36% 8.01% 6.17%

Table 6: SCRs from fund Grey of all three shock methodologies for both the Lee-Carter model
and the Li-Lee model.

Fund Grey One-year 99.5% V aR Terminal 99.5% V aR Standard Formula
Model LC SCR 5.21% 4.84% 8.21%
Model LL SCR 7.57% 5.96% 8.09%
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Table 7: Total SCR of all three shock methodologies for both the Lee-Carter model and the Li-Lee
model.

One-year 99.5% V aR Terminal 99.5% V aR Standard Formula
Model LC SCR 7.50% 12.95% 14.79%
Model LL SCR 11.93% 13.97% 14.26%

In fund Green, the population consists mostly of younger people who have yet to reach the
retirement age. In funds consisting of mostly younger individuals, it is expected that the capital
requirements are much larger compared to a fund consisting of mostly older individuals. This is
because they suffer from a larger longevity risk caused by the fact that the death rates of these
young individuals are on a longer time horizon, and thus have more time to deviate from the cur-
rent estimations in the long-run. This is especially apparent when comparing the terminal VaR of
the two funds, where the SCR of the terminal VaR of fund Green is much larger for both models
than that of fund Grey. In general, it is expected that a portfolio consisting of older people will
have lower SCRs since there is less uncertainty concerning the future development of mortality
rates.

In case of the one-year VaR, the SCR of fund Grey is larger than that of fund Green. A possible
explanation for this is due to the fact that the shock happens only in the first projected year,
where it will only have an effect on the older population, since they need to receive their benefits
that year. On the other hand the cash outflow to the younger generations, i.e. non-retired people,
is zero. So the main source in this case of the high SCR in the older population, is the cash outflow
of the future projected year.

Figure 13: SCR of the 99.5% terminal VaR framework as a function of age using the Lee-Carter
model. The red line represents the female population in the fund and the blue line represents the
male population. Ages are distributed in age groups of 10. The figure on top shows the SCR of
the age groups of fund Green and at the bottom, the figure shows the SCR of fund Grey.

According to Richards et al. (2013), the capital requirement for the terminal VaR approach
is dependent on the model, outset age and the discount rate. In figure 13, the SCR of the 99.5%
terminal VaR for different age groups in each fund can be observed for the Lee-Carter model. This
is done for both male and female. In both funds, the female population generates a lower SCR

39



from ages 20 to 70 compared the the male population of the same ages. After that, it gives a
larger SCR for the older age groups compared to the males, i.e. ages 70 to 100. In general, the
terminal VaR approach gives a higher SCR for the younger age groups compared to the older age
groups for both male and female and the SCR gradually decreases as the age increases.

In figure 14, the SCRs from the one-year 99.5% VaR are shown as a function of age groups
for both funds. For both fund Green and Grey, the SCR is larger for the older age groups com-
pared to the younger age groups. In fund Green, it can be seen that there are no people who are
in the age group 91 to 100. The SCR percentage in fund green is in general slightly higher than
that of fund Grey. Another thing that can be observed in fund Green, is the SCR for females are
smaller for all age groups compared to that of the males. This is not the case in fund Grey, as
the SCR for females becomes larger than that of males as of age group 71 to 80. Similar figures
containing the relationship between the SCRs and age can be seen for the Li-Lee model in the
appendix, i.e. figure 15 and figure 16. In the case of the terminal VaR approach of the Li-Lee
model, the SCRs for females are higher than that of males in both funds. And this is the case for
all age groups. As for the one-year VaR, this is also the case for fund Grey, but for fund Green
the SCR for females is higher than that of males up until age group 61 to 70. After that it lies
slightly below the SCR of males.

Figure 14: SCR of the one-year 99.5% VaR framework as a function of age using the Lee-Carter
model. The red line represents the female population in the fund and the blue line represents the
male population. Ages are distributed in agegroups of 10. The figure on top shows the SCR of
the agegroups of fund Green and at the bottom, the figure shows the SCR of fund Grey.

After analyzing from the age group perspective, we consider another important factor that also
plays a crucial role in how the SCR is affected, namely the interest rate. In table 8, the results of
the SCRs are shown for the Lee-Carter model with three different interest rates. Up until now,
we have assumed the interest rate to be r = 2%, hence we consider a lower interest rate and a
higher interest rate, i.e. r = 1% and r = 3% to see how the SCRs are affected. From the results
we can conclude that a lower interest rate generates a higher SCR, while a higher interest rate
generates lower SCRs. According to Börger (2010), this is indeed the case since he notes that
capital requirements increase when the interest rate decreases.
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r = 1% r = 2% r = 3%
Lee-Carter green grey green grey green grey
1-year VaR 2.83% 5.42% 2.30% 5.21% 1.46% 4.64%
Terminal VaR 8.52% 5.28% 8.11% 4.84% 5.56% 3.40%
SF 7.03% 8.68% 6.59% 8.21% 6.20% 7.76%

Table 8: Calculated SCRs of the one-year 99.5% VaR, the 99.5% terminal VaR and the standard
formula for different interest rates using the Lee-Carter model.

6 Summary and Conclusion

This thesis investigates and compares the three shock methodologies for longevity risk, namely the
one-year VaR framework, the terminal VaR framework and the standard formula. The one-year
VaR framework and the standard formula are both shock methodologies prescribed by Solvency
II for longevity risk, since Solvency II states that every insurance company should have a risk
based capital that covers 99.5% of all events over the time span of one year. The main issue
with the Solvency II framework is that it measures longevity risk over a one year horizon. Since
longevity risk lies in the long-term trend of the mortality rates, it is more fitting to measure it with
a multi-year framework. However, Solvency II has already been implemented and hence, we will
investigate if the one-year VaR framework meets a multi-year requirement. Now, to implement
these methodologies, mortality rates need to be modeled stochastically. Since we have chosen to
model the Dutch mortality rates, the Li-Lee model has been chosen together with the Lee-Carter
model. The Lee-Carter model is chosen due to its simplicity, and has all around a great perfor-
mance. Li-Lee on the other hand is chosen, because it is the chosen model of the Royal Dutch
Actuarial Association, which is assumed to best represent the Dutch mortality data. For each of
these model, the best estimate of the liabilities is calculated and the three shock methodologies
are applied. First the one-year 99.5% VaR approach was considered, where the VaR framework
of Richards et al. (2013) was implemented. This methodology forecasts one simulation of the
mortality rates one year in the future, appends these forecasted mortality rates to the current
data set, and refits the model. Then the best estimate of the liabilities is recalculated using this
refitted model to obtain the present value of the liabilities. This whole process is repeated M times
and then the 99.5th-quantile of the liabilities is taken, which becomes the 99.5% VaR. Then the
SCR is calculated as the difference between the 99.5% VaR and the best estimate of the liabilities.
Next, the 99.5% terminal VaR framework is considered. For this shock methodology, we simulate
M sample paths of future mortality rates and let them develope over time. At the terminal year,
which is the year that the youngest individual reaches the maximum age, the present value of the
liabilities are calculated. The 99.5% terminal VaR is then the 99.5th-quantile of the liabilities.
This is followed by the corresponding SCR calculation. The last and the simplest shock methodol-
ogy is that standard formula, which assumes a fall of 20% in the current best estimate of mortality
rates. Then the present value of the liabilities is calculated and thus the SCR as well.

From intuition one expects the one-year VaR to deliver the smallest SCR compared to the other
two shock methodologies. The results show that this is indeed the case when calculating the
total SCRs of our portfolio. The standard formula on the other hand generates the highest SCR
out of the three methodologies. And lastly the terminal VaR lies between these two. This holds
true for both the Lee-Carter model and the Li-Lee model. Comparing the Lee-Carter and the
Li-Lee model, the Lee-Carter underestimates the SCRs for the one-year VaR and the terminal
VaR. When comparing the one-year VaR and the terminal VaR of the Li-Lee model, the difference
is around 2%. This means that the one-year 99.5% VaR does not meet the multi-year capital
requirements. In this case, it is then recommended to make the one-year shock methodology a bit
more conservative. This can be done by, for example adding more assumptions and conditions to
the one-year VaR shock model. The standard formula on the other hand, is too conservative and
overestimates the necessary capital requirements.
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Next to comparing the total SCRs of the portfolio, we also dived deeper to compare the SCRs
of the three shock models for each fund in the portfolio. One fund consisted of mostly younger
individuals who have yet to reach retirement age, while the other fund consisted of mostly older
people who have reached or passed retirement age. To our finding, the SCR of terminal VaR is
smaller than the SCR of the one-year VaR when considering the fund with the older population.
This is the case for both the Li-Lee and the Li-Carter model. This is contrary to the results of the
SCRs of the fund consisting of younger individuals. In their case, the SCR of the one-year VaR
is smaller than the SCR of the terminal VaR. So it would seem that it could be better to con-
sider different shock methodologies for different age groups. Especially because older age groups
are sensitive to short-term shocks, while the younger age groups are more sensitive to long-term
shocks. Next to analyzing the two funds and different age groups, we also took a look to see how
the total portfolio SCRs would react to different interest rates. We considered an interest rate
which is lower and one that is higher than the current interest rate. From the results, we conclude
that a lower interest rate generates a higher SCR. This is the case for all three shock methodologies.

For future research, we would like to further investigate our finding of the SCR of the termi-
nal VaR for the older population, since it generated quite small numbers for the SCR. Also, it
would be quite interesting to see what other conditions and assumptions could be implemented
such that the one-year VaR does meet the multi-year requirement. And lastly, research on con-
sidering different shock models for different age groups would also be interesting. An idea for this
is to consider specific trend processes for different age groups.
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7 Appendix

Figure 15: SCR of the one-year 99.5% VaR framework as a function of age using the Li-Lee model.
The red line represents the female population in the fund and the blue line represents the male
population. Ages are distributed in age groups of 10. The figure on top shows the SCR of the age
groups of fund Green and at the bottom, the figure shows the SCR of fund Grey.
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Figure 16: SCR of the 99.5% terminal VaR framework as a function of age using the Li-Lee model.
The red line represents the female population in the fund and the blue line represents the male
population. Ages are distributed in age groups of 10. The figure on top shows the SCR of the age
groups of fund Green and at the bottom, the figure shows the SCR of fund Grey.
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