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ABSTRACT

This paper models a Personal Pension with Risk sharing (PPR). We derive several

relationships between the parameters of a PPR. For instance, we show how the Assumed

Interest Rate affects the median growth rate of retirement income. Policyholders can

adopt (at least) two approaches to a PPR – the investment approach and the consumption

approach. In the investment approach, policyholders specify in each period how much to

save or to withdraw, and how to allocate their retirement assets across different investment

options. By contrast, in the consumption approach, policyholders specify the entire

consumption stream in retirement exogenously. We explore these two approaches in full

detail and show how they differ from each other. In accordance with (internal) habit

formation, we allow for excess smoothness and excess sensitivity in retirement income.

∗Van Bilsen is with the Department of Quantitative Economics, University of Amsterdam; Bovenberg
is with the Department of Economics, Tilburg University.



Private pension provision is in transition, shifting from defined benefit (DB)

plans towards defined contribution (DC) plans (Investment Company Institute, 2015).

Many employees find the trend towards DC plans undesirable (National Institute on

Retirement Security, 2015). Indeed, a DC plan focusses primarily on wealth accumulation

rather than providing stable lifelong income streams. Bovenberg and Nijman (2015) have

introduced a new pension contract called a Personal Pension with Risk sharing (PPR)

that can play an important role in the provision of old-age security. A PPR unbundles

the three main functions of variable annuities: investment, (dis)saving and insurance.1

In particular, it individualizes the investment and (dis)saving functions and organizes the

insurance function (i.e., pooling of micro longevity risk) collectively.2,3

This paper models a PPR. We define a PPR in terms of seven parameters (e.g.,

investment policy, Assumed Interest Rate, volatility of retirement income). We show

how the budget constraint implies several relationship between the parameters of a PPR.

The budget constraint does, however, not uniquely identify the values of all parameters.

As a consequence, policyholders must specify some parameter values exogenously. They

can specify the parameter values according to (at least) two different approaches – the

investment approach and the consumption approach. We explore these two approaches

in full detail and show how they differ from each other.

In the investment approach, policyholders specify in each period how much to save

or to withdraw, and how to allocate their retirement savings across different investment

options. Insurers commonly adopt the investment approach. For instance, if a person

wants to buy a variably annuity, insurers typically offer a selection of investment options

and Assumed Interest Rates (AIRs). Pension payments (henceforth called annuity units)

follow endogenously in the investment approach. In particular, the investment policy and

the AIR together determine the median growth rate of current annuity units. Indeed, if a

policyholder adopts a more aggressive investment policy (to earn a higher expected return

on investment) and leaves the AIR unaffected, the median growth rate of current annuity

units increases. Changes in not only the investment policy but also in the expected

1A PPR differs from a variable annuity in several important aspects. First, a PPR defines property
rights in terms of a personal investment account rather than an income stream. Second, a PPR allows
for more flexibility in customizing portfolio and drawdown policies to individual needs. Third, a PPR
integrates the accumulation phase with the payout phase.

2Individualization of the investment function is possible without any welfare loss. Indeed, pooling of
systematic risks does not generate any welfare gain. In fact, individualization of the investment function
may even lead to an welfare improvement, because insurers can now tailor policies to individual needs.

3By pooling micro longevity risk and taking systematic risks, policyholders can achieve lifelong income
streams at relatively low costs.
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return on equities alter the median growth rate of current annuity units. Hence, if a

person prefers a stable median income stream during the payout phase, he may not want

to adopt the investment approach.

Standard variable annuities fully reflect a wealth shock into current annuity units;

that is, current annuity units respond one-to-one to a change in wealth (see, e.g., Chai,

Horneff, Maurer, and Mitchell, 2011; Maurer, Mitchell, Rogalla, and Kartashov, 2013b).4

As a result, in a standard variable annuity, a wealth shock does not affect the AIR.

By contrast, a PPR allows a wealth shock to be absorbed gradually to reduce the

year-on-year volatility of retirement income. This so-called buffering of wealth shocks

is optimal in the presence of (internal) habit formation (see Fuhrer, 2000). In the case

of buffering, a wealth shock affects not only current annuity units but also the AIR.

Furthermore, as the policyholder ages and the duration of the cash flows declines, the

AIR becomes less effective in absorbing wealth shocks. Accordingly, in order to prevent

extreme year-on-year volatility of retirement income at advanced ages, the policyholder

may want to reduce the equity risk exposure as he grows older.

In the consumption approach, policyholders specify the entire consumption stream

in retirement exogenously.5 We characterize the consumption stream in terms of three

parameters: the annuity units at the age of retirement, the median growth rate of annuity

units and the volatility of annuity units. The contribution level, the investment policy and

the discount rate follow endogenously from the (stochastic) liabilities. Policyholders thus

adopt the principle of liability-driven investment (and not the principle of asset-driven

liabilities). In fact, the investment policy consists of two endogenous components: a

speculative component and an intertemporal hedge component. This decomposition

is familiar from the literature on optimal consumption and portfolio choice under a

stochastic investment opportunity set (see, e.g., Brennan and Xia, 2002; Wachter, 2002;

Chacko and Viceira, 2005; Liu, 2007). The speculative portfolio allows policyholders to

take advantage of the equity risk premium, while the hedge portfolio hedges changes in

the investment opportunity set that affect the costs of annuity units (Merton, 1971).6

The hedge portfolio thus allows policyholders to achieve a stable median income stream.

4Insurers have developed variable annuities for which payouts respond sluggishly to an unexpected
wealth shock (see, e.g., Guillén, Jørgensen, and Nielsen, 2006; Maurer, Rogalla, and Siegelin, 2013a;
Maurer, Mitchell, Rogalla, and Siegelin, 2014). However, these variable annuities are often based on
complex profit-sharing rules and hence are difficult to value.

5Brown, Kling, Mullainathan, and Wrobel (2008, 2013) find that individuals value annuities more if
framed in terms of consumption rather than investment.

6Changes in the investment opportunity set are due to shocks in e.g., the interest rate.
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We allow the volatility of consumption to increase with the investment horizon (i.e., a

wealth shock has a smaller impact on consumption in the near future than on consumption

in the distant future). Buffering of wealth shocks in this way implies an excessively smooth

and excessively sensitive consumption stream. Aggregate consumption data also exhibit

these properties (see, e.g., Flavin, 1985; Deaton, 1987; Campbell and Deaton, 1989).7

Excess smoothness and excess sensitivity in consumption is also consistent with internal

habit formation (see Fuhrer, 2000).

I. Modelling a Personal Pension with Risk Sharing

This section models a PPR. Section I.A describes the financial market. Section I.B

specifies the survival probabilities. These probabilities play an important role in a PPR.

Indeed, a PPR pools micro longevity risk. Section I.C introduces the budget condition.

This condition states that the policyholder’s wealth should match the value of the pension

liabilities in every state of nature. Section I.D examines the dynamics of the wealth

process, while Section I.E investigates the dynamics of the value of the liabilities. Finally,

Section I.F explores how the budget condition implies several relationships between the

parameters of a PPR. Throughout, we consider only the payout phase.

A. Financial Market

This section introduces the financial market. Our specification of the financial market

is closely related to Liu (2007). The only difference between Liu’s specification and

our specification is that he does not assume a complete financial market, whereas our

specification does.8 Denote by Xt an N -dimensional vector of state variables. This

vector characterizes the asset prices in the financial market. The vector of state variables

could include the short-term interest rate, the realized rate of inflation, or predictors of

stock returns. We assume that Xt satisfies the following dynamic equation:

dXt = µX dt+ ΣX dZt, (1)

7Consumption is excessively smooth if consumption under-responds to wealth shocks; consumption is
excessively sensitive if past wealth shocks have predictive power for future consumption growth.

8The financial market is complete only with respect to financial risk. Hence, micro longevity risk
cannot be eliminated by trading in the financial market.
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where the drift term µX and the diffusion matrix ΣX are an N -by-1 vector function and

an N -by-N matrix function of Xt, respectively, and Zt is an N -dimensional standard

Brownian motion. We denote the correlation structure of the stochastic processes by the

N -by-N matrix ρ; here, the (i, j)th element of ρ represents the correlation coefficient

between dZit and dZjt.

We consider a financial market consisting of N risky assets and one (locally) risk-free

asset. The vector of risky asset prices Pt = (P1t, . . . , PNt) and the risk-free asset price P0t

satisfy, respectively, the following dynamic equations:9

dPt = µ (Xt)Pt dt+ Σ (Xt)Pt dZt, (2)

dP0t = Rf (Xt)P0t dt. (3)

The drift term µ (Xt), the diffusion matrix Σ (Xt), and the risk-free interest rate Rf (Xt)

are functions of Xt. When there is no confusion, we write µ (Xt) as µ, Σ (Xt) as Σ, and

Rf (Xt) as Rf .

B. Survival Probabilities

To protect policyholders against outliving their financial assets, a PPR distributes the

accumulated retirement savings of someone who dies among the surviving policyholders

of the same age group.10 Hence, a PPR pools micro longevity risk. We assume that

the risk-sharing pool is sufficiently large, so that the law of large numbers applies.

Furthermore, we abstract away from macro longevity risk.

Denote by y the date of birth of a policyholder, by xr the age at which policyholders

retire, and by xmax the maximum age policyholders can reach. If the date of birth y falls

between time t− xr and time t− xmax and the policyholder has survived to time t, then

this policyholder receives a pension payment at time t. We denote the probability that a

policyholder aged x = t− y will survive to age x+ h by

hpx = exp

−
h∫

0

θx+vdv

 . (4)

9For notational convenience, we often write a column vector in the form z = (z1, . . . , zN ), where zi
represents the ith element of z.
10Alternatively, a PPR can distribute the accumulated retirement savings of someone who dies among

the surviving policyholders of all age groups. In either case, micro longevity risk is eliminated only if
the risk-sharing pool is sufficiently large.
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Here, θx+v represents the force of mortality (or hazard rate) at age x+ v.

C. Budget Condition

In a PPR, the value of the policyholder’s wealth should match the value of the pension

liabilities in every state of nature. Indeed, external risk absorbers are absent in a PPR.

Let Wt,y and Vt,y denote, respectively, the value of the investment account and the value

of the pension liabilities at time t of a policyholder born at time y. Mathematically,

budget balance implies that for each t ∈ [y + xr, y + xmax]

Wt,y = Vt,y. (5)

The budget condition (5) states that the personal ‘balance sheet’ funding ratio Wt,y/Vt,y

is equal to unity in every state of nature. By Itô’s Lemma and the budget condition (5),

d logWt,y = d log Vt,y. We explore the dynamics of logWt,y and log Vt,y in Sections I.D

and I.E, respectively. Section I.F derives several relationships between the parameters of

a PPR that follow from the budget condition (5).

D. Dynamics of the Wealth Process

The value of the investment account satisfies the following dynamic equation:

dWt,y =
(
θt−y +Rf + ω>t,y

[
µ−Rf

])
Wt,y dt+ ω>t,yΣWt,y dZt −Bt,y dt. (6)

Here, θt−y ≥ 0 represents the biometric rate of return at time t of a policyholder born

at time y,11 ωt,y is an N -by-1 vector of portfolio weights (i.e., ωit,y denotes the share of

wealth invested in the ith risky asset at time t of a policyholder born at time y),12 and

Bt,y denotes current annuity units at time t of a policyholder born at time y. The symbol

‘>’ represents the transpose sign.

Application of Itô’s Lemma to logWt,y yields

d logWt,y =
(
θt−y + µWt,y

)
dt+ ω>t,yΣ dZt −

Bt,y

Wt,y

dt, (7)

11The accumulated retirement savings of someone who dies goes to the surviving policyholders of the
same age group (and not to the heirs). Hence, surviving policyholders earn an additional return.
12The share of wealth invested in the risk-free asset is given by 1−

∑N
i=1 ωit,y.
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where µWt,y stands for the (geometric) expected financial return on wealth at time t of a

policyholder born at time y:13

µWt,y = Rf + ω>t,y
(
µ−Rf

)
− 1

2
ω>t,yΣρΣ>ωt,y. (8)

The last term on the right-hand side of (8) is called an Itô correction term.

E. Dynamics of the Value of the Liabilities

E.1. Conversion Factor

Denote by Ct,y the conversion factor at time t of a policyholder born at time y. We

define this factor as follows:

Ct,y =
Vt,y
Bt,y

. (9)

The conversion factor Ct,y is the factor at which policyholders can convert current annuity

units Bt,y into pension wealth Wt,y = Vt,y (i.e., Bt,yCt,y = Vt,y). It thus models how

policyholders allocate pension wealth between current and future annuity units. We

allow the conversion factor to depend on past speculative shocks and future expected

financial rates of returns.14

By Itô’s Lemma and equation (9), we find

d log Vt,y = d logCt,y + d logBt,y. (10)

Hence, to derive the dynamics of log Vt,y, we first need to derive the dynamics of logCt,y

and logBt,y. Sections I.E.2 and I.E.3 investigate the dynamics of logCt,y and logBt,y,

respectively.

13We note that the geometric expected financial return differs from the arithmetic expected financial
return Rf + ω>t,y

(
µ−Rf

)
.

14To dampen the impact of a speculative shock on current annuity units, we allow policyholders to
adjust the conversion factor following a speculative shock.
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E.2. Dynamics of the Conversion Factor

Denote by Vt,y,h the amount of pension wealth that the policyholder needs to finance

future annuity units Bt+h,y. The value of the total liabilities is thus given by

Vt,y =

xmax−(t−y)∫
0

Vt,y,h dh. (11)

We define Ct,y,h as follows:

Ct,y,h =
Vt,y,h
Bt,y

. (12)

Using (9), (11) and (12), we can write the conversion factor Ct,y as follows:

Ct,y =
1

Bt,y

xmax−(t−y)∫
0

Vt,y,h dh =

xmax−(t−y)∫
0

Ct,y,h dh. (13)

Let δt,y,v be the so-called (forward) discount rate at time t for horizon v ≥ 0 of a

policyholder born at time y. We implicitly define the discount rate δt,y,v as follows:

Ct,y,h = hpt−y exp

−
h∫

0

δt,y,v dv

 . (14)

The discount rate models the speed at which policyholders withdraw their pension wealth.

We allow the discount rate to depend on past speculative shocks and future expected

financial rates of return. Hence, we can write δt,y,v in terms of two components:

δt,y,v = δbt,y,v + δft,y,v. (15)

Here, δbt,y,v models how the discount rate depends on past speculative shocks. By increasing

δbt,y,v following a negative speculative shock, we allow policyholders to absorb (part of) a

speculative shock into future (rather than current) annuity units. The term δft,y,v models

how the discount rate depends on future expected financial returns. Depending on his

intertemporal rate of substitution, a policyholder may want to adjust δft,y,v if future

investment opportunities change. We refer to δbt,y,v and δft,y,v as the backward-looking

and forward-looking component of δt,y,v, respectively.
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Using (4), (14) and (15), we can write Ct,y,h as follows:

Ct,y,h = Ft,y,hAt,y,h, (16)

where

Ft,y,h = exp

−
h∫

0

δbt,y,v dv

 , (17)

At,y,h = exp

−
h∫

0

(
θt+v−y + δft,y,v

)
dv

 . (18)

We refer to Ft,y,h andAt,y,h as the horizon-dependent funding ratio and the horizon-dependent

annuity factor, respectively.15

E.2.1 Dynamics of the Horizon-Dependent Annuity Factor At,y,h

In order to derive the dynamics of the horizon-dependent annuity factor At,y,h, we

assume that the forward-looking component of the discount rate δft,y,v depends on t and

Xt (y and v are fixed). As a result, the average forward-looking component of the

discount rate, i.e., δ̄ft,y,h =
h∫
0

δft,y,v dv/h, also depends on t and Xt. By Itô’s Lemma, the

log horizon-dependent annuity factor logAt,y,h = −
(
δ̄ft,y,hh+

h∫
0

θt+v−y dv

)
satisfies now

the following dynamic equation:

d logAt,y,h =

(
θt−y + δft,y,h −

(
µX
)>

Dt,y,h −
∂

∂t

(
δ̄ft,y,hh

)
−1

2
Tr

[(
ΣX
)>

HX

(
δ̄ft,y,hh

)
ΣX

])
dt−

(
ΣX
)>

Dt,y,h dZt.

(19)

Here, Dt,y,h = ∇X

(
δ̄ft,y,hh

)
and HX

(
δ̄ft,y,hh

)
are the gradient and Hessian matrix of

δ̄ft,y,hh with respect to Xt, respectively, and Tr denotes the trace operator.

15We note that the budget condition is satisfied in every state of nature (i.e., the personal ‘balance sheet’
funding ratio Wt,y/Vt,y always equals unity). By contrast, the ‘cash flow’ funding ratio Ft,y = Wt,y/At,y

can deviate from unity. Here, At,y =
xmax−(t−y)∫

0

At,y,h dh.
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E.2.2 Dynamics of the Horizon-Dependent Funding Ratio Ft,y,h

Equation (19) shows that the annuity factor At,y =
xmax−(t−y)∫

0

At,y,h dh is (typically)

stochastic. The hedge portfolio aims at hedging stochastic variations in the annuity

factor. If the hedge portfolio differs from the actual portfolio, the policyholder takes

speculative risk. The budget condition is satisfied in every state of nature (see (5)).

Hence, policyholders must absorb a speculative shock in either current annuity units Bt,y

or the conversion factor Ct,y or a combination of both.

Denote by ωSt,y the N -dimensional vector of speculative portfolio weights at time t of

a policyholder born at time y. The speculative shock at time t is thus given by ωSt,yΣ dZt.

We assume that a policyholder absorbs a fraction qt,y,h of the current speculative shock

into future annuity units Bt+h,y. That is, the exposure of log Vt,y,h = logCt,y,h + logBt,y

to the current speculative shock equals qt,y,h. We assume that the function qt,y,h (which

we call the buffering function) increases with the horizon h, so that a current speculative

shock has a larger impact on cash flows in the distant future than on cash flows in the

near future. To absorb the entire speculative shock into current and future annuity units,

we must have that
xmax−(t−y)∫

0

αt,y,hqt,y,h dh = 1, (20)

where

αt,y,h = Ct,y,h/Ct,y. (21)

The exposure of logCt,y,h = log Vt,y,h − log Vt,y,0 to the current speculative shock is equal

to qt,y,h − qt,y,0. Hence, the horizon-dependent funding ratio (which models how the

conversion factor depends on past speculative shocks) is given by

Ft,y,h = exp


t∫

y+xr

(
qs,y,t+h−s − qs,y,t−s

) (
ωSs,y

)>
Σ dZs

 . (22)

By comparing (17) with (22), we arrive at

δ̄bt,y,h =

h∫
0

δbt,y,v dv/h = −
t∫

y+xr

(
qs,y,t+h−s − qs,y,t−s

) (
ωSs,y

)>
Σ dZs/h

= − logFt,y,h/h.

(23)
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Equation (23) shows how past speculative shocks affect the backward-looking component

of the discount rate. In the case of no horizon differentiation in risk exposures (i.e., qt,y,h

is independent of h), past speculative shocks do not affect the conversion factor Ct,y.

Indeed, in the absence of horizon differentiation in risk exposures, policyholders fully

absorb speculative shocks into current annuity units. The backward-looking component

of the discount rate is thus the direct consequence of the gradual adjustment of current

annuity units to speculative shocks. The horizon-dependent funding ratio satisfies the

following dynamic equation (this follows from equation (22)):

d logFt,y,h =
(
qt,y,h − qt,y,0

) (
ωSt,y

)>
Σ dZt −

t∫
y+xr

dqs,y,t−s

(
ωSs,y

)>
Σ dZs. (24)

The first term at the right-hand side of (24) represents the effect of a current speculative

shock on the funding ratio. The second term at the right-hand side of (24) denotes past

speculative shocks that are gradually being absorbed into current annuity units.

E.2.3 Dynamics of the Horizon-Dependent Conversion Factor Ct,y,h

The log horizon-dependent conversion factor obeys the following dynamics (the first

equality follows from (16) and Itô’s Lemma, and the second equality follows from (19)

and (24)):

d logCt,y,h = d logFt,y,h + d logAt,y,h

=

(
θt−y + δft,y,h −D

>
t,y,hµ

X − ∂

∂t

(
δ̄ft,y,hh

)
−1

2
Tr

[(
ΣX
)>

HX

(
δ̄ft,y,hh

)
ΣX

])
dt([

qt,y,h − qt,y,0
]
ωS>t,y Σ−D>t,y,hΣX

)
dZt −

∫ t

y+xr

dqs,y,t−sω
S>
s,y Σ dZs.

(25)

E.2.4 Dynamics of the Conversion Factor Ct,y

The dynamic equation of the log conversion factor is given by (this follows from Itô’s

Lemma and equations (13), (20) and (25))

d logCt,y =
(
θt−y + µCt,y

)
dt+

([
1− qt,y,0

] (
ωSt,y

)>
Σ− D̂>t,yΣX

)
dZt −

1

Ct,y
dt. (26)
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Here D̂t,y =
xmax−(t−y)∫

0

αt,y,hDt,y,h dh denotes the sensitivity vector of the conversion factor

with respect to the underlying state variables and µCt,y dt is the expected financial rate of

return on the conversion factor:

µCt,y dt =

xmax−(t−y)∫
0

αt,y,hEt
[
d logCt,y,h

]
dh+

1

2

xmax−(t−y)∫
0

αt,y,h d logCt,y,h d logCt,y,h

− 1

2

xmax−(t−y)∫
0

xmax−(t−y)∫
0

αt,y,iαt,y,j d logCt,y,i d logCt,y,j − θt−y dt.

(27)

The quantity d logCt,y,i d logCt,y,j denotes the quadratic covariation between logCt,y,i and

logCt,y,j. More specifically,

d logCt,y,i d logCt,y,j =

([
qt,y,i − qt,y,0

] (
ωSt,y

)>
Σ−D>y,iΣX

)
× ρ

×
([
qt,y,j − qt,y,0

] (
ωSt,y

)>
Σ−D>y,jΣX

)>
dt.

(28)

E.3. Dynamics of Current Annuity Units

We specify the annuity units at time t+h of a policyholder born at time y as follows:

Bt+h,y = By+xr,y
exp


t+h∫

y+xr

γfs,y ds+

t+h∫
y+xr

ΣB>
s,y,t+h−s dZs

 . (29)

Here, γft,y denotes the (unconditional) median growth rate of annuity units at time t of a

policyholder born at time y and the vector ΣB
t,y,h models the exposure of future log annuity

units logBt+h,y to a current Brownian shock dZt. We require that ΣB
t,y,h increases with

the horizon h, so that a current Brownian shock has a larger impact on annuity units in

the distant future than on annuity units in the near future. It follows from (29) that

Bt+h,y = Bt,yFt,y,h exp


t+h∫
t

γfs,y ds+

t+h∫
t

ΣB>
s,y,t+h−s dZs

 , (30)
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where

Ft,y,h = exp


t∫

y+xr

(
ΣB>
s,y,t+h−s − ΣB>

s,y,t−s

)
dZs

 . (31)

Comparison of (31) with (22) yields

ΣB>
t,y,h = qt,y,h

(
ωSt,y

)>
Σ. (32)

Equation (32) relates the vector of speculative portfolio weights to the volatility of annuity

units.

Log annuity units logBt,y evolve according to (this follows from (29)):

d logBt,y = γft,y dt+ ΣB>
t,y,0 dZt +

t∫
y+xr

dΣB>
s,y,t−s dZs = γt,y dt+ ΣB>

t,y,0 dZt. (33)

Here, γt,y denotes the actual median growth rate of annuity units. We allow the actual

median growth rate of annuity units to depend on past Brownian shocks and current

expected financial rates of return. Hence, we can decompose γt,y as follows:

γt,y = γbt,y + γft,y, (34)

where

γbt,y =

t∫
y+xr

dΣB>
s,y,t−s dZs. (35)

The parameters γbt,y and γft,y are referred to as the backward-looking and forward-looking

component of γt,y, respectively. Equation (35) represents past Brownian shocks that are

absorbed into the median growth rate of annuity units.

F. Relationships between the Parameters of a PPR

The previous sections have modelled a PPR in terms of seven parameters. The first

column of Table I lists these parameters. This section derives several relationship between

the parameters of a PPR that follow from the budget condition (5). This condition is

13



equivalent to the following two conditions:

Wy+xr,y
= Vy+xr,y = By+xr,y

Cy+xr,y. (36)

d logWt,y = d log Vt,y = d logBt,y + d logCt,y. (37)

Substitution of (7), (26) and (33) into (37) yields

0 =
(
µWt,y − µCt,y − γt,y

)
dt+

(
ω>t,yΣ−

(
ωSt,y

)>
Σ + D̂>t,yΣ

X

)
dZt. (38)

Using (36) and (38), we find the following system of equations:

Wy+xr,y
= By+xr,y

Cy+xr,y, (39)

γt,y = µWt,y − µCt,y, (40)

ω>t,y =
(
ωSt,y

)>
− D̂>t,yΣXΣ−1. (41)

Policyholders can use this system of equations to determine the values of the parameters.

The second equation (see (40)) shows that the median growth rate of annuity units

equals the difference between the expected financial return on log pension wealth and the

expected financial return on the log conversion factor. The third equation (see (41)) shows

that the vector of portfolio weights ωt,y is equal to the sum of the vector of speculative

portfolio weights ωSt,y and the vector of hedge portfolio weights ωHt,y = −
(

ΣXΣ−1
)>

D̂t,y.

We also have a restriction for every horizon h (see also (32)):

ΣB
t,y,h = qt,y,h

(
ωSt,y

)>
Σ. (42)

Equations (39) – (41) do not uniquely identify the parameters of a PPR. Policyholders

must thus specify the values of some parameters exogenously. The parameters of a

PPR can be specified according to at least two approaches – the investment approach

and the consumption approach. In the investment approach, policyholders specify the

discount rate, the investment policy and the buffering function exogenously; see also the

second column of Table I. In the consumption approach, policyholders specify the initial

annuity units, the median growth rate of annuity units and the volatility of annuity

units exogenously; see also the third column of Table I. The next sections explore the

investment approach and the consumption approach in more detail.
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Table I

Investment Approach and Consumption Approach
The second (third) column of this table summarizes the exogenous and endogenous parameters of the
investment (consumption) approach.

Parameter Investment Approach Consumption Approach

Initial Account Value Wy+xr,y
Exogenous Endogenous

Portfolio Strategy ωt,y Exogenous Endogenous

Discount Rate δft,y,h Exogenous Endogenous

Buffering Function qt,y,h Exogenous Endogenous
Initial Annuity Units By+xr,y

Endogenous Exogenous

Volatility Vector ΣBt,y,h Endogenous Exogenous

Growth Rate γft,y Endogenous Exogenous

II. Investment Approach

This section explores the investment approach. In this approach, policyholders specify

the initial account value, the forward-looking component of the discount rate, the vector

of portfolio weights and the buffering function qt,y,h; see also Table I. The annuity units

at the age of retirement, the forward-looking component of the median growth of annuity

units and the volatility function ΣB
t,y,h follow endogenously. Section II.A specifies the

vector of state variables and its dynamics. Section II.B considers the investment approach

with the restriction that qt,y,h is independent of h (i.e., past speculative shocks do not

affect the discount rate). We relax this restriction in Section II.C.

A. State Variables

For the sake of simplicity, we characterize asset prices by the following three state

variables: the rate of inflation πt, the (short-term) real interest rate rt, and the nominal

stock price St. Hence, Xt = (πt, rt, St). Following Brennan and Xia (2002), the rate

of inflation and the real interest rate are driven by mean-reverting processes of the

Ornstein-Uhlenbeck type. We describe the stock price by a geometric Brownian motion.

The drift term µX and the diffusion coefficient ΣX are thus specified as follows:

µX =

 η (π̄ − πt)
κ (r̄ − rt)

StRf + StλSσS

 , ΣX =

σπ 0 0

0 σr 0

0 0 StσS

 . (43)
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Here, η > 0 and κ > 0 are mean reversion coefficients, π̄ and r̄ denote long-term means,

λS is the constant equity risk premium per unit of risk, and σπ > 0, σr > 0 and σS > 0

correspond to diffusion coefficients.

Policyholders invest their wealth in three risky assets: two nominal zero-coupon bonds

(with different times of maturity h1 = T1 − t and h2 = T2 − t) and a risky stock. We

find the following expressions for the expected excess return µ−Rf and the the diffusion

matrix Σ (see Appendix):

µ−Rf =

−λπσπKh1
− λrσrLh1

−λπσπKh2
− λrσrLh2

λSσS

 , Σ =

−σπKh1
−σrLh1 0

−σπKh2
−σrLh2 0

0 0 σS

 . (44)

Here, λ = (λπ, λr, λS) is the vector of market prices of risk, Kh = 1
η

(
1− e−ηh

)
and

Lh = 1
κ

(
1− e−κh

)
.

B. Direct Absorption of Speculative Shocks

Figure 1 illustrates the investment approach with the restriction that the buffering

function qt,y,h is independent of h and the discount rate δt,y,h is constant (i.e., δt,y,h = δ).

Standard variable annuity products typically satisfy these two assumptions (see, e.g.,

Chai et al., 2011; Maurer et al., 2013b). A constant discount rate implies that the vector

of hedge portfolio weights is equal to zero:

ωHt,y = 0. (45)

The annuity units at the age of retirement, the forward-looking component of the median

growth rate of annuity units and the function ΣB
t,y,h follow from equations (39), (40) and
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(41), respectively. We find16

By+xr,y
=
Wy+xr,y

Cy+xr,y
, (46)

γft,y = rt + πt + ω>t,y
(
µ−Rf

)
− 1

2
ω>t,yΣρΣ>ωt,y − δ, (47)

ΣB
t,y,h =

(
ωSt,y

)>
Σ. (48)

As shown by equation (47), the expected return on pension wealth and the discount

rate together determine the median growth rate of annuity units. As a result, the

median growth rate of annuity units is not constant, but rather depends on the real

interest rate and the rate of inflation. If policyholders aim to achieve a stable median

pension stream during the payout phase, the dependence of the median growth rate on

the state variables is undesirable. To obtain a constant median growth rate, policyholders

should determine the discount rate endogenously. Section III derives the discount rate

under the assumption that policyholders specify the median growth rate of annuity

units exogenously. Furthermore, equation (48) shows that every cash flow has the same

exposure to a current speculative shock. Indeed, the annuity factor remains unchanged

following a speculative shock.

C. Gradual Absorption of Speculative Shocks

This section allows qt,y,h to depend on the investment horizon h. As a result, the

backward-looking component of the median growth rate of annuity units no longer equals

zero (see equation (23)). The forward-looking component of the median growth rate of

annuity units is still given by equation (47). However, equation (48) is no longer valid.

The exposure of future annuity units to a current Brownian shock is now given by

ΣB
t,y,h = qt,y,h

(
ωSt,y

)>
Σ. (49)

It follows from equation (20) that qt,y,h converges to one as age approaches death. Hence,

under the condition that the vector of speculative portfolio weights ωSt,y is constant over

time, the volatility of future annuity units ΣB
t,y,h increases as policyholders grow older. To

maintain a stable consumption stream over the life cycle, policyholders may thus want

16We note that the backward-looking component of the median growth rate of annuity units is equal
to zero.
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Figure 1. Illustration of the investment approach: A special case. The figure illustrates
the investment approach with the restriction that the discount rate is constant and the function qt,y,h
is independent of h. The left-hand side of the figure shows the exogenous design parameters of the
pension contract. These exogenous parameters determine the parameters of the pension contract on the
right-hand side of the figure.

to adopt a life cycle investment strategy, so that ΣB
t,y,h remains constant over the course

of their lives.

III. Consumption Approach

This section explores the consumption approach. In this approach, policyholders

specify the entire consumption stream in retirement exogenously. Section III.A examines

the Defined Benefit (DB) approach in which consumption is constant in either nominal

or real terms. Section III.B extends the DB approach to stochastic pension payments.

A. Defined Benefit Approach

In the DB approach, policyholders specify how much to consume at the age of

retirement and the rate at which consumption grows over time. Pension payments either

grow with the inflation rate (guaranteed real pension payments) or do not grow at all

(guaranteed nominal pension payments). In this section, we derive the discount rate and

the vector of portfolio weights endogenously from the liabilities of the pension contract.

This contrasts with Section II in which policyholders specify the discount rate and the

vector of portfolio weights exogenously. Figure 2 illustrates the DB approach.
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Figure 2. Illustration of the DB approach. The figure illustrates the DB approach. The left-hand
side of the figure shows the exogenous parameters of the pension contract. These exogenous parameters
determine the parameters on the right-hand side of the figure.

The DB approach specifies the growth rate of annuity units as follows:

γt,y = γft,y = g · πt, (50)

where g ∈ {0, 1}. If g equals zero (unity), consumption is constant in nominal (real)

terms. The coefficient g determines the discount rate and the vector of hedge portfolio

weights.17 The following specification of the discount rate yields budget balance (see

Appendix):

δt,y,h = δft,y,h = d0h + d1h · πt + d2h · rt, (51)

where the coefficients d0h, d1h and d2h follow endogenously from the liabilities of the

contract. The vector of portfolio weights ωHt,y depends on D̂t,y =
∫ xmax−(t−y)
0

αt,y,hDt,y,h dh

as follows (see also (41)):

ωHt,y = −
(

ΣXΣ−1
)>

D̂t,y. (52)

Here, Dt,y,h = ∇X

∫ h
0
δt,v dv =

(∫ h
0
d1v dv,

∫ h
0
d2v dv, 0

)
= (D1h, D2h, D3h) = Dh denotes

17We note that the vector of speculative portfolio weights is zero by definition.
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the sensitivity vector of the discount rate δ̄t,y,hh with respect to the state variables. The

coefficients d0h, d1h and d2h solve the following system of equations (see Appendix):

d0h = −D>h ΣXΣ−1
(
µ−Rf

)
+ ηD1hπ̄ + κD2hr̄ −

1

2
D>h ΣXρDhΣ

X>, (53)

d1h = 1− g − ηD1h, (54)

d2h = 1− κD2h. (55)

This system of equations shows that the coefficient g determines the discount rate (51).

A.1. Guaranteed Nominal Pension Payments

Policyholders receive guaranteed nominal annuity units if g = 0. Solving (54) - (55),

we arrive at d1h = e−ηh and d2h = e−κh.18 Substituting the expressions of d0h, d1h

and d2h into equation (51) and using e−κhrt + e−ηhπt +
(

1− e−κh
)
r̄ +

(
1− e−ηh

)
π̄ =

Et [rt+h + πt+h], we find

δt,y,h = Et [rt+h + πt+h]−D1hλrσr −D2hλπσπ

− 1

2
(D1hσr)

2 − 1

2
(D2hσπ)2 − ρ12D1hD2hσrσπ.

(56)

The discount rate (56) equals the nominal forward interest rate rt,h (see equation (A11) in

the Appendix). Indeed, payments are risk-free. As a result, funds should use the risk-free

term structure to discount future liabilities. The inflation sensitivity and the real interest

rate sensitivity of the liabilities are given by D̂1t,y = 1
η

∫ xmax−(t−y)
0

αt,y,h

(
1− e−ηh

)
dh and

D̂2t,y = 1
κ

∫ xmax−(t−y)
0

αt,y,h

(
1− e−κh

)
dh, respectively. Pension funds can replicate the

pension contract by investing in a portfolio of nominal bonds with inflation sensitivity

D̂1t,y and the real interest rate sensitivity D̂2t,y.

A.2. Guaranteed Real Pension Payments

Policyholders receive guaranteed real annuity units if g = 1. Solving (54) - (55), we

arrive at d1h = 0 and d2h = e−κh. The discount rate is equal to the real forward interest

18Substituting g = 0 into (54) and using D1h =
∫ h
0
d1v dv, we arrive at d1h = 1 − η

∫ h
0
d1v dv.

Substitution of d1v = e−ηv into this equation yields e−ηh = 1−η
∫ h
0
e−ηv dv = 1−η 1

η

(
1− e−ηh

)
= e−ηh.
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rate:

δt,y,h = Et [rt+h]−D2hλrσr −
1

2
(D2hσr)

2 . (57)

The value of the liabilities is insensitive to changes in the inflation rate. Indeed, pension

payments are guaranteed in real terms. The real interest rate sensitivity of the liabilities is

given by D̂2t,y = 1
κ

∫ xmax−(t−y)
0

αt,y,h

(
1− e−κh

)
dh. To guarantee the pension payments to

the policyholders, pension funds should invest in an investment portfolio that is insensitive

to changes in the inflation rate and has the same real interest rate sensitivity as the

liabilities.

B. Defined Ambition Approach

The Defined Ambition (DA) approach generalizes the DB approach to stochastic

pension payments. In the DA approach, policyholders specify how much to consume at

the age of retirement, the median rate at which consumption grows over time and the

degree of uncertainty in consumption. As in the DB approach, the discount rate and the

vector of portfolio weights follow endogenously from the liabilities of the pension contract.

The DA approach generalizes the growth rate of annuity units (50) as follows:

γt,y = γft,y = g0 + g1 · πt + g2 · rt, (58)

where the coefficients g0, g1 and g2 are given exogenously. We note that if g1 ∈ {0, 1} and

g0 = g2 = 0, then (58) coincides with (50). In the Appendix, we show that the following

specification of the discount rate yields budget balance:

δt,y,h = δft,y,h = d0h + d1h · πt + d2h · rt. (59)

Here, the coefficients d0h, d1h and d2h are determined by the liabilities of the pension

contract. The vector of hedge portfolio weights ωHt,y is given by

ωHt,y = −
(

ΣXΣ−1
)>

D̂t,y, (60)

where D̂t,y =
∫ xmax−(t−y)
0

αt,y,hDt,y,h dh with Dt,y,h =
(∫ h

0
d1v dv,

∫ h
0
d2v dv, 0

)
. The vector

Dt,y,h measures how sensitive the discount rate δ̄t,y,hh is with respect to the state variables.

Section III.B.1 assumes that the exposure of future annuity units to a current Brownian

shock does not depend on the horizon h; that is, ΣB
t,y,h = ΣB. Figure 3 illustrates this
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Figure 3. Illustration of the DA approach: Direct adjustment of annuity units. The figure
illustrates the DA approach with direct adjustment of annuity units. The left-hand side of the figure
shows the exogenous parameters of the pension contract. These exogenous parameters determine the
parameters on the right-hand side of the figure.

case. Section III.B.2 considers the DA approach with gradual adjustment of annuity units

to Brownian shocks. This case is illustrated by Figure 4.

B.1. Direct Adjustment of Annuity Units to Speculative Shocks

The volatility vector ΣB determines the vector of speculative portfolio weights as

follows:

ωSt,y = ωS =
(

ΣBΣ−1
)>

. (61)

The vector of total portfolio weights is thus given by

ωt,y = ωS + ωHt,y =
(

ΣBΣ−1
)>
−
(
D̂>t,yΣ

XΣ−1
)>

. (62)
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Figure 4. Illustration of the DA approach: Gradual adjustment of annuity units. The figure
illustrates the DA approach with gradual adjustment of annuity units. The left-hand side of the figure
shows the exogenous parameters of the pension contract. These exogenous parameters determine the
parameters on the right-hand side of the figure.

The coefficients d0h, d1h and d2h solve the following system of equations:

d0h = −g0 + κD2hr̄ + ηD1hπ̄ +
(

ΣB −D>h ΣX
)

Σ−1
(
µ−Rf

)
− 1

2
D>h ΣXρDhΣ

X> − 1

2
ΣBρ

(
ΣB
)>

+ ΣBρ
(
D>h ΣX

)>
,

(63)

d1h = 1− g1 − ηD1h, (64)

d2h = 1− g2 − κD2h. (65)

Solving (64) – (65), we arrive at d1h = (1− g1) e−ηh and d2h = (1− g2) e−κh. The

forward-looking component of the discount rate is thus given by

δfh = Et [(1− g2) rt+h + (1− g1) πt+h] +
(

ΣB −D>h ΣX
)

Σ−1
(
µ−Rf

)
− 1

2
D>h ΣXρDhΣ

X> − 1

2
ΣBρ

(
ΣB
)>

+ ΣBρ
(
D>h ΣX

)>
− g0.

(66)
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The inflation sensitivity D̂1t,y and the real interest rate sensitivity D̂2t,y of the pension

liabilities are given by D̂1t,y = (1− g1) 1
η

∫ xmax−(t−y)
0

αt,y,h

(
1− e−ηh

)
dh and D̂2t,y =

(1− g2) 1
κ

∫ xmax−(t−y)
0

αt,y,h

(
1− e−κh

)
dh, respectively. The pension should choose a hedge

portfolio with the same sensitivities.

B.2. Gradual Adjustment of Annuity Units to Speculative Shocks

The vector Σ̂B
t,y =

∫ xmax−(t−y)
0

αt,y,hΣ
B
h dh determines the vector of speculative weights:

ωSt,y =
(

Σ̂B
t,yΣ

−1
)>

. (67)

It follows from (67) that the investor implements a life cycle strategy if ΣB
h increases with

the horizon h (because Σ̂B
t,y decreases as the investor ages). The vector of total portfolio

weights is given by

ωt,y = ωSt,y + ωHt,y =
(

Σ̂B
t,yΣ

−1
)>
−
(
D̂>t,yΣ

XΣ−1
)>

. (68)

The coefficients d1h and d2h are the same as in the previous section. The coefficient d0h

is given by

d0h = −g0 + κD2hr̄ + ηD1hπ̄ +
(

ΣB
h −D>h ΣX

)
Σ−1

(
µ−Rf

)
− 1

2
D>h ΣXρDhΣ

X> − 1

2
ΣB
h ρ
(

ΣB
h

)>
+ ΣB

h ρ
(
D>h ΣX

)>
.

(69)

IV. Concluding Remarks

This paper has explored how to model a PPR. We have derived a system of restrictions

on the parameters of a PPR. These restrictions do not uniquely identify the parameters.

As a result, policyholders must specify the values of some parameters exogenously. The

parameter values can be specified according to (at least) two approaches - the investment

approach and the consumption approach. In the investment approach, policyholders

specify the speed of decumulation and the investment policy exogenously. We have

showed how these exogenous parameters determine the median growth rate and volatility

of retirement income. The consumption approach specifies the entire income stream

exogenously. We have showed which discount rate and investment policy correspond to

a particular consumption profile.
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Appendix A. Bond Price Dynamics

We start by deriving the analytical solution to the stochastic differential equation

(SDE) for the Ornstein-Uhlenbeck process. After applying Itô’s Lemma to the function

f (t, πt) = eηt (πt − π̄), we find

df (t, πt) = ηeηt (πt − π̄) dt+ eηtdπt

= ηeηt (πt − π̄) dt− eηtη (πt − π̄) dt+ eηtσπdZ1t = σπe
ηtdZ1t.

(A1)

The solution of (A1) is given by

f (t, πt+v) = f (t, πt) + σπ

∫ t+v

t

eηudZ1u. (A2)

The inflation rate at time t + v > t is given by (the first and third equality follow from

the definition of f (t, πt), and the second equality follows from (A2))

πt+v = π̄ + e−η(t+v)f (t, πt+v) = π̄ + e−η(t+v)f (t, πt) + σπ

∫ t+v

t

e−η(t+v−u)dZ1u

= π̄ + e−ηv (πt − π̄) + σπ

∫ v

0

e−η(v−u)dZ1(t+u)

= πt +
(
1− e−ηv

)
(π̄ − πt) + σπ

∫ v

0

e−η(v−u)dZ1(t+u).

(A3)

In a similar fashion, we find

rt+v = rt +
(
1− e−κv

)
(r̄ − rt) + σr

∫ v

0

e−κ(v−u)dZ2(t+u).

The (conditional) expectation of the inflation rate Et [πt+v] and the (conditional) expectation

of the real interest rate Et [rt+v] are given by

Et [πt+v] = πt + η (π̄ − πt)Kv, (A4)

Et [rt+v] = rt + κ (r̄ − rt)Lv. (A5)

The average inflation rate π̌t,h = 1
h

∫ h
0
πt+vdv and the average real interest rate řt,h =

1
h

∫ h
0
rt+vdv play a key role in determining the yield to maturity. We find (the first
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equality follows from substituting (A3) to eliminate πt+v)

π̌t,h =
1

h

∫ h

0

πt+vdv

=
1

h

∫ h

0

(
πt + (π̄ − πt)

(
1− e−ηv

))
dv +

σπ
h

∫ h

0

∫ v

0

e−η(v−u)dZ1(t+u)dv

=
1

h

∫ h

0

(
πt + (π̄ − πt)

(
1− e−ηv

))
dv +

σπ
h

∫ h

0

∫ h

v

e−η(h−u)dudZ1(t+v)

=
1

h

∫ h

0

(πt + (π̄ − πt) ηKv) dv +
σπ
ηh

∫ h

0

(
1− e−η(h−v)

)
dZ1(t+v)

=
1

h

∫ h

0

Et [πt+v] dv +
σπ
h

∫ h

0

Kh−vdZ1(t+v).

(A6)

In a similar fashion, we find that the average real interest rate řt,h is given by

řt,h =
1

h

∫ h

0

rt+vdv =
1

h

∫ h

0

Et [rt+v] dv +
σr
h

∫ h

0

Lh−vdZ2(t+v). (A7)

The pricing kernel is given by (see, e.g., Brennan and Xia, 2002):

ξt = exp

{
−
∫ t

0

(
πs + rs +

1

2
φ>ρφ

)
ds+ φZt

}
. (A8)

Here, φ is a vector of factor loadings. We can determine the price of a bond is as follows:

Pt,h = Et
[
ξt+h
ξt

]
,

= Et
[
exp

{
−
∫ h

0

(
πt+v + rt+v +

1

2
φ>ρφ

)
dv + φ (Zt+h − Zt)

}]
.

(A9)
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Substituting (A6) and (A7) into the pricing formula (A9) to eliminate
∫ h
0
πt+vdv and∫ h

0
rt+vdv, we arrive at

Pt,h = exp

{
−
∫ h

0

(
Et [πt+v + rt+v] +

1

2
φ>ρφ

)
dv

}
Et
[
exp

{∫ h

0

φ3dZ3(t+v)

}
exp

{∫ h

0

(φ1 − σπKh−v) dZ1(t+v) +

∫ h

0

(φ2 − σrLh−v) dZ2(t+v)

}]
= exp

{
−
∫ h

0

(
Et [πt+v + rt+v]− λπσπKv − λrσrLv

−1

2
(σπKv)

2 − 1

2
(σrLv)

2 − ρ12σπσrKvLv

)
dv

}
= exp

{
−
∫ h

0

rt,vdv

}
.

(A10)

The instantaneous forward interest rate rt,v is defined as follows:

rt,v = Et [πt+v + rt+v]− λπσπKv − λrσrLv

− 1

2
(σπKv)

2 − 1

2
(σrLv)

2 − ρ12σπσrKvLv.
(A11)

The log bond price is given by (this follows from (A4), (A5), (A10) and (A11))

logPt,h = −
∫ h

0

(
πt + η (π̄ − πt)Kv + rt + κ (r̄ − rt)Lv − λπσπKv

− λrσrLv −
1

2
(σπKv)

2 − 1

2
(σrLv)

2 − ρ12σπσrKvLv

)
dv.

(A12)

Solving the integral (A12), we arrive at19

logPt,h = −πth− (π̄ − πt) (h−Kh)− rth− (r̄ − rt) (h− Lh)

+
λπσπ
η

(h−Kh) +
λrσr
κ

(h− Lh) +
1

2

(
σπ
η

)2(
h− 2Kh +

1

2
K2h

)
+

1

2

(
σr
κ

)2(
h− 2Lh +

1

2
L2h

)
+
ρ12σπσr
κη

(
h−Kh − Lh +

1− e−(η+κ)h

η + κ

)
= −πtKh − rtLh −Mh,

19The first equality follows from K2
v =

(
1− 2e−ηv + e−2ηv

)
/η2 and the second equality follows from

K2
h = (2Kh −K2h) /κ.
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where the horizon-dependent constant Mh is defined as follows:

Mh =

(
π̄ − λπσπ

η
− 1

2

[
σπ
η

]2)
(h−Kh) +

1

4η
(σπKh)

2

+

(
r̄ − λrσr

κ
− 1

2

[
σr
κ

]2)
(h− Lh) +

1

4κ
(σrLh)

2

+
ρ12σπσr
ηκ

(
h−Kh − Lh +

1− e−(κ+η)h

η + κ

)
.

(A13)

To calculate how the value of the bond with a fixed maturity t + h develops as time

proceeds (i.e., t+ h is fixed but t changes), we apply Itô’s Lemma to

Pt,h = exp {−πtKh − rtLh −Mh} .

We find

dPt,h
Pt,h

=
(
rt,h − η (π̄ − πt)Kh − κ (r̄ − rt)Lh +

1

2
(σπKh)

2 +
1

2
(σrLh)

2

+ ρ12σπσrKhLh

)
dt− σπKhdZ1t − σrLhdZ2t

= (rt + πt − λπσπKh − λrσrLh) dt− σπKhdZ1t − σrLhdZ2t.

Appendix B. Derivation of d0h, d1h and d2h

Budget balance implies that (see also (40))

γt,y = µWt,y − µCt,y. (B1)

Substituting (58) into (B1), we arrive at

g0 + g1 · πt + g2 · rt = µWt,y − µCt,y. (B2)

The vector of portfolio weights is given by

ωt,y = ωHt,y + ωSt,y = −
(

ΣXΣ−1
)>

D̂t,y +
(
Σ−1

)>
Σ̂B
t,y. (B3)
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Substituting the vector of portfolio weights into (B3) yields

µWt,y = πt + rt +
(

Σ̂B>
t,y − D̂>t,yΣX

)
Σ−1

(
µ−Rf

)
− 1

2
Σ̂B>
t,y ρΣ̂B

t,y −
1

2
D̂>t,yΣ

XρΣX>D̂t,y + D̂>t,yΣ
XρΣ̂B

t,y.
(B4)

Substituting (59) and the expression for µX (see (43)) into (27), we arrive at

µCt,y =

xmax−(t−y)∫
0

αt,y,hd0h dh+ πt

xmax−(t−y)∫
0

αt,y,hd1h dh+ rt

xmax−(t−y)∫
0

αt,y,hd2h dh

− D̂>1t,yη (π̄ − πt)− D̂>2t,yκ (r̄ − rt) +
1

2

xmax−(t−y)∫
0

αt,y,h d logCt,y,h d logCt,y,h

− 1

2

xmax−(t−y)∫
0

xmax−(t−y)∫
0

αt,y,iαt,y,j d logCt,y,i d logCt,y,j.

(B5)

It follows from substituting (B4) and (B5) into (B2) that d1h and d2h must satisfy the

following two conditions:

d1h = 1− g1 + ηD1h, (B6)

d2h = 1− g2 + κD2h. (B7)

The coefficient d0h must satisfy

xmax−(t−y)∫
0

αt,y,hd0h dh = −g0 +
(

Σ̂B>
t,y − D̂>t,yΣX

)
Σ−1

(
µ−Rf

)
− 1

2
Σ̂B>
t,y ρΣ̂B

t,y

− 1

2
D̂>t,yΣ

XρΣX>D̂t,y + D̂>t,yΣ
XρΣ̂B

t,y + D̂>1t,yηπ̄ + D̂>2t,yκr̄

− 1

2

xmax−(t−y)∫
0

αt,y,h d logCt,y,h d logCt,y,h

+
1

2

xmax−(t−y)∫
0

xmax−(t−y)∫
0

αt,y,iαt,y,j d logCt,y,i d logCt,y,j.

(B8)

Straightforward computations yield (69).
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