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Abstract

In this paper we consider the risk-return trade-off for variable annuities in the
retirement phase, with a special focus on the Dutch institutional setting. In particular,
we study the effect of the so-called Assumed Interest Rate. We also consider in detail
the consequences of the possibility to smooth, in a certain sense, financial market
shocks over the remaining retirement period. Our analysis is based on an explicit
distribution of initial pension wealth over the pension payments at various horizons.
We discuss the effects of sharing (micro) longevity risk. Our focus is on variable
annuities in an individual Defined Contribution setting.
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1 Introduction

Recently1, the Dutch senate passed a law that enables retirees to invest their pension wealth

in risky assets. Before that law it was compulsory to convert pension wealth at retirement in a

life-long fixed annuity. Under the new law, life-long variable annuities are allowed as well.

In the present paper we study the risk-return trade-off for variable annuities, focusing in

particular on the choice of the assumed interest rate (AIR) and the effect of smoothing financial

market shocks. We derive exact analytical expression for the distribution of pension payments at

given horizons given a chosen assumed interest rate and possibly using the option to smooth

financial market returns.

In particular we study the question of obtaining constant, in expected nominal terms, pension

payments. In case of smoothing financial market returns that leads to the so-called BNW discount

curve that we re-derive. In the setting of the new Dutch law, we translate this curve into a horizon-

dependent “fixed decrease”.

The rest of this paper is organized as follows. In Section 2 we describe the Merton financial

market that we consider. Section 3 considers the risk-return trade-off for variable annuities

without smoothing. Subsequently, Section 4 considers the setting with smoothing of financial

market shocks. Section 5 relates our paper to the Dutch institutional setting as it concerns

the so-called “fixed decrease” (“vaste daling”). Section 6 concludes the paper. All numerical

illustrations are based on an Excel spreadsheet that is available from the authors.

2 The financial market

As financial market we consider the standard Black-Scholes/Merton setting. This means in

particular that there is a constant (continuously compounded) interest rate r and a single risky

asset whose price at time t we denote by St .

dSt = µSt dt +σSt dZt (2.1)

= (r +λσ)St dt +σSt dZt . (2.2)

Here, µ denotes the (arithmetically compounded) expected return,σ denotes the (instantaneous)

stock volatility, λ denotes the Sharpe ratio λ= (
µ− r

)
/σ and Z is a standard Brownian motion.

We abstain from other risk factors. In particular, we also ignore longevity risk, though we

discuss it to some extent in Section 3.2. When calculating payments in real terms, we consider a

constant (continuously compounded) inflation rate π.

1https://www.eerstekamer.nl/stenogramdeel/20160614/initiatief_lodders_wet_verbeterde_2
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3 Variable annuities without smoothing

Consider a retiree who enters retirement with total DC wealth Wt at time t and has to finance H

annual pension payments at times t +h, h = 0, . . . , H −1. For now we assume H to be given, i.e.,

we consider fixed-term, instead of life-long, variable annuities. Think of H as the remaining life

expectancy at the retirement age.

The pension payment at each horizon h = 0, . . . , H −1 has to be financed from the initial total

pension wealth Wt . If we denote by Wt (h) the market-consistent value of the pension payment

at horizon h, the budget constraint implies

Wt =
H−1∑
h=0

Wt (h). (3.1)

Alternatively stated, at time t we consider an amount of wealth Wt (h) that is available to finance

the pension payment at time t +h. The actual pension payment will of course depend on the

investment strategy that is followed and the financial market returns. We can, conceptually, allow

for a different investment strategy for the wealth allocated to each horizon h = 0, . . . , H−1. Indeed,

this is precisely what happens when financial market returns are smoothed, see Section 4.

The way total pension wealth Wt is allocated over wealth Wt (h), for each horizon h = 0, . . . , H−
1, determines implicitly the so-called assumed interest rate (AIR) at (h). That is, the assumed

interest rate is defined through

Wt (h)

Wt
= Wt (h)∑H−1

k=0 Wt (k)
= exp(−hat (h))∑H−1

k=0 exp(−kat (k))
. (3.2)

Note that this implies in particular

Wt (h)

Wt (0)
= exp(−hat (h)) . (3.3)

A few comments are in place. First, usually, the assumed interest rate at (h) is taken as given

and used to determine the allocation of total wealth over the various payments. Equations (3.2)

and (3.3) show that both approaches are equivalent. Secondly, observe that in general, at (h)

need not be constant in h, i.e., there can be an assumed interest rate term structure. This will

become particularly relevant when discussing the possibility of smoothing in Section 4. Finally,

the Dutch institutional setting uses to notions of “projection rate” (“projectierente”) and “fixed

decrease” (“vaste daling”). We will see, in Section 5, that their sum equals the assumed interest

rate. We will ignore the (political) reasons for not using this sum directly but a separate projection

rate and fixed decrease.
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Suppose that we invest Wt (h) in a continuously re-balanced strategy with a fixed stock

exposure w . Then standard calculation show that wealth Wt (h), for the pension payment at time

h, evolves as

dWt (h) = (r +wλσ)Wt (h)dt +wσWt (h)dZt . (3.4)

Using Itô’s lemma we find

dlogWt (h) =
(
r +wλσ− 1

2
w 2σ2

)
dt +wσdZt . (3.5)

As a result, the pension payment at horizon h, Wt+h(h), follows a log-normal distribution

with parameters h
(
r +wλσ− 1

2 w 2σ2
)

and hw2σ2. In particular, the expected pension payment

at horizon h is given by

Et Wt+h(h) = Wt (h)exp

(
h

(
r +wλσ− 1

2
w 2σ2

)
+ 1

2
hw2σ2

)
(3.6)

= Wt (h)exp(h (r +wλσ)) .

Risk in the pension payment Wt+h(h) at horizon h can be determined by calculating the volatility

of the payment. However, we even easily get the quantiles for the distribution. The quantile at

level α is given by

Q(α)
t (Wt+h(h)) =Wt (h)exp

(
h

(
r +wλσ− 1

2
w 2σ2

)
+ zα

p
hwσ

)
, (3.7)

where zα denotes the corresponding quantile of the standard normal distribution.

In case one is interested in the real pension payment, the above expected payoff and quantiles

simply have to be multiplied with exp(−hπ).

One may be interested in choosing the assumed interest rate at (h) in such a way that the

expected pension payments are constant with respect to h, i.e., such that Et Wt+h(h) = Wt (0)

(recall that the first pension payment Wt (0) is without investment risk). From (3.6) we find that

this implies
Wt (h)

Wt (0)
= exp(−h (r +wλσ)) , (3.8)

or, using (3.3),

at (h) = r +wλσ. (3.9)

This (constant) assumed interest rate leads to, in expectation, nominally constant pension

payments. In case our financial market would exhibit interest rate risk (that is, a horizon-

dependent risk-free term structure) and/or stock market predictability, we would need horizon-

dependent assumed interest rates to obtain, in expectation, constant pension payments. We will
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see that, even in the present financial market, also smoothing financial market returns leads to a

horizon-dependent assumed interest rate (Section 4).

3.1 Combining variable and fixed annuities

In the derivations above, we implicitly assumed continuous re-balancing of the risky investment

portfolio. Thus if one specifies to invest w of wealth in the risky asset, then movements in this

underlying asset cause a change in the relative investment in the risky and the risk-free asset. As

a result, either risky assets have to be bought (when their value goes down) or sold (when their

value goes up) in order to keep the proportion of wealth invested in the risky asset constant at w .

Thus, if the stock price drops, the total value of wealth goes down and the relative proportion

invested in the stock decreases as well. Therefore, one will buy more stocks to keep the invest-

ment proportion constant. If the stock price drops further, the total value of wealth invested can

theoretically go to zero. This undesired feature can be alleviated by combining a variable annuity

with continuous re-balancing with a fixed annuity.

In the current setting, a fixed annuity is simply obtained in case no investment risk is taken

for any of the pension payments. That is, each Wt (h) is fully invested in the risk-free asset.

Note that, in a setting with interest rate risk and risk-free term structures, the above can be

extended. There will be a guaranteed pension payment at horizon h in case the wealth Wt (h) is

fully invested in default-free zero-coupon bonds with maturity h. Essentially such an investment

strategy fully hedges interest rate risk. That is, along the way the evolution of Wt (h) is risky, but it

is known, ignoring default risk, what the payment at time t +h will be.

Clearly, the above can lead to the suggestion to build a floor in a variable annuity. This means

that for each horizon h, a fraction of Wt (h) is invested in default-free zero-coupon bonds with

maturity h. The remainder can then be invested in a diversified (risky) return portfolio. This

is known as splitting the investment in a hedge demand and a speculative demand. Note that

the speculative demand should generally also still be invested partially in bonds as they offer a

risk-return trade-off as well and thus lead to diversification benefits.

Let v be the fraction of Wt (h) that is invested in the risk-free asset, hence v is the hedge

demand and equals the proportion of the fixed annuity which builds the floor in the mixed

annuity. Then 1−v is the remainder that is used to buy the variable annuity, thus the fraction

1− v of Wt (h) is the speculative demand. The expected pension payment of the mixed annuity

at horizon h is given by

Et Wt+h(h) = v ·Et W r
t+h(h)+ (1− v) ·Et W r+wλσ

t+h (h), (3.10)

whereEt W r
t+h(h) is the expected pension payment at horizon h of the fixed annuity with w = 0
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and hence at (h) = r , and Et W r+wλσ
t+h (h) is the expected pension payment at horizon h of the

variable annuity with a fixed stock exposure w and an assumed interest rate at (h) = r +wλσ.

This combined annuity induces a minimally guaranteed annuity payment of

Lv (h) = v ·Wt (h) ·exp(hr )+ (1− v) ·0 (3.11)

= v · Wt∑H
h=1 exp(−hr )

. (3.12)

The level α quantile at horizon h is

Q(α)
t (Wt+h(h)) = v · Wt∑H

h=1 exp(−hr )
+ (1− v) · exp(−hat (h))∑H−1

k=0 exp(−kat (k))
· (3.13)

Wt ·exp

(
h

(
r +wλσ− 1

2
w 2σ2

)
+ zα

p
hwσ

)
.

Note that this expression for the quantile will remain valid in the case of smoothing (see Section 4),

simply by using the adjusted parameters derived in that section.

3.2 Longevity risk

So far we have ignored longevity risk altogether. We will not discuss macro longevity risk in this

paper. Concerning micro longevity risk, the standard mortality credit argument applies. In case

the pension payment at horizon h will only be mode with probability pt (h), independent of

the evolution of financial markets, the market-consistent value of the pension payment will be

reduced by a factor pt (h). As a result, a higher assumed interest rate at (h) can be used in order

to get a higher, in expectation constant, nominal pension.

One may wonder how micro longevity risk can be shared in this setting. In particular, issues

may arise in case agents with different investments risks share their longevity risk in a pool. The

reason is that, in such case, the wealth that the pool receives upon death of one agent depends

on previous financial market returns and, thus, is risky. This is an interesting area for further

research.

3.3 Examples

The standard setting for the empirical examples in this paper are µ = 6.00%,π = 1.00%,σ =
20.00%,λ= 20.00%,r = 2.00%, H = 20 year and Wt =e100,000.

Figure 1 shows the expected pension payment with a fixed stock exposure w = 35% and the

5%- and 95%-quantiles. The blue line is the fixed annuity in which Wt (h) is fully invested in the

risk-free asset.
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Figure 1: Variable annuity without smoothing
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Figure 2 shows the sensitivity of the assumed interest rate on the expected pension payment

at h = 9 and h = 19. The increasing air has hardly an effect on the 10th pension payment

Figure 2: Sensitivity AIR
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distribution but all the more on the 20th payment. As a result, for communication purposes, we

would advise to show the risk-return of variable annuities over horizons significantly exceeding

10 years.

4 Variable annuities with smoothing

In case agents have habit-formation preferences, they may want to reduce year-to-year volatility

in the pension payments. The traditional view to achieve this is to “smooth” financial market

returns. That is, in case returns are −20%, instead of reducing the pension payment immediately

with 20%, it is only reduced by a fraction. Clearly, this implies that pension payments later in the

retirement phase have to be cut by more than 20% to fulfill the budget constraint. Smoothing

then leads to smaller year-to-year decreases, but the total decrease is larger.

The view on smoothing above leads, effectively, to an increase in the assumed interest rate

following negative financial market returns and, symmetrically, a decrease in the assumed

interest rate following positive financial market returns. This leads to a situation where wealth

Wt (h) originally reserved for the pension payment at time t +h is redistributed over all future

pension payments. The resulting mathematics is complicated and thus we propose an alternative

view here, inspired by Bovenberg, Nijman, and Werker (2012)2.

The reduced year-to-year volatility can also be achieved as follows. Recall that the initial

pension payment at time t is given by Wt (0). In order to have a limited risk in the pension

payment Wt+1(1) we do not invest it according to a stock exposure w , as in Section 3, but

with a stock exposure wt (1) = w/N , where N denotes the smoothing period, say, N = 5 years.

Subsequently, the pension wealth Wt (2) for the pension payment Wt+2(2) is invested with

exposure wt (2) = 2w/N the first year and wt+1(2) = w/N the second year. In general, with

a smoothing period N and long-term stock exposure w , the pension wealth Wt+ j (h) for the

pension payment at time t +h has stock exposure

wt+ j−1(h) = w min

{
1,

1+h − j

N

}
, j = 1, . . . ,h, (4.1)

during the year from t + j −1 to t + j .

Figure 3 shows the stock exposure wt+ j−1(h) against j for h = 17.

Note that the horizon-dependent stock exposure wt+ j (h) induces a life-cycle investment

strategy. That is, with smoothing the investment strategy is no longer constant over time.

As above, we can now calculate the distribution of the pension payment at time t +h. Again,

2Lans Bovenberg, Theo Nijman, and Bas Werker, “Voorwaardelijke Pensioenaanspraken: Over Waarderen,
Beschermen, Communiceren en Beleggen”, Netspar Occasional Paper 2012.
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Figure 3: Smoothing stock exposure
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this distribution is log-normal, but now with parameters

h∑
j=1

(
r +wt+ j−1(h)λσ− 1

2
w 2

t+ j−1(h)σ2
)

, (4.2)

and
h∑

j=1
w 2

t+ j−1(h)σ2. (4.3)

The expected nominal pension payments, and their quantiles, can now be calculated as before.

4.1 The BNW assumed interest rate

The previously mentioned paper Bovenberg, Nijman, and Werker (2012) discussed already the

implications of smoothing financial market shocks for market-consistent valuation of pension

liabilities, although their focus was more on CDC systems. The present setting allows for an

exact derivation of the implied assumed interest rate. The idea is simple: which assumed interest

rate at (h) leads to a pension payment that is, in expectation, constant in nominal terms. This,

essentially, amounts to inverting the expected nominal pension payments derived in the previous

section.
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With smoothing, the expected nominal pension payment at time t +h is given by

Wt (h)exp

(
h∑

j=1

(
r +wt+ j−1(h)λσ

))
. (4.4)

In order to have a constant nominal, in expectation, pension payment, we must choose the

assumed interest at (h) such that this expectation equals Wt (0) for all h. Thus, we immediately

find

a(B NW )
t (h) = r +λσ

1

h

h∑
j=1

wt+ j−1(h). (4.5)

4.2 Examples

The blue lines in Figure 4 show the expected (dotted) pension payment and the 5%- and 95%-

quantiles (solid) with smoothing period N = 5 years for a fixed stock exposure w = 35%. The red

lines are obtained without smoothing, similarly as in Figure 1.

Figure 4: Smoothing stock exposure
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The blue lines in Figure 5 show the expected (dotted) pension payment and the 5%- and

95%-quantiles (solid) with smoothing period N = 5 years for a fixed stock exposure w = 35% and

the assumed interest rate equal to the a(B NW )
t . The red lines are obtained without smoothing,

similarly as in Figure 1.
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Figure 5: Smoothing BNW with N = 5
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The blue line in Figure 6 shows the assumed interest rates as a function of the horizon such

that the expected pension payments are constant, hence the B NW assumed interest rate. If the

assumed interest rates are set equal to the risk-free rate, as given by the red line, the fixed annuity

is obtained. The expected return with a stock exposure of w = 44.5% is the green line.

Figure 6: BNW structure
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5 The concept of fixed decrease (’vaste daling’)

For political reasons, the Dutch law “Improved pension payments” (“Verbeterde premieregelin-

gen”) does not use assumed interest rates to determine the distribution of pension wealth over

the various horizons, but uses the risk-free rate in combination with a so-called “fixed decrease”

(“vaste daling”). From a financial point of view, the induced assumed interest rate is simply the

sum of the risk-free rate and the fixed decrease. As a result, in order to have a constant nominal

pension in expectation, the fixed decrease must be chosen to be horizon dependent. The exact

formula simply follows from (4.5). In case the fixed decrease at horizon h is chosen as

λσ
1

h

h∑
j=1

wt+ j−1(h) = wλσ
1

h

h∑
j=1

min{1,
1+h − j

N
}, (5.1)

the expected pension is constant in nominal terms.

6 Conclusion

This paper provides analytical expressions for the risk-return trade-off of variable annuities

with a special focus on the situation where financial market returns may be smoothed over

the remaining retirement period. As far as we know, this has not been documented before

in the literature. For the Dutch pension debate, we find two results. First, in order to obtain,

in a contract with smoothing, a constant nominal pension in expectation, the so-called fixed

decrease has to be horizon dependent. We give an explicit expression. Secondly, we show that an

increase in the assumed interest rate (or an increase in the fixed decrease) does affect the initial

payoff, but hardly the risk-return trade-off at a horizon of 10 years.
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