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Abstract

We study the properties of dynamic models for realized variance on long term VaR

analyzing the density of future Integrated Variance. Mixing this density with the

conditional density of returns given the volatility we derive the predictive density of

returns, which we use to estimate VaR. We find that dynamic specifications charac-

terized by higher persistence lead to more conservative VaR estimates when longer

horizons are considered. We compare our long term VaR estimates to the ones ob-

tained using the square root of time rule. We show that this scaling rule works

approximately well.
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1 Introduction

Risk management is a fundamental task for financial institutions. A widely known

measure of risk is given by VaR, introduced by Jorion and since then it has become

a standard indicator for supervisors and risk managers.

Regulators of the banking sector are mainly concerned in next day risk measures of a

given position for a certain bank. However, pension funds and insurers, for example,

have a longer investment horizons.

In this work we study the issue of time aggregation of VaR and propose a new method

on how to compute it for any horizon T using High Frequency data.

According to Andersen, Bollerslev, Diebold, and Labys (2003) we compute long term

VaR from High Frequency data using a Mixture model that is to say we assume that

returns conditional on the volatility are normal and we specify a time series model

for log variance following the findings of Andersen, Bollerslev, Diebold, and Labys

(2001): they show that log variance is close to be normally distributed. Through the

mixture we obtain the unconditional distribution of cumulative returns and with it

we can compute long term VaR.

The usage of High Frequency data for multi period VaR computation has been stud-

ied in Beltratti and Morana (1999) who find that using High Frequency data improves

the estimation of the risk measure. Our approach differs from the one in the above

mentioned study in two fundamental ways: first, we do not rely on GARCH spec-

ifications and second, our framework allows to study temporal aggregation of VaR

using more flexible assumptions.

Furthermore, we study the effect of different time series specifications on the esti-
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mates of VaR. More specifically, we consider three time series models: an autoregres-

sive model of order one, the HAR model introduced by Corsi (2009) which is able

to approximate the long memory features of volatility. The last time series model

we consider is a fractional which parsimoniously capture long memory features of

the data as shown in Baillie (1996). We find that a model characterized by a higher

persistence implies a more conservative estimate of VaR depending on the current

volatility state. When considering a median level of volatility we notice that a more

persistent model generates a greater variance for the distribution of the Integrated

Variance. On the other hand, when considering low level of volatility the most per-

sistent model displays the lowest VaR estimate because it is slower to revert to the

median level of volatility.

We also investigate the validity of the common practice in long term risk man-

agement: the square root of time rule. This scaling law states that VaR for the

investment horizon T is given by the product of next day VaR and the square root of

T. It is widely known that such rule only holds under the assumption of iid Normal

returns. Christoffersen, Diebold, and Schuermann (1998) ,using a GARCH model,

show that the above mentioned rule holds reasonably well at the median level of

volatility only. They also point out that drawing results on aggregation is extremely

difficult and closed form results can be obtained in very restrictive cases as pointed

out by Drost and Nijman (1993).

Danielsson and Zigrand (2006) questions the validity of the above mentioned rule

assuming an economy characterized by the Merton model which includes jumps but

not stochastic volatility. They find that this scaling law underestimates VaR and
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that this downward bias gets worse when considering higher risk levels and increas-

ing jump intensity.

Wang, Yeh, and Cheng (2011) also raise doubts on the effectiveness of the square root

of time rule. They study the validity of such rule when the return process is charac-

terized by serial dependence, volatility clustering and jumps. They find that serial

dependence and jumps contribute to an overestimation of multi period Value at risk.

On the other hand, in our setting we do not consider jumps and we obtain fat tails

via the mixture of the conditional density of returns with the density of Integrated

Variance. Using a regression model controlling for the persistence of the different

time series we show that the above mentioned scaling rule works approximately well.

The paper is organized as follows: section two introduces the methodology to obtain

value at risk, section three shows the results and section four concludes the paper.
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2 Methodology

2.1 The Model

Let rt denote the log-return at time t which conditional on the variance we assume to

be normally distributed according to the findings of Andersen, Bollerslev, Diebold,

and Labys (2003):

rt|σ2
t ∼ N(0, σ2

t ) (1)

and let p(rt|σ2
t ) denote the conditional density. We aim to study the issue of risk

measures aggregation over an investment horizon T characterized by the cumulative

return Rt+T:

Rt+T =
T∑
i=1

σt+iεt+i (2)

Clearly, the variance of integrated returns is given by:

S2
t+T =

T∑
i=1

σ2
t+i (3)

It follows from equations (1)-(3) that the conditional distribution of cumulative re-

turns given the integrated variance, p(Rt+T|S2
t+T), is normal with first moment equal

to zero and variance equal to S2
t+T.

The predictive density of cumulative returns with investment horizon T given the

information set up to time t, It, can be obtained as:

p(Rt+T|It) =

∫
p(Rt+T|S2

t+T)p(S2
t+T|It)dS2

t+T (4)

5



We model aggregation through the conditional distribution p(Rt+T|S2
t+T) which under

the above mentioned assumptions is still Normal with mean zero and variance S2
t+T.

We use realized variance as a proxy for σ2
t , this is defined as the sum of the intradaily

squared log returns.

Furthermore, in order to obtain an p(Rt+T) we need the unconditional density of

the integrated variance p(S2
t+T). In what follows we assume a time series model

for the logarithm of realized variance and we denote it by ht. For this choice we

are motivated by the empirical findings of Andersen, Bollerslev, Diebold, and Labys

(2001) who find that realized variance is close to being log normally distributed.

The first model we consider is the HAR model on log realized variance introduced

in Corsi (2009), which captures the long memory property of realized variance in a

parsimonious way:

ht+1 = µ+ a1(ht − µ) + a2(h
w
t − µ) + a3(h

m
t − µ) + ωηt+1 (5)

where µ is the unconditional mean, ηt+1 is standard normally distributed and ω is

the VoV parameter. Furthermore, hwt is the average of the log realized variance of

the previous five days whereas hmt is the average of the log realized variance of the

previous twenty one days.

We also consider as a toy model a simple autoregressive model of order one:

ht+1 = µ+ a1(ht − µ) + ωηt+1 (6)

Having a look at (6) it is straightforward to notice that this model is nested in the
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HAR model when a2 and a3 are equal to zero.

In order to compare the value at risk at different horizons from the HAR model with

the ones obtained previously we need to obtain the Integrated Variance, S2
t+T. For

the AR model this can simply obtained by recursion. Exploiting this structure, we

recognize that the autoregressive parameter has a strong impact on the variance of

the volatility distribution, which results in a more fat-tailed return distribution when

the more persistent the dynamics is.

Andersen, Bollerslev, Diebold, and Labys (2003) use a Fractional model in order to

forecast realized variance, this is given by:

(1− L)d(ht+1) = µ+ ωηt+1 (7)

where d is the fractional parameter and the above equation can be rewritten expand-

ing the lag polynomial:

ht+1 = µ+
∞∑
s=1

∆s(ht+1−s − µ) + ωηt+1 (8)

with the infinite order autoregressive weights ∆s given by the binomial expansion,

(1− L)d = 1− dL− (1− d)dL2/2!− d(1− d)(2− d)L3/3! + · · ·

A recursive formula for the autoregressive weights can be found in the Appendix.

This model is stationary for d ∈ (0, 0.5) and non-stationary but mean reverting for

d ∈ [0.5, 1).
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In order to give an idea on how these time series models differ from each other a

useful tool is given by the standardized cumulative impulse response functions. These

measures how persistent is a shock to volatility. In order to obtain them, we can first

rewrite the models in MA(∞) representation:

ht+1 =
∞∑
j=0

θjηt+1−j (9)

where θj differs according to the model. The impulse response of a shock today to

volatility at time t + j is given by the coefficients of the above representation. The

cumulative impulse response functions are then given by the sum of the θj coefficients

for the period T.

CT =
T∑
j=0

θj (10)

Figure 1: Standardized Cumulative Impulse Responses Functions

This graph shows the cumulative impulse response functions standardized by T of the three

time series models we consider in our analysis with parameters’ estimates of the SPY.
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The standardized cumulative IRFs are then obtained by dividing CT of equation (10)

by the horizon T. Figure 1 shows them for the different models we consider and with

the parameter estimates set equal to the one of the SPY. It is clear that for very

short horizons there is no big difference among the models and the autoregressive

specification displays a stronger cumulative response. However, CT drops much faster

for the autoregressive model compared to the specifications characterized by a longer

memory. Finally, from the graph it is also shown that the Fractional model implies

a stronger persistence to a shock in volatility.
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3 Results

3.1 Data

Our dataset is composed by the SPY an ETF that tracks the SP500 and the intra-

day prices of current constituents of the Dow Jones starting from November 1995

until November 2015. This leaves us with time series of realized variance of 5036

observations computed using 5-minutes returns.

Table 1 shows the main summary statistics for the returns and of the stocks belonging

to our dataset and the last row shows the same statistics for the SPY.

Table 1: Returns Distribution

ri,t ri,t/σi,t

Stock Mean St.dev. Skew. Kurt. Mean St.dev. Skew. Kurt.
Min -0.069 1.142 -0.202 5.747 -0.016 0.873 0.006 2.696
0.10 -0.034 1.237 -0.004 6.444 -0.007 0.876 0.039 2.767
0.25 -0.003 1.400 0.066 7.221 0.011 0.909 0.046 2.777
0.50 0.010 1.561 0.126 8.728 0.020 0.927 0.060 2.842
0.75 0.026 1.712 0.236 10.533 0.027 0.949 0.096 2.908
0.90 0.040 2.046 0.342 12.476 0.040 0.961 0.114 3.008
Max 0.080 2.367 0.588 16.171 0.084 0.970 0.154 3.060

Mean 0.007 1.638 0.165 9.617 0.023 0.923 0.074 2.865
St. dev 0.049 0.442 0.255 3.731 0.033 0.039 0.051 0.133

SPY -0.005 1.021 -0.104 10.535 0.053 0.961 0.003 2.789

This table shows the main statistics on the current DJIA constituents. The first four

moments are shown for the daily returns and the daily returns standardized by the current

volatility.

The first column indicates the percentiles of the relevant summary statistic for the
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daily returns ri,t of the companies in our dataset. For example, the row that is

called Min shows the minimum values of the relevant summary statistics the dataset

we have whereas Max shows the maximum values. The second and third last rows

show the mean and the standard deviation of the summary statistics in the different

columns. We also show the same summary statistics for ri,t/σi,t. It is interesting

to notice that returns standardized by the volatility are much close to normality

compared to the non standardized ones. This assumption holds reasonably well for

the SPY and for the single stocks we have the kurtosis ranging from 2.696 to 3.060

against a kurtosis ranging from 5.747 to 16.171 for ri,t.

The second set of summary statistics is related to the realized variances, table 2

shows the same summary statistics for realized variances and log realized variances.

Table 2: Volatility Distribution

σ2
i,t lnσ2

i,t

Stock Mean St.dev. Skew. Kurt. Mean St.dev. Skew. Kurt.
Min 1.585 2.354 6.165 75.501 -0.070 0.832 -0.063 2.250
0.10 1.834 2.860 6.467 79.247 0.126 0.858 0.265 2.523
0.25 2.246 3.406 7.330 108.971 0.334 0.912 0.291 2.837
0.50 2.806 4.102 10.557 215.180 0.477 0.952 0.347 2.975
0.75 3.246 6.267 16.202 449.447 0.668 1.005 0.420 3.232
0.90 4.413 10.491 30.717 1495.202 0.884 1.115 0.476 3.628
Max 7.173 15.194 58.820 3905.738 1.297 1.203 0.514 3.854

Mean 3.329 6.382 19.465 904.183 0.532 0.982 0.322 3.043
St. dev. 1.944 4.782 19.401 1416.553 0.465 0.136 0.193 0.575

SPY 1.148 2.174 9.715 161.728 -0.473 1.046 0.259 3.189

This table shows the main statistics on the current DJIA Realized Variances constituents.

The first four moments are shown for the Realized Variances and the log transformation.
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The kurtosis of realized variance ranges from a minimum of 75.501 to a maximum

of 3905.738 whereas for log realized variances it ranges from a minimum of 2.250 to

a maximum of 3.854. For the SPY instead the kurtosis is 161.728 for the realized

variance whereas it is 3.189 for log realized variance: this confirms that lognormality

of realized variance is a reasonable approximation as stated in Andersen, Bollerslev,

Diebold, and Labys (2001).

The AR and HAR model can be estimated using simple OLS whereas for the frac-

tional model we use the Local Whittle Estimator as pointed out by Shimotsu and

Phillips (2006)1. Table 3 table shows the estimates of the parameters characterizing

each model.

Table 3: Parameter estimates

Par. AR HAR FI

d 0.593
(0.039)

a1 0.848 0.437
(0.01) (0.02)

a2 0.339
(0.03)

a3 0.182
(0.02)

µ -0.473 -0.464
ω 0.555 0.512 0.514

This table shows the estimates of the parameters of the models and the standard errors

that we consider for the SPY. For the estimation of d, the number of frequencies used

is set equal to J = Tα with α = 0.6. The asymptotic standard error is then given by

se(d) = 1/
√

4J .

1We have estimated the fractional model also using the Exact Whittle Estimator and the stan-
dard GPH algorithm. The Local Whittle Estimator however is robust to autocorrelation. The
estimates still lie in the non-stationary region
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Table 3 shows that for the Fractional model d lies in the non-stationarity region,

to check the stability of this finding we have set α = 0.5, 0.7. With these values,

the resulting estimates of d are respectively 0.602 and 0.575. This implies that the

sample average is not a consistent estimator of the unconditional mean µ. Values for

d in the non-stationary region in the context of realized variances have been found

by Rossi and Santucci de Magistris (2014) and Luciani and Veredas (2015).

Table 4 displays the parameter estimates for the single stocks in our dataset. For ease

of exposition we show three different parameterizations according to the persistence

of the stock.

Table 4: Parameter estimates of Single Stocks

Par. AR HAR FI

Low Medium High Low Medium High Low Medium High
d 0.562 0.640 0.661
a1 0.756 0.832 0.878 0.334 0.322 0.301
a2 0.334 0.372 0.395
a3 0.276 0.272 0.282
µ 0.404 0.681 0.213 0.093 0.464 0.855
ω 0.559 0.524 0.536 0.511 0.467 0.469 0.517 0.482 0.489

This table shows the estimates of the parameters of the models that we consider for the

current constituents of DJIA. For the estimation of d, the number of frequencies used

is set equal to J = Tα with α = 0.6. The asymptotic standard error is then given by

se(d) = 1/
√

4J , which in our case is equal to 0.039.

The stocks are chosen according to the degree of persistence defined by autoregressive

parameter. The second to fourth columns show the values of the parameters for the

autoregressive model and for the different degrees of persistence. Columns five to

seven show the parameter values for the HAR model and the last three columns
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show the parameter values for the Fractional model. The stock characterized by the

lowest persistence is Merck and Co., the medium one is Home Depot and the high

one is Walmart. Also for single stocks we find that the fractional parameter lies

in the non-stationarity region and that there is not so much heterogeneity among

stocks as highlighted in columns 6 to 9. The same applies for the volatility of volatility

parameter, ω, which varies from 0.504 to 0.566 for the AR model whereas it is slightly

lower for the other models. More interesting is the diversity in the unconditional

mean for the AR type of models ranging from the least persistent stock model implied

mean annualized volatility of approximately 19% to the most persistent stock one

of 17% for the AR. For what concerns the HAR model the values are slightly lower

than the ones for the AR model.

3.2 Distribution of Integrated Variance

This section shows the results concerning the distribution of Integrated Variance,

p(S2
t+T), which is a key element in the estimation of VaR in our analysis. More-

over, in order to compare the different models we evaluate all of them at the sample

median m given that for the fractional model we can not consistenly estimate the

unconditional mean.

Table 5 shows the value of the median for the SPY and the Single Stocks in our

dataset. It confirms also that the normality of log realized variances is a reasonable

approximation. As shown in table 5 the sample median for the SPY is much lower

than the ones for the single stocks of the DJIA. This is not surprising and it is a

result of diversification.
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Table 5: Sample median m for companies in our dataset

SPY Single Stocks

Low Medium High
m -0.471 0.404 0.652 0.212

This table shows sample median of log realized variances, h, in our dataset for the SPY and

for the single stocks we show the tenth percentile, the median and the ninetieth percentile

Figure 2 shows the kernel densities of the simulated Integrated Variance under the

different models in our setting, ranging from the next day, T = 1 until a year,

T = 252. It is clear the evolution of the densities through time: for next day in-

tegrated variance distribution, this case boils down to the density of σ2
t+1 which by

construction we know to be a log-normal random variable. As T increases S2
t+T,

defined by 3, is the sum of log-normal random variables and as such has an unknown

density for T > 1. However, from figure 2 it is possible to grasp some features among

the different models. When T = 1 the models are almost not distinguishable, this is

due to the fact that models’ dynamics hardly play a role for such short aggregation

horizon. The difference among the distributions arises from the different values of ω,

which affects both the mean and the variance of the distribution. As T increases the

difference among the models becomes clear: the AR leads to a wider distribution for

the Integrated Variance up to the three months horizon and after the HAR and the

Fractional model result in wider densities.

This can also be seen from table 6 that shows, with a slight abuse of notation,

the mean, µ(S2
t+T), where the brackets enphasize that it is related to S2

t+T. It also

displays the volatility, ω(S2
t+T), of the Integrated Variance. The first two columns
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Figure 2: Kernel Densities of Integrated Variance under different models

(a) T = 1 (b) T = 5

(c) T = 21 (d) T = 63

(e) T = 126 (f) T = 252

This graph shows the kernel density of the Integrated Variance simulated for the models

that we consider for the SPY. The different panels display the change in these density as

a function of T .
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Table 6: Moments of the Integrated Variance Distribution

T AR HAR FI

µ(S2
t+T) ω(S2

t+T) µ(S2
t+T) ω(S2

t+T) µ(S2
t+T) ω(S2

t+T)

1 0.731 0.439 0.714 0.391 0.715 0.393
5 4.328 3.375 3.719 1.689 3.817 2.007
21 21.269 15.851 16.720 8.124 17.689 10.353
63 66.780 33.741 55.434 33.576 59.149 39.091
126 134.506 49.419 119.446 79.814 127.298 91.681
252 270.347 70.731 253.366 163.454 278.810 219.177

This table shows the moments of the Integrated Variance distributions simulated for the

models we consider for the SPY. The different rows display the moments as a function of

T.

exhibit the moments for the AR model, the next two for the HAR and the last two

for the Fractional model. 2 The rows refer to the aggregation horizon we are consid-

ering. As pointed out previously for T = 1 the first two moments of the densities are

very similar, with the AR presenting higher values compared to the other models.

Furthermore, the AR model presents a higher mean of the distribution for all aggre-

gation horizons compared to the HAR model; this does not hold for the Fractional

model that presents a higher mean for the one year horizon. Also interesting to an-

alyze is the difference in the second moments of the density for the different models:

again the AR exhibits a higher volatility of volatility up to three months compared

to the HAR model and up to a month related to the Fractional model. Having a

2For the AR model µ(St+T) can be easily computed by the following formula:

µ(St+T) =

T∑
i=1

eµ+
ω2

2

∑i−1
s=0 a

2s
1
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closer look at the table for the models that are characterized by a longer memory

we can notice that for any horizon the Fractional model presents higher values for

any moment. Moreover, as the horizon grows the difference between the two models

becomes more evident.

Figure 3 shows these facts: panel A shows the mean of the distribution of Integrated

Variance under the different models whereas panel B shows the standard deviation

both scaled by the T. Panel A clearly shows that the AR spikes very quickly com-

Figure 3: First two moments of the Integrated Variance distribution under different
models scaled by the horizon T

(a) µ(S2
t+T) (b) ω(S2

t+T)

This graph shows the first two moments of the Integrated Variance distributions simulated

for the models for the SPY scaled by the horizon T.

pared to the other models and around the 3 months horizon it starts flattening

whereas the other two models have an upward sloped behavior for the mean of the

Integrated Variance distribution. Panel B shows that the AR rises very quickly and

then it decays sharply whereas the models with longer memory exhibit an increasing

standard deviation: this is stronger for the Fractional model.

In what follows we briefly show the results for the different models on the stocks
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selected according to their persistence as in table 4. The sample median of these

stocks is given in table 5 implying a sample annual median volatility of 19.42 % and

17.65 %.

In a similar way to the SPY table 7 shows the moments for the different models and

the different horizons for the least persistent stock. The differences in the values of

Table 7: Moments of the Integrated Variance Distribution

T AR HAR FI

µ(S2
t+T) ω(S2

t+T) µ(S2
t+T) ω(S2

t+T) µ(S2
t+T) ω(S2

t+T)

1 1.756 1.065 1.711 0.933 1.716 0.950
5 9.869 6.402 8.772 3.494 9.105 4.588
21 44.182 21.484 38.221 14.492 41.483 22.258
63 134.436 40.861 121.152 54.151 134.756 77.927
126 269.903 59.008 252.534 120.790 285.350 173.638
252 541.201 84.670 521.619 237.248 608.426 391.308

This table shows the moments of the Integrated Variance distributions simulated for the

models we consider and for the least persistent stock. The different rows display the

moments as a function of T.

µ(S2
t+T) derive from the diversity in the medians, which as previously explained is

much lower for the SPY compared to the Single Stocks. For the one day horizon,

the difference in the moments stems from the diversity in the VoV parameter for

the models we consider. Moreover, the main results found for the SPY hold for this

stock: at longer horizons the Fractional model presents a distribution of integrated

variance with a higher mean and higher standard deviation compared to the other

two models. Moreover, the autoregressive model displays a higher first moment com-

pared to the HAR but a vastly lower standard deviation. In order to make a further

comparison to the SPY results, we also show the same graphs displaying the first
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two moments scaled by the horizon. From figure 4 we can notice in panel A that

Figure 4: First two moments of the Integrated Variance distribution under different
models scaled by the horizon T

(a) µ(S2
t+T) (b) ω(S2

t+T)

This graph shows the first two moments of the Integrated Variance distributions simulated

for the models for the least persistent stock scaled by the horizon T.

the scaled mean of the distribution for the the autoregressive model flattens at an

earlier aggregation horizon compared to the case of the SPY. The same behaviour

can be recognized for the volatility of the Integrated variance: it spikes at the weekly

horizon and then it flattens down. For the other two models the previous findings are

confirmed. The Fractional model shows a scaled mean higher than the autoregressive

at the six months horizon whereas for the SPY this holds only at the yearly horizon.

The HAR exhibits the same behavior shown in the SPY both for the first and the

second moment. However, for the least persistent stock the volatility of Integrated

variance flattens out more quickly than for the SPY.

The last set of results of this section is related to the most persistent stock. Ta-

ble 8 shows the same results as previously explained for the most persistent stock.

Although the median for this stock is lower than the least persistent stock, at long
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Table 8: Moments of the Integrated Variance Distribution

T AR HAR FI

µ(S2
t+T) ω(S2

t+T) µ(S2
t+T) ω(S2

t+T) µ(S2
t+T) ω(S2

t+T)

1 1.426 0.824 1.379 0.686 1.392 0.725
5 8.544 6.777 7.039 2.535 7.535 4.097
21 44.465 38.836 30.767 11.307 36.588 25.264
63 141.016 85.994 98.810 47.737 129.311 111.595
126 288.917 131.658 216.020 133.224 303.728 316.369
252 580.739 189.645 473.370 343.449 726.905 918.900

This table shows the moments of the Integrated Variance distributions simulated for the

models we consider and for the most persistent stock. The different rows display the

moments as a function of T.

horizons the mean of the distribution of Integrated Variance is higher. This means

that a higher persistence implies a greater mean and volatility of the Integrated Vari-

ance distribution.

Finally, figure 5 shows the first two moments scaled by the horizon T. The results

are comparable to the ones obtained for the previous stocks analyzed. For the au-

toregressive model the mean of the Integrated Variance distribution spikes and then

flattens around the same aggregation period as the SPY due to similarity of the

autoregressive parameter. The level is of course different and it is due to the value

of the median of log realized variance for this stock. For what concerns the models

with longer memory, we can notice that the scaled mean is increasing with T and

this is particularly evident for the Fractional model. Related to the second moment

we can see that the autoregressive model jumps at the one month horizon and then

it decays whereas the other models exhibit an increasing scaled volatility. The other

two models instead exhibit an increasing scaled volatility of Integrated Variance.
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Figure 5: First two moments of the Integrated Variance distribution under different
models scaled by the horizon T

(a) µ(S2
T) (b) ω(S2

T)

This graph shows the first two moments of the Integrated Variance distributions simulated

for the models for the most persistent stock scaled by the horizon T.

The HAR is characterized by the lowest value and then, as T increases, it overtakes

the autoregressive model. The Fractional model displays the highest volatility of

Integrated Variance compared to the other models as in the previous cases.

3.3 Long Term VaR

In this section we compute VaR under the different time series models and for dif-

ferent horizons T. The results can easily be extended to Expected Shortfall.

We assume that the investor holds a position Xt and that the future (unknown)

position is given by:

Xt+T = Xte
Rt+T (11)

where Rt+T is defined in equation (2). Furthermore, assuming that Xt = 1, the VaR

of the position XT − Xt given the information set at time t at level α is obtained as
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follows:

VaR = 1− e−qα (12)

where qα is the α-quantile of the distribution function of Rt+T that we obtain solving

the following equation;

α =

∫ −qα
−∞

p(Rt+T)dRt+T (13)

First we compute VaR according to (12) for the different models and for the ma-

turities that we have considered in the previous section. We start focusing on the

SPY and then turn to the same stocks considered before. Moreover, the results still

consider that the models are evaluated at the median level of realized variance.

Table 9: VaR for the different models we consider and for two confidence levels

T AR HAR FI

α = 5% α = 1% α = 5% α = 1% α = 5% α = 1%

1 1.381 2.124 1.368 2.080 1.368 2.083
5 3.300 5.219 3.105 4.606 3.134 4.723
21 7.175 11.157 6.462 9.560 6.611 9.982
63 12.475 18.243 11.387 17.030 11.724 17.697
126 17.306 24.375 16.239 24.175 16.680 25.028
252 23.656 32.310 22.737 33.075 23.565 34.970

This table shows the VaR at two confidence levels computed for the different models for

the SPY. The different rows display the aggregation horizon ranging from one day, first

row, to one year, last row.

Table 9 shows the VaR in percentage point computed for the different models and

for several horizons. Furthermore, for each model we show the VaR computed at

the usual confidence levels α = 5% and α = 1%. Clearly, VaR is growing due to

the monotonically increasing moments of S2
T. When T = 1, there is a very small
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difference between the models and this is due to the fact that the distribution of the

Integrated Variance does not vary too much across the different time series models we

have considered. The variety comes from the different values in the VoV parameter,

ω. When moving from the next day VaR to longer horizons, we can notice that

for α = 5% the autoregressive model exhibits a higher value. However, for the

lower confidence level the autoregressive model is no longer the one presenting the

highest VaR at the biannual horizon and at the annual horizon. In fact, at the

half year horizon the fractional model overtakes the autoregressive one and at the

annual both the HAR and the fractional exhibit a higher VaR. This can be explained

remembering the results from the previous section where at longer horizons, a model

characterized by a longer memory display either a higher volatility of Integrated

Variance, the HAR model, or both a higher mean and volatility of the Integrated

Variance distribution, see the fractional model.

In risk management, the common practice to obtain multi-period VaR is to multiply

the one day VaR by the square root of the horizon for which we want to compute it:

VaRT =
√

TVaRt+1 (14)

This approach in (14) is called square root of time rule and it only holds if the returns

are iid normal. In what follows we compare our estimates of VaRT that is displayed

in table 9 to the one obtained using the above mentioned scaling law. Figure 6

shows the ratio between the long term VaR obtained using the methodology that

we propose and the one derived adopting the square root of time rule. The latter

is obtained multiplying the VaR for T = 1 times the square root of the relevant

24



aggregation horizon. Moreover, the graph shows this ratio for the time series models

we consider.

Figure 6: Ratio of VaRT obtained with two different approaches

(a) α = 1% (b) α = 5%

This graph shows the ratio between VaRT obtained using our model and different time

series specifications for log realized variance and the long term VaR obtained using the

square root of time rule for the SPY. Moreover, panel a shows the ratio at the confidence

level of 1% whereas panel b displays the same ratio at 5%.

From figure 6 it is clear that at 1% confidence level the square root of time rule overes-

timates VaRT of approximately 5% for the autoregressive model and underestimates

it of almost 6% for the fractional model. The HAR model instead lies in between the

two other models: compared to the above mentioned scaling rule the long term VaR

would be slightly overestimated. Panel b shows instead that at a higher confidence

level this scaling rule underestimates long term VaR for all models. In panel A the

ratio for the autoregressive model spikes up to 15% for the monthly horizon and then

it decays. In panel B instead, the ratio for this specification grows again quickly and

then it flattens around a value slightly above 20%. For the two other time series

models, the two panels show the same pattern: the fractional model implies that

the square root of time rule underestimates the annual VaR of approximately 6% for
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α = 1%, whereas at 5% it is slightly above 8%. The HAR, instead, implies that this

scaling law underestimates the biannual VaR of almost 4% at α = 1% whereas for

the annual one the square root of time rule leads almost to the same value for VaR.

At α = 5% this scaling law underestimates annual VaR of more than 4%.

Another widely used scaling law in finance is related to the family of stable distribu-

tions. This class includes inter alia the Normal, the Cauchy and the Levy distribution

and they are usually denoted by S(ξ, λ, γ, δ) where the terms in brackets indicated

the relevant parameters. The last two for example are respectively the scale and

location of the distribution whereas the first two are the index of stability and the

skewness parameter. The former parameter is defined in ξ ∈ (0, 2] whereas the latter

is defined in λ ∈ [−1, 1]. The Gaussian case is obtained setting ξ = 2 and λ = 0.

The scaling law under this family of distribution is the following:

VaRT = T
1
ξ VaRt+1 (15)

Clearly, the scaling law in (15) boils down to (14) when ξ = 2, which is the Normal

distribution case. Usually, the stability index is estimated on returns data using

semi-parametric method such as the Hill estimator. However, we are confronted

with the opposite problem: given the long term VaR and the aggregation horizons

we want to estimate the stability index under the different models.

We obtain ξ through the following regression:

ln VaRT = β0 + β1 ln T + uT (16)
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where the regressand is obtained under the different log variance specifications and

β1 = 1
ξ
.

Table 10: Estimates of the parameters of the Stable Regression

Par. AR HAR FI
β0 0.9949 0.7297 0.7467

(0.0014) (0.0005) (0.0004)
β1 0.4540 0.5055 0.5108

(0.0003) (0.0001) (0.0001)

This table shows the estimates of the coefficient and standard errors of regression in (16)

for the different models we consider.

Table 10 displays the estimates of above mentioned regression. The rows show the

values of the parameters and the standard errors. The AR model implies a stability

index greater than 2, whereas the more persistent models exhibit a value which is

smaller than this value. Moreover, higher persistence leads to decreasing values of

such parameter. For the fractional model, this parameter is equal to 1.958.

Table 11 shows the VaR for the least persistent stock in our dataset. Compared

to the SPY, VaR estimates are higher because the median of this stock is bigger.

Moreover, the table confirms that for T = 1, VaR is quite similar among the different

models and the two risk levels. However, when the horizon starts becoming large

the difference among the time series specifications is clear and the distance between

the fractional and the autoregressive model is of 1% at the highest confidence level

and more than 4% at the lower one. Furthermore, this table shows that up to

the first quarter the autoregressive model exhibits a higher VaR at both confidence

levels whereas when T refers to the six months the fractional model display a higher
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estimate of VaR at the α = 1%.

Table 11: VaR for the different models we consider and for two confidence levels

T AR HAR FI

α = 5% α = 1% α = 5% α = 1% α = 5% α = 1%

1 2.131 3.275 2.109 3.199 2.112 3.209
5 4.969 7.633 4.731 6.921 4.802 7.169
21 10.280 15.065 9.632 13.864 9.962 14.754
63 17.325 24.172 16.456 23.558 17.207 25.157
126 23.659 32.131 22.849 32.284 24.003 34.544
252 31.781 42.030 31.166 42.788 32.995 46.337

This table shows the VaR at two confidence levels computed for the different models for

the least persistent stock. The different rows display the aggregation horizon ranging from

one day, first row, to one year, last row.

Figure 7 shows the ratio between VaR obtained using our methodology and the

one using the square root of time rule: panel A shows the ratio at higher risk level

whereas panel B shows the ratio at higher confidence level. Interestingly, for the least

persistent stock the square root of time rule overestimates VaR at α = 1%. In fact,

for the autoregressive model the ratio shows that this scaling law the overestimates

VaR of approximately 20% whereas for the fractional the overestimation is of about

10%. For α = 5%, the autoregressive models exhibit that VaR is upward biased

using the square root of time of about 5% whereas the fractional model displays a

ratio slightly below unity.

Table 12 shows instead the estimates of VaR for the most persistent stock. Compared

to the previous case, the next day VaR is smaller because the median realized variance

is smaller. From this table it is easy to notice that for annual VaR the fractional

model implies a much higher estimate: the difference compared to the other models
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is of more than 8%. This can easily be explained considering that this specification

implies a greater mean of the Integrated Variance distribution and a higher volatility.

Figure 7: Ratio of VaRT obtained with two different approaches

(a) α = 1% (b) α = 5%

This graph shows the ratio between VaRT obtained using our model and different time

series specifications for log realized variance and the long term VaR obtained using the

square root of time rule for the least persistent stock. Moreover, panel a shows the ratio

at the confidence level of 1% whereas panel b displays the same ratio at 5%.

From this table we can also notice that the autoregressive exhibits a higher VaRT

than the HAR model for any maturity and both confidence levels. The explanation

lies in the values of the first two moments of the Integrated Variance distribution

implied by these two models. The HAR model generates a higher volatility than the

AR model, however it also generates a much lower mean of the Integrated Variance

distribution.

Figure 8 shows the ratio between the VaR obtained using our methodology and the

one given by square root of time rule. Interestingly, panel A shows that for the most

persistent stock at very long term model uncertainty is a relevant issue. The frac-

tional model implies that the above mentioned scaling law underestimates annual

VaR at α = 1% of more than 10% whereas for the other two models such rule over-
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estimates it. Moreover, from panel A it is interesting to see the behaviour of this

ratio for the autoregressive model: it spikes reaching almost 20% and then it decays

very quickly getting to the HAR model. Panel B shows approximately the same

Table 12: VaR for the different models we consider and for two confidence levels

T AR HAR FI

α = 5% α = 1% α = 5% α = 1% α = 5% α = 1%

1 1.925 2.941 1.899 2.852 1.906 2.879
5 4.598 7.263 4.254 6.187 4.371 6.585
21 10.137 15.972 8.688 12.506 9.322 14.247
63 17.541 25.758 14.975 21.664 16.674 25.653
126 24.232 33.974 21.232 30.813 24.147 37.108
252 32.633 43.806 29.624 42.582 34.423 51.904

This table shows the VaR at two confidence levels computed for the different models for

the most persistent stock. The different rows display the aggregation horizon ranging from

one day, first row, to one year, last row.

behavior, the autoregressive model spikes at the monthly horizon touching a ratio

of 15% and from there on it starts decaying and showing a monotonically decreas-

ing behavior from there on. The fractional model, instead, shows a monotonically

increasing behavior reaching a ratio of approximately 12%.

Table 13 shows the estimates of VaR for the SPY when volatility at time t is high.

More precisely we set this high value of volatility equal to the seventy-fifth percentile

of the unconditional volatility distribution. It is clear from this table that a model

with higher persistence implies a greater estimate of VaR. This is due to the effect

that the dynamics of these models have on the mean of p(St+T). The autoregressive

model reverts to the median level much more quickly compared to the other models:

there is a small difference when the aggregation horizon is near. On the other hand,
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Figure 8: Ratio of VaRT obtained with two different approaches

(a) α = 1% (b) α = 5%

This graph shows the ratio between VaRT obtained using our model and different time

series specifications for log realized variance and the long term VaR obtained using the

square root of time rule for the most persistent stock. Moreover, panel a shows the ratio

at the confidence level of 1% whereas panel b displays the same ratio at 5%.

the contrast among models becomes evident when the horizon is above the three

months.

Table 13: VaR for the different models we consider and for two confidence levels

T AR HAR FI

α = 5% α = 1% α = 5% α = 1% α = 5% α = 1%

1 1.833 2.814 1.883 2.860 1.906 2.896
5 4.048 6.356 4.212 6.232 4.342 6.516
21 7.798 12.045 8.480 12.486 9.042 13.558
63 12.828 18.688 14.102 20.841 15.699 23.376
126 17.555 24.716 18.942 27.856 21.942 32.361
252 23.839 32.471 24.925 35.782 30.086 43.570

This table shows the VaR at two confidence levels computed for the different models for

the SPY in a high volatility period. The different rows display the aggregation horizon

ranging from one day, first row, to one year, last row.

Inspecting the last row of this table also shows and comparing it to table 9 we can
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notice that the autoregressive model has reached approximately the same estimate

of VaR when considering the initial volatility to being at the median level whereas

the other two models have not.

Figure 9: Ratio of VaRT obtained with two different approaches

(a) α = 1% (b) α = 5%

This graph shows the ratio between VaRT obtained using our model and different time

series specifications for log realized variance and the long term VaR obtained using the

square root of time rule for the SPY when volatility is high. Moreover, panel a shows the

ratio at the confidence level of 1% whereas panel b displays the same ratio at 5%.

Figure 9 shows the ratio between VaR obtained using the methodology that we

propose and the square root of time rule. Both panels show qualitatively the same

result: if time t volatility is high this scaling law overestimates VaR. Of course the

degree of overestimation is way stronger for a model characterized by short memory

such as the autoregressive model.

Table 14 shows the estimates of VaR for the SPY when volatility is low, more

precisely we set it equal to the twenty-fifth percentile of the unconditional distribution

of volatility. Compared to the previous case we can notice that the reverse happens:

the autoregressive model presents the highest estimate of VaR at every horizon. As

explained previously this is due to the characteristics of the different models. In fact,
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when volatility is low the autoregressive model reaches the median level more quickly

compared to the other models.

Table 14: VaR for the different models we consider and for two confidence levels

T AR HAR FI

α = 5% α = 1% α = 5% α = 1% α = 5% α = 1%

1 0.991 1.526 0.941 1.431 0.929 1.414
5 2.610 4.166 2.169 3.232 2.144 3.232
21 6.600 10.341 4.694 6.994 4.574 6.952
63 12.142 17.775 8.912 13.467 8.261 12.600
126 17.119 24.118 13.674 20.696 12.032 18.390
252 23.565 32.147 20.675 30.420 17.578 26.613

This table shows the VaR at two confidence levels computed for the different models for

the SPY in a low volatility period. The different rows display the aggregation horizon

ranging from one day, first row, to one year, last row.

The other two models have a slower reversion to the median level and according to

the speed to which they revert the estimates of VaR is higher or lower. In fact, the

Fractional model is the one that presents the lower estimate of VaR. This is also

evident from figure 10, that shows the above mentioned ratio. The panels show two

different confidence levels. We can notice that the ratio spikes for the autoregressive

model and then it starts decaying whereas for the other models it has a monotonically

increasing behaviour. In case of low volatility, using the square root of time rule

implies that we are underestimating VaR.

We also aim to derive a general scaling law using the framework we suggest to

compute long term VaR. We propose to do it using the regression given in equation

(17).

This regression model extends the previous one in two ways: first consider the full
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Figure 10: Ratio of VaRT obtained with two different approaches

(a) α = 1% (b) α = 5%

This graph shows the ratio between VaRT obtained using our model and different time

series specifications for log realized variance and the long term VaR obtained using the

square root of time rule for the SPY when volatility is low. Moreover, panel a shows the

ratio at the confidence level of 1% whereas panel b displays the same ratio at 5%.

cross-section of stocks in our dataset and it also consider the effects deriving from a

different persistence of the time series in our dataset measured by λi. For the AR

model λi is the autoregressive coefficient, a1. For the HAR model this is set equal to

the largest eigenvalue of the state space matrix F whereas for the fractional model

this is set equal to the fractional parameter d.

xi,T = β0 + β1 ln T + β2λi + β3λi ln T + ui,T (17)

The regressand is instead given by:

xi,T = ln VaRi,T −
1

2
ln T− ln VaRi,t+1 (18)

This is done in order to avoid the issue arising from imposing a common constant for
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the cross-section. Table 15 shows the results from the above mentioned regression.

We are interested in how VaR scales under the different models when T grows. In

order to see it we need to consider the total effect measured by the partial derivative

of xi,T with respect to the horizon.

Table 15: Estimates of the parameters of Extended Stable Regression

Par. AR HAR FI

α = 5% α = 1% α = 5% α = 1% α = 5% α = 1%

β0 0.044 -0.329 0.585 1.105 0.344 0.396
(0.145) (0.208) (0.319) (0.558) (0.057) (0.094)

β1 -0.149 -0.131 -0.222 -0.458 -0.203 -0.296
(0.043) (0.063) (0.128) (0.216) (0.025) (0.038)

β2 0.080 0.653 -0.576 -1.131 -0.526 -0.589
(0.177) (0.256) (0.332) (0.581) (0.095) (0.156)

β3 0.159 0.085 0.218 0.453 0.338 0.475
(0.053) (0.078) (0.134) (0.222) (0.041) (0.064)

This table shows the estimates of the coefficient and standard errors of regression in (17)

for the different models we consider at two confidence levels.

Let us consider first the autoregressive model for the three stocks given in table 4:

at 5% confidence level the implied scaling law for all stocks is slightly below the

square root of time rule. At 1% the implied scaling law is still lower than the above

mentioned rule but the difference is way smaller compared to the previous analized

confidence level. Let us now analyze the same derivative for the second mode il our

table for the same stocks. At both confidence levels the HAR model implies a VaR

scaling which is quite similar to the square root of time rule. For example, the total

above mentioned derivative for the most persistent stock is -0.009 at 5% and -0.015

at 1%. Finally, for the Fractional model for the least persistent stock the implied
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scaling law is slightly lower than the above mentioned one, in fact the total effect for

this stock is -0.013 and 0.021 for the most persistent stock meaning a faster scaling

than square root. At 1%, for the most persistent stock the total effect is 0.018 and

for the least persistent the total effect is -0.029.

36



4 Conclusions

We study the properties of different time series models on Integrated Variance and

point out that dynamic specification strongly affects long-term VaR. We point out

that the fractional model implies a higher mean of the Integrated Variance for very

long maturity and also it generates a higher volatility of volatility.

Moreover, regulatory recommendations suggest the usage of the square root of time

rule. However, it is well known that this only holds if returns are iid normal. In our

setting, we show that this rule works approximately well for long term VaR.

Model uncertainty is one of the issues we deal with in this paper: however, the

current results can be extended to consider more time series models for realized

variance. Furthermore, we also plan to investigate the effects of jumps on long term

VaR. These last two issues are high on our agenda.

37



References

Andersen, Torben G., Tim Bollerslev, Francis X. Diebold, and Paul Labys, 2001,

The Distribution of Realized Exchange Rate Volatility, Journal of the American

Statistical Association 96, 42–55.

Andersen, Torben G, Tim Bollerslev, Francis X Diebold, and Paul Labys, 2003,

Modeling and Forecasting Realized Volatility, Econometrica 71, 579–625.

Baillie, Richard T, 1996, Long memory processes and Fractionally integrated in

econometrics, Journal of Econometrics 73, 5–59.

Beltratti, Andrea, and Claudio Morana, 1999, Computing value at risk with high

frequency data, Journal of Empirical Finance 6, 431–455.

Christoffersen, P., F. Diebold, and T Schuermann, 1998, Horizon problems and ex-

treme events in financial risk management, Reserve Bank NY Econ.Policy Rev

Policy Rev, 109–118.

Corsi, Fulvio, 2009, A simple approximate long-memory model of realized volatility,

Journal of Financial Econometrics 7, 174–196.

Danielsson, Jon, and Jean Pierre Zigrand, 2006, On time-scaling of risk and the

square-root-of-time rule, Journal of Banking and Finance 30, 2701–2713.

Drost, C., and T. F. Nijman, 1993, Temporal Aggregation of Garch Processes, Econo-

metrica 61, 909–927.

38



Luciani, Matteo, and David Veredas, 2015, Estimating and forecasting large panels

of volatilities with approximate dynamic factor models, Journal of Forecasting 34,

163–176.

Rossi, Eduardo, and Paolo Santucci de Magistris, 2014, Estimation of long memory

in integrated variance, Econometric Reviews 33, 785–814.

Shimotsu, Katsumi, and Peter C B Phillips, 2006, Local Whittle estimation of frac-

tional integration and some of its variants, Journal of Econometrics 130, 209–233.

Wang, Jying N., Jin Huei Yeh, and N. Y P Cheng, 2011, How accurate is the square-

root-of-time rule in scaling tail risk: A global study, Journal of Banking and

Finance 35, 1158–1169.

39



A Appendix

A.1 Monte Carlo Simulation

A.1.1 AR models

The AR(1) and HAR model can be written in state space form as follows:

Yt+1 = FYt +GEt+1

where Yt+1 is a vector containing ht+1 in the first position and its lags until ht−p+2

where p = 22 is the order of the restricted autoregressive process. Moreover, F is

the matrix containing in the first row the autoregressive coefficients: for the AR(1)

it is a row containing a non zero element in the first position and zero elsewhere

whereas for the HAR model it contains the coefficient estimates of the transformed

AR(22) process. The lower p− 1× p− 1 block contains an identity matrix and the

last column is composed by p− 1 zeros. Finally G, is a column vector containing a

one in the first position and zeros elsewhere. By simple recursion,

E[Yt+T ] = F TYt

V[Yt+T ] = ω2

T−1∑
j=0

F jGG′(F j)′
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A.1.2 FI Model

Recalling the FI model as in equation :

(1− L)d(ht − µ) = ωηt+1

Define yt = ht− µ. Simulations of yt+T is performed using the recursive structure of

the coefficients of the Fractional model:

yt+T =
T∑
s=1

∆syt+T−s + ωηt+T

where

∆s+1 = ∆s
s− d
s+ 1

with ∆0 = 1.
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