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Robust Pricing of Fixed Income Securities

Abstract

We analyze a dynamic investment problem with interest rate risk and
ambiguity. After deriving the optimal terminal wealth and investment pol-
icy, we expand our model into a robust general equilibrium model and cal-
ibrate it to U.S. data. We confirm the bond premium puzzle, i.e., we need
an unreasonably high relative risk-aversion parameter to explain excess re-
turns on long-term bonds. Our model with robust investors reduces this
risk-aversion parameter substantially: a relative risk aversion of less than
four suffices to match market data. Additionally we provide a novel formu-
lation of robust dynamic investment problems together with an alternative
solution technique: the robust version of the martingale method.

JEL classification: C61, G11, G12.
Keywords: dynamic asset allocation, robustness, uncertainty, ambiguity,
bond premium puzzle.



1 Introduction

Similarly to the equity premium puzzle, there exists a bond premium puz-

zle. The risk premium on long-term bonds is higher than predicted by

mainstream models using reasonable parameter values. This phenomenon

was first described in Backus, Gregory and Zin (1989), who show that in

bond markets “... the representative agent model with additively separable

preferences fails to account for the sign or the magnitude of risk premiums”.

Although the bond premium puzzle has received much less attention in the

literature than the equity premium puzzle, it is by no means of less impor-

tance. As Rudebusch and Swanson (2008) remark, the value of outstanding

long-term bonds in the U.S. is much larger than the value of outstanding

equity. The present literature about equilibrium bond pricing estimates an

unreasonably high relative risk aversion parameter. For instance Piazzesi

and Schneider (2007) estimate the relative risk-aversion parameter to be 57;

van Binsbergen, Fernández-Villaverde, Koijen and Rubio-Ramrez (2012) es-

timate a value of relative risk-aversion in their model around 80; while Rude-

busch and Swanson (2012) estimate it to be 110. Although several potential

explanations can be found in the literature, none of the provided solutions

are generally accepted – just as in the case of the equity premium puzzle.

In this paper, we approach the bond premium puzzle from a new angle.

A key parameter in any investment allocation model is the risk premium

earned on investing in bonds or, equivalently, the prices of risk in a factor

model. However, given a limited history of data, the investor faces substan-

tial uncertainty about the magnitude of these risk premiums. We build on
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the literature on robust decision making and asset pricing and formulate a

dynamic investment problem under robustness in a market for bonds and

stocks. Our model features stochastic interest rates driven by a two-factor

Gaussian affine term structure model. The investor chooses optimal portfo-

lios of bonds and stocks taking into account the uncertainty about the bond

and stock risk premiums. We solve the representative investor’s optimiza-

tion problem and give an explicit solution to the optimal terminal wealth,

the least-favorable physical probability measure, and the optimal investment

policy.

We calibrate the risk aversion and robustness parameters by equating

the optimal portfolio weights implied by the model to weights observed in

actual aggregate portfolio holdings. This is different from the existing litera-

ture, which typically calibrates first-order conditions of a consumption-based

asset pricing model to the observed expected returns. Given the very low

volatility of consumption, and the low correlation of stock and bond returns

with consumption growth, that approach requires high levels of risk aversion

to fit the observed risk premiums. Our approach only uses the optimal asset

demands, which do not directly involve the volatility of or correlations with

consumption; only the volatilities of the returns and intertemporal hedging

demands for the assets are required. We then use the concept of detection

error probabilities to disentangle the risk- and uncertainty-aversion param-

eters.

We estimate the parameters of our model using 42 years of U.S. market

data by Maximum Likelihood. We find that matching the optimal equity

demand to market data gives reasonable values for the risk-aversion param-
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eter. If we assume that the financial market consists of only a stock market

index and a money market account, the calibrated risk-aversion parameter

in the non-robust version of our terminal wealth utility model is reasonable,

1.92 (see Table 5). For the bond demand the situation is very different:

reasonable values of the risk-aversion parameter imply far too low bond risk

premiums. The reason for this are the high bond risk premiums relative

to the bond price volatilities. Only with robustness we can find reasonable

values for the risk-aversion parameter to match observed demands. When

calibrating the non-robust version of our model to U.S. market data, we

need a value between 7.9 and 69.1 (depending on the investment horizon of

the representative investor) for the risk-aversion parameter to explain the

market data. After accounting for robustness, these values decrease to 2.9

and 25.5, respectively (see Table 6). Thus, our model can to a large extent

resolve the bond premium puzzle.

Apart from our results on the bond premium puzzle, another contribu-

tion of our paper is of a more technical nature. We develop a novel method

to solve the robust portfolio problem, the robust martingale method. We

show in Theorem 1 that the robust dynamic investment problem can be in-

terpreted as a non-robust dynamic investment problem with so-called least-

favorable risk premiums, which are time-dependent but deterministic. This

means that, based on our Theorem 1, we can formulate the objective func-

tion of the investor at time zero non-recursively. The importance of this

contribution is stressed by Maenhout (2004), who writes: ”Using the value

function V itself to scale θ may make it difficult to formulate a time-zero

problem, as V is only known once the problem is solved.” In Theorem 1 we
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prove that the time-zero robust dynamic investment problem can be formu-

lated ex ante, before solving for the value function itself, and we also provide

this alternative (but equivalent) formulation of the investment problem in

closed form. Since without this non-recursive formulation the problem can

only be solved recursively, the literature so far had to rely exclusively on

the Hamilton-Jacobi-Bellman differential equation to solve robust dynamic

investment problems. Our alternative formulation of the problem makes it

possible to apply an alternative technique to solve robust dynamic invest-

ment problems, namely a robust version of the martingale method. This

method is likely also applicable in other settings.

Our paper relates to the literature on the bond premium puzzle. Backus,

Gregory and Zin (1989) use a consumption-based endowment economy to

study the behavior of risk premiums. They conclude that in order for their

model to match the risk premium observed in market data, the coefficient

of relative risk aversion must be at least around 8-10. This value for the rel-

ative risk-aversion parameter is considered too high by the majority of the

literature to reconcile with both economic intuition and economic experi-

ments. Further early discussion on the bond premium puzzle can be found in

Donaldson, Johnsen and Mehra (1990) and Den Haan (1995). They demon-

strate that the bond premium puzzle is not a peculiarity of the consumption-

based endowment economy, but it is also present in real business-cycle mod-

els. This remains true even if one allows for variable labor and capital or

for nominal rigidities. Rudebusch and Swanson (2008) examine whether

the bond premium puzzle is still present if they use a more sophisticated

macroeconomic model instead of either the consumption-based endowment
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economy or the real business-cycle model. They use several DSGE setups

and find that the bond premium puzzle remains even if they extend their

model to incorporate large and persistent habits and real wage bargaining

rigidities. However, Wachter (2008) provides a resolution to the puzzle by

incorporating habit-formation into an endowment economy. Piazzesi and

Schneider (2006) use Epstein-Zin preferences, but to match market data,

they still need a relative risk aversion of 59.

Our paper obviously relates to the literature on robust dynamic asset

allocation. Investors are uncertain about the parameters of the distribu-

tions that describe returns. In robust decision making, the investor makes

decisions that “not only work well when the underlying model for the state

variables holds exactly, but also perform reasonably well if there is some

form of model misspecification” (Maenhout (2004)). We use the minimax

approach to robust decision making. A comparison of the minimax approach

with other approaches, such as the recursive smooth ambiguity preferences

approach, can be found in Peijnenburg (2010). The minimax approach as-

sumes that the investor considers a set of possible investment paths regarding

the parameters she is uncertain about. She chooses the worst case scenario,

and then she makes her investment decision using this worst case scenario to

maximize her value function. To determine the set of possible parameters

we use the penalty approach. This means that we do not set an explicit

constraint on the parameters about which the investor is uncertain, but we

introduce a penalty term for these parameters. Deviations of the parameters

from a so-called base model are penalized by this function. Then the investor

solves her unconstrained optimization problem using this new goal function.
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The penalty approach was introduced into the literature first by Anderson,

Hansen and Sargent (2003), and it was applied by Maenhout (2004) and

Maenhout (2006) to analyze equilibrium equity prices. Maenhout (2004)

finds that in the case of a constant investment opportunity set robustness

increases the equilibrium equity premium and it decreases the risk-free rate.

Concretely, a robust Duffie-Epstein-Zin representative investor with reason-

able risk-aversion and uncertainty-aversion parameters generate a 4% to 6%

equity premium. Furthermore, Maenhout (2006) finds that, if the invest-

ment opportunity set is stochastic, robustness increases the importance of

intertemporal hedging compared to the non-robust case. We confirm this

result in our setting (see Corollary 1). While our paper sheds light on the im-

portance of parameter uncertainty for asset prices, several papers analyzed

the effects of parameter uncertainty on asset allocation. Branger, Larsen,

and Munk (2013) solve a stock-cash allocation problem with a constant risk-

free rate and uncertainty aversion. The model of Flor and Larsen (2014)

features a stock-bond-cash allocation problem with stochastic interest rates

and ambiguity, while Munk and Rubtsov (2014) also account for inflation

ambiguity. Feldhütter, Larsen, Munk, and Trolle (2012) investigate the im-

portance of parameter uncertainty for bond investors empirically.

The paper is organized as follows. Section 2 introduces our model, i.e.,

the financial market and the robust dynamic optimization problem. Sec-

tion 2 also provides the solution to the robust investment problem, using

the martingale method. In Section 3 we calibrate our model to our data.

In Section 4 we solve for the equilibrium prices and in Section 5 we disen-

tangle the risk aversion from the uncertainty aversion using detection error
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probabilities. Section 6 concludes.

2 Robust Investment Problem

We consider agents that have access to an arbitrage-free complete financial

market consisting of a money market account, constant maturity bond funds,

and a stock market index. The short rate rt is assumed to be affine in an

N -dimensional factor Ft, i.e.,

rt = A0 + ι′Ft, (1)

where ι denotes a column vector of ones. The factors Ft follow anN -dimensional

Ornstein-Uhlenbeck process, i.e.,

dFt = −κ(Ft − µF )dt+ σFdWQ
F,t. (2)

Here µF is an N -dimensional column vector of long-term averages, κ is an

N × N diagonal mean-reversion matrix, σF is an N × N lower triangular

matrix with strictly positive elements in its diagonal, and WQ
F,t is an N -

dimensional column vector of independent standard Wiener processes under

the risk-neutral measure Q. The value of the available stock market index

is denoted by St and satisfies

dSt = Strtdt+ St

(
σ′FSdWQ

F,t + σN+1dW
Q
N+1,t

)
, (3)
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where σN+1 is strictly positive, σFS is an N -dimensional column vector

governing the covariance between stock and bond returns, and WQ
N+1,t is

a standard Wiener process (still under the risk-neutral measure Q) that is

independent ofWQ
F,t. As our financial market is arbitrage-free and complete,

such a risk-neutral measure Q indeed exists and is unique.

Although we will study the effect of ambiguity on investment decisions

and equilibrium prices below, it is important to note that, due to the mar-

ket completeness, the risk-neutral measure Q is unique and agents cannot

be ambiguous about it. Indeed, the risk-neutral measure Q is uniquely de-

termined by market prices and, thus, if all investors accept that there is

no arbitrage opportunity on the market and they observe the same market

prices, then they all have to agree on the risk-neutral measure Q as well.

Investors will be ambiguous in our model about the physical probability

measure or, equivalently, about the prices of risk of the Wiener processes

WQ
F,t and WQ

N+1,t. We denote WQ
F,t and WQ

N+1,t jointly as

WQ
t =

 WQ
F,t

WQ
N+1,t

 . (4)

Now consider an investor with investment horizon T . She derives utility

from terminal wealth. This investor is ambiguous about the physical proba-

bility measure. She has a physical probability measure B in mind which she

considers the most probable, but she is uncertain about whether this is the

true physical probability measure or not. This measure B is called the base

measure. As the investor is not certain that the measure B is the true phys-
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ical probability measure, she considers other possible physical probability

measures as well. These measures are called alternative (physical) measures

and denoted by U. We formalize the relationship between Q, B, and U as

dW B
t = dWQ

t − λdt, (5)

dW U
t = dW B

t − u(t)dt, (6)

where W B
t and W U

t are (N + 1)-dimensional standard Wiener processes

under the measures B and U, respectively. Thus, λ can be identified as the

(N + 1)-dimensional vector of prices of risk of the base measure B, while

u(t) denotes the (N + 1)-dimensional vector of prices of risk of U1. It is

important to emphasize that the investor assumes u(t) to be a deterministic

function of time, i.e., u(t) is assumed to be non-stochastic.2

We can now formalize the investor’s optimization problem, given a CRRA

utility function with risk aversion γ > 13, time-preference parameter δ > 0,

and a stochastic and non-negative parameter Υt, which expresses the in-

vestor’s attitude towards uncertainty, and which we will describe in more

details later in this section.

1In order for U to be well defined, we assume throughout
∫ T
0

‖u(s)‖2ds <∞.
2A natural question here is why we allow u to be a deterministic function of time,

but assume λ to be constant. Allowing λ to be a deterministic function of time would
not change our conclusions, but it would result in more complicated expressions due to
time-integrals involving λ (t). Moreover, we could not calibrate our model to market data
without assuming some functional form for λ(t). Thus since for our purposes a constant
λ suffices and it allows straightforward model calibration, we throughout take λ to be
constant.

3In the case of γ = 1 the investor has log-utility. All of our results can be shown to
hold in this case as well.
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Problem 1. Given initial wealth x, find an optimal pair (XT ,U) for the

robust utility maximization problem

V0(x) = inf
U

sup
XT

EU

{
exp(−δT )

X1−γ
T

1− γ

+

∫ T

0
Υs exp(−δs)

∂EU [log
(
dU
dB
)
s

]
∂s

ds

}
, (7)

subject to the budget constraint

EQ
[
exp

(
−
∫ T

0
rsds

)
XT

]
= x. (8)

The investor’s optimization problem as it is formulated here follows the

so-called martingale method. Given that our financial market is complete,

the martingale method maximization is over terminal wealth XT only. It

is not necessary, mathematically, to consider optimization of the portfolio

strategy as the optimal strategy will simply be that one that achieves the op-

timal terminal wealth XT . For (mathematical) details we refer to Karatzas

and Shreve (1998).

The outer inf in Problem 1 adds robustness to the investment prob-

lem as the investor considers the worst case scenario, i.e., she chooses the

measure U which minimizes the value function (evaluated at the optimal ter-

minal wealth). The investor considers all alternative probability measures

U which are equivalent4 to the base measure B.

4Two probability measures are said to be equivalent if and only if each is absolutely
continuous with respect to the other. That is, the investor may be uncertain about the
exact probability of events, but she is certain about which events happen for sure (i.e., with
probability 1) or with probability zero. This is a common, sometimes implicit, assumption
in this literature.
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The first part of the expression in brackets in (7) expresses that the in-

vestor cares about her discounted power utility from terminal wealth XT .

The second term represents a penalty: if the investor calculates her value

function using a measure U which is very different from B, then the penalty

term will be high. We will be more explicit about what we mean by two

probability measures being very different from each other in the next para-

graph. The fact that the investor considers a worst-case scenario, including

the penalty term, ensures that she considers “pessimistic” probability mea-

sures (which result in low expected utility), but at the same time she only

considers “reasonable” probability measures (that are not too different from

the base measure).

Following Anderson, Hansen and Sargent (2003), we quantify how dif-

ferent probability measures are by their Kullback-Leibler divergence, which

is also known as the relative entropy. The reason why we use the Kullback-

Leibler divergence as the penalty function lies not only in its intuitive inter-

pretation (see, e.g., Cover and Thomas (2006), Chapter 2), but also in its

mathematical tractability.

We now rewrite Problem 1 and, following Maenhout (2004), introduce

a concrete specification for Υt. In view of (6) and Girsanov’s theorem, we

obtain

∂EU [log
(
dU
dB
)
t

]
∂t

=
∂

∂t
EU
[

1

2

∫ t

0
‖u(s)‖2ds−

∫ t

0
u(s)dW U

s

]
(9)

=
1

2
‖u(t)‖2, (10)

where ‖u(t)‖ denotes the Euclidean norm of u(t). Furthermore, in order to
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ensure homotheticity of the investment rule5, we use the following specifi-

cation of Υt, introduced in Maenhout (2004)6.

Υt = exp (δt)
1− γ
θ

Vt(Xt), (11)

where Xt denotes optimal wealth at time t. Substituting (10) and (11)

into (7), the value function becomes

V0(x) = inf
U

sup
XT

EU

{
exp(−δT )

X1−γ
T

1− γ

+

∫ T

0

(1− γ) ‖u(t)‖2

2θ
Vt(Xt)dt

}
. (12)

This expression of the value function is recursive, in the sense that the right-

hand side contains future values of the same value function. The following

theorem gives a non-recursive expression. All proofs are in the appendix.

Theorem 1. The solution to (12) with initial wealth x is given by

V0(x) = inf
U

sup
XT

EU

{
exp

(
−δT +

1− γ
2θ

∫ T

0
‖u(t)‖2dt

)
X1−γ
T

1− γ

}
. (13)

subject to the budget constraint

EQ
[
exp

(
−
∫ T

0
rsds

)
XT

]
= x. (14)

Theorem 1 gives an alternative interpretation to the robust investment

5Homotheticity of the investment rule means that the optimal ratio of wealth to be
invested in a particular asset at time t does not depend on the wealth at time t itself.

6This specification has been criticized in, e.g., Pathak (2012) for its recursive nature.
Alternatively we could have specified the robust investment problem directly as in Theo-
rem 1.
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Problem 1, with parameterization (11). Effectively, the investor maximizes

her expected discounted utility of terminal wealth, under the least-favorable

physical measure U, using an adapted subjective discount factor

δ − 1− γ
2θ

1

T

∫ T

0
‖u(t)‖2dt. (15)

As θ > 0, we obtain, for γ > 1, that the subjective discount rate increases in

the time-average of ‖u(t)‖2, i.e., in deviations of the least-favorable physical

measure U from the base measure B. The investor thus becomes effectively

more impatient. However, this is not the reason why the robustness affects

the asset allocation, as the subjective time preference does not affect the

asset allocation in this standard terminal wealth problem. Rather, the effect

of robustness is that the prices of risk that the robust investor uses are

affected by the least-favorable measure U in the value function in (13). We

show this formally in the following section.

2.1 Optimal terminal wealth

We now solve Problem 1 using the reformulation in Theorem 1. In the

present literature, dynamic robust investment problems are mostly solved

by making use of a “twisted” Hamilton-Jacobi-Bellman (HJB) differential

equation. Solving this HJB differential equation determines both the opti-

mal investment allocation and the optimal final wealth. However, we pro-

pose to use the so-called martingale method. This approach has not only

mathematical advantages (one does not have to solve higher-order partial

differential equations), but it also provides economic intuition and insights
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into the decision-making of the investor. We provide this intuition at the

end of this section, directly after Theorem 2. The martingale method was

developed by Cox and Huang (1989) for complete markets, and a detailed

description can be found in Karatzas and Shreve (1998). The basic idea

is to first determine the optimal terminal wealth XT (Theorem 2) and to

subsequently determine the asset allocation that the investor has to choose

in order to achieve that optimal terminal wealth (Corollary 1).

In our setting of robust portfolio choice, we can still follow this logic.

It is important to note that the budget constraint (8) is, obviously, not

subject to uncertainty, i.e., Q is given. The value function in Theorem 1

contains an inner (concerningXT ) and an outer (concerning U) optimization.

Solving these in turn leads to the following result, whose proof is again in

the appendix.

Theorem 2. The solution to the robust investment Problem 1 under (11)

is given by

X̂T = x
exp

(
1
γ

∫ T
0 (û(t) + λ)′ dWQ

t + 1
γ

∫ T
0 rtdt

)
EQ exp

(
1
γ

∫ T
0 (û(t) + λ)′ dWQ

t + 1−γ
γ

∫ T
0 rtdt

) , (16)

with the least-favorable distortions

û(t)F = − θ

γ + θ

[
λF + σ′FB(T − t)′ι

]
, (17)

û(t)N+1 = − θ

γ + θ
λN+1, (18)

where B(·) is defined in (54).
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Equation (16) shows the stochastic nature of the optimal terminal wealth.

The denominator is a scaling factor, and the numerator can be interpreted

as the exponential of a (stochastic) yield on the investment horizon T . The

investor achieves this yield on her initial wealth x if she invests optimally

throughout her life-cycle.

The absolute value of the least-favorable distortions (17) and (18) in-

crease as θ increases. This is in line with the intuition that a more uncertainty-

averse investor considers alternative measures that are “more different” from

the base measure. If the investor is not uncertainty-averse, i.e., θ = 0, the

least-favorable distortions are all zero. This means that the investor consid-

ers only the base measure and she makes her investment decision based on

that measure. On the other hand, if the investor is infinitely uncertainty-

averse, i.e., θ =∞, the least-favorable distortions are

ũ(t)F = −
[
λF + σ′FB(T − t)′ι

]
, (19)

ũ(t)N+1 = −λN+1. (20)

An infinitely uncertainty-averse investor thus uses −σ′FB(T − t)′ι as the

market price of risk induced by W U
F,t and 0 as the market price of risk

induced by WU
N+1,t.

2.2 Optimal portfolio strategy

The final step in our theoretical analysis is to derive the investment strategy

that leads to the optimal final wealth X̂T derived in Theorem 2. The fol-

lowing theorem gives the optimal exposures to the driving Brownian motion
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WQ
t . The proof can be found in the appendix.

Theorem 3. Under the conditions of Theorem 2, the optimal final wealth

X̂T is achievable using the wealth evolution

dX̂t = . . . dt+

[
λ′F
γ + θ

+
1− (γ + θ)

γ + θ
ι′B(T − t)σF ;

λN+1

γ + θ

]
X̂tdW

Q
t , (21)

starting from X̂0 = x.

Introducing the notation

B (τ) = [B (τ1) ι; . . . ;B (τN ) ι] , (22)

where τj denotes the maturity of bond fund j, we can state the following

corollary (proved in the appendix).

Corollary 1. Under the conditions of Theorem 2, the optimal investment

is a continuous re-balancing strategy where the fraction of wealth invested in

the constant maturity bond funds is

π̂B,t =− 1

γ + θ
B (τ)−1

(
σ′F
)−1(

λF −
λN+1

σN+1
σFS

)
− 1− γ − θ

γ + θ
B (τ)−1B (T − t) (23)

and the fraction of wealth invested in the stock market index is

π̂S,t =
λN+1

(γ + θ)σN+1
. (24)

Equations (23) and (24) provide closed-form solutions for the optimal
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fractions of wealth to be invested in the bond and stock markets. For the

latter one, this fraction is time independent and it is equal to the market

price of the idiosyncratic risk of the stock market (i.e., λN+1) divided by

(γ + θ) and by the volatility of the unspanned stock market risk σN+1. So

even though the return on the stock market is influenced by all of the N + 1

sources of risk, only the stock market specific risk matters when the investor

decides how much to invest in the stock market. This investment policy

closely resembles the solution to Merton’s problem (Merton (1969)), the

main difference being that γ is replaced by γ + θ in the denominator.

The optimal fraction to be invested in the bonds has two components

(similarly to Merton’s intertemporal consumption model (Merton (1973)).

The first component is the myopic demand, and its form is similar to that of

(24). The second component represents the intertemporal hedging demand,

and it is present due to the stochastic nature of the investment opportunity

set: the investor holds this component in order to protect herself against

unfavorable changes of the N factors. The main difference to the solution

to Merton’s problem is again γ being replaced by γ + θ. This means that if

we compare a robust and a non-robust investor’s optimal investment policy

(with the same level of relative risk-aversion), the only difference between

them is that in the robust investor’s case the risk-aversion parameter γ is

replaced by the sum of the risk-aversion and the uncertainty aversion pa-

rameters, γ+ θ. In (23) we find that robustness increases the intertemporal

hedging demand of the investor. This finding is in accordance with Maen-

hout (2006).
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3 Model calibration

In this section we calibrate our model to market data. We use weekly ob-

servations from 5 January 1973 to 29 January 2016. We use continuously

compounded zero-coupon yields with maturities of 3 months, 1 year, 5 years,

and 10 years. The zero-coupon yields for maturities of 1 year, 5 years, and

10 years were obtained from the US Federal Reserve Data Releases, while

the yields for maturity of 3 months are the 3-month T-bill secondary mar-

ket rates from the St. Louis Fed Fred Economic Data.7 The spot rates of

1 and 2 months of maturity sometimes show extremely large changes within

one period, so the shortest maturity that we used is 3 months. Regarding

the sample period we did not go back further than 1973, because yield curve

estimations from earlier years contain relatively high standard errors due to

the many missing values. Moreover, the monetary policy before the 1970s

was very different from the period afterwards. As stock market index we

use the continuously compounded total return index of Datastream’s US-DS

Market.8

To utilize both cross-sectional and time-series bond market data, we fol-

low the estimation methodology of de Jong (2000) based on the Kalman filter

and Maximum Likelihood. The error terms in the observation equation are

allowed to be cross-sectionally correlated, but they are assumed to be seri-

ally uncorrelated. We initialize the Kalman filter recursions by conditioning

on the first observations and the initial MSE matrix equals the covariance

7These 3-month yields assumed quarterly compounding, so we manually transformed
them into continuously compounded yields.

8Datastream code: TOTMKUS(RI).
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matrix of the observation errors. The initial factor values are set equal to

their long-term mean. For identification purposes µF is assumed to be a

zero vector. The standard errors of the estimated parameters are obtained

as the square roots of the diagonal elements of the inverted Hessian matrix.

Table 1 contains our estimates9.

Table 1. Parameter estimates and standard errors
Estimated parameters and standard errors using Maximum Likelihood with
weekly observations. At each time we observed four points on the U.S. zero-
coupon, continuously compounded yield curve, corresponding to maturities
of 3 months, 1 year, 5 years and 10 years; and the total return index of
Datastream’s US-DS Market. The observation period is from 5 January 1973
to 29 January 2016.

Estimated parameter Standard error
κ̂1 0.0763∗∗∗ 0 .0024

κ̂2 0.3070∗∗∗ 0 .0108

Â0 0.0862∗∗∗ 0 .0013

λ̂F,1 −0.1708−∗∗∗ 0 .1528

λ̂F,2 −0.5899∗∗∗− 0 .1528

λ̂N+1 0.3180∗∗∗ 0 .1528
σ̂F,11 0.0208∗∗∗ 0 .0009
σ̂F,21 −0.0204∗∗∗− 0 .0012
σ̂F,22 0.0155∗∗∗ 0 .0003
σ̂FS,1 −0.0035−∗∗∗ 0 .0038
σ̂FS,2 −0.0121∗∗∗− 0 .0035
σ̂N+1 0.1659∗∗∗ 0 .0025

One of the two factors exhibits reasonably strong mean reversion as κ̂2

is higher than 0.3, while the mean-reversion parameter of the other factor

is quite small (around 0.08), however still statistically significantly different

9As a robustness check, we also estimated the parameters using monthly and quarterly
data. Our estimates are very similar to the ones we obtained using weekly data, which
verifies that our model is indeed a good description of the behaviour of returns. All our
observations are on the last trading day of the particular period.
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from zero. The long-term mean of the short rate, under the risk-neutral

measure, A0 is estimated to be around 9%. The negative sign of σ̂F,21

shows that there is a negative correlation between the two factors. The two

elements of σ̂FS are economically not significant and only one of them is

statistically significantly different from zero. σ̂N+1, on the other hand, is

both statistically and economically significant: it is around 17% per annum.

The market prices of the two risk sources that influence the factors, λF , are

both negative.

Table 2. Model implied instantaneous excess returns, volatilities
and Sharpe ratios
The model implied instantaneous expected excess returns, volatilities of re-
turns and Sharpe ratios using the estimates in Table 1.

Expected Volatility Sharpe

excess return of return ratio
Constant maturity (1 y.) bond fund 0.83% 01.36% 0.61
Constant maturity (5 y.) bond fund 2.93% 15.25% 0.56
Constant maturity (10 y.) bond fund 4.25% 9.53% 0.45

Stock market index 6.05% 16.64% 0.36

Using these estimates, we calculate the model-implied instantaneous ex-

pected excess returns, volatilities and Sharpe ratios for the constant ma-

turity bond funds with maturities of 1 year, 5 years, and 10 years and for

the stock market index fund (Table 2). The stock market index fund has

the highest expected excess return (6.05%), but also the highest volatil-

ity (16.64%). Regarding the constant maturity bond funds, the expected

excess returns are lower than for the stock market index fund: for 10 years

of maturity, the expected excess return is slightly higher than 4%. At the

same time, the lower expected excess returns come with lower volatilities,
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which are 1.36%, 5.25% and 9.53% for the three bond funds, respectively.

The highest Sharpe ratio is produced by the constant maturity bond fund

with 1 year of maturity: its volatility is relatively low (only 1.36%) given its

expected excess return of 0.83%.

For comparison purposes, we also estimated the expected excess returns,

the volatilities and the Sharpe ratios directly using excess return data. We

used the 3 month T-bill rate as a proxy for the risk-free rate10. We used the

same stock market index data that we used when estimating the parameters,

with weekly observations. To directly estimate the returns, the volatilities

and the Sharpe ratios of constant maturity bond funds, we assumed that the

investor buys the bond fund at the beginning of the quarter and sells it at

the end of the quarter, when its maturity is already 3 months less. To this

end we used the same continuously compounded, zero-coupon yield curve

observations that before, now with quarterly frequency, plus we observed

three additional points on the yield-curve, namely for maturities of 6 months,

4 years and 9 years. These three additional maturities were used – together

with the maturities of 1 year, 5 years and 10 years – to obtain our estimates

by linear interpolation for the continuously compounded, zero coupon yields

for 9 months, 4.75 years and 9.75 years. Our direct estimates of the expected

excess returns, the volatilities, and the Sharpe ratios can be found in Table 3.

The directly estimated Sharpe ratio of the stock market index fund

is 0.37, which is practically the same as the model-implied value. The es-

timated expected excess returns of the constant maturity bond funds with

10We compared the model implied risk-free rates and the 3 month T-bill rates for the
entire estimation period, and they are very close to each other. So the 3 month T-bill rate
is a good proxy for the risk-free rate.
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Table 3. Directly estimated excess returns, volatilities and
Sharpe ratios
The directly estimated excess returns, volatilities and Sharpe ratios, using
the same observation period as for estimating the parameters in Table 1,
assuming 3 months holding period.

Expected Volatility Sharpe

excess return ratio
Constant maturity (1 y.) bond fund 1.53% 11.64% 0.94
Constant maturity (5 y.) bond fund 2.85% 17.08% 0.40
Constant maturity (10 y.) bond fund 4.40% 12.86% 0.34

Stock market index 6.07% 16.58% 0.37

maturities of 5 and 10 years are very close to their model implied counter-

parts: they are 2.85% and 4.40%. The directly estimated expected excess

return for the constant maturity bond fund with 1 year of maturity is some-

what higher than its model-implied counterpart. The directly estimated

volatilities of the bond funds are slightly higher than what the model im-

plies, which leads to lower values of the directly estimated Sharpe ratios for

maturities of 5 years and 10 years.

We can clearly recognize the bond premium puzzle in Tables 2 and 3. The

Sharpe ratios of all of the constant maturity bond funds are higher than the

Sharpe ratio of the stock market index, the only exception being the directly

estimated Sharpe ratio of the constant maturity bond fund with 10 years

of maturity. Even without considering the supply side, these Sharpe ratios

of long-term bonds seem very high given a reasonable level of risk aversion.

Interestingly, the puzzle is stronger in the case of the shorter maturity bond

funds: the Sharpe ratio of the 1-year constant maturity bond fund is 0.61,

while that of the 10-year constant maturity bond fund is 0.45. We now

22



proceed to show that ambiguity aversion can explain this bond-premium

puzzle to a large extent.

4 Robust general equilibrium

In Section 2 we obtained the optimal investment policy of the representative

investor: if she would like to maximize her value function (7) subject to her

budget constraint (8), she has to invest according to (23) and (24). In this

section we introduce the concept of robust general equilibrium and we esti-

mate the sum of the risk-aversion and uncertainty-aversion parameters γ+θ.

Section 5 will be devoted to separately identifying γ and θ using the concept

of detection error probabilities.

Definition 1. The market is in robust general equilibrium if the following

conditions are satisfied:

1. The representative investor solves Problem 1 with parameterization (11).

2. All of the security markets (the bond markets, the stock market and –

as a consequence – the money market) clear continuously, i.e., for all

t ∈ [0, T ],

π̂B,t = π∗B ∀ t ∈ [0, T ] , (25)

π̂S,t = π∗S ∀ t ∈ [0, T ] , (26)

where π∗B and π∗S denote the exogenously given supply of the N constant

maturity bond funds and of the stock market index as a fraction of the total

wealth of the economy.

If we substitute the optimal investment ratios for the bonds and the stock
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into the market clearing equations (25)-(26), we obtain that the market is

in robust equilibrium if, for all t ∈ [0, T ], we have

π∗B =− 1

γ + θ
B (τ)−1

(
σ′F
)−1(

λF −
λN+1

σN+1
σFS

)
− 1− γ − θ

γ + θ
B (τ)−1B (T − t) ι, (27)

π∗S =
λN+1

(γ + θ)σN+1
. (28)

We perform the calibration assuming different exogenous supply sides

and several different sets of market clearing conditions, which will be sub-

sets of the market clearing conditions (25)-(26). To calibrate γ + θ, we use

our estimates from Table 1. In (27)-(28), γ and θ appear only as a sum, so

they cannot be separately identified. Moreover, since the system (27)-(28)

is overidentified, an exact solution of γ + θ does not exist, hence we min-

imize the sum of squared differences to estimate γ + θ. I.e., we calculate

‖π∗B − π̂B‖2 + (π∗S − π̂S)2 for several T − t and γ + θ combinations, and

then, for each T − t, we select that value of γ + θ that minimizes this sum

of squared differences.

Since our model has two factors driving the short rate, we need two

constant maturity bond funds with different maturities to assure market

completeness. To determine the maturities of these two bond funds, we

use the data of U.S. government debt (Table 4). Since we have data avail-

able only for the clustered maturities as shown in Column 1, we assume

that the distribution of maturities within the clusters is uniform. This way

we can calculate the average maturities for each cluster (Column 4). For
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Table 4. U.S. government debt by maturities
The government debt of the U.S. by maturities as of 1 September 2015
and the average maturities of the maturity-clusters. When calculating the
average maturities, we assumed that the distribution of the debts within
the clusters is uniform. Moreover, we assumed that the average maturity of
debts with more than 20 years of maturity is 25 years. Source: Datastream.

Maturity Debt outstanding Ratio of total Average
(million USD) debt outstanding maturity

<1 year 2,890,796 0.2824 -

1-5 years 4,335,287 0.4235 3 years

5-10 years 2,035,095 0.1988 7.5 years

10-20 years 187,318 0.0183 15 years

>20 years 789,260 0.0771 25 years

bonds with more than 20 years of maturity we assume that their average

maturity is 25 years. Because the shortest maturity cluster is less than one

year, we treat this cluster of bonds as the money market account. Besides

the money market account our model needs two zero-coupon bonds with

different maturities in order to have a complete market. Since bonds with

1-5 years of maturity make up more then 42% of all government debt, we

assume in the calibration that one of the available zero-coupon bonds has

a maturity of 3 years. To determine the maturity of the other zero-coupon

bond, we calculate the weighted average of the maturities of bonds with

maturities of more than 5 years, where the weights are determined by their

amount outstanding. This way we obtain an average 12.55 years maturity

for the coupon bonds. As the duration of these coupon bonds is shorter

than their maturity, in the calibration we assume that a zero-coupon bond

with a maturity of 10 years is available.

Table 5 shows the calibrated γ+θ values for different investment horizons
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Table 5. Calibrated values of the sum of the risk and uncertainty
aversion parameters
Calibrated γ + θ values for several investment horizons and market clearing
conditions. Estimates for all of the other parameters are from Table 1 and
the maturities of the available zero-coupon bonds are τ1 = 3 years and
τ2 = 10 years. The market is assumed to be in equilibrium according to
Definition 1.

T − t
γ + θ

πS = 1 00πS = 1 00πS = 0.67
πBτ1 = 0 πBτ1 = 0 πBτ1 = 0.14
πBτ2 = 0 πBτ2 = 0 πBτ2 = 0.10

10 1.92 154.20 97.78 69.14

15 1.92 019.17 18.09 16.90

20 1.92 011.85 11.48 011.00

25 1.92 109.44 09.23 08.92

30 1.92 108.32 08.16 07.92

50 1.92 106.96 06.86 06.70

100 1.92 106.68 06.59 06.44
∞ 1.92 106.67 06.58 06.43

and market clearing conditions. As a first experiment, we only impose that

the stock market is in equilibrium, π∗S = 1. In this case, the required γ + θ

parameter is reasonable, 1.92, regardless of the investment horizon. Second,

we only impose the restrictions on the bond markets, assuming it is in zero

net supply, π∗B = 0. The calibrated γ+θ value now depends on the assumed

investment horizon T − t. The values for γ + θ are more than 150 for

T − t = 10 years and gradually decrease to 6.67 as T − t approaches infinity.

In the next experiment, we combine both restrictions on the stock and
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bond market and assume the following exogenous stock and bond supply

π∗S = 1, (29)

π∗B = 0. (30)

The reasoning behind (29)-(30) is that if an agent in the economy borrows

money either by buying a long-term bond or by investing in the money-

market account, another player has to lend that money to her. As a result,

in general equilibrium the bond holdings of the representative agent will be

zero and she keeps all of her wealth invested in the stock market. Thus

in general equilibrium the representative investor’s holdings of long-term

bonds is zero, and all of her wealth is invested in the stock market. The

results of this experiment are shown in Column 4 of Table 5. If the investor’s

investment horizon is 10 years, she needs a risk-aversion plus uncertainty-

aversion parameter of nearly 100 in order to match market data. As the

investment horizon increases, the calibrated γ + θ value decreases to 6.58.

The first paper which described the bond premium puzzle, Backus, Gre-

gory and Zin (1989), calibrates the risk-aversion parameter to be around 8,

which is what we find using a reasonable investment horizon of 30 years.

Hence, our results confirm the bond premium puzzle: if we calibrate our our

model in the absence of ambiguity aversion (i.e., setting θ = 0), we need an

unreasonably high risk-aversion parameter.

Although the assumption that long-term government bonds are in zero

net supply is customary in the literature11, it is by no means innocuous,

11Note that several authors, e.g., Gomes and Michaelides (2008), assume that long-term
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as noted in Donaldson and Mehra (2008). One may argue that the bond

supply is exogenously determined by the government (since we only consider

government bonds). Then the market clearing conditions are (25)-(26) with

π∗B and π∗S equal to the weights in a value-weighted market portfolio of stocks

and bonds. The U.S. stock market capitalization on 1 September 2015 was

20, 885, 920 million USD (using Datastream’s TOTMKUS index). Adding

up the amounts of debt outstanding in Table 4, we find that the total amount

of government debt of the U.S. is 10, 237, 756 million USD. According to our

model the financial market constitutes of the stock market, the bond market,

and the money market (assumed to be in zero net supply), thus the total

financial market capitalization is 31, 123, 676 million USD. This leads to

actual aggregate supply portfolio weights equal to

π∗S =
20, 885, 920

31, 123, 676
= 0.67, (31)

π∗Bτ1
=

4, 335, 287

31, 123, 676
= 0.14, (32)

π∗Bτ2
=

3, 011, 673

31, 123, 676
= 0.10. (33)

Using these market clearing conditions, the calibrated values of γ + θ are

very close to the previous calibration. For T −t = 10, the calibrated value of

γ+ θ is 69.14, and it decreases gradually for longer investment horizons. At

T − t = 30 it is 7.92 and as the investment horizon increases to infinity, γ+θ

converges to 6.43. Hence, also if we use the more realistic market clear-

ing conditions of (32)-(31) instead of (30)-(29), the bond-premium puzzle

government bonds are in strictly positive net supply.
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remains with similar magnitude.

Figure 1 illustrates the behavior of the calibrated γ + θ values as the

time horizon changes. We assume the market clearing condition (31)–(33).

The white line shows the minimized sum of squared differences for given

investment horizons up to 100 years. As T − t approaches infinity, the

minimizing γ+θ converges to 6.43. If we decrease the investment horizon, the

minimizing γ+ θ is increasing. So the presence of the bond premium puzzle

is robust to the investment horizon: given any reasonable investment horizon

for our representative investor, if we calibrate our model in the absence of

uncertainty aversion (i.e., setting θ = 0), the risk-aversion parameter γ is

large. For example, for a 15 years investment horizon, the value of γ is 16.90

and for a 25 years horizon it is 8.92.
We have illustrated above that the bond risk-premium puzzle is also

present in the sample period we consider, in the absence of uncertainty

aversion, i.e., for θ = 0. In the next section, we will identify the risk-aversion

parameter γ separately from the uncertainty-aversion parameter θ.

5 Separating risk and uncertainty aversion

In Section 4 we calibrated the sum of the risk and uncertainty aversion pa-

rameters (γ+θ) to market data, but without further assumptions we cannot

identify them separately. In this section we recall the concept of detection

error probability (Anderson, Hansen and Sargent (2003)) in order to iden-

tify the risk-aversion parameter γ and the uncertainty-aversion parameter θ

separately.
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Figure 1. Sum of squared differences between supply and demand
of the securities
Sum of squared differences between supply and demand of the two long-term
bonds and the stock for different investment horizons T − t. The maturities
of the two long-term bonds are 3 years and 10 years. The white line shows
the minimized sum of squared differences for given investment horizons T−t
up to 100 years.

We assume that the investor observes the prices of N constant maturity

bond funds and of the stock market index. As assumed in Section 2, the

investor can observe these stock and bond prices continuously. The obser-

vation period is from t−H to t, where t is the moment of observation and

H > 0. We assume that she then performs a likelihood-ratio test to decide

whether the true physical probability measure is B or the least-favorable U as

derived in Theorem 2. To be more precise: we assume that she calculates the

ratio of the likelihoods of the physical probability measure being B and U,

respectively, and accepts the measure with the larger likelihood. If the true
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measure is B, then the probability that the investor will be wrong is

PB
(

log
dB
dU

< 0

)
. (34)

Similarly, if the true measure is U, the probability that the investor will be

wrong when determining the probability measure given a sample of data is

PU
(

log
dB
dU

> 0

)
. (35)

We now define the detection error probability, following Anderson, Hansen

and Sargent (2003).

Definition 2. The detection error probability (DEP) is defined as

DEP =
1

2
PB
(

log
dB
dU

< 0

)
+

1

2
PU
(

log
dB
dU

> 0

)
. (36)

In the following theorem we give the detection error probability for any

arbitrary U. Then, in Corollary 2 we give the detection error probability for

the least favorable U as derived in Theorem 2. Both proofs again are in the

appendix.

Theorem 4. Assume that the investor (continuously) observes the prices

of N constant maturity bond funds and of the stock market index. The

observation period lasts from t−H to the moment of observation, t. Then,

the detection error probability of the investor for given U is

DEP = 1− Φ

(
1

2

√∫ t

t−H
‖u (s) ‖2ds

)
, (37)
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where u (·) is defined in (6).

Plugging in the least-favorable U as derived in Theorem 2 leads to the

following corollary.

Corollary 2. Assume that the conditions of Theorem 4 hold. Then, the

detection error probability of the investor for the least-favorable U is

DEP = 1− Φ

(
θ

2 (γ + θ)

√
H
(
λ2N+1 + ‖λF ‖2

)
+ ∆1 + ∆2

)
, (38)

with

∆1 = 2λ′Fσ
′
F

[
(exp (−κ (T − t+H))− exp (−κ (T − t)))κ−2

+Hκ−1
]
ι, (39)

∆2 =
N∑
i=1

N∑
j=1

(σFσ
′
F )ij

κiκj
[Bii (T − t) +Bjj (T − t)−Bii (T − t+H)

−Bjj (T − t+H)−Cij (T − t) +Cij (T − t+H) +H] (40)

If the investor is not uncertainty-averse at all, her θ parameter is 0,

thus her detection error probability is 1
2 . This means that when solving

Problem 1, she chooses the alternative measure U which is exactly the same

as the base measure B, hence it is impossible to distinguish between them

based on a sample of data. This is reflected in her detection error probability

as well: in 50% of the cases she will be wrong when basing her decision on

the likelihood-ratio test described above, so she might as well just flip a coin

instead of basing her decision on a sample of data.

The more uncertainty-averse the investor is, that is, the larger θ, the
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larger the distance between the chosen least-favorable U measure and the

base B measure. And the larger this distance between U and B, the easier it

is to determine (based on a sample of data) which of the two measures is the

true one. This is reflected in the detection error probability of the investor:

if θ is larger, Φ (·) is larger, and her detection error probability is lower.

That is, she will make the correct decision when distinguishing between the

two measures in a higher proportion of the cases.

The detection error probability also depends on the observation span H:

the longer time period the investor observes, the higher H will be and, thus,

ceteris paribus Φ(·) will be higher and the detection error probability will be

lower. If the observation span goes to infinity, the detection error probability

goes to zero.

Anderson, Hansen and Sargent (2003) argue that the largest amount of

uncertainty that should be entertained as reasonable corresponds to a de-

tection error probability of approximately 10%. Since we have 42 years of

data available to estimate our model, it is reasonable to assume that our

representative investor also has access to 42 years of data to distinguish be-

tween the base model and the alternative model. Given that her observation

period of 42 years is relatively long and that she can observe the data in

continuous time, we can reasonably assume that the detection error prob-

ability equals 10%. Table 6 presents the induced calibrated values for the

γ and θ separately, based on the estimates in Table 5. Besides the γ and θ

values, Column 5 of Table 6 shows by how much the risk-aversion parameter

decreases by the introduction of an uncertainty-averse representative agent.
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Table 6. Disentangled risk- and uncertainty-aversion parameters
Calibrated γ + θ values and their disentangled γ and θ components, based
on the estimates in Table 5. The detection error probability is 10%. The
observation period is 42 years. The last column shows by how much robust-
ness decreases the risk-aversion parameter that we need to match market
data compared to the non-robust model.
T − t γ + θ γ θ Decrease in γ due to robustness

10 69.1 25.5 43.6 63%

15 16.9 16.2 10.7 63%

20 11.0 14.1 16.9 63%

25 18.9 13.3 15.6 63%

30 17.9 12.9 15.0 63%

As Table 6 shows, regardless of the investment horizon of the represen-

tative investor, the required risk-aversion parameter to match market data

is decreased by about 63% as a result of the introduction of robustness in

our model. The relative risk aversion of the robust investor is much more

reasonable than that of a non-robust investor: for investment periods be-

tween 15 and 30 years, it is between about 2.9 and 6.2, compared to it being

between 7.9 and 16.9 in the case of a non-robust investor.

As a robustness check of our results, we also disentangle the sum of risk-

and uncertainty aversion parameters using higher (i.e., more conservative)

detection error probability values, concretely 15% and 20%. The results

are shown in Table 7 and Table 8, respectively. We see that assuming

a detection error probability of 15% still reduces the originally required

risk-aversion parameter by more than half of its original value, and even a

rather conservative assumption of 20% detection error probability results in

a decrease of 41.5% in the required risk-aversion parameter. This reinforces

the robustness of our findings that parameter uncertainty can explain a large
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fraction of the bond premium puzzle.

Table 7. Disentangled risk- and uncertainty-aversion parameters
Calibrated γ + θ values and their disentangled γ and θ components, based
on the estimates in Table 5. The detection error probability is 15%. The
observation period is 42 years. The last column shows by how much robust-
ness decreases the risk-aversion parameter that we need to match market
data compared to the non-robust model.
T − t γ + θ γ θ Decrease in γ due to robustness

10 69.1 33.9 35.2 51%

15 16.9 18.3 18.6 51%

20 11.0 15.4 15.6 51%

25 18.9 14.4 14.5 51%

30 17.9 13.9 14.0 51%

Table 8. Disentangled risk- and uncertainty-aversion parameters
Calibrated γ + θ values and their disentangled γ and θ components, based
on the estimates in Table 5. The detection error probability is 20%. The
observation period is 42 years. The last column shows by how much robust-
ness decreases the risk-aversion parameter that we need to match market
data compared to the non-robust model.
T − t γ + θ γ θ Decrease in γ due to robustness

10 69.1 40.5 28.6 41%

15 16.9 19.9 17.0 41%

20 11.0 16.4 14.6 41%

25 18.9 15.2 13.7 41%

30 17.9 14.6 13.3 41%

6 Conclusion

We have shown that the introduction of uncertainty aversion in a standard

financial market offers a potential solution to the bond-premium puzzle. In

the presence of uncertainty aversion, the risk aversion of the representative
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agent decreases to levels consistent with both economic intuition and exper-

iments. At the same time, our paper offers the methodological contribution

to formulate and solve the robust investment problem an uncertainty-averse

investor faces using the martingale method.

To disentangle risk aversion from uncertainty aversion, we assumed a

detection error probability of 10%, and we used 15% and 20% detection error

probability values as robustness checks of our findings. Assuming detection

error probability values between 10% and 20% is common in the literature,

but there is little research on what determines the level of the detection

error probability. This can be a fruitful line of future research. We also

assumed that the investor is not uncertain about the volatility. Relaxing

this assumption leads us out of the realm of the framework of Anderson,

Hansen and Sargent (2003). Extending the penalty approach of dynamic

robust asset allocation in a direction that allows for uncertainty about the

volatility is another potential area of future research.

Appendix

Proof of Theorem 1. From (12) the value function at time t satisfies

Vt(Xt) = EU
t

{
exp(−δT )

X1−γ
T

1− γ
+

∫ T

t

(1− γ) ‖u (s) ‖2

2θ
Vs(Xs)ds

}

= EU
t

{
exp(−δT )

X1−γ
T

1− γ

}
+ EU

t

{∫ T

0

(1− γ) ‖u (s) ‖2

2θ
Vs(Xs)ds

}
−
∫ t

0

(1− γ) ‖u (s) ‖2Vs(Xs)

2θ
ds, (41)
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where XT and U denote the optimal terminal wealth and least-favorable

physical measure, respectively. Introduce the square-integrable martingales,

under U,

M1,t = EU
t

{
exp(−δT )

X1−γ
T

1− γ

}
, (42)

M2,t = EU
t

{∫ T

0

(1− γ) ‖u (s) ‖2

2θ
Vs(Xs)ds

}
. (43)

According to the martingale representation theorem (see, e.g., Karatzas

and Shreve (1991), pp. 182, Theorem 3.4.15), there exist square-integrable

stochastic processes Z1,t and Z2,t such that

M1,t = EU
0

{
exp(−δT )

X1−γ
T

1− γ

}
+

∫ t

0
Z ′1,sdW

U
s , (44)

M2,t = EU
0

{∫ T

0

(1− γ) ‖u (s) ‖2

2θ
Vs(Xs)ds

}
+

∫ t

0
Z ′2,sdW

U
s . (45)

Substituting in (41), we can express the dynamics of the value function as

dVt(Xt) = −(1− γ) ‖u (t) ‖2

2θ
Vt(Xt)dt+ (Z1,t + Z2,t)

′ dW U
t . (46)

This is a linear backward stochastic differential equation, that (together with

the terminal condition VT (XT ) = exp(−δT )X1−γ
T /(1 − γ)) can be solved

explicitly; see Pham (2009), pp. 141-142. The unique solution to (46) is

given by

ΓtVt(Xt) = EU
t

{
ΓT exp(−δT )

X1−γ
T

1− γ

}
, (47)
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where Γt solves the linear differential equation

dΓt = Γt
(1− γ) ‖u (t) ‖2

2θ
dt; Γ0 = 1, (48)

i.e.,

Γt = exp

(∫ t

0

(1− γ) ‖u (s) ‖2

2θ
ds

)
. (49)

Substituting into (47), we obtain the value function in closed form as

Vt(Xt) = EU
t

{
exp

(∫ T

t

(1− γ) ‖u (s) ‖2

2θ
ds− δT

)
X1−γ
T

1− γ

}
. (50)

Recall that Xt and U represent the optimal wealth and least-favorable phys-

ical measure. As a result, we obtain (13).

Before continuing with the proofs of the remaining theorems, we recall

some well-known results.

Lemma 1. Under (1) and (2), we have

rt =A0 + ι′ [µF + exp (−κt) (F0 − µF )]

+

∫ t

0
ι′ exp (−κ(t− s))σFdWQ

F,s. (51)

Proof. The proof directly follows from the solution of the stochastic differ-

ential equation of the Ornstein-Uhlenbeck process, for which see, e.g., Chin,

Nel and Ólafsson (2014), pp. 132–133.
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Lemma 2. Under (1) and (2), we have

∫ t

0
rsds =

[
A0 + ι′µF

]
t+ι′B(t) (F0 − µF )+

∫ t

0
ι′B(t−v)σFdWQ

F,v, (52)

with B defined as the matrix integral

B(t) =

∫ t

0
exp (−κs) ds. (53)

Since κ is a matrix whose elements are constants, B (t) can be expressed in

the more compact form

B(t) = (I − exp {−κt})κ−1. (54)

Proof. From Lemma 1 we find

∫ t

0
rsds =

[
A0 + ι′µF

]
t+ ι′B(t) (F0 − µF ) +

∫ t

0

∫ s

0
ι′ exp (−κ(s− v))σFdWQ

F,vds

=
[
A0 + ι′µF

]
t+ ι′B(t) (F0 − µF ) +

∫ t

0

∫ t

v
ι′ exp (−κ(s− v))σFdWQ

F,vds

=
[
A0 + ι′µF

]
t+ ι′B(t) (F0 − µF ) +

∫ t

0
ι′B(t− v)σFdWQ

F,v.

This completes the proof.

Lemma 2 immediately leads to the price of bonds in our financial market.

We briefly recall this for completeness. The price at time t of a nominal bond
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with remaining maturity τ is given by

Pt(τ) = EQ
t exp

(
−
∫ t+τ

t
rsds

)
= EQ

t exp

(
−
[
A0 + ι′µF

]
τ − ι′B(τ) (Ft − µF )−

∫ t+τ

t
ι′B(t+ τ − s)σFdWQ

F,s

)
= exp

(
−
[
A0 + ι′µF

]
τ − ι′B(τ) (Ft − µF ) +

1

2

∫ τ

0
‖ι′B(τ − s)σF ‖2ds

)
. (55)

As a result, the exposure of a constant τ -maturity bond fund to the factors

Ft is given by −ι′B(τ).

We now continue with the proofs of Theorem 2, 3, and 4.

Proof of Theorem 2. The first step of the optimization is to determine the

optimal terminal wealth, given the budget constraint. In order to determine

the optimal terminal wealth, we form the Lagrangian from (13) and (14).

This Lagrangian is given by

L(x) = inf
U

sup
XT

{
EU exp

(
1− γ

2θ

∫ T

0
‖u(t)‖2dt− δT

)
X1−γ
T

1− γ

−y
[
EQ exp

(
−
∫ T

0
rtdt

)
XT − x

]}
= inf

U
sup
XT

{
EQ exp

(∫ T

0
(u(t) + λ)′ dWQ

t −
1

2

∫ T

0
‖u(t) + λ‖2dt

+
1− γ

2θ

∫ T

0
‖u(t)‖2dt− δT

)
X1−γ
T

1− γ

−y
[
EQ exp

(
−
∫ T

0
rtdt

)
XT − x

]}
, (56)

where y is the Lagrange-multiplier and the second equality uses the Girsanov

transformation (6).
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We first consider the inner optimization, i.e., the optimal choice of the

final wealth XT given U. The first order condition for optimal final wealth,

denoted by X̂T , is

exp

(∫ T

0
(u(t) + λ)′ dWQ

t −
1

2

∫ T

0
‖u(t) + λ‖2dt+

1− γ
2θ

∫ T

0
‖u(t)‖2dt− δT

)
X̂−γT

= y exp

(
−
∫ T

0
rtdt

)
. (57)

As the Lagrange multiplier y is still to be determined by the budget con-

straint, we can subsume all deterministic terms in a new Lagrange multiplier

y1 and solve

exp

(∫ T

0
(u(t) + λ)′ dWQ

t

)
X̂−γT = y1 exp

(
−
∫ T

0
rtdt

)
, (58)

i.e.,

X̂T = y
−1/γ
1 exp

(
1

γ

∫ T

0
rtdt+

1

γ

∫ T

0
(u(t) + λ)′ dWQ

t

)
, (59)

We can now substitute this optimal terminal wealth into the budget con-

straint (14) in order to obtain the optimal value of the Lagrange multiplier

(denoted by ŷ1).

ŷ
−1/γ
1 =

x

EQ exp
(
1−γ
γ

∫ T
0 rtdt+ 1

γ

∫ T
0 (u(t) + λ)′ dWQ

t

) . (60)

Substituting (60) into (59), the optimal terminal wealth given Q is obtained

explicitly. This yields (16).

We proceed by solving the outer optimization in (13), i.e., we find the

least-favorable distortions u. Substituting the optimal final wealth (59) into
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the value function leads to

V0(x) = inf
U

EU

{
exp

(
−δT +

1− γ
2θ

∫ T

0
‖u(t)‖2dt

)
X̂1−γ
T

1− γ

}

=
x1−γ

1− γ
inf
U

EU
{

exp

(
−δT +

1− γ
2θ

∫ T

0
‖u(t)‖2dt+

1− γ
γ

∫ T

0
rtdt

+
1− γ
γ

∫ T

0
(u(t) + λ)′ dWQ

t

)}
×
[
EQ exp

(
1− γ
γ

∫ T

0
rtdt+

1

γ

∫ T

0
(u(t) + λ)′ dWQ

t

)]γ−1
. (61)

We now use the Girsanov transforms (5)–(6) to obtain

V0(x) =
x1−γ

1− γ
inf
U

EQ
{

exp

(
−δT +

1− γ
2θ

∫ T

0
‖u(t)‖2dt+

1− γ
γ

∫ T

0
rtdt

+
1− γ
γ

∫ T

0
(u(t) + λ)′ dWQ

t

)
dU
dQ

}
×
[
EQ exp

(
1− γ
γ

∫ T

0
rtdt+

1

γ

∫ T

0
(u(t) + λ)′ dWQ

t

)]γ−1
=

x1−γ

1− γ
inf
U

EQ
{

exp

(
−δT +

1− γ
2θ

∫ T

0
‖u(t)‖2dt+

1− γ
γ

∫ T

0
rtdt

+
1

γ

∫ T

0
(u(t) + λ)′ dWQ

t −
1

2

∫ T

0
‖u(t) + λ‖2dt

)}
×
[
EQ exp

(
1− γ
γ

∫ T

0
rtdt+

1

γ

∫ T

0
(u(t) + λ)′ dWQ

t

)]γ−1
=

x1−γ

1− γ
inf
U

exp

(
−δT +

1− γ
2θ

∫ T

0
‖u(t)‖2dt− 1

2

∫ T

0
‖u(t) + λ‖2dt

)
×
[
EQ exp

(
1− γ
γ

∫ T

0
rtdt+

1

γ

∫ T

0
(u(t) + λ)′ dWQ

t

)]γ
. (62)
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Using Lemma 2 we find

V0(x) =
x1−γ

1− γ
inf
U

exp

(
−δT +

1− γ
2θ

∫ T

0
‖u(t)‖2dt− 1

2

∫ T

0
‖u(t) + λ‖2dt

)
× exp

(
(1− γ)

[
A0 + ι′µF

]
T + (1− γ)ι′B(T ) (F0 − µF )

)
×
[
EQ exp

(
1− γ
γ

∫ T

0
ι′B(T − t)σFdWQ

F,tdt+
1

γ

∫ T

0
(u(t) + λ)′ dWQ

t

)]γ
=

x1−γ

1− γ
inf
U

exp

(
−δT +

1− γ
2θ

∫ T

0
‖u(t)‖2dt− 1

2

∫ T

0
‖u(t) + λ‖2dt

)
× exp

(
(1− γ)

[
A0 + ι′µF

]
T + (1− γ)ι′B(T ) (F0 − µF )

)
× exp

(
1

2γ

∫ T

0
‖(1− γ)ι′B(T − t)σF + (uF (t) + λF )′ ‖2dt

+
1

2γ

∫ T

0
(uN+1(t) + λN+1)

2 dt

)
. (63)

Recall that uF (t) is an N -dimensional column vector containing the first

N elements of u(t) and uN+1(t) is its last element. Similarly, λF is the

N -dimensional column vector containing the first N elements of λ and λN+1

denotes its last element.

This expression of the value function allows to perform the outer mini-

mization with respect to U, i.e., with respect to u. The first-order condition

of this minimization reads, with respect to uF (t),

0 =
1− γ
θ
uF (t)− uF (t)− λF +

1

γ

(
(1− γ)σ′FB(T − t)′ι+ uF (t) + λF

)
=

1− γ
θ
uF (t) +

1− γ
γ

(uF (t) + λF ) +
1− γ
γ

σ′FB(T − t)′ι

= (1− γ)
γ + θ

γθ
uF (t) +

1− γ
γ

[
σ′FB(T − t)′ι+ λF

]
. (64)

This proves (17). Finally, minimizing the value function V0(x) with respect
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to uN+1(t) we find the first-order condition

0 =
1− γ
θ

uN+1(t)− uN+1(t)− λN+1 +
1

γ
(uN+1(t) + λN+1)

=

[
1− γ
θ

+
1− γ
γ

]
uN+1(t) +

1− γ
γ

λN+1. (65)

This proves (18) and completes the proof.

Proof of Theorem 3. Theorem 2 has actually a fairly simple form in the

driving Brownian motion WQ
t . Using Lemma 2 we find

exp

(
−
∫ T

0
rtdt

)
X̂T

∝ exp

(∫ T

0

û(t)′ + λ′

γ
dWQ

t +
1− γ
γ

∫ T

0

[
ι′B(T − t)σF ; 0

]
dWQ

t

)
= exp

(∫ T

0

[
λ′F
γ + θ

+
1− (γ + θ)

γ + θ
ι′B(T − t)σF ;

λN+1

γ + θ

]
dWQ

t

)
. (66)

As exp
(
−
∫ t
0 rsds

)
X̂t = EQ

t exp
(
−
∫ T
0 rtdt

)
X̂T , the wealth evolution (21)

is easily obtained.

Proof of Corollary 1. This is a direct consequence of Theorem 3 and the

martingale representation theorem (see, e.g., Karatzas and Shreve (1991),

pp. 182, Theorem 3.4.15).

Proof of Theorem 4. The investor observes the prices of N constant ma-

turity bond funds and of the stock market index in continuous time from
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t−H to t. The moment of observation is t. Using (6) we have

log

(
dB
dU

)
H

=− 1

2

∫ t

t−H
‖u (s) ‖2ds+

∫ t

t−H
u (s) dWU

s

U∼N
(
−1

2

∫ t

t−H
‖u (s) ‖2ds,

∫ t

t−H
‖u (s) ‖2ds

)
. (67)

This implies

PU
(

log

(
dB
dU

)
H

> 0

)
= 1− Φ

(
1

2

√∫ t

t−H
‖u (s) ‖2ds

)
. (68)

Due to symmetry, we have

PB
(

log

(
dB
dU

)
H

< 0

)
= PB

(
log

(
dU
dB

)
H

> 0

)
= PU

(
log

(
dB
dU

)
H

> 0

)
. (69)

Thus, using Definition 2, the detection error probability is

DEP = 1− Φ

(
1

2

√∫ t

t−H
‖u (s) ‖2ds

)
. (70)

Proof of Corollary 2. Substituting (19) and (20) into (70) and working out

the integrals, (38) follows directly.
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