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Abstract

In defined benefit pension fund investments, the funding ratio is affected by
bond yields through both the asset and liability sides. This paper evaluates the
impact of misspecification uncertainty on the funding ratio forecasted 10 years
ahead, using a prediction interval incorporating misspecification uncertainty to
account for using a wrong model. We focus on some commonly-used affine
term structure models to investigate the impact of misspecification uncertainty.
These models include those taking into account macroeconomic factors, and
those not explicitly excluding arbitrage opportunities but performing well from
an empirical point of view. As an application, we consider a stylized defined
benefit pension. The empirical analysis shows that the impact of misspecification
uncertainty on the forecasted funding ratio is non-negligible, especially when a
simple-structured nominal model is preferred in practice.
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1 Introduction

This paper empirically investigates the impact of misspecification uncertainty on a
defined benefit pension funding ratio forecasted 10 years ahead from 2016, using a
prediction interval incorporating model misspecification uncertainty.

Typically, a pension fund in the second pillar, supported by both employers and
employees, can be classified into three types: a defined contribution type which
requires a defined amount of contribution before retirement without promising a
defined amount to pay after retirement; a defined benefit type which promises to
pay a defined pension every period after retirement with the contribution before
retirement specified in an actuarially fair way; and a hybrid type which combines
the above two types. This paper looks into the defined benefit type. We consider a
set-up in which the defined pensions to be paid form the liabilities of the fund, and
the initial assets are set such that their value is equal to the actuarially fair value of
the initial liabilities. It is of crucial importance for the pension fund management to
monitor closely the funding ratio, i.e., the ratio of assets over liabilities. It helps to
perceive the changes of this ratio in the future, so as to adjust policies for preventing
the impact from unfavorable outcomes.

Before the financial crisis in 2008, the Dutch pension funding ratio was about 1.40
on average.1 This average dropped at the crisis, and has been fluctuating between
0.90 and 1.10 since then. The average funding ratio in the third quarter of 2016 is
right about 1.00, and in the fourth quarter it is slightly higher. In other words, the
pension funding ratio has not yet returned to pre-crisis levels.

A balanced funding ratio shall be maintained being at least one, but preferably
more. In other words, assets should at least redeem liabilities. Along the time horizon,
the investment return rate affects the assets, and the discount rate is used to value the
liabilities. If these two rates are balanced, there is little worry about the funding ratio.
Ideally, this could be realized by investing in only fixed-income securities (e.g., bonds)
with duration matching the liabilities. In this case, the bond yields on the asset side
correspond to the discount effects on the liability side. Because the same rates are
used on both sides, the assets and the liabilities are balanced, and the funding ratio
remains constant in real terms. However, most pension funds have the ambition to
offset the potential loss caused by inflation. To achieve this goal, the fund might want
to include stocks as a part of the asset portfolio in order to improve the investment
return. As a consequence, the asset side is affected by both bond yields and stock
returns. While the liability side is affected only by bond yields, the balance between
assets and liabilities is no longer guaranteed. In such a case, in order to forecast the
funding ratio, we do need to model stock returns and bond yields.

1Source: the Dutch central bank, DNB.
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The needs to model stocks and bonds and make forecast raise worries about
model uncertainty. We classify model uncertainty into two types. One is parameter
uncertainty, and the other is misspecification uncertainty. The former type can
be eliminated by increasing the data sample size, if the nominal model would be
correctly specified. The estimated parameters are usually evaluated by a classical
confidence interval. And a typical prediction interval for the funding ratio forecast
can be constructed to indicate where the true outcome is expected to fall with a given
significance level. The latter type, however, results from model misspecification. It
refers to the situation when the nominal model is essentially misspecified from the
true data generating process (DGP).2 In this situation, simply increasing the sample
size cannot eliminate the estimation discrepancy between the nominal model and
the true DGP. Put differently, when a nominal model is statistically indistinguishable
from the true DGP, only parameter uncertainty exists given a finite sample. But if the
nominal model is too far from the true DGP, reasonably misspecification uncertainty
appears as well, and considering only parameter uncertainty is no longer sufficient.
A good forecast is expected to take into account both types of model uncertainty.

In this paper, we choose to ignore parameter uncertainty, because parameter
uncertainty can be eliminated eventually by enlarging the sample size. In the big
data era, taking into account model misspecification becomes comparatively more
imperative, because the impact of parameter uncertainty could be mitigated with
more data information, while model misspecification uncertainty could not. Moreover,
in practice, simpler and easier-to-implement models are preferred, even though they
might fit the data poorly. This implies that misspecification uncertainty is inevitable
in many circumstances. And this is what concerns us the most.3

To sum up, when modelling the returns of stocks and bonds, the model uncertainty
inevitably affects the assets, the liabilities, and the funding ratio. To deal with this
issue, we incorporates model uncertainty in forecasting the funding ratio. In particular,
we focus on the impact of misspecification uncertainty on forecasting bonds, because
bonds are the fundamental ingredients affecting both the assets and liabilities, and
eventually the funding ratio. The impact of model uncertainty on the funding ratio
is considered as transmitted from that on bonds only. We do not consider the
model uncertainty of any other elements that could be modelled, such as change in
population, survival probabilities, stock returns, etc.

2In terms of sample, one could consider situation that the nominal model is statistically distin-
guishable from a pseudo true DGP. “Statistically distinguishable” is the opposite of “statistically
indistinguishable” which is used to describe models performing equivalently well based on some
statistical criteria, e.g., a test constructed on their log-likelihood functions for a finite sample.

3In small samples, parameter uncertainty might play a role. In such a case, it can be incorporated
straightforwardly, although finding the (approximate) sampling distribution might be somehow
complicated.
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The key to construct a prediction interval incorporating misspecification uncer-
tainty is a misspecification interval. The underlying idea of a misspecification interval
is that the expectation, or the forecast, might be derived from models alternative
to the nominal one, and it indicates the range of such alternative expectations. In
practice, the size of the misspecification interval depends on the discrepancy between
the nominal model and the so-call pseudo true DGP, a selected model performing the
best empirically. If the nominal model would be far from the true one, the expectation
range would be large. Therefore, incorporating a misspecification interval to form a
prediction interval makes it more powerful to tell where the true outcome might fall.

In this paper, we consider a class of affine term structure models (ATSMs) to price
bonds. This includes three categories: the canonical three-factor model proposed
by Litterman and Scheinkman [1991], without explicitly imposing the arbitrage-free
condition and modelling the evolution of the factors (e.g., VAR(1)); the dynamic
Nelson-Siegel model (DNS) by Diebold et al. [2006], with the modelling of the factors
but not the arbitrage-free condition; and the 3-step OLS model by Adrian et al. [2013],
with both the arbitrage-free condition and modelling the evolution of the factors. For
each category, we postulate some specific models different in terms of estimation
approaches and factors. We take the canonical three-factor model as the benchmark
nominal model, because it is simple, popular in practice, and is believed to fit the
empirical data fairly well. Moreover, the simple structure also implies strong impact
of model uncertainty. This could provide us with a clearer effect to analyze the impact.

The research is carried out based on monthly data of the recent 10 years, i.e., from
Jan 2007 to Dec 2016. Using the historical data, all postulated models are estimated,
and used to select the pseudo true DGPs. We assume that the pseudo true DGPs
remain unchanged in the 10 years ahead forecast. We forecast by simulations using
Monte-Carlo approach with the Kalman filter.

We set up the evolution of assets and liabilities, for the future 10 years from 2017
to 2026 and the cohort that is 65 years old in 2017 that no longer contributes and has
just received its first pension payments. The liabilities are considered up to 30 years
from 2017 for the surviving individuals. The survival probabilities estimates are given
by the Dutch Royal Actuarial Society, and assumed unaffected by model uncertainty
or future changes. Moreover, we impose indexation for inflation: the annual pensions
increase yearly by the (assumed to be) constant inflation rate. The value of the initial
assets is set equal to the value of the initial liabilities. The assets consist of both
stocks and bonds with weights 45% and 55%, respectively. The invested bonds are
zero-coupon bonds with 10-year maturity. A buy and sell operation is implemented
every period to maintain the 10-year duration. For every period after paying the due
pensions, all assets are reinvested. The future stock returns are simulated with mean
and variance based on the historical data, while the bond yields are simulated by
models. We assume no correlation between bonds and stocks. Additionally, we apply
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the lower bound restriction on bond yields to be −2%; any bond yield lower than −2%
are set to −2%.4 The funding ratio for each period is formed by the corresponding
assets and liabilities.

We need the bond yields with maturities up to 30 years for discounting the
liabilities, because the pensions are to be paid for 30 years from 2016. We specifically
model the bonds with the maturities of 1-year, 5-year, 9-year, 10-year, 15-year, 19-year,
20-year, 25-year and 30-year. The bond yields with other maturities can be recovered
by interpolating the yield curve formed by the modelled bond yields.

The main contribution of this paper is applying a prediction interval incorporating
misspecification uncertainty to analyze the forecasts of the funding ratio. We find
that this prediction interval is gradually enlarged over the forecast horizon and
significantly so, as compared to the prediction interval for the nominal model. In
2026, the forecast of the funding ratio derived from the nominal model is 0.95; its 95%
prediction interval predicts that the ratio could fall between 0.66 to 1.36. Yet, the one
with misspecification uncertainty shows that it could be between 0.48 and 1.88. The
difference between the two types of intervals is considerable and hard to ignore. In
such a case, policy makers face a much larger decision interval, which suggests more
caution and preparations because the funding ratio would fluctuate in a wides range.

In the sensitivity analysis, we choose another nominal model for comparison,
namely, the DNS model with yield-only factors estimated by a 2-step approach. This
model shows narrower intervals due to a better forecast with the extra assumption
on the factors. The forecast by the nominal model is raised to 1.07, meaning that the
balance is marginally maintained. The corresponding prediction interval is between
0.85 and 1.33, while the one with misspecification uncertainty is 0.81 and 1.38. The
misspecification interval is substantially lessened.

Moreover, we also consider the effect of the duration of the bond portfolio. By
including 1-year bonds, we reduce the duration to about 5-year, and by including
20-year bond, we increase the duration to about 15-year. In both cases, the differences
between intervals without and with misspecification uncertainty are wider, as com-
pared to the case with 10-year duration. But they are not as significant as in case of
changing the benchmark nominal model to the alternative one.

The early works on model uncertainty is reviewed in the book Hansen and
Sargent [2008]. They combine the ambiguity aversion concept and the max-min
preferences in decision theory, and robust control theory in engineering, to study
macroeconomics and finance. Decisions are made to maximize the worst case of
certain alternative models. The most important approach in their framework is to
construct the uncertainty set by the so-called detection error probability approach

4The −2% lower bound restriction on bond yields corresponds to the nowadays’ negative interest
rate that is not lower than −2%.
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[Anderson et al., 2003]. This approach, however, by construction only includes
statistically indistinguishable models. From our point of view, it addresses only
parameter uncertainty, which is not sufficient to explain all uncertainties when there
exists a significant discrepancy between the nominal model and the pseudo true one.

The approach in our paper is closely related to the proposal in Schneider and
Schweizer [2015]. The only difference lies in the determination of the amount of
model uncertainty. They apply the model confidence set (MCS) procedure [Hansen
et al., 2011] to a set including a number of models, and select a subset containing in-
distinguishable models that fit empirically the best. The amount of model uncertainty
is given by the largest divergence from the MCS. We, instead, measure the divergence
straightforwardly from the best-performing one judged by a loss function. We regard
this as sufficient to approximate the pseudo true DGP.

This paper is also related to Glasserman and Xu [2014], who provide an explicit
routine to construct the upper and lower bound models. They apply their approach
to risk management, and focus on the worst case as most studies do, while our
paper takes into account both the worst and the best cases to form an interval with
misspecification uncertainty. This paper contributes to the limited literature on
applying such an interval.

This paper is an extension of Li [2017], in which misspecification interval is applied
to analyze ATMS empirically. The extension this paper are that mainly threefold.
Firstly, the interval under consideration is a prediction interval incorporating model
uncertainty, rather than a simple misspecification interval.Secondly, this paper takes
into account more types of ATSMs and factors, while in Li [2017] only yield-only factor
models are considered. Thirdly, this paper considers a more complicated process that
the impact of model uncertainty transmits, rather than only a simple-10-year annuity
as an example. The transmitted impact of model uncertainty on funding ratio is of
practical meanings and policy implications for pension fund management.

In terms of the pension topic, Iyengar and Ma [2010] propose a robust optimization
approach for pension fund management. Unlike our paper, it looks into the problem
of pension contribution of firms, and focuses more on the engineering approach
to develop. Other pension-related papers considering model uncertainty include
Pelsser [2011] and Shen et al. [2014], who focus on asset pricing and hedging in an
incomplete market setting, respectively. Our paper pays attention to the application
of a prediction interval with misspecification uncertainty, and analyzes the dynamic
change for the future funding ratio.

In the following, we first discuss in Section 2 the model uncertainty in theory,
the construction of a prediction interval with misspecification uncertainty. Section 3
elaborates on the evolutions of assets and liabilities. Section 4 presents the types of
ATSMs taken into account, the simulation methods to forecast, and the loss function
constructed for the pseudo true DGP selection. Section 5 contains the empirical
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analysis. In this section, we choose a benchmark nominal model and the pseudo true
DGPs to construct the prediction intervals. We first analyze the bond yields, followed
by an analysis of the assets, the liabilities, and the funding ratios. A sensitivity
analysis is carried out for an alternative nominal model and different bond durations.
Section 6 concludes.

2 The Construction of Prediction Interval with Misspec-
ification Uncertainty

A prediction interval with misspecification uncertainty describes the range in which
the true outcome might fall, with high confidence. It includes the possibility that a
nominal model might be misspecified, and the outcome might be obtained from an
alternative model. This section discusses our construction of this prediction interval.
We firstly describe the framework to evaluate model uncertainty, and then form such
a prediction interval in terms of bond yields. We extend this construction to form
the prediction intervals with misspecification uncertainty, for the assets, the liabilities,
and the funding ratio.

2.1 Model Uncertainty Evaluation Framework

An important step in evaluating model uncertainty is to decide a reasonable amount
of model uncertainty, an amount that is sufficient to measure the discrepancy between
the nominal model and the true DGP.

Anderson et al. [2003] propose to use the detection error probability approach.
This approach uses empirical data to quantify the amount of model uncertainty
and to form an uncertainty set, assuming that the nominal model is statistically
indistinguishable from the true DGP. This assumption restricts the uncertainty set
such that it accounts for parameter uncertainty only, which can be eliminated when
a sufficiently large sample is available. It neglects misspecification uncertainty that
cannot be eliminated only by increasing the sample size.

Relaxing the above assumption, Schneider and Schweizer [2015] propose to identify
pseudo true DGP(s) first from a set of plausible models, so that we have a better idea
about the reasonable amount of model uncertainty. This amount of model uncertainty
can be measured by the Kullback-Leibler (KL) divergence between the nominal model
and the pseudo true DGP(s), quantifying the discrepancy between them.

Given the information provided by the data, they use the model confidence set
(MCS) selection procedure [Hansen et al., 2011] to identify a set of best-performing
and statistically indistinguishable models from a large collection of plausible models.
The MCS is regarded to represent the true DGP. Specifically, the procedure ranks
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the plausible models in the large set by their performances according to a loss
function. The one with the largest value is considered to be the worst-performing
one. Each round in the procedure tests whether it is indistinguishable from the rest,
at a specified significance level. If not, it will be removed, and the procedure will
be imposed on the set of the remaining models. This is repeated until no further
exclusion is needed. When only one model remains, it means that the information is
sufficient to distinguish a unique best performing model, and this model is simply
the one with the smallest value of the loss function. When there is more than one
remaining model, the amount of model uncertainty is determined by the largest
divergence from the corresponding model in the set.

The MCS ensures the greatest possibility to capture the true DGP because all
indistinguishable models are included. In our paper, we ignore the consideration of
this greatest possibility, and assume that the information given by the available data
is sufficient to rule out all models but the one with the least loss function value. The
amount of model uncertainty is then measured from this unique model. This model
is called the pseudo true DGP.

To sum up, we first form an uncertainty set with the KL divergence representing
a proper uncertainty amount between the nominal model and the true DGP. This
requires a selection from a large set of plausible models, by ranking them according
to a loss function that evaluates their performances. A pseudo true DGP whose loss
function value is the least is chosen to determine the KL divergence. Secondly, we
form the misspecification interval, bounded by the best and the worst expectations of
a quantity of interest (e.g., a bond yield), among all expectations derived from the
models in the uncertainty set. The models underlying the bounds of the interval are
called the “upper bound” and “lower bound” models, respectively. This constructed
misspecification interval is the base to incorporate misspecification uncertainty into
prediction interval.

In mathematical terms, suppose g(X) is a quantity of interest being a function of a
random variable X, assumed to follow the probability distribution pX (ΦX) with ΦX a
parameter vector. With misspecification uncertainty, one suspects this assumption of
X, and claims that X may be ruled by an alternative distribution. Then we evaluate the
impact of misspecification uncertainty of pX on g(X) by a misspecification interval.
Here, pX is the nominal model, whose parameter(s) in ΦX are estimated by the
nominal modelling structure and approach.

Suspecting pX not being the true DGP, we consider an uncertainty set PX, which
contains alternative models and tries to capture the true DGP as much as possible.
Thus, constructing PX needs to quantify the discrepancy between the nominal model
and the pseudo true DGP given by

p̃X ∈
{

p̄X ∈ {pX1 , pX2 , · · · , pXk}
∣∣l( p̄X) ≥ l(pXj), j = 1, · · · , k

}
,
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where l(pXj) is the loss function of a model pXj with ΦXj , and it is likewise for l( p̄X).
The discrepancy is measured by the KL divergence defined by κj = E

(
mj log mj

)
,

where mj is the Radon-Nikodym (RN) derivative defined by the ratio of the alternative
model j and the nominal model, mj = pXj /pX. Specifically, for the models with a
univariate normally distributed random variable, and ΦX = [µX, σ2

X]
′ with µX the

mean and σ2
X the variance of X, the KL divergence κj can be calculated by

κj = log
σX

σXj

+
σ2

Xj
+
(

µXj − µX

)2

2σ2
X

− 1
2

. (1)

Let the KL divergence κ∗ denote the discrepancy between the nominal model pX
and the pseudo true DGP p̃X. The model uncertainty set PX is then constructed using
κ∗, given by

PX =
{

pXj

∣∣pXj = mj · pX, and E
(
mj log mj

)
≤ κ∗

}
,

to include any model j whose KL divergence implied by the corresponding mj is
within the constraint κ∗. PX can be equivalently expressed in terms of mj by

Pm =
{

mj
∣∣E (mj log mj

)
≤ κ∗

}
. (2)

The expectation of g(X) under pX is given by E [g(X)]. The expectation under
an alternative model pXj is given by E

[
mj · g(X)

]
. From all the expectations derived

from the models in the uncertainty set, we are interested in the best and the worst
cases. Subject to (2), they are obtained by the optimization problems

sup
mj∈Pm

E
[
mj · g(X)

]
and inf

mj∈Pm
E
[
mj · g(X)

]
, (3)

respectively. These two quantities form the upper bound and lower bound of the
misspecification interval, providing the range within which the true expectation would
fall. The corresponding models are the bound models. According to Glasserman and
Xu [2014], the optimal solution of mj is given by

m∗j =
exp [θ · g(X)]

E {exp [θ · g(X)]} , (4)

where θ is in fact the Lagrangian multiplier constraining the condition (2) and indicat-
ing the impact of misspecification uncertainty on the nominal model. When θ > 0,
m∗j is used for the upper bound model, and when θ < 0, it is used for the lower
bound model. As seen, the parameter θ is the crucial ingredient to determine the
misspecification interval. We call θ the uncertainty parameter.
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Suppose g(X) = X where X is a univariate random variable, and assume that
X ∼ N

(
µX, σ2

X
)

under the nominal model pX. Since pm∗j
= m∗j · pX, substituting this

in (4) shows that X under a bound model pm∗j
follows a normal distribution as well,

with mean µX + θσ2
X, and variance σ2

X, i.e.,

X ∼ N
(

µX + θσ2
X, σ2

X

)
. (5)

Using the information in (5) and applying (1), the KL divergence between a bound
model and the nominal model is given by,

κθ =
1
2

θ2σ2
X. (6)

Given a nominal model with a specific variance σ2
X, κθ is a function of θ.

By the construction of the problem (3), the optimal solution m∗j exists at the

boundary of the constraint (2), i.e., κ∗ = E
(

m∗j log m∗j
)

. Thus κθ = κ∗. After κ∗

is obtained by the known distributions pX and p̃X, we are able to solve for the
uncertainty parameter θ. The bound models and expectations can then be recovered.

2.2 Prediction Interval and Misspecification Interval

In our application, the fundamental quantity of interest is a τ-maturity bond yield at
time t, i.e., g

(
y(τ)t

)
= y(τ)t . The nominal model assumes that y(τ)t ∼ N

(
µt, σ2

t
)
. In the

absence of model uncertainty, the outcome of y(τ)t is expected to fall in the prediction
interval with α significance level given by

PIt

(
y(τ)t

)
=
[
µt − z1− α

2
σt, µt + z1− α

2
σt

]
(7)

where z1− α
2

is the value for the (1− α
2 )-quantile of a standard Gaussian distribution.

For instance, for a 95% prediction interval, α = 5%, and z1− α
2
= 1.96.

In the presence of misspecification uncertainty, we also consider the prediction
intervals of the bound models, as constructed in the previous subsection, rather than
that of the nominal model only.5 The interval describing where the true outcome falls
is firstly expanded by the misspecification interval accounting for misspecification
uncertainty. This misspecification interval describes the range of expectations for
the models in the uncertainty set. Let ỹ(τ)t denote the bond yield under the bound

5The construction of these bound models is based on the first moments only (as discussed in
the previous subsection). The construction of these bound models, taking into account the second
moments, and in case of non-normality, higher order moments, is a topic of future research.
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model.6 By (5), the distribution of a bound model is ỹ(τ)t ∼ N
(
µt ± θtσ

2
t , σ2

t
)
, where

θt > 0 is the uncertainty parameter at time t. The misspecification interval of y(τ)t is
thus bounded by the expectations of ỹ(τ)t derived from the bound models, i.e.,

MIt

(
y(τ)t

)
=
[
µt − θtσ

2
t , µt + θtσ

2
t
]

, θt > 0 (8)

The prediction interval taking into account misspecification uncertainty is given by

MUPIt

(
y(τ)t

)
=
[
µt − θtσ

2
t − z1− α

2
σt, µt + θtσ

2
t + z1− α

2
σt

]
, θt > 0. (9)

In other words, with misspecification uncertainty, the true outcome would fall between
the upper bound of the upper bound model’s prediction interval, and the lower bound
of the lower bound model’s prediction interval, with a significance level based on the
relevant intervals’ construction.

2.3 The Prediction Intervals of the Funding Ratio, with Misspecifi-
cation Uncertainty

The impact of misspecification uncertainty on the bond yields is transmitted to
influence the assets and the liabilities, and eventually the funding ratio. Without
making an assumption about the distributions for these variables, we consider their
(1 − α) prediction intervals given by the α

2 and 1 − α
2 quantiles. The prediction

intervals of the assets, the liabilities, and the funding ratio based on the nominal
model of y(τ)t are

PIt (At) =
[

Q α
2
(At) , Q1− α

2
(At)

]
,

PIt (Lt) =
[

Q α
2
(Lt) , Q1− α

2
(Lt)

]
,

PIt (FRt) =
[

Q α
2
(FRt) , Q1− α

2
(FRt)

]
,

where Qq(At), Qq(Lt) and Qq(FRt) are the q-quantile of At, Lt, and FRt, respectively.
When taking into account misspecification uncertainty, the prediction intervals

based on the bound models of y(τ)t become

MUPIt (At) =
[

Q α
2

(
Al

t
)

, Q1− α
2
(Au

t )
]

,

MUPIt (Lt) =
[

Q α
2

(
Ll

t
)

, Q1− α
2
(Lu

t )
]

,

MUPIt (FRt) =
[

Q α
2

(
FRl

t

)
, Q1− α

2
(FRu

t )
]

,

6It is worthy to note that the observations of ỹ(τ)t and y(τ)t are identical, but their underlying
distributions are not. In this paper, a variable with ·̃ is denoted as one that follows an alternative
distribution.
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where the variables with the superscript u are derived from upper bound model of
y(τ)t . Likewise, the superscript l is used to indicate the empirical variables derived
from the lower bound model of y(τ)t .

3 Assets and Liabilities

This section describes the evolutions of the assets, the liabilities, and the funding ratio.
The time line starts at the end of 2016, denoted by t = 0. We focus on only the cohort
of 65 years-old at t = 0. At this point, the cohort’s labor salary stops, and the cohort
has already received its first pension for the coming year. Thus, this first pension
payment is excluded in our research.

The liabilities are considered at the end of each period after the annual pensions
for the next year are paid. The liabilities sum up the discounted annual pensions
to pay. The annual pensions are compensated for inflation, and paid to surviving
individuals only. We ignore the condition for inflation indexation, which usually
requires the funding ratio to reach a sufficiently high level so as to compensate for the
inflation. We assume that the liabilities for this cohort last up to 30 years from t = 0.

The initial value of the assets are set to equal that of the initial liabilities, so that
the funding ratio is just balanced at t = 0. From t = 0, the assets are (re)invested in
bonds and stocks. The pension fund benefits only from the assets’ returns7 at t = 1,
and pays the pension. The value of assets at t = 1 is considered after the payment.
We follow this process for 10 years.

The funding ratio at time t, FRt, is given by

FRt =
At

Lt
, t = 0, · · · , 10,

where At and Lt are the assets and liabilities at time t. When t = 0, it is the end of the
year 2016, and t = 10 is at the end of the year 2026. At t = 0, A0 = L0, and FR0 = 1.

3.1 Liabilities

The liabilities at time t aggregate the pensions to be paid in the future, discounted
to t. Suppose each individual alive has received the amount of pension π at t = 0,
and he is promised to receive the same amount annually in future, in real terms.
The probability for him to survive τ years and receive pensions is denoted by τ p(g)

65,0,
where g is for the gender. For instance, at t = 0, to receive the pension at t = 1, an
individual has to survive at least τ = 1 year, with the probability 1p(g)

65,0. Suppose

7Because all pension members are already retired, they do not pay contribution anymore.
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the population of the cohort is N(g)
65,0 for the gender g. In real terms, the aggregate

pensions to be paid at time t are the aggregate pensions to receive for the individuals
surviving τ = t year(s), given by

Πt = ∑
g

t p(g)
65,0 · N

(g)
65,0 · π, t = 1, · · · , 30.

Taking into account a constant inflation rate IF, the pension to pay at t = 1 would
in fact be (1 + IF) ·Π1. The same annual amount is promised for future. At t = 2,
the amount to pay is again compensated for the inflation, actualized as (1 + IF)2 ·Π2,
and this amount becomes the future promise. So on and so forth, the annual pension
promised at time t to pay from next period t + 1 is thus (1 + IF)t ·Πt. The diagram
in Figure 1 shows the flows of the liabilities for each individual alive.

2017 2018 2026 2046· · · · · ·

L0 :
τ = 1 2 3 10 29 30

π π π π π π

L1 :
τ = 2 3 10 29 30

(1 + IF)π (1 + IF)π (1 + IF)π (1 + IF)π (1 + IF)π

··
··

··
··

··
··

L10 :
τ = 10 29 30

(1 + IF)10 π (1 + IF)10 π (1 + IF)10 π

Figure 1: Liabilities Lt for individual alive at t = 0, · · · , 10

The liabilities Lt are the liabilities after the pensions amount (1 + IF)t Πt is paid,
i.e., summing up all Πτ for τ > t that are discounted by the τ-term interest rate y(τ)t
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at time t. As a consequence, it is given by

Lt = (1 + IF)t Πt+1 · exp
(
−1 · y(1)t

)
+ · · ·+ (1 + IF)t Π30 · exp

[
−(30− t) · y(30−t)

t

]
= (1 + IF)t

30

∑
τ=t+1

Πτ · exp
[
− (τ − t) · y(τ−t)

t

]
= (1 + IF)t

30

∑
τ=t+1

∑
g

τ p(g)
65,0 · N

(g)
65,0 · π · exp

[
− (τ − t) · y(τ−t)

t

]
= (1 + IF)t

30

∑
τ=t+1

∑
g

τ p(g)
65,0 · N

(g)
65,0 · π · P

(τ−t)
b,t , t = 0, · · · 10.

where P(τ−t)
b,t is the price of the bond with time-to-maturity (τ − t), at time t.

In our research, we consider only the cohort of age 65 in 2016, that has already
received its first year pension benefits. The reason for not looking into younger ages is
because we do not need to consider the contributions on the asset side, for simplicity.
And the reason for not looking into older ages is because we would like mitigate the
influence, as the micro-longevity risk8 on the survival probability τ p(g)

65,t is neglected.

We are also aware that the factor
(

τ p(g)
65,0 · P

(τ−t)
b,t

)
drops dramatically during the

30 years since 65 years-old, and eventually results in a small amount of liabilities
afterwards. This is the reason for considering the pension to pay for only 30 years.

3.2 Assets

The value of the assets at t = 0, A0, by construction satisfies the initial condition
A0 = L0. It is then invested in zero-coupon bonds and stocks. In future periods,
after benefiting from the investment with the return rate rt and paying the pensions
(1 + IF)t Πt, the values of the assets in the next period are given by

At = At−1 (1 + rt)− (1 + IF)t Πt, t = 1, · · · , 10.

The portfolio return rate rt is constructed as

rt = ws · rs,t + wb · rb,t, t = 1, · · · , 10,

where rs,t and rb,t are the returns of stocks and bonds, respectively, and ws and wb
are the weights of the assets allocated to stocks and bonds, respectively. Additionally,
ws + wb = 1 by assumption. The asset investment process is illustrated in the diagram
in Figure 2.

8It refers to non-systematic causes, resulting in, for instance, a smaller and smaller population
N(g)

65+t,t along the forecast horizon. See Hari et al. [2008].
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2016 2017 2018 2026· · · · · ·

t = 0 1 2 9 10

A0 = L0 A1 A2 A9 A10r1 r2 · · · · · · r10

Assets Flow: A0 (1 + r1) A1 (1 + r2) A9 (1 + r10)

· · · · · ·
(1 + IF)Π1 (1 + IF)2 Π2 (1 + IF)10 Π10

Figure 2: Pension Assets At at t = 0, · · · , 10

In the Netherlands, the investment typically allocates ws = 45% to stocks and
wb = 55% to bonds. The stock gross return rs,t is given by

rs,t =
Is,t − Is,t−1

Is,t−1
, t = 1, · · · , 10,

where Is,t is the total return index including both the price return and the dividend
return.

The investment in bonds consists of only the zero-coupon bonds with 10-year
maturity at time t. It is maintained by selling them at 9-year maturity and buying
new 10-year zero-coupon bonds at time t + 1. That is to say, the duration of the bond
investment is sustained as 10 years. The bonds’ holding return rb,t is given by

rb,t =
P(9)

b,t − P(10)
b,t−1

P(10)
b,t−1

, t = 1, · · · , 10,

where P(9)
b,t and P(10)

b,t−1 are the prices of the zero-coupon bonds with 9-year and 10-year
maturity, respectively. The prices are determined by the corresponding bond yields
P(τ)

b,t = exp
(
−τ · y(τ)t

)
for τ-year maturity.9

4 Affine Pricing Models

As discussed, bond yields are fundamental and responsible for the impact of mis-
specification uncertainty on the funding ratio. They can be modeled in many ways.

9Alternatively, given the total return index Is,t, and the bond yields y(τ)t , one may obtain the stock

gross return by rs,t = log Is,t
Is,t−1

, and the bond’s holding return by rb,t = log
P(9)

b,t

P(10)
b,t−1

= 10y(10)
t−1 − 9y(9)t .
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A significant one is by the class of affine term structure models (ATSMs). Models in
this class establish an affine relation between bond yields and factors. These factors
could include bond yields with different maturities, macroeconomic variables, latent
variables, unspanned variables, etc. Moreover, the ATSMs could be imposed with an
arbitrage condition, or estimated by various approaches (e.g., maximum likelihood
approach, Kalman filter approach, minimum chi-squared estimation [Hamilton and
Wu, 2012], etc.), providing different estimates of the parameters and distributions
of bond yields. To study the impact of misspecification uncertainty on bond yields,
we include several types of ATSMs: the canonical three-factor model [Litterman and
Scheinkman, 1991], the dynamic Nelson-Siegel model [Diebold and Li, 2006, Diebold
et al., 2006], and the arbitrage-free model estimated by the 3-step OLS approach
[Adrian et al., 2013]. In this section, we first describe the estimation of the model.
The second subsection describes the performance evaluation to select the pseudo true
DGP with historical data. In the end, we discuss the simulation approaches used to
forecast for different types of models.

4.1 Description of Models

This part describes the setting and the estimation of the types of models under
consideration.

4.1.1 The Canonical Three-Factor Model

The canonical three-factor model is proposed by Litterman and Scheinkman [1991].
It explains the bond yields using the first three principal components as the factors.
Many sequential studies find it fitting the empirical data rather well; see Driessen
et al. [2000], Dai and Singleton [2003], Piazzesi [2005, 2010], et al. It is popular also
for its high tractability in practice. The model is postulated as

y(τ)t = Aτ + B′τFt + εt,

where y(τ)t is the yield with τ-period maturity, Ft ∈ R3×1 is the vector compiling the
three factors, and εt is the estimation error with zero mean assumption.

The key point of this model is forming the factors in Ft, the first three principal
components, from the sample. The sample data typically includes k bond yields with
different maturities, including the one(s) to be priced. It is found in the literature that
the first three principal components already account for at least 90% of the variation
in the bond yields. Thus, it is suggested to use the first three principal components as
the factors Ft, referred to as level, slope, and curvature, respectively. Bτ is a vector of
the loadings for the three factors. The parameter Aτ is the intercept.
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4.1.2 The Dynamic Nelson Siegel Model

The dynamic Nelson Siegel (DNS) model [Diebold and Li, 2006, Diebold et al., 2006]
is an affine model without imposing an arbitrage-free restriction. This model is built
on the parsimonious approximation of bond yields by Nelson and Siegel [1987]. This
approximation is a linear formula associated with some latent parameters, weighted
by the quantities related to the maturity τ. The DNS regards the dynamic form of the
estimated latent parameters as the factors representing the level Lt, the slope St, and
the curvature Ct, and regards the constructed τ-specific parameters constructed as
the loadings Bτ. In particular, the bond yield is given by

y(τ)t = B′τFt + εt, (10)

where

Bτ =
(

1, 1−e−λτ

λτ , 1−e−λτ

λτ − e−λτ
)′

, Ft =

Lt
St
Ct

 .

Moreover, Diebold et al. [2006] assume that the factors follow a VAR(1) process. For
convenience, the VAR(1) process is formulated by mean-centered factors, with the
factor means µL, µS and µC, respectively, given by

(Ft − µ) = Ψ (Ft−1 − µ) + ηt, (11)

where µ = (µL, µS, µC)
′, and the parameter Ψ is estimated by the dynamic factors.

The disturbances εt and ηt are white noises, orthogonal to each other and to the initial
states,10 (

εt
ηt

)
∼WN

[(
0
0

)
,
(

Σε 0
0 Ση

)]
, E(F0η′t) = 0, E(F0ε′t) = 0.

In particular, the Σε matrix is assumed to be diagonal, implying that zero correlation
between the bond yields of different maturities. The Ση matrix is assumed non-
diagonal, allowing correlation between the factors. λ is a fixed parameter chosen such
that the loading for Ct is maximized in the approach by Nelson and Siegel [1987].

The factors in this model may include yields only, as well as with extra macro-
economic variables. In case of yield-only factors, the latent factor Ft is estimated
by multiple linear regressions for a number of dependent variables y(τ)t , with the
designed Bτ in (10). When k macro-economic factors are included, the new factor
vector F̃t ∈ R(3+k)×1 is complied with the estimated Ft and the macro-economic

10In case that εt and ηt are one-dimensioned, we replace Σ2
ε and Σ2

η by σ2
ε and σ2

η .
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variables. The new loadings matrix B̃τ is an augmented Bτ by appropriate rows of
zeros. The estimator of the parameter Ψ for F̃t is constructed the same way as for Ft in
(11). In other words, the macro-economic factors do not affect the bond yield pricing
process (10), but only the VAR(1) process (11). Such factors are called unspanned
factors; see Joslin et al. [2014], Duffee [2011], Wright [2011], etc.

This model can be estimated by straightforwardly applying OLS to (10) and (11).
In this approach λ is typically set to 0.0609, as in Diebold and Li [2006]. Alternatively,
one may employ a one-step Kalman filter approach.When long-term liabilities greatly
increase in a low interest rate, and the probability of very low yields should be
modeled accurately, the Kalman filter approach is preferred.

4.1.3 The Arbitrage-Free ATSM

An arbitrage-free ATSM imposes the arbitrage-free restriction, besides modelling the
evolution of the factors. It can be estimated by many approaches. Here we apply the
3-step OLS approach developed by Adrian et al. [2013].

The factors are assumed to follow a VAR(1) process,

Ft = µ + ΨFt−1 + ηt, (12)

where µ and Ψ are the parameters characterizing the autoregressive factor vector
Ft. The arbitrage-free condition rules out arbitrage opportunities, and guarantees a
unique price in a complete market. This price can be used to replicate other contingent
claims in the market, a property favored in the financial theory. The replication is
implemented through the pricing kernel, which discounts a bond’s future price such
that the expected discounted price equals today’s bond price. In this model, the
pricing kernel is assumed to be exponentially affine to the price of risk, and the price
of risk is affine to the factors. In this way, the bond yields can be expressed by the
recursively determined Aτ and Bτ,

y(τ)t = Aτ + B′τFt + εt, (13)

where εt ∼ N (0, Σε). All parameters, including the ones in the VAR(1) process, the
pricing kernel and the price of risk, are estimated by the 3-step OLS approach. We
refer to Adrian et al. [2013] for more details to the set-up and estimation.

The number of factors is not restricted. One may include any yield factors conjec-
tured to affect the bond being priced. One can also include unspanned macroeconomic
factors that affect only the VAR(1) process (12) but not the affine pricing process (13),
by adjusting the model structure and estimation as appropriate. In this paper, we
take into account a number of such models containing a variety of factors.
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4.2 Evaluation of the Models

We evaluate a large set of plausible models that includes the three types as described,
in order to select the best-performing one to be the pseudo true DGP. Using historical
data, a model’s performance is judged according to a loss function that compares the
historical realizations and estimates.

A typical loss function is built on the likelihood function. In this paper, for a sample
Z collecting T-length time series of a bond yield with τ-maturity

(
y(τ)1 , · · · , y(τ)T

)
, the

conditional quasi-log-likelihood function is

log l (φ) =
T
2

log σ2
ε −

1
2

T

∑
t=1

(
y(τ)t − Aτ − B′τFt

)2

σ2
ε

,

where φ = {Aτ, Bτ, σ2
ε }. The loss function is constructed by

Q (Z, φ) = −2 log l (φ) = T log σ2
ε −

T

∑
t=1

(
y(τ)t − Aτ − B′τFt

)2

σ2
ε

.

A smaller Q (Z, φ) indicates better performance, and closer to the true DGP. We
rank the values of the loss function given by all the models considered. The model
with the least loss function value is regarded as the best-performing one, and used as
the psuedo true DGP.

4.3 Simulation of the Models

Based on a model, the prediction of bond yields is implemented by simulation. Given
the types of model under consideration, we apply two simulation methods, depending
on the imposed conditions.

The first simulation method is historical simulation. It is applied to simulating the
canonical three-factor model. This model imposes no assumption on the evolution of
the factors, and no arbitrage-free condition. In other words, we know little about the
distribution of the factors. Therefore, one possible simulation method is the historical
simulation, i.e., drawing samples with replacement from the historical data.

More precisely, the historical factors are assumed to satisfy

Ft = µ + ηt,

where µ is the expectation of the historical data Ft, estimated by µ̂ = 1
T ∑T

t=1 Ft, and
ηt = Ft − µ̂ is the error following the empirical distribution. In practice, simulating
Ft is simply drawing with replacement from the historical record. Suppose the
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simulated factors are F̃t. Then the simulated bond yields ỹ(τ)t can be calculated with
the estimated characterizing parameters Âτ and B̂τ, i.e., ỹ(τ)t = Âτ + B̂′τ F̃t. Since the
simulate is based on a random draw, no initial values are assumed.

For other types of models, the factors’ behavior is assumed. Therefore, we can
forecast by the Monte-Carlo approach. We use the Kalman filter in the simulation.
Using the estimated characterizing parameters pertaining to the affine bond yield and
VAR(1) factors processes, this approach allows us to simulate bond yields and factors
together in one step. The initial value to simulate bond yield is the end-period value
in the sample. Simulating N paths, the forecast is simply the mean of the simulated
paths.

5 Empirical Analysis

Considering that we need the information of bond yields with maturities up to 30
years for the liabilities’ analysis, and particularly the maturities of 9 years and 10
years for the assets’ analysis, we choose to model the bond yields with maturities of
1-year, 5-year, 9-year, 10-year, 15-year, 19-year 20-year, 25-year, and 30-year. The bond
yields with other maturities are recovered by interpolating the yield curve formed by
the modelled bond yields.

This section first describes the basis data information, followed by determining the
pseudo true DGPs and the prediction intervals of bond yields when misspecification
uncertainty is incorporated, and comparing with the prediction intervals without
such uncertainty. The next part analyzes the impact of misspecification uncertainty
transmitted to the assets, the liabilities, and the funding ratio. In the last part, we
conduct a sensitivity analysis, using an alternative nominal model and adjusting the
duration of the bond investment.

5.1 Data Description

Since we model bond yields, the data needed are the data for factors, including bond
yields and macroeconomic variables. Stock returns are needed as well, to predict the
investment returns. We collect the recent 10 years’ data, i.e., from January 2007 until
December 2016. The data are of monthly frequency, with 120 observations in total.

We assume that the yield factors are the European AAA bond yields, whose
information is collected in terms of the Nielson-Siegel-Svensson (NSS) parameters
from the European Central Bank (ECB). The NSS parameters allow us to generate the
annualized AAA bond yield for any maturity. Macroeconomic factors include the
Dutch CPI, OECD year over year GDP growth rate, and the ECB fixed rate tenders
used for the main refinancing operations (MRO). These variables represent inflation,
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economic growth and monetary policy, which are macro-economic indexes. We
assume that the consumption in retirement occurs in the domestic market only, and
is thus affected by the Dutch CPI. We consider OECD year over year GDP growth
rates instead of the Dutch GDP, because the bond yields to be modelled are affected
by more than just the Dutch economy. The raw data of the fixed rate tenders are
documented from Oct 2008; missing observations are replaced by zero in the ECB
data. The stock return is obtained by the STOXX 600 total return index.

Table 1 reports the descriptive statistics for part of the data ready to apply. It does
not report all the NSS-estimated bond yields to be used as factors, but only those with
the same maturities for the bonds to be modelled. We use 44 bonds with different
maturities including the reported ones, to construct the principle components for the
factors in the canonical three-factor model. These bonds are with maturities of 1, 3, 6,
9, 10, 15, 18, 21, 30, 40, 50, 80, 90, 110 months, and 1 year to 30 years.

Figure 3a plots the reported NSS-estimated yields, and Figure 3b shows the
historical data of the stock return and the macroeconomic variables. The NSS-
estimated bond yields generally decrease. The 1-year yield fell below zero since 2013,
reaching almost −1% in the recent months. The 5-year bond yield also fell below zero
since 2015. The plot for the stock return shows fluctuations around a mean value. We
assume the stock return normally distributed.

5.2 The Prediction Intervals of the Bonds, with Misspecification
Uncertainty

To incorporate misspecification uncertainty into the prediction interval of a specific
maturity bond yield for the next 10 years ahead, we firstly determine the pseudo
true DGP for this bond using the past 10 years’ information, and assume the pseudo
true DGP remains unchanged for the future 10 years. We determine the amount of
model uncertainty and uncertainty parameters in the second part. The uncertainty
parameters allow us to incorporate misspecification uncertainty into the prediction
interval for this bond. The same implementation is carried out for the other specific
maturities bonds.

5.2.1 The Pseudo True DGPs and the Benchmark Nominal Model

The pseudo true DGP for a specific maturity bond is selected from a large set of
empirically relevant models, namely the ones described in Section 4.1. The factors of
the first three principle components in the canonical three-factor model are constructed
by the 44 bond yields mentioned earlier. For the DNS model using the yield-only
factors, the factors are the reported bond yields. For the DNS model using the
macro-yield factors, they are the reported bond yields and macroeconomic variables.
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For arbitrage-free ATSMs, some factors are only yields by choice, and some includes
macroeconomic variables as well. The recent 10-year data are used to estimate the
parameters for each empirically relevant model in the selection set. The value of the
loss function for each model is obtained by the estimates of these parameters.

Table 2 collects 45 empirically relevant models, and reports the rankings of their
performances by the loss function values in descending order. The pseudo true DGP
for each maturity is ranked in the last place. The pseudo true DGPs for all the
maturities are assumed unchanged in the 10 years forecast. All the pseudo true DGPs
are trending upward in prediction, indicating mean-reverting processes. Figure 4
illustrates such a process, by including the historical data and the forecast using the
DNS models estimated by Kalman filter.

We choose the canonical three-factor model as the benchmark nominal model to
model bond yields. The first main reason is that it is popular and easy to implement.
It fits empirical data fairly well, and typically explains more than 90% of the variation
in the bond yields. The second reason is that the considerable model uncertainty
implied by its simple structure could help in studying the impact of model uncertainty.
This model imposes no assumption on the evolution of the factors, and no arbitrage-
free condition. As a consequence, it might allow for considerable misspecification
uncertainty, and cause problematic forecast.

The second reason can be verified by recalling the method to forecast by this model.
The employed historical simulation method draws an observation with replacement
from the historical data for each period and each simulation path. The forecast of each
period is simply the mean of the drawn observations for each period in all paths. As
long as the number of paths is large enough, the forecast is constant over time. Hence,
there could be a big discrepancy from the mean-reverting pseudo true DGP to this
nominal model in forecasting. Consequently, we expect to find large amount of model
uncertainty κ∗t , large values of θt and wide prediction intervals with misspecification
uncertainty, providing a clearer result to study the impact of model uncertainty.

In other words, the first reason represents practitioners’ preference, while the
second reason fits our study purpose.

5.2.2 The Prediction Intervals of Bond Yields with Misspecification Uncertainty

We apply monthly data, and predict monthly the bond yields, their prediction intervals
without and with misspecification uncertainty respectively, for the future 10 years.

As mentioned, the bond yield for each specific maturity τ is modelled and fore-
casted individually. The forecast of the bond yield y(τ)t is based on N = 50, 000
simulation paths of 120 months ahead starting from Jan 2017, using the data in Dec
2016 as the initial values. With the variance of the simulations for each period t, the
prediction interval for the nominal model PIt

(
y(τ)t

)
can be recovered by (7) .
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The prediction interval of y(τ)t with misspecification concern, MUPIt

(
y(τ)t

)
, com-

bines the misspecification interval and the prediction intervals of the bound model
models. It is constructed by the uncertainty parameter θt, the forecast µt and the
forecast variance σ2

t . The uncertainty parameter θt implies the impact of the model
uncertainty amount κ∗t at time t, between the nominal model and the pseudo true
DGP for τ-maturity bond. As κ∗t is obtained by (1) with the forecasts and the variances
of the nominal model and the pseudo true DGP, θt is recovered as well by (6), given
the condition κ∗t = κθt .

Table 3 reports the estimates of forecasted yield for each year, µ̂t, and the standard
deviation σ̂t. The former is generally increasing over maturity, while the latter is
decreasing. But both of them remain almost stable over time. Table 4 reports the
estimates κ̂∗t and θ̂t for the end of each year. Because the pseudo true DGP for
each maturity remains the same for the whole forecast horizon, we can compare
the size of model uncertainty over time. For instance, for the 1-year maturity bond,
the amount of model uncertainty κ̂∗t , decreases dramatically until 2022, and then
increases slightly until the end of the horizon. Since σ̂t is fairly stable over time,
correspondingly θ̂t shows the same pattern as κ̂∗t . For the 30-year maturity bond, κ̂∗t
is too small to observe model uncertainty. Thus, the resulting prediction interval
with misspecification uncertainty is supposed to be almost identical to that without
misspecification uncertainty. κ̂∗t and θ̂t are remarkably large in the near future and for
shorter maturities, but much smaller in the further future and for longer maturities.

The PIt

(
y(τ)t

)
and MUPIt

(
y(τ)t

)
, are obtained by (7) and (9) respectively. Since θ̂t

is generally decreasing over time and over maturity, the misspecification interval width
determined by θ̂tσ̂

2
t shrinks over time and over maturity. So is the MUPIt

(
y(τ)t

)
.

The resulting PIt

(
y(τ)t

)
and MUPIt

(
y(τ)t

)
are plotted in Figure 5. Figure 5a

and Figure 5b show the structure of bond yields from the perspective of maturity
and time respectively. The dashed lines indicate the MUPIt

(
y(τ)t

)
, while the dotted

lines indicate the PIt

(
y(τ)t

)
. The gap between them is the impact of misspecification

uncertainty. We see that the misspecification impact in the near future is stronger,
causing the prediction interval with misspecification uncertainty wider than that
of the nominal model. As κ̂∗ becomes more insignificant over time, MUPIt

(
y(τ)t

)
becomes closer to PIt

(
y(τ)t

)
; see the 2026 plot in Figure 5b. These observations are in

line with the implications from combining the results in Table 3 and Table 4.
As discussed, the forecast of the nominal model is obtained by historical simulation.

Thus, it is a constant, being the mean of historical data. The forecast of the pseudo
true DGP, capturing the mean-reverting trend, is time-varying with a low level of
initial yield. Hence there will be a big discrepancy at the beginning. As the yield given
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the pseudo true DGP picks up and recovers the historical mean level in the further
future, the discrepancy shrinks, and therefore there is less and less misspecification
uncertainty in the longer run.

5.3 Funding Ratio Analysis

This section firstly focuses on analyzing the funding ratio using the benchmark
nominal model, namely the canonical three-factor model. Then, we implement a
sensitivity analysis considering two aspects. One uses a different nominal model, the
DNS model with yield-only factors. Another one changes the duration in the bond
investment to be about 5 years and 10 years.

5.3.1 The Impact of Misspecification Uncertainty

The simulations of the nominal model and the bound models are used to simulate
the assets, the liabilities, and the funding ratio. Their 95% prediction intervals are
decided by the 2.5% and 97.5% quantiles.

In simulations, we set a lower bound constraint for the bond yields to be −2%.
Whenever the modelled bond yield is lower than −2%, the rate applied to in assets
and liabilities is −2%. This constraint mainly works on the pseudo true DGP(s),
particularly at the beginning of the forecast horizon on the lower bounds and for
shorter maturity bonds. This is because of the low initial values in the simulations. It
is not likely to constrain later as the mean-reverting force drives the yields upwards.

Table 5 reports the outcomes of the forecast, the 95% prediction interval of the nom-
inal model, and the prediction intervals incorporating misspecification uncertainty.
Figure 7a plots these outcomes.

Firstly, the forecasted value of assets decreases constantly. The 95%-quantile
prediction interval for the nominal model is wider at the beginning, but becomes
narrower at the end of 2017. This means that the variance of the assets under the
nominal model becomes smaller. Secondly, MUPIt(At) behaves similarly, but there is
another reason resulting in the wider interval in the beginning. The misspecification
uncertainty is stronger at the beginning, seen in the 9-year maturity and 10-year
maturity in Figure 5a. Therefore, the return rates based on the bound models
are more distant from those based on the nominal model, and result in a wider
misspecification interval in the beginning. Thirdly, the gap between PIt(At) and
MUPIt(At) is almost the same in the further future. This means that the assets, given
by the nominal model and the bound models, move at almost the same rate. This rate
is mainly affected by the bond return rb,t, associated with the difference between the
9-year and 10-year bond yields. There is a big difference between these two yields
due to the significant misspecification uncertainty at the beginning; see the graphs
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of 9-year and 10-year bond yields in Figure 5a. Therefore, the rate is not the same.
As the misspecification uncertainty becomes insignificant, their difference becomes
stable, and thus rb,t given by the nominal model and the bound models, becomes the
same. At last, the prediction intervals are positively skewed.

The liabilities at time t involve the bonds with (30− t) years to maturity. The
misspecification intervals of the bond yields become narrower over time. Together
with the discounting effect, the impact of misspecification uncertainty on the liabili-
ties becomes almost unobservable. Both PIt(Lt) and MUPIt(Lt) gradually become
narrower, due to a smaller variance of the liabilities under the nominal model. Like
the asset side, the interval is positively skewed.

The forecast of the funding ratio decreases slowly, and ends up at 0.95 in 2026.
The funding ratio might not be sufficient to pay the future liabilities. However, the
funding ratio is positively skewed, implying a potential upward trend. Additionally,
the PIt(FRt) in 2026 tells that the funding ratio may be as low as 0.66. Taking into
account misspecification uncertainty, the lower bound of MUPIt(FRt) drops to 0.51.
The gap is as large as 0.15. On the upper bound side, the difference is even larger.
The upper bound of PIt(FRt) is 1.36, while the one with misspecification uncertainty
might become even 1.88. The difference is as substantial as 0.55, implying that the
impact of misspecification uncertainty is non-negligible when using the canonical
three-factor model as the nominal model.

5.3.2 Sensitivity Analysis

This part implements the sensitivity analysis. The analysis in terms of the canonical
three-factor model shows a substantial impact of misspecification uncertainty on the
funding ratio, when the investment strategy is simply buying and selling the 10-year
and 9-year bonds, respectively. We would like to conduct a sensitivity analysis to see
what would change if using a better structured model and different durations.

5.3.2.1 An Alternative Nominal Model

The DNS model imposes an extra assumption on the evolution of the factors. This
helps in performing better in-sample and out-of-sample. The forecast in Figure 3a
is made by this DNS model, showing mean-reverting trends, like the pseudo true
DGPs. Consequently, we do not expect the same large amount of model uncertainty
as in using the benchmark nominal model; see earlier discussion. When the nominal
model is replaced by a better structured model, the both prediction intervals, without
and with misspecification uncertainty, are expected to shrink.

Figure 6 plots the forecasts of the bond yields, their prediction intervals of the
alternative nominal model and the bound models, using the DNS model with yield-
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only factors. We see more impact of misspecification uncertainty is decreasing over
maturity, but increasing over time, unlike the case using the benchmark nominal
model which is decreasing over time only.

Table 6 reports the forecasts of the assets, the liabilities, and the funding ratio,
as well as their prediction intervals with and without misspecification uncertainty.
Figure 7b shows the corresponding graphs. We find that for the assets and liabilities,
the prediction intervals with and without model uncertainty are very close. The
difference is more obvious in the funding ratio. The difference grows larger over time,
but not as dramatically as in using the benchmark model.

The forecasted funding ratio ends with 1.07 at the end of 2026. Compared to those
under the benchmark nominal model, both the prediction intervals with and without
misspecification uncertainty are narrower, indicating more precise estimation. Like
the benchmark model, both the prediction intervals are positively skewed, implying a
force of moving upwards. But the median is almost the same as the mean.

However, the impact of the misspecification uncertainty is still significant for the
further future. The interval difference is 0.05 for the upper bounds, and 0.04 for the
lower bounds. These are not easily neglected amounts, in particular, in case that the
pension fund has not completely recovered from the financial crisis.

5.3.2.2 Investment with Other Durations

We also analyze the impact when changing the duration in the bond investment. We
investigate two cases, shortening the duration, and lengthening it. In both cases, the
liabilities are not affected. The duration change concerns only the asset side, and
hence affects the funding ratio.

In the first case, we allocate 30% of the assets to 1-year bonds, and keep 25% to
invest in 10-year bonds. The duration becomes approximately 5 years. The 1-year
bonds mature the next period, increasing the liquidity of the pension fund. We apply
this investment strategy to both the benchmark and alternative nominal models. The
results are reported in Table 7 and Table 9, and plotted in Figure 8 and Figure 10. We
see that the intervals become wider for both nominal models. This is mainly because
more misspecification uncertainty is embedded in the 1-year bonds; see the graphs in
fFigure 5 and 6. The differences are not particularly remarkable, although the changes
for the benchmark nominal model is relatively larger than those for the alternative
nominal model. Other features remain almost the same as in the original strategy.

The second case considers investing 27% of the assets in 20-year bonds. The
allocation to stocks remains the same, and the rest are invested in 10-year bonds.
The next period, the bonds are sold and replaced by new bonds with the designed
maturities. The duration of the bond investment now becomes about 15 years. The
results are reported in Table 8 and Table 10, and plotted in Figure 9 and Figure 11,
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respectively. They show that the misspecification interval becomes narrower.
This sensitivity analysis shows that longer duration of bond investment provides

narrower prediction intervals, due to smaller variance for longer term bonds and
insignificant misspecification uncertainty.

6 Summary and Conclusions

This paper studies the impact of misspecification uncertainty on predicting the
funding ratio of a Dutch defined benefit pension fund 10 years ahead from 2017 to
2026. The ambition of the pension fund management to offset the inflation and thus
to invest in stocks breaks the balance of the funding ratio. Bond yields become crucial
to affect the funding ratio through both the asset and liability sides. They could be
determined by a number of models, but some simple though clearly misspecified
ones are typically preferred in practice. This situation motivates the need to take into
account model uncertainty. In this research, we ignore the model uncertainty caused
by stock return and survival probabilities. Moreover, when modelling bond yields,
we only focus on misspecification uncertainty, but ignore parameter uncertainty.

We assume that the investor prefers the canonical three-factor model to predict
bond yields; this model does not model the evolution of the factors, or impose the
arbitrage free condition, but is simple and preferred. We also apply a lower bound
constraint on the bond yields to stay in line with the real financial market. The
empirical analysis shows that the impact of misspecification uncertainty on the bond
yields is stronger for short term bonds and the near future. The transmitted impact
of misspecification uncertainty on assets, liabilities, and funding ratio is significant.
The funding ratio over time is below 1. The prediction interval with misspecification
uncertainty can be up to 0.67 wider than the one for nominal model.

The sensitivity analysis is carried out to investigate two aspects. One is to use a
better structured model as an alternative nominal model, and the other is to alter the
duration of the bond investment. The first analysis dramatically reduces the impact
of misspecification uncertainty, and results in a funding ratio above 1 in the forecast.
The misspecification interval is reduce to 0.09. The second analysis shows that the
influence of the bond investment duration is limited. This sensitivity analysis implies
that the fundamental reason for a large misspecification interval of the funding ratio
is the poor prediction under a nominal bond yield model.

The bound models in this paper are constructed based on the first moment of a
bond yield, in case of normality. They can be constructed based on the second moment
as well. In case of non-normality, higher moments are also needed to characterize the
bound models. These aspects can be the topics of future research.

Last but not least, this paper studies the impact of misspecification uncertainty
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essentially on bonds. The impact on the funding ratio is in fact considered as trans-
mitted from the bond investments in the economy. We do not study the impact on the
funding ratio in terms of its distribution, and thus the results are not a straightforward
impact of model uncertainty on funding ratio. Moreover, for simplicity, model un-
certainty from other economic elements, such as stock returns, demographic change,
mortality rates, etc., are not considered. The purpose of this paper is to show the
significance of taking into account misspecification uncertainty, and to propose the
incorporation of a misspecification interval. These mentioned discrepancies could be
improved with extensions, depending on research interests.
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Appendix A Tables and Figures

Table 1: Data Description. The first panel reports the NSS-estimated yields with τ-year maturity,
while the second panel reports the other variables. "STOXX" is short for the stock
return, "NLCPI" the dutch CPI, "FRT" the fixed rate tenders, and "GDP Growth" the
OECD economic growth rate. The data spans from Jan 2007 to Dec 2016 in monthly
frequency.

variables mean std min max

NSS Yields with τ-year maturity
1-year 0.0091 0.0154 -0.0082 0.0449
5-year 0.0167 0.0150 -0.0059 0.0463
9-year 0.0235 0.0144 -0.0024 0.0470
10-year 0.0247 0.0143 -0.0016 0.0473
15-year 0.0287 0.0138 0.0012 0.0485
19-year 0.0301 0.0134 0.0025 0.0491
20-year 0.0303 0.0134 0.0028 0.0492
25-year 0.0306 0.0131 0.0037 0.0496
30-year 0.0303 0.0128 0.0044 0.0499

Other Variables
STOXX 0.0039 0.0476 -0.1324 0.1285
NLCPI 0.0158 0.0089 -0.0024 0.0323
FRT 0.0059 0.0067 0.0000 0.0375
GDP Growth 1.3423 1.8529 -4.5800 3.4300
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(a) NSS-estimated bond yields

(b) Historical data of stock returns and macro variables

Figure 3: Descriptive plots of the bond yields, stock returns and other variables. The horizon is from
the beginning of 2007 to the beginning of 2017.
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Table 2: The model rankings according to the values of the loss function.

Index Model Macro
τ-year Maturity

1 5 9 10 15 19 20 25 30

1 y3F 0 42 42 42 42 42 42 42 42 42
2 yYOSSM 0 43 44 44 44 43 39 43 43 43
3 yYO2S 0 45 45 43 43 44 43 44 44 44
4 yYMCRSSM 1 44 43 45 45 45 38 45 45 40
5 yYMCR2S 1 25 41 41 41 41 45 39 39 36
6 1/12 1 41 39 39 39 39 44 38 41 41
7 5 1 24 34 35 33 35 40 41 38 45
8 10 1 9 37 33 35 40 35 40 32 38
9 15 1 29 35 34 34 37 37 35 35 35

10 25 1 10 40 37 19 38 32 33 36 32
11 [1/12,5] 1 30 33 40 40 34 33 32 33 34
12 [25,29] 1 32 36 19 38 33 19 34 34 33
13 [10,12.5] 1 8 26 38 37 21 34 37 22 39
14 [1,5,7.5] 1 28 38 23 23 23 25 19 40 37
15 [7.5,12.5,16.7] 1 12 6 25 25 32 24 25 37 22
16 [7.5,20,29] 1 40 12 13 13 19 21 24 21 10
17 [1/12,5,7.5,1/120] 1 27 32 31 24 22 22 21 30 30
18 [5,10,15,20] 1 7 9 36 22 25 26 22 19 25
19 [10,20,25,35] 1 33 29 22 31 15 41 9 25 23
20 [5,7.5,10,20,35] 1 39 30 24 6 24 9 29 10 12
21 [1/12,10,15,20,25] 1 36 10 6 26 18 6 6 29 29
22 [7.5,12.5,15,20,25,35] 1 13 8 26 17 6 30 10 9 9
23 [1/12,5,15,16.7,25,35] 1 19 28 7 21 26 29 26 12 19
24 [1/12,5,7,100,12.5,16.7,20.8] 1 16 31 30 18 36 23 30 6 31
25 [1/12,5,10,15,20,25,35] 1 35 4 27 7 31 36 23 26 28

To be continued
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Table 2 continued

Index Model Macro
τ-year Maturity

1 5 9 10 15 19 20 25 30

26 1/12 0 15 13 12 27 7 10 31 28 6
27 5 0 26 19 29 36 28 15 28 31 26
28 10 0 31 2 9 30 13 7 7 8 8
29 15 0 38 11 32 11 27 8 8 11 11
30 25 0 37 16 11 12 11 11 11 7 7
31 [1/12,5] 0 18 27 10 29 8 27 27 27 14
32 [25,29] 0 11 7 16 15 12 31 15 23 27
33 [10,12.5] 0 22 3 8 9 10 28 14 14 13
34 [1,5,7.5] 0 6 5 28 32 14 14 36 17 17
35 [7.5,12.5,16.7] 0 21 21 17 10 9 12 12 24 2
36 [7.5,20,29] 0 20 22 15 8 3 3 3 13 4
37 [1/12,5,7.5,1/120] 0 34 15 21 28 5 5 5 2 20
38 [5,10,15,20] 0 14 23 3 16 29 17 17 4 3
39 [10,20,25,35] 0 17 25 5 3 30 13 13 15 5
40 [5,7.5,10,20,35] 0 23 17 1 5 2 16 16 3 15
41 [1/12,10,15,20,25] 0 1 18 20 20 4 1 4 5 1
42 [7.5,12.5,15,20,25,35] 0 3 1 18 1 1 20 1 1 18
43 [1/12,5,15,16.7,25,35] 0 5 24 14 14 17 18 20 18 16
44 [1/12,5,7,100,12.5,16.7,20.8] 0 4 20 4 2 16 4 18 16 24
45 [1/12,5,10,15,20,25,35] 0 2 14 2 4 20 2 2 20 21

Notes: "y3F" is short for the canonical three-factor model, "yYOSSM" the DNS model
estimated by Kalman filter approach with yield factors only, "yYO2S" the DNS model esti-
mated by 2-step approach with yield factors only, "yYMCRSSM" the DNS model estimated
by Kalman filter approach with yield factors and macroeconomic factors, "yYO2S" the
DNS model estimated by 2-step approach with yield factors and macroeconomic factors.
Other models are estimated by 3-step OLS, using only the yield factors with the maturities
of the number of years indicated in the vectors. The first column provides the index to the
model. The MACRO column indicates whether macroeconomic factors are included; 1 for
yes while 0 for no. The remaining columns show the performance rankings for modelling
each maturity bond, in descending order according to the values of the loss function.
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Figure 4: The NSS-estimated bond yields, and bond yield forecasts by DNS with yield-only factors.

33



t Year
µ̂t of τ-year maturity (×10−2)

1 5 9 10 15 19 20 25 30

0 2016 0.91 1.67 2.35 2.48 2.88 3.01 3.03 3.06 3.04
1 2017 0.91 1.67 2.36 2.48 2.88 3.02 3.03 3.06 3.04
2 2018 0.90 1.66 2.34 2.47 2.87 3.00 3.02 3.05 3.03
3 2019 0.90 1.66 2.34 2.47 2.87 3.00 3.02 3.05 3.03
4 2020 0.89 1.65 2.33 2.45 2.86 2.99 3.01 3.04 3.02
5 2021 0.90 1.67 2.35 2.48 2.88 3.01 3.03 3.06 3.03
6 2022 0.89 1.66 2.34 2.46 2.87 3.00 3.02 3.05 3.02
7 2023 0.92 1.68 2.36 2.48 2.88 3.02 3.03 3.06 3.04
8 2024 0.90 1.66 2.34 2.47 2.87 3.00 3.02 3.05 3.03
9 2025 0.91 1.67 2.35 2.47 2.87 3.01 3.02 3.05 3.03

10 2026 0.90 1.67 2.35 2.47 2.87 3.01 3.03 3.06 3.03

t Year
σ̂t of τ-year maturity (×10−2)

1 5 9 10 15 19 20 25 30

0 2016 1.54 1.50 1.44 1.43 1.37 1.34 1.33 1.30 1.28
1 2017 1.53 1.49 1.43 1.42 1.37 1.33 1.33 1.30 1.27
2 2018 1.53 1.50 1.44 1.42 1.37 1.34 1.33 1.30 1.28
3 2019 1.53 1.49 1.43 1.42 1.37 1.33 1.33 1.30 1.27
4 2020 1.53 1.49 1.44 1.43 1.37 1.34 1.33 1.30 1.28
5 2021 1.53 1.49 1.43 1.42 1.37 1.33 1.33 1.30 1.27
6 2022 1.52 1.49 1.44 1.42 1.37 1.34 1.33 1.30 1.28
7 2023 1.54 1.50 1.44 1.42 1.37 1.34 1.33 1.30 1.28
8 2024 1.53 1.50 1.44 1.43 1.38 1.34 1.34 1.30 1.28
9 2025 1.54 1.50 1.44 1.43 1.37 1.34 1.33 1.30 1.28

10 2026 1.53 1.49 1.44 1.42 1.37 1.34 1.33 1.30 1.28

Table 3: This table collects the estimates of forecast µ̂t and standard deviations σ̂t for τ-
maturity bonds, using the benchmark nominal model. The forecasts are obtained by
simulation.
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t Year
κ̂∗t of τ-year maturity (×10−2)

1 5 9 10 15 19 20 25 30

0 2016 166.07 154.07 148.71 147.71 138.68 135.51 132.80 126.31 118.22
1 2017 48.58 44.35 41.34 38.37 30.39 34.18 27.90 29.12 35.70
2 2018 21.29 19.07 21.95 14.39 11.63 16.32 10.79 11.41 15.18
3 2019 8.32 9.96 13.54 5.39 4.96 9.38 4.47 4.84 6.37
4 2020 2.36 6.72 8.65 2.36 2.39 5.98 2.18 2.30 3.17
5 2021 0.21 4.93 4.82 1.21 1.04 3.27 1.00 1.07 1.52
6 2022 0.15 3.90 2.23 0.77 0.55 1.51 0.52 0.63 0.79
7 2023 0.68 3.41 0.71 0.44 0.26 0.38 0.24 0.34 0.36
8 2024 1.65 2.87 0.10 0.36 0.21 0.02 0.14 0.22 0.18
9 2025 2.29 2.66 0.02 0.24 0.12 0.12 0.06 0.11 0.06

10 2026 2.96 2.49 0.22 0.20 0.04 0.45 0.03 0.07 0.01

t Year
θ̂t of τ-year maturity

1 5 9 10 15 19 20 25 30

0 2016 118.66 117.29 119.86 120.55 121.32 122.81 122.23 122.02 120.10
1 2017 64.44 63.13 63.41 61.67 57.03 61.96 56.28 58.87 66.32
2 2018 42.56 41.31 46.11 37.69 35.20 42.73 34.93 36.77 43.15
3 2019 26.72 29.96 36.31 23.12 23.05 32.46 22.53 24.00 28.02
4 2020 14.21 24.54 28.91 15.24 15.92 25.79 15.66 16.49 19.67
5 2021 4.27 21.06 21.66 10.93 10.53 19.18 10.68 11.29 13.69
6 2022 3.65 18.72 14.69 8.74 7.66 12.99 7.63 8.59 9.82
7 2023 7.58 17.42 8.27 6.61 5.25 6.55 5.23 6.31 6.65
8 2024 11.85 16.00 3.16 5.98 4.69 1.55 3.95 5.07 4.66
9 2025 13.93 15.38 1.49 4.84 3.52 3.64 2.58 3.60 2.62

10 2026 15.90 14.94 4.66 4.40 2.14 7.11 1.73 2.91 1.28

Table 4: This table collects the estimated amount of model uncertainty κ̂∗t , and the corre-
sponding uncertainty parameter θ̂t, for τ-year maturity bonds, under the benchmark
nominal model.
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t Year
Assets

µ (At) Q2.5% (At) Q97.5% (At) Ql
2.5%

(
Al

t
)

Qu
97.5% (Au

t )

0 2016 30.63 24.83 40.39 20.02 52.24
1 2017 29.27 24.00 36.14 20.56 44.96
2 2018 28.07 22.82 35.35 19.79 43.81
3 2019 26.87 21.52 34.29 18.56 42.76
4 2020 25.64 20.20 33.19 17.14 42.03
5 2021 24.39 18.82 32.10 15.64 41.47
6 2022 23.14 17.53 30.91 14.22 40.61
7 2023 21.88 16.17 29.88 12.82 39.83
8 2024 20.62 14.84 28.67 11.46 38.59
9 2025 19.37 13.50 27.61 10.07 37.68
10 2026 18.08 12.13 26.51 8.62 36.90

t Year
Liabilities

µ (Lt) Q2.5% (Lt) Q97.5% (Lt) Ql
2.5%

(
Ll

t
)

Qu
97.5% (Lu

t )

0 2016 30.63 24.83 40.39 20.02 52.24
1 2017 29.52 23.93 38.54 21.50 44.07
2 2018 28.40 23.15 36.87 21.60 40.15
3 2019 27.30 22.41 35.10 21.36 37.18
4 2020 26.16 21.62 33.34 20.89 34.73
5 2021 24.98 20.69 31.59 20.19 32.50
6 2022 23.80 19.89 29.84 19.52 30.47
7 2023 22.62 18.99 28.11 18.74 28.51
8 2024 21.43 18.07 26.37 17.89 26.63
9 2025 20.24 17.12 24.67 16.96 24.91
10 2026 19.01 16.18 22.98 16.02 23.22

t Year
Funding Ratio

µ (FRt) Q2.5% (FRt) Q97.5% (FRt) Ql
2.5%

(
FRl

t
)

Qu
97.5% (FRu

t )

0 2016 1.00 1.00 1.00 1.00 1.00
1 2017 1.00 0.83 1.23 0.82 1.38
2 2018 1.00 0.82 1.23 0.77 1.42
3 2019 0.99 0.81 1.23 0.74 1.47
4 2020 0.99 0.80 1.24 0.70 1.53
5 2021 0.98 0.78 1.25 0.67 1.58
6 2022 0.98 0.77 1.27 0.64 1.64
7 2023 0.97 0.75 1.29 0.60 1.70
8 2024 0.97 0.72 1.31 0.56 1.75
9 2025 0.96 0.70 1.33 0.52 1.81
10 2026 0.95 0.66 1.36 0.48 1.88

Table 5: This table reports the 95% prediction intervals without and with misspecification
uncertainty, for of the assets, the liabilities and the funding ratios. They are built on
the bond yields estimated by the benchmark nominal model. Results are plotted
in Figure 7a.
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t Year
Assets

µ (At) Q2.5% (At) Q97.5% (At) Q2.5%
(

Al
t
)

Q97.5% (Au
t )

0 2016 38.18 36.43 40.03 36.37 40.09
1 2017 36.01 32.97 39.23 32.92 39.29
2 2018 33.89 30.27 37.77 30.23 37.82
3 2019 31.90 27.99 36.15 27.98 36.15
4 2020 30.03 25.93 34.51 25.76 34.73
5 2021 28.27 24.02 32.93 23.66 33.41
6 2022 26.60 22.25 31.41 21.78 32.06
7 2023 25.02 20.59 30.00 20.08 30.70
8 2024 23.50 18.96 28.60 18.51 29.22
9 2025 22.04 17.40 27.22 17.04 27.70
10 2026 20.63 15.90 25.94 15.69 26.19

t Year
Liabilities

µ (Lt) Q2.5% (Lt) Q97.5% (Lt) Q2.5%
(

Ll
t
)

Q97.5% (Lu
t )

0 2016 38.18 36.43 40.03 36.37 40.09
1 2017 35.54 31.07 40.72 30.93 40.94
2 2018 32.99 27.95 39.07 27.70 39.46
3 2019 30.69 25.68 36.85 25.34 37.41
4 2020 28.62 23.87 34.49 23.48 35.15
5 2021 26.76 22.32 32.29 21.90 32.99
6 2022 25.05 20.94 30.09 20.49 30.85
7 2023 23.48 19.69 28.13 19.24 28.91
8 2024 22.00 18.57 26.19 18.09 27.00
9 2025 20.59 17.49 24.34 17.04 25.10
10 2026 19.25 16.41 22.58 15.98 23.31

t Year
Funding Ratio

µ (FRt) Q2.5% (FRt) Q97.5% (FRt) Q2.5%
(

FRl
t
)

Q97.5% (FRu
t )

0 2016 1.00 1.00 1.00 1.00 1.00
1 2017 1.02 0.93 1.11 0.93 1.11
2 2018 1.03 0.92 1.15 0.91 1.16
3 2019 1.04 0.92 1.18 0.90 1.19
4 2020 1.05 0.91 1.20 0.89 1.23
5 2021 1.06 0.91 1.22 0.88 1.27
6 2022 1.07 0.90 1.24 0.86 1.30
7 2023 1.07 0.89 1.26 0.85 1.33
8 2024 1.07 0.88 1.28 0.84 1.35
9 2025 1.07 0.87 1.30 0.82 1.36
10 2026 1.07 0.85 1.33 0.81 1.38

Table 6: This table reports the 95% prediction intervals without and with misspecification
uncertainty, for of the assets, the liabilities and the funding ratios. They are built
on the alternative nominal model. Results are plotted in Figure 7b.
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t Year
Assets

µ (At) Q2.5% (At) Q97.5% (At) Q2.5%
(

Al
t
)

Q97.5% (Au
t )

0 2016 30.63 24.83 40.39 20.02 52.24
1 2017 29.03 23.79 36.64 19.72 47.06
2 2018 27.55 22.23 35.55 18.45 45.61
3 2019 26.08 20.59 34.36 16.88 44.42
4 2020 24.60 18.90 33.07 15.19 43.33
5 2021 23.10 17.26 31.84 13.48 42.32
6 2022 21.61 15.62 30.58 11.80 41.32
7 2023 20.11 14.05 29.27 10.16 40.16
8 2024 18.62 12.39 27.98 8.50 39.00
9 2025 17.13 10.77 26.70 6.85 37.85
10 2026 15.64 9.17 25.44 5.20 36.76

t Year
Liabilities

µ (Lt) Q2.5% (Lt) Q97.5% (Lt) Q2.5%
(

Ll
t
)

Q97.5% (Lu
t )

0 2016 30.63 24.83 40.39 20.02 52.24
1 2017 29.52 23.93 38.54 21.50 44.07
2 2018 28.40 23.15 36.87 21.60 40.15
3 2019 27.30 22.41 35.10 21.36 37.18
4 2020 26.16 21.62 33.34 20.89 34.73
5 2021 24.98 20.69 31.59 20.19 32.50
6 2022 23.80 19.89 29.84 19.52 30.47
7 2023 22.62 18.99 28.11 18.74 28.51
8 2024 21.43 18.07 26.37 17.89 26.63
9 2025 20.24 17.12 24.67 16.96 24.91
10 2026 19.01 16.18 22.98 16.02 23.22

t Year
Funding Ratio

µ (FRt) Q2.5% (FRt) Q97.5% (FRt) Q2.5%
(

FRl
t
)

Q97.5% (FRu
t )

0 2016 1.00 1.00 1.00 1.00 1.00
1 2017 1.00 0.74 1.35 0.70 1.56
2 2018 0.98 0.72 1.35 0.65 1.61
3 2019 0.97 0.70 1.34 0.61 1.65
4 2020 0.95 0.68 1.34 0.57 1.69
5 2021 0.94 0.66 1.34 0.53 1.73
6 2022 0.92 0.63 1.34 0.49 1.78
7 2023 0.90 0.60 1.34 0.44 1.82
8 2024 0.88 0.57 1.35 0.40 1.86
9 2025 0.85 0.53 1.35 0.34 1.90
10 2026 0.83 0.48 1.37 0.28 1.96

Table 7: This table reports the 95% prediction intervals without and with misspecification
uncertainty, for of the assets, the liabilities and the funding ratios. They are built on
the benchmark nominal model with 30% investment in 1-year bond. Results
are plotted in Figure 8.
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t Year
Assets

µ (At) Q2.5% (At) Q97.5% (At) Q2.5%
(

Al
t
)

Q97.5% (Au
t )

0 2016 30.63 24.83 40.39 20.02 52.24
1 2017 29.52 23.93 37.04 21.04 43.81
2 2018 28.51 22.87 36.65 20.47 43.73
3 2019 27.51 21.76 35.81 19.42 42.86
4 2020 26.48 20.64 34.83 18.18 42.24
5 2021 25.41 19.41 33.79 16.87 41.63
6 2022 24.34 18.27 32.91 15.60 41.19
7 2023 23.27 17.13 31.83 14.43 40.21
8 2024 22.19 15.92 30.83 13.21 39.23
9 2025 21.12 14.77 29.88 12.01 38.56
10 2026 20.00 13.51 28.93 10.63 38.24

t Year
Liabilities

µ (Lt) Q2.5% (Lt) Q97.5% (Lt) Q2.5%
(

Ll
t
)

Q97.5% (Lu
t )

0 2016 30.63 24.83 40.39 20.02 52.24
1 2017 29.52 23.93 38.54 21.50 44.07
2 2018 28.40 23.15 36.87 21.60 40.15
3 2019 27.30 22.41 35.10 21.36 37.18
4 2020 26.16 21.62 33.34 20.89 34.73
5 2021 24.98 20.69 31.59 20.19 32.50
6 2022 23.80 19.89 29.84 19.52 30.47
7 2023 22.62 18.99 28.11 18.74 28.51
8 2024 21.43 18.07 26.37 17.89 26.63
9 2025 20.24 17.12 24.67 16.96 24.91
10 2026 19.01 16.18 22.98 16.02 23.22

t Year
Funding Ratio

µ (FRt) Q2.5% (FRt) Q97.5% (FRt) Q2.5%
(

FRl
t
)

Q97.5% (FRu
t )

0 2016 1.00 1.00 1.00 1.00 1.00
1 2017 1.00 0.93 1.14 0.93 1.26
2 2018 1.01 0.90 1.15 0.88 1.29
3 2019 1.01 0.89 1.17 0.84 1.35
4 2020 1.01 0.87 1.19 0.80 1.41
5 2021 1.02 0.86 1.22 0.77 1.48
6 2022 1.02 0.84 1.25 0.74 1.55
7 2023 1.03 0.83 1.28 0.71 1.62
8 2024 1.04 0.81 1.32 0.68 1.68
9 2025 1.04 0.79 1.36 0.65 1.75
10 2026 1.05 0.77 1.41 0.61 1.85

Table 8: This table reports the 95% prediction intervals without and with misspecification
uncertainty, for of the assets, the liabilities and the funding ratios. They are built on
the benchmark nominal model with 27% investment in 20-year bond. Results
are plotted in Figure 9.
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t Year
Assets

µ (At) Q2.5% (At) Q97.5% (At) Q2.5%
(

Al
t
)

Q97.5% (Au
t )

0 2016 38.18 36.45 40.02 36.41 40.07
1 2017 36.05 33.61 38.58 33.56 38.64
2 2018 34.01 31.16 37.00 31.14 37.03
3 2019 32.07 28.92 35.40 28.83 35.50
4 2020 30.21 26.82 33.81 26.58 34.11
5 2021 28.44 24.86 32.29 24.47 32.79
6 2022 26.73 22.99 30.81 22.47 31.47
7 2023 25.08 21.17 29.35 20.58 30.13
8 2024 23.47 19.41 27.94 18.77 28.79
9 2025 21.90 17.71 26.56 17.06 27.45
10 2026 20.36 16.04 25.20 15.40 26.08

t Year
Liabilities

µ (Lt) Q2.5% (Lt) Q97.5% (Lt) Q2.5%
(

Ll
t
)

Q97.5% (Lu
t )

0 2016 38.18 36.45 40.02 36.41 40.07
1 2017 35.50 31.04 40.67 30.86 40.95
2 2018 32.97 27.94 39.05 27.65 39.53
3 2019 30.68 25.64 36.81 25.25 37.46
4 2020 28.63 23.89 34.49 23.44 35.23
5 2021 26.77 22.29 32.26 21.84 33.03
6 2022 25.07 20.94 30.14 20.48 30.92
7 2023 23.50 19.70 28.13 19.24 28.91
8 2024 22.02 18.56 26.19 18.10 26.97
9 2025 20.61 17.46 24.35 17.01 25.12
10 2026 19.26 16.46 22.57 16.01 23.31

t Year
Funding Ratio

µ (FRt) Q2.5% (FRt) Q97.5% (FRt) Q2.5%
(

FRl
t
)

Q97.5% (FRu
t )

0 2016 1.00 1.00 1.00 1.00 1.00
1 2017 1.02 0.90 1.14 0.90 1.14
2 2018 1.04 0.89 1.20 0.88 1.21
3 2019 1.05 0.88 1.24 0.86 1.26
4 2020 1.06 0.88 1.26 0.85 1.30
5 2021 1.07 0.87 1.29 0.84 1.34
6 2022 1.07 0.87 1.31 0.83 1.37
7 2023 1.07 0.86 1.32 0.81 1.39
8 2024 1.07 0.84 1.34 0.79 1.41
9 2025 1.07 0.83 1.35 0.77 1.43
10 2026 1.06 0.81 1.36 0.75 1.45

Table 9: This table reports the 95% prediction intervals without and with misspecification
uncertainty, for of the assets, the liabilities and the funding ratios. They are built on
the alternative nominal model with 30% investment in 1-year bond. Results
are plotted in Figure 10.
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t Year
Assets

µ (At) Q2.5% (At) Q97.5% (At) Q2.5%
(

Al
t
)

Q97.5% (Au
t )

0 2016 38.18 36.45 40.02 36.41 40.07
1 2017 35.79 32.00 39.96 31.92 40.06
2 2018 33.47 28.91 38.64 28.86 38.72
3 2019 31.30 26.33 36.87 26.04 37.31
4 2020 29.29 24.20 35.08 23.62 35.94
5 2021 27.40 22.25 33.28 21.44 34.52
6 2022 25.64 20.49 31.60 19.54 33.08
7 2023 23.98 18.80 29.96 17.82 31.50
8 2024 22.40 17.24 28.38 16.29 29.83
9 2025 20.88 15.74 26.86 14.92 28.09
10 2026 19.42 14.27 25.43 13.62 26.32

t Year
Liabilities

µ (Lt) Q2.5% (Lt) Q97.5% (Lt) Q2.5%
(

Ll
t
)

Q97.5% (Lu
t )

0 2016 38.18 36.45 40.02 36.41 40.07
1 2017 35.50 31.04 40.67 30.86 40.95
2 2018 32.97 27.94 39.05 27.65 39.53
3 2019 30.68 25.64 36.81 25.25 37.46
4 2020 28.63 23.89 34.49 23.44 35.23
5 2021 26.77 22.29 32.26 21.84 33.03
6 2022 25.07 20.94 30.14 20.48 30.92
7 2023 23.50 19.70 28.13 19.24 28.91
8 2024 22.02 18.56 26.19 18.10 26.97
9 2025 20.61 17.46 24.35 17.01 25.12
10 2026 19.26 16.46 22.57 16.01 23.31

t Year
Funding Ratio

µ (FRt) Q2.5% (FRt) Q97.5% (FRt) Q2.5%
(

FRl
t
)

Q97.5% (FRu
t )

0 2016 1.00 1.00 1.00 1.00 1.00
1 2017 1.01 0.95 1.07 0.95 1.08
2 2018 1.02 0.94 1.10 0.93 1.12
3 2019 1.02 0.93 1.12 0.90 1.15
4 2020 1.02 0.92 1.14 0.88 1.19
5 2021 1.02 0.90 1.15 0.85 1.22
6 2022 1.02 0.89 1.17 0.83 1.25
7 2023 1.02 0.87 1.19 0.80 1.28
8 2024 1.02 0.85 1.20 0.78 1.30
9 2025 1.01 0.82 1.22 0.76 1.31
10 2026 1.01 0.80 1.24 0.74 1.32

Table 10: This table reports the 95% prediction intervals without and with misspecification
uncertainty, for of the assets, the liabilities and the funding ratios. They are built
on the alternative nominal model with 27% investment in 20-year bond.
Results are plotted in Figure 11.
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(a) Bond yields over time

(b) Term structure in the end of the Year

Figure 5: The prediction intervals with and without model misspecification uncertainty, for
the term structure of the bond yields under the benchmark nominal model. The
dotted lines indicate the 95% prediction intervals for the nominal model, while the
dashed lines indicate the prediction intervals with misspecification uncertainty.
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(a) Bond yields over Years

(b) Term structure in the end of the Year

Figure 6: The The prediction intervals with and without model misspecification uncertainty,
for the term structure of the bond yields under the alternative nominal model.
The dotted lines indicate the 95% prediction intervals for the nominal model, while
the dashed lines indicate the prediction intervals with misspecification uncertainty.
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(a) Forecasts of the assets, the liabilities and the funding ratio, using the benchmark nominal model.

(b) Forecasts of the assets, the liabilities and the funding ratio, using the alternative nominal model.

Figure 7: The results of the forecasts are reported in Table 5 and 6, respectively. The solid
line and the dashed-diamond line are for the expectations and the medians derived
from the nominal model. The dotted lines indicate the 95% prediction intervals for
the nominal model, while the dashed lines indicate the prediction intervals with
misspecification uncertainty.
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Figure 8: Forecasts of the assets, the liabilities and the funding ratio, using the benchmark
nominal model, with 30% 1-year bond in the investment.

Figure 9: Forecasts of the assets, the liabilities and the funding ratio, using the benchmark
nominal model, with 27% 20-year bond in the investment.
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Figure 10: Forecasts of the assets, the liabilities and the funding ratio, using the alternative
nominal model, with 30% 1-year bond in the investment.

Figure 11: Forecasts of the assets, the liabilities and the funding ratio, using the alternative
nominal model, with 27% 20-year bond in the investment.
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