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1 Introduction

Many occupational pension schemes around the world have shifted from guaranteed, defined

benefit pension plans (DB) towards defined contribution pension plans (DC). The transition

from DB to DC schemes is the result of a withdrawal of employers as risk sponsors. Many

companies no longer wish to underwrite the risks of their pension funds, as these risks are

too large in comparison to their core business. In DC pension contracts, all financial and

demographic risks are borne by the plan participants. Participants save and invest in an

individual account on the basis of traded financial assets. This development has increased

the importance of an adequate design of lifecycle investment strategies, which prescribe a

predetermined or dynamic rule for the portfolio choice of a plan participant as a function of

age. In practice, Target Date Funds (TDFs) play an important role for participants in 401(k)

DC pension plans in the US. These funds follow a predetermined reallocation of assets over

the life cycle based on a specified retirement date. TDFs have become increasingly popular

over the last two decades. In 2014, 72% of all 401(k) plans offered TDFs, 73% of 401(k)

plan participants were offered TDFs, and 48% of 401(k) plan participants held assets in TDFs

(Investment Company Institute (2016)). Furthermore, the share of 401(k) assets invested in

TDFs grew from 5% in 2006 to 18% in 2014.

This paper explores optimal interest rate risk management for lifecycle investors in DC

pension plans, and compares these results to the composition of the portfolio mix chosen in

practice in TDFs. Our theoretical analysis derives the optimal portfolio allocation towards

stocks, inflation-linked bonds, nominal bonds and cash for a lifecycle investor in the presence

of stock market risk, interest rate risk and inflation risk. In a setting in which the investor is

not subject to borrowing constraints, we arrive at analytical expressions for optimal interest

rate management as a function of age. In a setting with borrowing constraints imposed on the

investor, we provide numerical calculations.

We show that investments in long-term bonds, which provide protection against persistent

shocks in interest rates, play a crucial role for middle-aged individuals in the age-period between

45 and 70. During this period of life, a substantial part of accumulated assets is invested in

bonds and it is optimal to invest in long-term bonds with a long duration, in line with the

duration of future consumption at those ages.
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To compare our theoretical results to the investment choices of plan participants in practice,

we turn to TDF data provided Morningstar which contains information on 2581 TDF funds from

61 TDF providers in the US. The data provides information on the portfolio share allocated to

fixed income, the duration of fixed income, and the target date. By assuming that retirement

takes place at the age of 65, the age of the investor can be calculated from the target date of

the TDF. Figure 1 illustrates the fraction allocated to bonds (panel 1a) and the duration of

those bonds (panel 1b) in Target Date Funds. The average bond duration is approximately

five years, and does practically not depend on age. Hence, long-term bonds with a duration

of say 20 or 30 years do not play a substantial role in most TDFs, also not at younger ages.

Hence, the data points out that long-term bonds only play a limited role in TDFs in the US.

Our theoretical finding on the importance of long-term bonds in the portfolio of middle-aged

pension plan participants stands in sharp contrast with practice.
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Figure 1. Duration of fixed income portfolio in TDFs. Panel (a) illustrates the duration
of fixed income as a function of age for both the fixed income portfolio itself and the total
portfolio (assuming the duration of other assets equal to zero). Panel (b) illustrates the portfolio
share of fixed income as a function of age.

We calculate that absence of long-term bonds in the portfolio of a lifecycle investor can be

costly, with the welfare loss peaking at 5 percent of consumption for middle-aged individuals.

This welfare loss is derived from comparing the optimal investment strategy to a strategy in

which we fix the duration of the fixed income portion of the portfolio to five (the median

duration observed in the Morningstar data of TDFs).

Our paper contributes to the existing literature on optimal lifecycle investing, see, e.g.,
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Bodie, Merton, and Samuelson (1992), Cocco, Gomes, and Maenhout (2005), and Gomes,

Kotlikoff, and Viceira (2008). This literature has focussed primarily on studying the optimal

lifecycle-pattern for stock market risk. We also contribute to the existing literature on optimal

interest risk management, see, e.g., Viceira (2001), and Brennan and Xia (2002). We extend

the analysis in the existing papers by introducing a lifecycle context. There have been a few

earlier studies related to optimal interest rate risk management over the lifecycle, in particular

Koijen, Nijman, and Werker (2010) and van Hemert (2010), but these papers do not provide

analytical solutions.

2 Model

2.1 Preferences

Time is continuous. Denote by t adult age, which corresponds to effective age minus 20. For

ease of exposition, we assume that the individual dies at adult age T . Let c(t) and Π(t)

denote the individual’s nominal consumption choice and the consumer price index at adult

age t, respectively. The individual has CRRA preferences over real consumption. Hence, the

individual’s expected lifetime utility is given by

U = E

[∫ T

0

e−δt
1

1− γ

(
c(t)

Π(t)

)1−γ

dt

]
, (2.1)

where δ ≥ 0 denotes the subjective rate of time preference, γ corresponds to the coefficient of

relative risk aversion, and E represents the (unconditional) expectation.

2.2 Asset Market and Wealth Accumulation

We consider a financial market with three state variables: the (instantaneous) real interest rate

r(t), the rate of inflation π(t), and the nominal stock price S(t). These state variables have the

same dynamics as in Brennan and Xia (2002).1 That is, the real interest rate and the rate of

inflation follow Ornstein-Uhlenbeck processes and the nominal stock price evolves according to

1In contrast to Brennan and Xia (2002), we assume that the realized rate of inflation matches the expected
rate of inflation. We can, however, extend our findings to the case where the realized rate of inflation does not
necessarily coincide with the expected rate of inflation.
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a geometric Brownian motion:

dr(t) = κ (r̄ − r(t)) dt+ σrdWr(t), (2.2)

dπ(t) = θ (π̄ − π(t)) dt+ σπdWπ(t), (2.3)

dS(t)

S(t)
= (R(t) + λSσS) dt+ σSdWS(t). (2.4)

Here, r̄ and π̄ denote long-term means, κ ≥ 0 and θ ≥ 0 are mean reversion coefficients,

R(t) = r(t) +π(t) stands for the (instantaneous) nominal interest rate at adult age t, λS ≥ 0 is

the (constant) Sharpe ratio of the risky stock, W (t) = (Wr(t),Wπ(t),WS(t)) represents a vector

of standard (possibly correlated) Brownian motions, and σ = (σr, σπ, σS) ≥ 0 is a vector of

diffusion coefficients.2 We summarize the (linear) correlation coefficients between the Brownian

increments in the correlation matrix ρ:

ρ =


1 ρrπ ρrS

ρrπ 1 ρπS

ρrS ρπS 1

 , (2.5)

where ρij (i, j ∈ {r, π, S}, i 6= j) denotes the correlation coefficient between dWi(t) and dWj(t).

The nominal stochastic discount factor m(t) satisfies (see, e.g., Brennan and Xia, 2002)

dm(t)

m(t)
= −R(t)dt+ φ>dW (t). (2.6)

Here, > denotes the transpose sign and φ = (φr, φπ, φS) is a vector of factor loadings which

determines the vector of market prices of risk associated with the underlying state variables.

More specifically, we can obtain the vector of market prices of risk λ = (λr, λπ, λS) from the

vector of factor loadings φ as follows:

λ = −ρφ. (2.7)

Let PN(t, h) (respectively, PI(t, h)) denote the price at adult age t of a nominal (respectively,

an inflation-linked) zero-coupon bond maturing at adult age t + h ≥ t. The individual invests

2For notational convenience, we often write a (column) vector in the form z = (z1, z2, . . . , zn).
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his total wealth – which equals the sum of human capital and financial wealth – in a nominal

bond with fixed time to maturity hN , an inflation-linked bond with fixed time to maturity hI ,

a risky stock, and cash. The vector of risky asset prices X(t) = (PN (t, hN) , PI (t, hI) , S(t))

satisfies the following dynamic equation (see the Appendix):

dX(t)

X(t)
= µ(t)dt+ ΣdW (t), (2.8)

where

µ(t) =


R(t)− λrσrB (hN)− λπσπC (hN)

R(t)− λrσrB (hI)

R(t) + λSσS

 and Σ =


−B (hN)σr −C (hN)σπ 0

−B (hI)σr 0 0

0 0 σS

 .

Here, B (hN) =
(
1− e−κhN

)
/κ, B (hI) =

(
1− e−κhI

)
/κ, and C (hN) =

(
1− e−θhN

)
/θ.

We denote by ω(t) and A(t) the vector of portfolio weights and the individual’s total wealth

at adult age t, respectively. The individual’s total wealth A(t) satisfies the following dynamic

budget constraint:

dA(t) =
(
R(t) + ω(t)> [µ(t)−R(t)]

)
A(t)dt+ ω(t)>ΣA(t)dW (t)− c(t)dt. (2.9)

By integrating the increments dA(t), it follows that the individual’s total wealth equals initial

total wealth, plus any gains from trading, minus total consumption. The share of total wealth

invested in cash at adult age t is given by 1 − ω(t)>13 (here, 13 denotes a vector of length 3

consisting of ones).

2.3 Benchmark Parameter Values

In our numerical illustrations, we use the following benchmark parameter values:
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Parameter Value Parameter Value

r̄ = r0 0.02 σS 0.2
κ 0.0347 φS -0.2
σr 0.01 ρrπ 0
φr 0.075 ρrS 0
π̄ = π0 0.02 ρπS 0
θ 0.0693 γ 5
σπ 0.01 δ 0.02
φπ 0 T 65

Table 1. Benchmark parameter values. This table reports the parameter values that we
use in our numerical illustrations.

2.4 Maximization Problem

The individual faces the following dynamic maximization problem:

maximize
c(t),ω(t):t∈[0,T ]

E

[∫ T

0

e−δt
1

1− γ

(
c(t)

Π(t)

)1−γ

dt

]

subject to dA(t) =
(
R(t) + ω(t)> [µ(t)−R(t)]

)
A(t)dt+ ω(t)>ΣA(t)dW (t)− c(t)dt.

(2.10)

Section 3 analyzes and discusses the optimal policies over the life cycle. Section 5 explores the

impact of a borrowing constraint on the optimal life cycle patterns.

3 Optimal Life Cycle Policies

3.1 Optimal Consumption Strategy

We determine the optimal (nominal) consumption choice c∗(t) using the martingale approach

(Pliska (1986), Karatzas, Lehoczky, and Shreve (1987), Cox and Huang (1989), and Cox and

Huang (1991)). After we have solved for the optimal consumption choice c∗(t), we determine

the vector of optimal portfolio weights ω∗(t) using replication arguments. We find that the

individual’s optimal consumption choice is given by (see the Appendix for a proof)

c∗(t) = c∗(0) exp

{∫ t

0

π(s) ds+
1

γ

∫ t

0

(
r(s) +

1

2
φ>ρφ− δ

)
ds− 1

γ
φ>W (t)

}
. (3.1)

Here, c∗(0) denotes the individual’s consumption choice at the beginning of the life cycle which

is determined such that the market-consistent value of the optimal consumption stream equals
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the individual’s initial total wealth:

E
[∫ T

0

m(t)c∗(t)dt

]
= A(0). (3.2)

The change in log consumption consists of three parts (this follows from (3.1)):

d log c∗(t) = π(t) dt+
1

γ

(
r(t) +

1

2
φ>ρφ− δ

)
dt− 1

γ
φ> dW (t). (3.3)

The first part of (3.3) reflects the individual’s desire to maintain the purchasing power of pre-

and post-retirement consumption. The second part models the expected growth rate of log real

consumption. Whether this part is positive or negative depends upon the relative strength of

two counteracting forces. On the one hand, the individual is impatient: he has a preference to

consume sooner rather than later. This has a negative effect on the expected growth rate of log

real consumption. On the other hand, by giving up consumption today, the individual will be

able to consume more in the future. This has a positive effect on the expected growth rate of

log real consumption. The last part denotes the impact of unexpected shocks in the underlying

state variables on log consumption. By allowing unexpected shocks in the underlying state

variables to affect log consumption, the individual can achieve a higher expected consumption

stream. Finally, we note that the preference parameter γ plays two distinct roles in the optimal

consumption rule (3.3). On the one hand, it models the degree of relative risk aversion; that

is, the exposure of log consumption to unexpected shocks in the underlying state variables. On

the other hand, it models the elasticity of intertemporal substitution; that is, the extent to

which the expected growth rate of log real consumption changes following a change in the real

interest rate.

3.2 Optimal Portfolio Strategy

We determine the vector of optimal portfolio weights ω∗(t) such that changes in the market-

consistent value of optimal remaining lifetime consumption exactly matches changes in the

value of the individual’s investment portfolio. The vector of optimal portfolio weights ω∗(t) is
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given by (see the Appendix for a proof)

ω∗N(t) =
1

γ

φπ
C (hN)σπ

, (3.4)

ω∗I (t) =
1

B (hI)

[
1

γ

φr
σr
− ω∗N(t)B (hN)

]
+
DK∗(t)

B (hI)
, (3.5)

ω∗S(t) = −1

γ

φS
σS
. (3.6)

Here, DK∗(t) denotes the duration (i.e., real interest rate sensitivity) of the optimal

conversion factor K∗(t) = A∗(t)/c∗(t) (where A∗(t) represents the total wealth level implied

by implementing the optimal consumption and portfolio policies). The Appendix provides a

mathematical definition of DK∗(t) (see (A16)).

The first element of ω∗(t), i.e., ω∗N(t), denotes the share of total wealth invested in a nominal

bond with fixed time to maturity hN . The individual allocates part of his total wealth to a

nominal bond for a speculative reason: he wants to benefit from the inflation risk premium

−λπσπC (hN) ≥ 0. The size of this speculative demand is positively related to the unit factor

loading φπ/σπ and negatively related to the individual’s coefficient of relative risk aversion γ.

Because these parameters are assumed constant and the time to maturity hN is fixed, the share

of total wealth invested in the nominal bond does not change over the individual’s life cycle.

The second element of ω∗(t), i.e., ω∗I (t), denotes the share of total wealth invested in an

inflation-linked bond with fixed time to maturity hI . There are two reasons why the individual

prefers to allocate part of his total wealth to an inflation-linked bond. The first reason is

a speculative one: the individual wants to profit from the real interest rate risk premium

−λrσrB (hI) ≥ 0. However, because the individual already picks up the real interest rate risk

premium −λrσrB (hN) ≥ 0 by investing part of his total wealth in a nominal bond with fixed

time to maturity hN , the speculative demand for the inflation-linked bond can become negative

for sufficiently large φπ/σπ or sufficiently small φr/σr (see also (3.4) and (3.5)).

The second reason to invest in an inflation-linked bond is a hedging one: the individual

wants to hedge against real interest rate fluctuations in the conversion factor. This so-called

intertemporal hedging demand depends on the duration of the conversion factor DK∗(t). We

note that the duration of optimal total wealth DA∗(t) = DK∗(t) +φr/ (γσr) is (typically) larger

than the duration of the conversion factor DK∗(t), because the former also takes into account
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the impact of a change in the real interest rate on current consumption.

Figure 2 shows the (median) duration of the conversion factor over the life cycle for various

levels of relative risk aversion. As shown by this figure, the duration declines as the individual

becomes older. Indeed, the younger the individual, the longer his investment period, and hence

the more sensitive the conversion factor is to changes in the real interest rate. The duration

also depends on the level of relative risk aversion. In particular, the duration of a moderately

risk averse individual is smaller than the duration of a highly risk averse individual. Intuitively,

after a persistent increase in the real interest rate, an individual with a moderate level of risk

aversion increases the expected growth rate of real consumption more than an individual with

a high level of risk aversion. As a result, the conversion factor of a moderately risk averse

individual responds less to a change in the real interest rate than the conversion factor of a

highly risk averse individual. In the extreme case in which the individual is infinitely risk

averse, the duration of the conversion factor coincides with the duration of an inflation-linked

perpetuity.
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Figure 2. Illustration of the duration of the conversion factor. The figure illustrates the median
duration of the conversion factor over the life cycle for various levels of relative risk aversion. The benchmark
parameter values are given in Table 1.

Finally, the third element of ω∗(t), i.e., ω∗S(t), denotes the share of total wealth invested

in the risky stock. The individual invests part of his total wealth in the risky stock so as to

pick up the equity risk premium λSσS ≥ 0. As is also the case for the (speculative) nominal
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bond demand, the share of total wealth invested in the risky stock does not change over the

individual’s life cycle.

Figure 3 illustrates the median portfolio shares over the life cycle. The individual invests his

total wealth in a 10-year nominal bond, a 30-year inflation-linked bond, a risky stock, and cash.

As shown by this figure, the demand for the inflation-linked bond decreases as the individual

becomes older. An inflation-linked bond – which hedges against real interest rate risk as well

as inflation risk – is particularly valuable for a young individual because the market-consistent

value of his optimal remaining lifetime consumption is very sensitive to changes in the real

interest rate and the inflation rate. Finally, we note that the demand for the nominal bond is

zero because the unit factor loading φπ/σπ = 0. The next section explores how the individual

should allocate his financial wealth over the various asset classes.
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Figure 3. Illustration of median portfolio shares over the life cycle. The figure illustrates the median
shares of total wealth invested in a 10-year nominal zero-coupon bond, a 30-year inflation-linked zero-coupon
bond, a risky stock and cash as a function of age. The benchmark parameter values are given in Table 1. We
note that the demand for the nominal bond is zero because the unit factor loading φπ/σπ = 0.
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4 Impact of Human Capital on the Optimal Portfolio

Strategy

This section explores the impact of human capital (i.e., discounted value of future labor

earnings) on the optimal portfolio strategy. Inspired by Bodie et al. (1992), we assume that

labor income is risk-free in real terms. Furthermore, we allow pension payments from the

government to be included in the computation of human capital. The state pension payments

are also assumed to be risk-free in real terms. We can thus interpret human capital as an

inflation-linked bond. Let DH(t) denote the duration at time t of human capital. The

Appendix provides a mathematical definition of DH(t) (see (A25)). The individual can only

invest his financial wealth – which equals total wealth minus human capital – in the financial

market. When the individual makes the asset allocation decision, he takes into account the

fact that he already possess a valuable asset, namely human capital. Let

ω̂(t) = (ω̂N(t), ω̂I(t), ω̂S(t)) be the vector consisting of the shares of financial wealth invested

in the risky assets. We find that the vector of optimal portfolio weights ω̂∗(t) is given by (see

the Appendix for a proof)

ω̂∗(t) = ω∗(t) +
H(t)

F (t)
ω∗(t)−

(
0,
DH(t)

B (hI)

H(t)

F (t)
, 0

)
, (4.1)

where H(t) and F (t) denote human capital and financial wealth at adult age t, respectively.

The shares of financial wealth invested in the nominal bond and the risky stock are not

constant, but rather decrease (on average) with age. Intuitively, because human capital does

not carry inflation risk and stock market risk, its expected return is relatively low. As a result,

to obtain a sufficiently high expected return on total wealth, financial wealth should be tilted

towards investments in the nominal bond and the risky stock. Because human capital becomes

relatively less important as the individual ages, the shares of financial wealth invested in the

nominal bond and the risky stock decrease over the individual’s life cycle. The impact of human

capital on the demand for the inflation-linked bond is less clear. We can write the share of

financial wealth invested in the inflation-linked bond as follows:

ω̂∗I (t) = ω∗I (t) +
H(t)

F (t)B (hI)
(DA∗(t)− ω∗N(t)B (hN)−DH(t)) . (4.2)
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Human capital is already exposed to real interest rate risk. However, its duration DH(t) is

typically not equal to the difference between the duration of total wealth DA∗(t) and the

duration of the nominal bond portfolio ω∗N(t)B (hN). If DH(t) is smaller than

DA∗(t)− ω∗N(t)B (hN), then human capital has ‘insufficient’ exposure to real interest rate risk.

As a result, the individual should increase the investments in the inflation-linked bond to

obtain an adequate exposure to real interest rate risk. Conversely, if DH(t) is larger than

DA∗(t) − ω∗N(t)B (hN), then human capital has too much exposure to real interest rate risk.

In that case, the individual should reduce the investments in the inflation-linked bond to

achieve the desired exposure to real interest rate risk. Finally, we note that the duration of

human capital DH(t) is not always smaller than the duration of total wealth DA∗(t). In

particular, the duration of human capital typically exceeds the duration of total wealth if the

size of the state pension is sufficiently large and the coefficient of relative risk aversion is

relatively low. Figure 4 shows the (median) duration of human capital over the life cycle for

various levels of state pension. This figure also compares the duration of human capital with

the duration of total wealth.
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Figure 4. Illustration of the duration of human capital. Panel (a) illustrates the (median)
duration of human capital over the life cycle for various levels of state pension. Panel (b)
compares the (median) duration of human capital with the (median) duration of total wealth.
This panel assumes that the state pension is equal to 40% of labor income. The benchmark
parameter values are given in Table 1. We note that the demand for the nominal bond is zero
because the unit factor loading φπ/σπ = 0.

Figure 5(a) illustrates the median shares of financial wealth invested in a 10-year nominal

bond, a 30-year inflation-linked bond, a risky stock, and cash. As shown by this figure, the
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investment portfolios of young individuals consist not only of risky stocks but also of (index-

linked) bonds. This stands in sharp contrast with empirical evidence: bond portfolios are

typically absent in the investment portfolios of young individuals. The demand for cash is

negative for most ages: the individual borrows money to invest in the financial market. Figure

5(b) shows how total wealth is allocated between human capital, the nominal bond portfolio,

the inflation-linked bond portfolio, the stock portfolio, and the cash account.
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Figure 5. Illustration of median portfolio shares over the life cycle. Panel (a) illustrates
the median shares of financial wealth invested in a 10-year nominal zero-coupon bond, a 30-
year inflation-linked zero-coupon bond, a risky stock and cash as a function of age. Panel (b)
illustrates the composition of total wealth. The benchmark parameter values are given in Table
1. The state pension is assumed to be 40% of labor income. We note that the demand for the
nominal bond is zero because the unit factor loading φπ/σπ = 0.

5 Borrowing Constraint

In section 3 we saw that, once we add human capital to the model, the financial portfolio

becomes highly leveraged whenever human capital form a big part of total wealth. One may

worry that such levels of financial leverage are hard to obtain in practice, as human capital can

not be used as collateral. Therefore, we now explore the impact of a borrowing constraint and

short-sales constraint on the optimal portfolio policies. The constraints imply that we can no

longer derive the optimal policies in closed-form. Hence, we resort to numerical optimization.

The Appendix outlines the numerical solution technique.

Figure 6(a) illustrates the median shares of financial wealth invested in each asset. In a
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Figure 6. Illustration of constrained median portfolio shares over the life cycle. Panel
(a) illustrates the median shares of financial wealth invested in a 10-year nominal zero-coupon
bond, a 30-year inflation-linked zero-coupon bond, the stock index and cash, as a function of
age. Panel (b) illustrates the composition of total wealth. The benchmark parameter values
are given in Table 1. The state pension is assumed to be 40% of labor income. We note that
the demand for the nominal bond is zero because the unit factor loading φπ/σπ = 0.

median scenario, the portfolio constraints are binding all the way up to an age of 60. Above this

age, the solution is equal to the unconstrained solution as described in Section 3. Below this

age, the portfolio can be roughly described by following a rule of thumb: scarce portfolio space

is first allocated to stocks, up to the unconstrained optimal level, and then to the inflation-

linked bond. This is only approximately true though, at the age of sixty it is clearly visible

that the optimal allocation to stocks kinks, which shows that the constraint also reduces the

stock exposure at this point.

Notice that the age at which the constraint is binding depends on the realization of returns

over the life-cycle. To illustrate this, Figure 7(a) shows the composition of total wealth at age

60 as a function of realized wealth. The horizontal axis denotes the percentiles of the wealth

distribution. Above the median, at this age, the constraint is no longer binding.

Strictly speaking, the optimal portfolio allocation also depends on the realized level of the

real interest rate. The interest rate affects the duration of optimal consumption and hence the

hedging demand for the long-term bond. Figure 7(b) however illustrates that this impact is

hardly observable. The reason is that the change in duration is largely offset by the fact that

the duration of human capital also changes.
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Figure 7. Illustration of constrained median portfolio shares at age 60.
Panel (a) illustrates the composition of total wealth at age 60 as a function of the distribution of
wealth (conditional on the real interest rate at its median). Panel (b) illustrates the composition
of total wealth at age 60 as a function of the real interest rate (with the financial wealth share
fixed at its unconditional median). The distributions are based on Monte-Carlo simulation with
50,000 realized scenarios.

5.1 Welfare Cost of Sub-Optimal Interest Hedge

Not appropriately hedging interest rate risk can be a costly mistake within the model. To

illustrate this, we calculate what the welfare effect is if the duration of the fixed income

portfolio (long-term bond and cash), is not chosen optimally for the next year. Instead of the

(constrained) optimal fixed income portfolio, we assume that the duration of the fixed income

portfolio is fixed at five (as observed in the Morningstar data on TDFs). Figure 8 shows the

welfare effect over the life-cycle (at median wealth and interest). The welfare effect is

expressed as a percentage of consumption in the corresponding year. Due to the portfolio

constraints, young individuals do not invest in fixed income to begin with, hence the welfare

effect is zero at young ages. Especially for middle aged individuals, the mistake can be costly,

with the welfare loss peaking at five percent of consumption for our baseline parameters. The

figure also shows how this value varies if we consider interest rate shocks to be more or less

persistent, by changing the halftime of interest rate shocks to either 5 or 35. Since there is no

reason to believe that interest rates are actually mean-reverting in practice, probably a high

interest rate persistence better reflects the fundamental uncertainty investors face about

long-term interest rate developments.
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Figure 8. Welfare effect from static fixed income portfolio The figure illustrates the welfare loss from
not implementing the (constrained) optimal fixed income portfolio, but investing in a fixed income portfolio
with a fixed duration of five instead during the next year (and investing optimally again after that). The welfare
loss is expressed as a percentage of consumption in the affected year.

6 Conclusion

PM
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Appendix A: Mathematical Proofs

Derivation of (2.8)

This appendix derives the dynamics of the price of a nominal bond. We can obtain the dynamics

of the price of an inflation-linked bond using similar techniques. The bond price PN(t, h) follows

from computing the following conditional expectation:3

PN(t, h) = Et
[
m(t+ h)

m(t)

]
= Et

[
exp

{
−
∫ h

0

(
r(t+ v) + π(t+ v) +

1

2
φ>ρφ

)
dv + φ>

∫ h

0

dW (t+ v)

}]
.

(A1)

Here, Et denotes the expectation conditional upon the information available at time t.

Equation (A1) shows that the aggregate real interest rate r̄(t, h) =
∫ h

0
r(t + v)dv and the

aggregate inflation rate π̄(t, h) =
∫ h

0
π(t+v)dv play a key role in determining the nominal bond

price. We find that the aggregate real interest rate r̄(t, h) is given by

r̄(t, h) =

∫ h

0

r(t+ v)dv

=

∫ h

0

(
e−κvr(t) +

(
1− e−κv

)
r̄
)

dv + σr

∫ h

0

∫ v

0

e−κ(v−u)dWr(t+ u)dv

=

∫ h

0

(
r(t) +

(
1− e−κv

)
(r̄ − r(t))

)
dv + σr

∫ h

0

∫ h

v

e−κ(h−u)dudWr(t+ v)

=

∫ h

0

(r(t) + κB(v) (r̄ − r(t))) dv + σr

∫ h

0

1

κ

(
1− e−κ(h−v)

)
dWr(t+ v)

=

∫ h

0

Et [r(t+ v)] dv + σr

∫ h

0

B(h− v)dWr(t+ v).

(A2)

The second equality in (A2) follows from the fact that

r(t+ v) = e−κvr(t) +
(
1− e−κv

)
r̄ + σr

∫ v

0

e−κ(v−u)dWr(t+ u)

= Et [r(t+ v)] + σr

∫ v

0

e−κ(v−u)dWr(t+ u).

(A3)

We can derive (A3) by repeated substitution. In a similar fashion, we find that the aggregate

3The bond price PI(t, h) follows from computing the conditional expectation Et
[
m(t+h)
m(t) Π(t+ h)

]
.
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inflation rate π̄(t, h) is given by

π̄(t, h) =

∫ h

0

π(t+ v)dv =

∫ h

0

Et [π(t+ v)] dv + σπ

∫ h

0

C(h− v)dWπ(t+ v). (A4)

Substituting (A2) and (A4) into (A1) to eliminate
∫ h

0
r(t + v)dv and

∫ h
0
π(t + v)dv, we arrive

at

PN(t, h) = exp

{
−
∫ h

0

(
Et [r(t+ v) + π(t+ v)] +

1

2
φ>ρφ

)
dv

}
Et
[
exp

{∫ h

0

φSdWS(t+ v) +

∫ h

0

(φr −B(h− v)σr) dWr(t+ v)

+

∫ h

0

(φπ − C(h− v)σπ) dWπ(t+ v)

}]
= exp

{
−
∫ h

0

(
Et [R(t+ v)]− λrσrB(v)− λπσπC(v)

−1

2
B2(v)σ2

r −
1

2
C2(v)σ2

π − ρrπB(v)C(v)σrσπ

)
dv

}
= exp

{
−
∫ h

0

R(t, v)dv

}
.

(A5)

Here, the instantaneous nominal forward interest rate at adult age t for horizon v, i.e., Rt,v, is

defined as follows:

R(t, v) = Et [R(t+ v)]−λrσrB(v)−λπσπC(v)−1

2
B2(v)σ2

r−
1

2
C2(v)σ2

π−ρrπB(v)C(v)σrσπ. (A6)

The log bond price is given by (this follows from (A5) and (A6))

logPN(t, h) = −
∫ h

0

(
r(t) + κB(v) (r̄ − r(t)) + π(t) + θC(v) (π̄ − π(t))− λrσrB(v)

− λπσπC(v)− 1

2
B2(v)σ2

r −
1

2
C2(v)σ2

π − ρrπB(v)C(v)σrσπ

)
dv.

(A7)
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Solving the integral (A7), we arrive at4

logPN(t, h) = −r(t)h− (r̄ − r(t)) (h−B(h))− π(t)h− (π̄ − π(t)) (h− C(h))

+
λrσr
κ

(h−B(h)) +
λπσπ
θ

(h− C(h))

+
1

2

σ2
r

κ2

(
h− 2B(h) +

1

2
B(2h)

)
+

1

2

σ2
π

θ2

(
h− 2C(h) +

1

2
C(2h)

)
+
ρrπσrσπ
κθ

(
h−B(h)− C(h) +

1

κ+ θ

(
1− e−(κ+θ)h

))
= −r(t)B(h)− π(t)C(h)−M(h).

(A8)

Here, M(h) is defined as follows:

M(h) =

(
r̄ − λrσr

κ
− 1

2

σ2
r

κ2

)
(h−B(h)) +

1

4κ
B2(h)σ2

r

+

(
π̄ − λπσπ

θ
− 1

2

σ2
π

θ2

)
(h− C(h)) +

1

4θ
C2(h)σ2

π

+
ρrπσrσπ
κθ

(
h−B(h)− C(h) +

1

κ+ θ

(
1− e−(κ+θ)h

))
.

(A9)

To calculate how the price of a nominal bond with a fixed maturity date t+h develops as time

proceeds (i.e., t+ h is fixed but t changes), we apply Itô’s lemma to

PN(t, h) = exp {−r(t)B(h)− π(t)C(h)−M(h)} . (A10)

We find

dPN(t, h)

PN(t, h)
=
(
R(t, h)− κB(h) (r̄ − r(t))− θC(h) (π̄ − π(t))

+
1

2
B2(v)σ2

r +
1

2
C2(v)σ2

π + ρrπB(v)C(v)σrσπ

)
dt

−B(h)σrdWr(t)− C(h)σπdWπ(t)

= (R(t)− λrσrB(h)− λπσπC(h)) dt−B(h)σrdWr(t)− C(h)σπdWπ(t).

(A11)

4The first equality follows from B2(v) =
(
1− 2e−κv + e−2κv

)
/κ2 and the second equality follows from

B2(h) = (2B(h)−B(2h)) /κ.
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Derivation of (3.1)

The Lagrangian L is given by

L = E

[∫ T

0

e−δt
1

1− γ

(
c(t)

Π(t)

)1−γ

dt

]
+ y

(
A(0)− E

[∫ T

0

m(t)c(t) dt

])

=

∫ T

0

E

[
e−δt

1

1− γ

(
c(t)

Π(t)

)1−γ

− ym(t)c(t)

]
dt+ yA(0).

(A12)

Here y ≥ 0 denotes the Lagrange multiplier associated with the static budget constraint. The

individual aims to maximize e−δt 1
1−γ

(
c(t)
Π(t)

)1−γ
− ym(t)c(t). The optimal consumption choice

c∗(t) satisfies the following first-order optimality condition:

e−δt
1

Π(t)

(
c∗(t)

Π(t)

)−γ
= ym(t). (A13)

After solving the first-order optimality condition, we obtain the following optimal consumption

choice:

c∗(t) = Πt

(
eδtyΠ(t)m(t)

)− 1
γ . (A14)

Substituting the expression for the consumer price index Π(t) = exp
{∫ t

0
π(s) ds

}
and the

stochastic discount factor m(t) = exp
{
−
∫ t

0

(
R(t) + 1

2
φ>ρφ

)
dt+ φ>

∫ t
0

dW (t)
}

into (A14), we

arrive at (3.1).

Derivation of (3.4), (3.5) and (3.6)

Denote by V ∗(t) the market-consistent value at adult age t of current and future optimal

consumption choices. We define V ∗(t) as follows:

V ∗(t) =

∫ T−t

0

Et
[
m(t+ h)

m(t)
c∗(t+ h)

]
dh

= c∗(t)

∫ T−t

0

Et
[
m(t+ h)

m(t)

c∗(t+ h)

c∗(t)

]
dh = c∗(t)K∗(t),

(A15)
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where K∗(t) denotes the conversion factor at adult age t:

K∗(t) =

∫ T−t

0

Et
[
m(t+ h)

m(t)

c∗(t+ h)

c∗(t)

]
dh =

∫ T−t

0

exp {−d∗(t, h)h} dh. (A16)

Here, d∗(t, h) represents the market-consistent discount rate at adult age t for horizon h ≥ 0.

Straightforward computations show that

d∗(t, h) =
1

h

[(
1− 1

γ

)∫ h

0

(
r(t) + κB(h) (r̄ − r(t)) +

1

2
φ>ρφ

)
dh

−1

2

(
1− 1

γ

)2 ∫ h

0

(φr −B(h)σr)
2 dh

−
(

1− 1

γ

)2

ρrπ

∫ h

0

(φr −B(h)σr)φπ dh

−
(

1− 1

γ

)2

ρrS

∫ h

0

(φr −B(h)σr)φS dh

]

− 1

2

(
1− 1

γ

)2

φ2
π −

1

2

(
1− 1

γ

)2

φ2
S −

(
1− 1

γ

)2

ρπSφπφS.

(A17)

The quantity log V ∗(t) evolves according to (this follows from (3.1), (A16) and (A17))

d log V ∗(t) = d log c∗(t) + d logK∗(t)

= (. . .) dt−
(

1

γ
φr +DK∗(t)σr

)
dWr(t)−

1

γ
φπ dWπ(t)− 1

γ
φS dWS(t).

(A18)

Here, DK∗(t) represents the duration of the conversion factor:

DK∗(t) =

(
1− 1

γ

)∫ T−t

0

V ∗(t, h)

V ∗(t)
B(h) dh, (A19)

where V ∗(t, h) = c∗(t) exp {−d∗(t, h)h}.

Log total wealth evolves according to:

d logA(t) = (. . .) dt− [ωN(t)B (hN) + ωI(t)B (hI)]σrdWr(t)

− ωN(t)C (hN)σπdWπ(t) + ωS(t)σSdWS(t).

(A20)

Comparing (A20) with (A18), we arrive at (3.4), (3.5) and (3.6).
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Derivation of (4.1)

Denote by L(t) and H(t) labor income and human capital at adult age t, respectively. We

define human capital as follows:

H(t) =

∫ T−t

0

H(t, h) dh, (A21)

where

H(t, h) = Et
[
m(t+ h)

m(t)
L(t+ h)

]
(A22)

with

L(t, h) =


Π(t+ h) if t+ h < TR

s · Π(t+ h) if t+ h ≥ TR.

(A23)

Here, TR denotes the age at which the individual retires and 0 ≤ s ≤ 1 represents the pension

payment from the government (expressed as a share of the consumer price index).

Straightforward computations show

dH(t) = (R(t)− λrσrDH(t))H(t) dt−DH(t)σrH(t) dWr(t)− L(t) dt, (A24)

where

DH(t) =

∫ T−t

0

H(t, h)

H(t)
B(h) dh (A25)

denotes the duration of human capital.

Financial wealth F (t) evolves as follows:

dF (t) = (. . .) dt− [ω̂N(t)B (hN) + ω̂I(t)B (hI)]σrF (t)dWr(t)

− ω̂N(t)C (hN)σπF (t)dWπ(t) + ω̂S(t)σSF (t)dWS(t).

(A26)
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Hence, total wealth A(t) = H(t) + F (t) satisfies

dA(t) = dH(t) + dF (t)

= (. . .) dt−
[
ω̂N(t)B (hN)

F (t)

A(t)
+ ω̂I(t)B (hI)

F (t)

A(t)
+DH(t)

H(t)

A(t)

]
σrA(t)dWr(t)

− ω̂N(t)C (hN)
F (t)

A(t)
σπA(t)dWπ(t) + ω̂S(t)σS

F (t)

A(t)
A(t)dWS(t).

(A27)

Comparing (2.9) with (A27), we arrive at (4.1).

Appendix B: Numerical Solution Technique

We determine the optimal consumption and portfolio policies using numerical backward

induction. We start by discretizing both time and the state space. We first specify discrete

points in the state space, called grid points, for the final time period. For each grid point, we

determine the optimal consumption choice, the optimal portfolio choice and the level of the

value function. For the final period these values are trivial, since the individual simply

consumes any remaining wealth. We then move one period back in time. We then first derive

the optimal portfolio decision for wealth after consumption for all points on the state space

grid. Subsequently we determine optimal consumption using the endogonous grid method

proposed by Carroll (2006). This allows us to exploit the analytical first order condition to

the optimal consumption problem, which means we do not need to numerically search for the

solution. Finding the optimal portfolio weights and optimal consumption does requires us to

evaluate the expected value of the utility function next period. We do so by numerical

integration over the state space using Gaussian Quadrature. Whenever the integration

algorithm requires points that are not on the grid, we use an interpolation technique. In

particular, we linearly interpolate a certainty equivalent measure: the certain and flat level of

consumption that would deliver the level of utility in the grid point. We then convert the

interpolated certainty equivalent back to utility terms. The idea behind this approach is that

in the unconstrained problem, this certainty equivalent would be a linear function of the

endogonous state (wealth) and hence our procedure would yield the exact utility value for

wealth levels not on our grid.
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