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Abstract

We show that, as a consequence of the Dybvig-Ingersoll-Ross theorem, the existence of a non-deterministic
long rate in a factor model of the term structure implies that the model has an equivalent representation in
which one of the state variables is nondecreasing. Moreover, for two-dimensional factor models, we prove that
if the long rate is non-deterministic, the yield curve flattens out and the factor process is asymptotically non-
deterministic, then the term structure is unbounded. Finally, following up on an open question in El Karoui
et al. (1997), we provide an explicit example of a three-dimensional affine factor model with a non-deterministic
yet finite long rate in which volatility of the factor process does not vanish over time.

Keywords: Long rate, factor model, term structure, Dybvig-Ingersoll-Ross Theorem

1 INTRODUCTION

A theorem by Dybvig, Ingersoll, and Ross (1996) states that the long-term interest rate1 in an arbitrage-
free term structure model cannot decrease over time. Nevertheless, the long rate can be a non-deterministic
process. It was shown in El Karoui et al. (1997) that a Heath-Jarrow-Morton (HJM) model may generate a
non-deterministic long rate if, for large expiries, the volatility of the forward rate vanishes sufficiently fast to
make the long rate finite, and sufficiently slow to ensure that it is nonconstant. In this note we consider the
question whether the subclass of factor models of the term structure is rich enough to admit a finite stochastic
long rate if we additionally require that the volatility of the factor process does not vanish asymptotically over
time. We show that this question can be answered affirmatively, but that at least three state variables are
required.

The result of Dybvig, Ingersoll and Ross has been extended in a number of directions, for example for weaker
notions of convergence of the long rate, see Goldammer and Schmock (2012). Others, see Kardaras and Platen
(2012), considered the convergence speed of the zero-coupon yields at different times as the expiration date tends
to infinity. Recently, Biagini et al. (2013) studied convergence of the long rate in HJM models where forward
rates are driven by affine processes on a state space of symmetric positive semidefinite matrices. In another
interesting paper, Biagini and Härtel (2014) look at interest rate models driven by Lévy processes and find that
if the driving process has negative jumps only and paths of finite variation then, contrary to the diffusion case,
volatility must not necessarily vanish for large maturities in order for the long rate to be finite. In their paper
Dybvig et al. (1996) also proved that the long rate cannot increase almost surely if the sample space is finite.
Schulze (2008) generalized this result to infinite state spaces by making use of a modified notion of arbitrage.
In other recent work, Zhao (2009) and Bao and Yuan (2013) characterize almost sure convergence to a constant
long rate in two-factor Cox-Ingersoll-Ross (CIR) models with Lévy jumps. To build a model in which the long
Libor-rate can randomly move up and down, without violating no-arbitrage, Brody and Hughston (2013) use
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1 Let P (t, t + x) denote the time t price of a zero-coupon bond paying 1 unit of currency at time t + x. The long forward
rate is defined by f∞(t) = limx→∞−∂x logP (t, t + x), whenever the limit exists, while the long zero-coupon rate is given by
z∞(t) = limx→∞−x−1 logP (t, t+ x), provided that the limit exists.



discount functions of the generalized hyperbolic type; these are discount functions for which the relation between
rates and bond prices is not asymptotically exponential.

Long-term returns in models that admit a factor representation have previously been studied by Deelstra and
Delbaen (1995). They considered a single-factor generalized CIR process and proved that the long rate converges
almost surely to a random variable which is proportional to the reversion level of the CIR process. Based on
these results, Deelstra (2000) suggests a modification of a three-factor short rate model introduced by Tice and
Webber (1997) such that the long rate converges to a stochastic mean-reversion level. Note that the present work
is concerned with models in which not only the short rate but also the yield or the forward rate admit a factor
representation.2 Yao (1999), using a forward rate specification with separable volatility function and building on
results in Ritchken and Sankarasubramanian (1995), constructs a factor model with two state variables in which
the long rate is non-deterministic. Both the factor process and the yield curve parameterization in that model
are time-inhomogeneous, and the volatility of the factor process vanishes over time. In the work of El Karoui
et al. (1997) a series of two-dimensional affine factor models is discussed. They find that, in their examples,
either the long zero-coupon rate is infinite or the model contains a nondecreasing state variable.

We extend these results by showing that a term structure model with three state variables, with one of the
state variables having finite variation, is the most parsimonious model specification that can accommodate a
stochastic long rate if we also require that the volatility of the factor process does not vanish over time. We
thus show that the properties exemplified by the models in El Karoui et al. (1997) are general characteristics
which are shared by all two-dimensional factor models. Finally, we provide an explicit example of an affine
factor model in which the long rate converges almost surely to a nondecreasing stochastic process.

The paper is structured as follows. In Lemma 2.1 we prove that, up to a change of coordinates, any model
in which the long-rate is not deterministic while the term structure of interest rates does not go to infinity
must have a nondecreasing state variable, where we even allow the factor process to be time-inhomogeneous.
In Theorem 2.3 we show that, under mild conditions, the presence of a stochastic long rate in a factor model
with two state variables implies that the term-structure is unbounded. Finally, in Proposition 3.1 we construct
a factor model with a stochastic long rate which is finite almost surely.

2 THE LONG RATE IN FACTOR MODELS

Let (Ω,F , P ) be a probability space endowed with a d-dimensional P -Brownian motion W . Consider a time-
inhomogeneous affine term structure model in which the forward rates r : R+ ×R+ → R satisfy

r(t, x) := f(t, t+ x) = h0(x) +

d∑
i=1

λi(x)Yi(t) , (2.1)

where h0 : R+ → R and λi : R+ → R, i ∈ {1, . . . , d}, are continuously differentiable functions. The stochastic
factor Y is defined by 3

Y (t) =

∫ t

0

D(s, Y (s)) ds+

∫ t

0

V (s, Y (s))dW (s) , (2.2)

where D and V are functions R+ × Rd×1 → Rd×1 and R+ × Rd×1 → Rd×d respectively such that, for fixed
t ≥ 0, D(t, ·) and V (t, ·) are continuous and (2.2) admits a strong solution. We will refer to the components of
Y as the state variables. Notice that the number of driving factors may be smaller than the number of state
variables, for instance if V has rows consisting only of zeroes. The zero-coupon rates satisfy

z(t, x) = H(x) +

d∑
i=1

Λi(x)Yi(t) , H(x) =
1

x

∫ x

0

h0(s) ds , Λ(x) =
1

x

∫ x

0

λ(s) ds . (2.3)

For x = 0 let Λ(x) and H(x) be defined by their righthand side limits h0(0) and λ(0). Notice that this setup
includes4 the model of El Karoui et al. (1997) but we do not require D and V to be affine or time-homogeneous

2 In models where the short rate r(t) has a factor structure, the forward rate f(t, t+ x) = −∂x logP (t, t+ x) with P (t, t+ x) =

Et

[
e−

∫ t+x
t r(s) ds

]
inherits this factor structure only if the bond price P (t, t+ x) has an (exponential) affine representation.

3Notice that the assumption Y (0) = 0 is not restrictive. If Y (0) = y0 6= 0 then we may apply our analysis to Z(t) := Y (t)− y0
satisfying dZ(t) = D(t, Z(t) + y0) dt+ V (t, Z(t) + y0)dW (t) and Z(0) = 0.

4 To obtain the setup in El Karoui et al. (1997) set A(T − t) =
∫ T−t
0 λ(s) ds, b(T − t) =

∫ T−t
0 h0(s) ds and T = t + x, then

− logP (t, T ) = A(T − t)Y (t) + b(T − t).
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functions of the factor process Y (t). The long forward rate f∞ and the long zero-coupon rate z∞ are defined by

f∞(t) = lim
x→∞

f(t, t+ x) and z∞(t) = lim
x→∞

z(t, x) ,

provided that the corresponding limits exist. In the special case where limx→∞ h0(x) and limx→∞ λ(x) exist it
follows by l’Hôpital’s rule that

z∞(t) = lim
x→∞

[∫ x
0
h0(s) ds

x
+

d∑
i=1

∫ x
0
λi(s) ds

x
Yi(t)

]
= lim
x→∞

h0(x) +

d∑
i=1

[
lim
x→∞

λi(x)
]
Yi(t) = f∞(t). (2.4)

While the Dybvig-Ingersoll-Ross theorem states that the long forward rate is nondecreasing — provided it exists
and bonds of all maturities are traded — the following result shows that in factor models with a non-deterministic
long rate a linear combination of the state variables driving the forward rate is itself nondecreasing. The proof
(and the proofs of subsequent results) can be found in Section 4.

Lemma 2.1. If there is no arbitrage and

(i). The long forward rate exists almost surely, for every t ≥ 0, and is non-deterministic for t > 0;

(ii). The elements of {1, Y1(t0), . . . , Yd(t0)} are almost surely linearly independent for at least one t0 ∈ [0,∞[;

then

1. limx→∞ λ(x) = ζ 6= 0 exists and ζV = 0;

2. The term-structure model in Eqs. (2.1)–(2.3) has an equivalent representation in which the non-decreasing
long forward rate coincides with one of the state variables.

If the conditions of Lemma 2.1 are satisfied then the long forward rate and the long zero-coupon rate coincide.
Indeed, Eq. (2.4) holds due to part 1 of Lemma 2.1 and condition (i) with t = 0. It follows that the results in
Lemma 2.1 not only apply for the long forward rate but also for the long zero-coupon rate.

We can also formulate the following variation of Lemma 2.1 in which the conditions have been slightly weakened.

Lemma 2.2. If ‘long zero-coupon rate’ is substituted instead of ‘long forward rate’ in condition (i) and in part 2
of Lemma 2.1, then the result remains true with ‘λ(x)’ in part 1 replaced by ‘Λ(x)’.

In the following theorem we establish that in any two-dimensional factor model that admits a non-deterministic
long rate the term structure is eventually unbounded. We show that this result holds if the factor process is
asymptotically non-deterministic and the forward curve flattens for large expiration dates. The first requirement
excludes models in which forward rates are eventually deterministic, while the second condition reflects the fact
that little market information is available about the far future, hence the instantaneous rate for lending or
borrowing should not differ much between long-dated maturities.

Theorem 2.3. Consider the factor model in Eq. (2.1) with d = 2. Suppose that the conditions (i) and (ii) of
Lemma 2.1 hold, no arbitrage possibilities exist and

(iii). The factor process is asymptotically non-deterministic almost surely, that is, P (limt→∞ V (t, Y (t)) = 0) =
0;

(iv). For long maturities the forward rate becomes flat, that is, limx→∞ ∂xh0(x) = 0 and limx→∞ ∂xλi(x) = 0
for i ∈ {1, 2};

then limt→∞ f∞(t) = ∞ almost surely and the term-structure x 7→ r(t, x) is unbounded over time, i.e. there
exists a random variable X : Ω→ [0,∞[ such that limt→∞ r(t,X) =∞ almost surely.

We thus find that in all factor models with two state variables satisfying the conditions of Theorem 2.3 not only
the long forward rate tends to infinity over time, but also that there exists at least one finite expiration date
for which the corresponding forward rate is unbounded. Notice that the finite expiration date for which this
happens may depend on the stochastic scenario.

In the proof of Theorem 2.3 a path-by-path argument is used to establish the almost sure unboundedness of
the term-structure; hence if the factor process is asymptotically deterministic on some set with strictly positive
probability, then the result holds everywhere except on this set.
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3 AN EXAMPLE

In this Section we show that the result of Theorem 2.3 does not necessarily hold for d > 2 by constructing an
explicit example of an affine factor model (with d = 3) in which the long rate is finite and non-deterministic,
yet the factor process is not asymptotically deterministic. Let µ1, κ1, κ2, σ1 and σ2 be constants and consider
the process Y defined by

Y1(t) =

∫ t

0

[µ1 − κ1Y1(s)] ds+

∫ t

0

σ1
√
Y1(s)dW1(s) ,

Y2(t) = 1−
∫ t

0

κ2Y2(s) ds+

∫ t

0

σ2
√
Y2(s)dW2(s) ,

Y3(t) =

∫ t

0

Y2(s) ds .

(3.1)

The second component of the factor process is positive, continuous and mean reverting to zero in finite time
with probability one, hence the third state variable is nondecreasing and finite almost surely. By the Yamada-
Watanabe theorem, see Karatzas and Shreve (1991, Thm. 5.2.13), a strong solution exists for the square-root
processes Y1(t) and Y2(t). The next Proposition shows that the long rate in the factor model defined by
Eq. (3.1) can be made finite and non-deterministic.

Proposition 3.1. Let 2µ1 > σ2
1, σ2 > 0, λ1(0) > 0, λ2(0) > 0 and set λ3(0) = 1. The factor model

r(t, x) = h0(x) +

3∑
i=1

λi(x)Yi(t) , (3.2)

with Y (t) as in Eq. (3.1) is arbitrage-free if we choose

λ1(x) = λ1(0)

(
cosh

(
1

2
γx

)
+
κ1
γ

sinh

(
1

2
γx

))−2
,

λ2(x) =
2

ψ

(
φ+

1

2
ψx−

(
C1∂1 Ai(φ+ 1

2ψx)− C2∂1 Bi(φ+ 1
2ψx)

C1 Ai(φ+ 1
2ψx)− C2 Bi(φ+ 1

2ψx)

)2
)
,

λ3(x) = 1,

(3.3)

and

h0(x) = h0(0) + µ1

∫ x

0

λ1(s) ds . (3.4)

in which γ = (κ21 + 2λ1(0)σ2
1)

1
2 , φ = (κ22 + 2λ2(0)σ2

2)/ψ2, ψ = (2σ2)2/3 while

C1 = κBi(φ)− ψ∂1 Bi(φ) and C2 = κAi(φ)− ψ∂1 Ai(φ) , (3.5)

and where Ai and Bi denote the Airy functions of the first and second kind respectively.

The long forward rate in this model is finite almost surely and satisfies

f∞(t) = h0(0) +
2µ1

γ + κ1
+

∫ t

0

Y2(s) ds . (3.6)

The requirement in Theorem 2.3 which states that the factor process must be asymptotically non-deterministic
cannot be omitted. Indeed, observe from Proposition 3.1 that the factor model defined by Y2 and Y3 has a
bounded and non-deterministic long rate but the volatility of the factor process vanishes over time.

4 PROOFS

Proof of Lemma 2.1:

We subsequently prove the two parts in the statement of the Lemma.
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1. Take t0 as in condition (ii). By assumption (i) there is a set U ⊂ Ω with P (U) = 0 such that the long
forward rate f∞(t0) exists for every ω ∈ U c. Consider the set V = {(Y1(t0, ω), . . . , Yd(t0, ω)) : ω ∈ U c}
and suppose that dim(V ) < d, that is, there exists some β ∈ Rd+1, β 6= 0 such that

∑d
j=1 βj vj = β0

whenever v ∈ V . Then

β0 =

d∑
j=1

βjYj(t0, ω) , for all ω ∈ U c,

which contradicts the assumption that the elements of {1, Y1(t0), . . . , Yd(t0)} are (almost surely) linearly in-
dependent. Hence there must be ω1, . . . , ωd ∈ U c such that yi := (Y1(t0, ωi), . . . , Yd(t0, ωi)), i ∈ {1, . . . , d},
span Rd. Write Υ = (y1, . . . , yd)

T , then Υ is an d × d matrix of full rank, therefore Υ−1 exists. By
assumption (i) and Eq. (2.1) we have that limx→∞ h0(x) exists (take t = 0) and limx→∞Υλ(x) exists
almost surely (take t = t0). It follows that

lim
x→∞

λ(x) = lim
x→∞

Υ−1(Υλ(x)) = Υ−1 lim
x→∞

Υλ(x) exists .

From Eqs. (2.1) and (2.2) we obtain

f(t, t+ x)− f(0, x) =

d∑
i=1

λi(x)

∫ t

0

Di(s, Y (s)) ds+

∫ t

0

d∑
j=1

Vij(s, Y (s))dWj(s)

 . (4.1)

We thus find that, for all t ≥ 0, the long rate satsifies

f∞(t)− f∞(0) =

d∑
i=1

ζi

∫ t

0

Di(s, Y (s)) ds+

∫ t

0

d∑
j=1

Vij(s, Y (s))dWj(s)

 . (4.2)

The Dybvig-Ingersoll-Ross theorem5 implies that if the long rate exists as an almost sure limit, then it is a
nondecreasing process; therefore it has finite first-order variation and thus cannot have a nonzero diffusion
term. It follows that ζV = 0 almost surely for every t ≥ 0 and

f∞(t) = f∞(0) +

∫ t

0

[
d∑
i=1

ζiDi(s, Y (s))

]
ds . (4.3)

If ζ = 0 then by Eq. (4.2) the long rate is constant which contradicts requirement (i). Therefore λi(x)
does not converge to 0, for at least one i ∈ {1, . . . , d}. It follows that V is singular. This proves part 1.

2. If d = 1, that is, if the factor process is one-dimensional, then part 2 clearly holds since f∞(t) and Y1(t)
only differ by a constant shift limx→∞ h0(x) and a factor ζ1. Note however that the case d = 1 is not
of interest to us since, due to part 1, either V = 0 or ζ = 0 must hold. In both cases the long rate is
deterministic which contradicts requirement (i).

Assume that d ≥ 2. In order for the long rate to be stochastic, there must be an i∗ ∈ {1, . . . , d} such that
ζi∗ 6= 0. Define the (invertible) d× d matrix M by

M =



1
1

. . .

ζ1 ζ2 · · · ζi∗ · · · · · · ζd
. . .

1
1


. (4.4)

The matrix M has zero entries outside the main diagonal and the i∗-th row. Define

Ỹ (t) := MY (t) and λ̃(x) := λ(x)M−1 . (4.5)

5See for example Hubalek et al. (2002) or Theorem 2.17 in Goldammer and Schmock (2012).
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The process Ỹ (t) satisfies Ỹ (0) = 0 and

dỸ (t) = D̃(t, Ỹ (t)) dt+ Ṽ (t, Ỹ (t))dW (t) , (4.6)

in which D̃(t, y) = MD(t,M−1y) and Ṽ (t, y) = MV (t,M−1y) . The factor model defined through h0, λ̃

and Ỹ is equivalent to the one defined by h0, λ and Y . Indeed,

r(t, x) = h0(x) +

d∑
i=1

λi(x)Yi(t) = h0(x) +

d∑
i=1

λi(x)M−1MYi(t) = h0(x) +

d∑
i=1

λ̃i(x)Ỹi(t) .

The dynamics of the i∗-th state variable satisfy

dỸi∗(t) =

d∑
i=1

ζidYi(t) =

d∑
i=1

ζi

Di(t, Y (t)) dt+

d∑
j=1

Vij(t, Y (t))dWj(t)

 = df∞(t) .

We have thus established that the model (2.1) has a representation in which the long rate occurs as one
of the state variables. Due to the Dybvig-Ingersoll-Ross theorem the long rate is non-decreasing almost
surely. This completes the proof.

Proof of Lemma 2.2

As in the proof of Lemma 2.1 one can show that the almost sure existence of a non-deterministic long zero-
coupon rate together with the independence of the elements of {1, Y1(t0), . . . , Yd(t0)} for some t0 ∈ [0,∞[

implies that limx→∞ Λ(x) = ζ exists and ζ 6= 0 while ζV = 0. Using the transformation Ỹ (t) = MY (t) and

Λ̃(t) = Λ(t)M−1, where M is defined as in Eq. (4.4), a representation can be established in which the long
zero-coupon rate coincides with one of the state variables. The rest of the proof is similar to the proof for
Lemma 2.1.

Proof of Theorem 2.3:

From the proof of Lemma 2.1 we have that assumptions (i) and (ii) imply that ζ 6= 0. Assume, without loss

of generality, that ζ2 6= 0 and apply the coordinate transformation defined in Eq. (4.5), i.e. Ỹ1(t) = Y1(t),

Ỹ2(t) = ζ1Ỹ1(t) + ζ2Ỹ2(t) and λ̃1(x) = λ1(x)− ζ1
ζ2
λ2(x) while λ̃2(x) = 1

ζ2
λ2(x). The factor process (2.2) can thus

be written as

Ỹ1(t) =

∫ t

0

D̃1(s, Ỹ (s)) ds+

∫ t

0

Ṽ11(s, Ỹ (s))dW1(s) +

∫ t

0

Ṽ12(s, Ỹ (s))dW2(s) ,

Ỹ2(t) =

∫ t

0

D̃2(s, Ỹ (s)) ds .

(4.7)

Due to the Dybvig-Ingersoll-Ross theorem, the second row of the volatility matrix must be zero, i.e. Ṽ21 =
Ṽ22 = 0.

Property (iv) is preserved under the transformation in Eq. (4.5), that is limx→∞ ∂xλ̃(x) = 0. Similarly, since

Ṽ (t, Ỹ (t)) = MV (t,M−1Ỹ (t)) = MV (t, Y (t)) and since M is invertible we have that Ṽ (t, Ỹ (t)) = 0 if and only
if V (t, Y (t)) = 0; hence property (iii) is also preserved under the transformation.

The HJM drift condition in Musiela form6 requires that for all Ỹ (t)

2∑
i=1

λ̃i(x)D̃i(t, Ỹ (t)) = ∂xr(t, x) +

2∑
j=1

σ̃j(t, x, Ỹ (t))

∫ x

0

σ̃j(t, u, Ỹ (t)) du−
2∑
j=1

ϕj(t)σ̃j(t, x, Ỹ (t)) , (4.8)

in which σ̃j(t, x, y) =
∑2
i=1 λ̃i(x)Ṽij(t, y) for y ∈ Rd×1 and j ∈ {1, 2}, while ϕ(t) denotes the market price of

risk. The market price of risk is adapted to the filtration generated by W and appears since we have defined the

6 See for example Björk and Svensson (2001, Definition 4.2).
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factor process Y under the probability measure P which is not necessarily a martingale measure for the model
(2.1). The second term on the right-hand side can be written as

2∑
j=1

σ̃j(t, x, Ỹ (t))

∫ x

0

σ̃j(t, u, Ỹ (t)) du =

2∑
j=1

(
2∑
i=1

λ̃i(x)Ṽij(t, Ỹ (t))

)∫ x

0

(
2∑
k=1

λ̃k(u)Ṽkj(t, Ỹ (t))

)
du

=

2∑
i=1

2∑
k=1

(
H̃ik(t, Ỹ (t)) λ̃i(x)

∫ x

0

λ̃k(u) du

)
, (4.9)

where H̃ik(t, Ỹ (t)) :=
∑2
j=1 Ṽij(t, Ỹ (t))Ṽkj(t, Ỹ (t)) is the (i, k)-th element of the symmetric matrix H̃ = Ṽ Ṽ ′,

which equals d
dt 〈Ỹ 〉t .

Integrating the drift condition Eq. (4.8) on the interval [0, t] and using Ṽ21 = Ṽ22 = 0 (hence H̃12 = H̃21 =

H̃22 = 0) we find that

2∑
i=1

λ̃i(x)

∫ t

0

D̃i(s, Ỹ (s)) ds = ∂xh0(x)t+

2∑
i=1

∂xλ̃i(x)

∫ t

0

Ỹi(s) ds+ L(x)

∫ t

0

H̃11(s, Ỹ (s)) ds

− λ̃1(x)

∫ t

0

2∑
j=1

Ṽ1j(s, Ỹ (s))ϕj(s) ds , (4.10)

in which L(x) = λ̃1(x)
∫ x
0
λ̃1(u) du. Due to the coordinate transformation in Eq. (4.5) we have limx→∞ λ̃1(x) = 0

and limx→∞ λ̃2(x) = 1. By taking the limit x→∞ in Eq. (4.10) we obtain, using assumption (iv), that

f∞(t)− f∞(0) =

∫ t

0

D̃2(s, Ỹ (s)) ds = lim
x→∞

L(x)

∫ t

0

H̃11(s, Ỹ (s)) ds . (4.11)

By condition (i) of Lemma 2.1, the left-hand side exists almost surely for every t ≥ 0, hence the right-hand

side — and thus limx→∞ L(x) — exists almost surely. Notice that
∫ t
0
H̃11(s, Ỹ (s)) ds = 0 would imply that

H̃11(t, Ỹ (t)) = 0 for any t > 0 and this contradicts (i).

By Eq. (4.11) and since the long rate is not constant (assumption (i) of Lemma 2.1) we have limx→∞ L(x) 6= 0.
Moreover, from Eq. (4.7) it follows that limx→∞ L(x) < ∞. Indeed, the Itô integral in Eq. (4.7) — and hence

Ỹ (t) — has a version with continuous sample paths. It follows that Ỹ (t) < ∞ for finite t ≥ 0. By continuity

also D̃(t, Ỹ (t)), Ṽ (t, Ỹ (t)) and H̃11(t, Ỹ (t)) are finite. The functions ∂xh0(x), ∂xλ(x) and λ(x) are continuous
with finite limits for x → ∞; hence they are bounded functions of x. From these estimates we have that all
terms in Eq. (4.10) — except possibly the term involving L(x) — are bounded for finite t ≥ 0. We thus conclude
that limx→∞ L(x) <∞.

The Dybvig-Ingersoll-Ross theorem implies that the drift D̃2(t, Ỹ (t)) is nonnegative, therefore limt→∞ Ỹ2(t) =

limt→∞
∫ t
0
D̃2(s, Ỹ (s)) ds either equals a finite positive value or is infinite. To ensure that Ỹ2(t) stays bounded

we must have that limt→∞ D̃2(t, Ỹ (t)) = 0. By Eq. (4.11) this implies

0 = lim
t→∞

H̃11(t, Ỹ (t)) = lim
t→∞

[
Ṽ 2
11(t, Ỹ (t)) + Ṽ 2

12(t, Ỹ (t))
]
.

Recall that Ṽ21 = Ṽ22 = 0 holds due to the coordinate transformation in Eq. (4.5). Hence Ṽ ≡ 0 and this

contradicts (iii). Therefore limt→∞ Ỹ2(t) = ∞ almost surely and, consequently, limt→∞ f∞(t) = ∞ almost
surely.

It remains to prove that the term structure x 7→ r(t, x) is unbounded in time. Take any 0 ≤ x0 <∞ such that

λ̃1(x0) 6= 0 and consider the term structure at x = x0, i.e.

r(t, x0) = h0(x0) + Z(t) , Z(t) := λ̃1(x0)Ỹ1(t) + λ̃2(x0)Ỹ2(t) .

Let U = {ω ∈ Ω : t 7→ Z(ω, t) is bounded on [0,∞[}. The sample paths of Z(t), and hence r(·, x0), are
unbounded on Ω \ U .
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Since limx→∞ λ̃1(x) = 0 and limx→∞ λ̃2(x) = 1 it follows that λ̃1 is not proportional to λ̃2 and hence there

exists an 0 ≤ x1 <∞ such that c := λ̃1(x0)λ̃2(x1)− λ̃2(x0)λ̃1(x1) 6= 0. The term structure in x = x1 satisfies

r(t, x1) = h0(x1) + a1Z(t) + a2Ỹ2(t) ,

in which a1 = λ̃1(x1)/λ̃1(x0) and a2 = c/λ̃1(x0) 6= 0. It follows that r(·, x1) is unbounded on [0,∞[ for ω ∈ U .
Set X := x0 + (x1 − x0)1U then limt→∞ r(t,X) =∞ almost surely.

Proof of Proposition 3.1:

By integrating the drift condition Eq. (4.8) on the interval [0, x] we find that to exclude arbitrage the functions
A(x) =

∫ x
0
λ(s) ds and b(x) =

∫ x
0
h0(s) ds must satisfy∂xA1(x)

∂xA2(x)
∂xA3(x)

 =

∂xA1(0)
∂xA2(0)
∂xA3(0)

+

 −κ1 0 0
0 −κ2 1
0 0 0

A1(x)
A2(x)
A3(x)

− 1

2

σ2
1A

2
1(x)

σ2
2A

2
2(x)
0

 , (4.12)

and
∂xb(x) = ∂xb(0) + µ1A1(x) . (4.13)

The first and third ODE admit closed-form solutions:

A1(x) = 2λ1(0)

(
κ1 + γ coth

(
1

2
γx

))−1
and A3(x) = x .

The solution to the second ODE can be expressed in terms of solutions of the Stokes equation. Indeed, if we
apply the transformations

A2(x) =
2∂xw(x)

σ2
2w(x)

, w(x) = e−
1
2κ2xz(x) , z(x) = v(φ+

1

2
ψx) , (4.14)

then v(x) satisfies the Stokes equation 0 = xv(x)− ∂xxv(x). The solution to this equation is v(x) = C3 Ai(x) +
C4 Bi(x) in which Ai and Bi denote the Airy functions of the first and second kind respectively, and the values
of C3 and C4 are determined by the boundary condition A2(0) = 0. It follows that

A2(x) = −κ2
σ2
2

+
4

ψ2

C1∂1 Ai(φ+ 1
2ψx)− C2∂1 Bi(φ+ 1

2ψx)

C1 Ai(φ+ 1
2ψx)− C2 Bi(φ+ 1

2ψx)
.

Differentiation yields Eq. (3.3).

By repeatedly applying the identities ∂xx Ai(x) = xAi(x) and ∂xx Bi(x) = xBi(x) together with l’Hopital’s rule
one can show that

lim
x→∞

λ(x) = (0, 0, 1) and lim
x→∞

h0(x) = h0(0) +
2µ1

γ + κ1
. (4.15)

Hence the third state variable Y3(t) coincides with the long rate and Eq. (3.6) follows. The long rate is finite
since Y2(t) hits zero in finite time with probability one.
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