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Summary

The risk-free term structure of interest rates is used by financial ins tu ons to
determine how much money needs to be invested today to receive a given
amount of money on a later date. Michel Vellekoop and Jan de Kort (both UvA)
have inves gated inter- and extrapola on techniques that can be used to create
discount curves from observed market data under different assump ons on
asympto c forward rates. They discuss the methods proposed by EIOPA and the
Commission UFR and suggest some new alterna ves.



. Introduc on

The risk-free term structure of interest rates is used by financial ins tu ons to
determine how much money needs to be invested today to receive a given
amount of money on a later date. More specifically, if we write p(0, T ) for the
investment needed today ( me zero) to receive euro T years later, then the
curve T → p(0, T ) is called the discount curve and different interest rates
such as yields, spot rates and forward rates, can be directly derived from it.
Clearly, the mes T for which informa on is given in fixed income products are
limited to a finite number of discrete maturity points and not available beyond a
certain largest maturity Tmax . This means that the defini on of the whole
discount curve cannot just be based on a dataset of fixed income products
alone, but that structural assump ons are required¹.

One possibility is to define a parametric form of the discount curve, yield
curve or forward curve and then choose the parameters in such a way that
market prices for risk-free fixed income products are fi ed as well as possible. A
popular choice is the Nelson-Siegel-Svensson specifica on (Nelson and
Siegel , Svensson ) which uses six parameters that all have a clear
interpreta on. One of the parameters involved in that parametriza on can be
interpreted as an ul mate forward rate i.e. the limi ng value for forward rates
(and thus for yields) when the maturity goes to infinity. One of the other
parameters describes the speed of convergence to this limi ng value for higher
maturi es.

But since only six parameters are involved in the Nelson-Siegel-Svensson
model, a given set of five or more prices for fixed income products can in general
not be fi ed perfectly. If one insists on a perfect fit for market data, instead of
allowing a certain aggregate measurement error to be minimized, such
func onal families for term structures which involve only a few parameters can
therefore not be used. Many more parameters are needed and it then becomes
most prac cal to use func ons that are piecewise polynomial between the
maturity points that are given by the market data. The order of these
polynomials has to be chosen beforehand, and this choice will determine the

¹No ce that we only consider the current discount curve in this paper; we do not specify its future
dynamics. One could do this, for example, using a Hull-White model which takes the current curve
as its star ng point. However, this does not guarantee that choosing the ini al term structure in a
certain class of parameterized interpola on curves will lead to term structures at later mes which
remain in that class.



Figure : Inter- and extrapola on methods. DNB Curve July , .

smoothness of the interpola ng curves.
We give some examples in Figure , which interpolates points on the Dutch

central bank curve of July , . The piecewise constant interpola on (top
right) is not con nuous; the linear interpola on (top le ) is con nuous but not
differen able; the shape-preserving spline (bo om right) has con nuous
deriva ve but the second deriva ve is not con nuous; a property which is true
for the cubic spline (bo om le ). Note that the cubic spline introduces a local
maximum between maturity and and that we may see only a small
difference of the two bo om curves between maturity and . But if we
were to use these curves to extrapolate beyond the year maturity point, this
would s ll have a big effect.

An overview of these and other possible interpola on methods is given in a
paper by Hagan & West (Hagan and West ). Smoothness of the curve is
men oned as an important criterion to judge the results of the different
methods, but other desirable proper es of interpola ng func ons are
men oned, such as preserving local monotonicity or convexity in the given



dataset. The authors also inves gate whether changes in the input data which
are restricted to the vicinity of a par cular maturity might influence the values
of the interpolated discount curve at maturi es far away from it. Strong
non-local sensi vi es in an interpola on method make it less suitable for risk
management purposes since it complicates the use of fixed income market
instruments to mi gate the interest rate risk in a por olio of liabili es.

Similar considera ons play a role when deciding on a method to extrapolate
the discount curve beyond the last maturity for which reliable market
informa on is available. In the new Solvency II regulatory framework for
European insurers (EIOPA ) term structure inter- and extrapola on is based
on a method that was proposed by Smith & Wilson in earlier work (Smith and
Wilson ). This method uses exponen al tension splines with a given tension
parameter². Exponen al tension splines were introduced by Schweikert
(Schweikert ) and first proposed for term structure modelling by Barzan &
Corradi (Barzan and Corradi a, Barzan and Corradi b). Andersen
(Andersen ) rewrote the exponen al tension spline fi ng problem in terms
of a more convenient basis of func ons and showed how non-local sensi vi es
are controlled by the tension parameter.

The Smith-Wilson method implements the explicit constraint in the Solvency
II regulatory framework that forward rates must converge to a value, the
Ul mate Forward Rate (UFR) of . %, which is specified by EIOPA. However,
there is no theore cal jus fica on or empirical evidence for such an
assump on³. The Dutch central bank (DNB) and the Dutch Bureau for Economic
Policy (CPB) have voiced their concern about this assump on. Moreover, the
discount curve for pension funds used by the Dutch regulator now explicitly
incorporates the fact that ul mate forward rates vary over me. That curve is
built according to an algorithm proposed by the Commission UFR, a commission
which was asked by the Dutch government to inves gate the ul mate forward
rate. The commission defines the UFR as the running -month historical
average of the forward interest rate between maturi es and .
Extrapola on beyond the maturity of years (the first smoothing point) is then
performed using an exponen al func on.

²This parameter was takenα = 0.10 by the European insurance regulator EIOPA.
³For a detailed discussion on this issue, see theNetspar Opinion paper TheUl mate Forward Rate:

me for a step backwards ?



Both the EIOPA proposal and the proposal by the Commission UFR thus apply
an extrapola on method for forward rates beyond maturity 20 towards a given
value, which is a constant ( . %) according to EIOPA and a value which only
depends on (historical) -year forward rates according to the Commission. If
forward rates for the relevant higher maturi es (say to years) would be
very stable over me and almost constant over the different maturi es, then
taking them constant or taking an average over historical values would be
jus fied. But there is clear empirical evidence that long term rates are in fact
highly uncertain. That is, for example, the conclusion of a recent paper by Balter,
Pelsser and Schotman (Balter, Pelsser, and Schotman ) in which a Bayesian
approach is used to describe parameter uncertainty in a Vasicek short rate
model.

We would therefore like to es mate the asympto c value of forward rates
directly from the available market data. In this paper we therefore extend the
Smith-Wilson method to the case where the limit of forward rates is assumed to
exist, but not given a certain value beforehand. This not only makes it possible
to construct discount curves without such a restric ve assump on but it also
provides informa on on the behavior of forward rates at high maturi es in
historical data, without making specific model assump ons. This provides a way
to establish whether the values that are imposed in regulatory frameworks are
consistent with what is found in market data.

The structure of the paper is as follows. First we define the term structure
inter- and extrapola on problem and the solu on proposed by Smith & Wilson
on the one hand and the Commission UFR on the other hand in sec on . We
then show in sec on how we can transform the constrained op miza on
problem into an unconstrained op miza on problem. Sec on presents
numerical results and we formulate policy implica ons in sec on .

We have a empted to make the sec ons and self-contained so readers
who are less interested in the technical details can skip sec ons and .



. Constrained Extrapola on Methods

Term structures can be represented in many equivalent ways . We will first
discuss a few of these formula ons and fix our nota on, before we discuss the
extrapola on approaches of EIOPA and the Commission UFR.

. . Coordinates to Express Interest Rates
As is customary, we use the nota on p(t, T ) for the amount to be paid at a
me t ≥ 0 (in years) to receive a certain single unit of currency at a later me

T ≥ t , i.e. the zero-coupon bond price at me t for maturity T . This makes the
func on T → p(t, T ) the discount curve at me t . The con nuous- me yield
curve T → y(t, T ) and forward curve T → f (t, T ) are then defined by⁴

f (t, T ) = − ∂

∂T ln p(t, T ), y(t, T ) = − ln p(t, T )
T − t ,

so we get the following equivalent representa ons

p(t, T ) = e−(T−t)y(t,T ) = e−
∫ T

t f (t,u)du.

We only treat the sta c case in this paper, so we fit today's term structure and
do not consider interest rate dynamics at later mes; this means t = 0 in the
expressions above. If one wants to use discrete rates instead of rates in
con nuous me then these can be found by no cing that a discrete rate δ
between mes S and T > S must sa sfy p(0, T )(1 + δ)T−S = p(0, S).

Since we do not have a con nuum of bond prices available we must use
interpola on methods and it is necessary to use extrapola on methods for
mes beyond the maximal bond maturity that is available in the market. We will

assume that at the current me t = 0 we know the market prices mi of certain
fixed income instruments that pay given amounts cij at given mes uj ≥ 0.
Here the index i ∈ I = {1, 2, ..., nI} refers to a certain instrument and
j ∈ J = {1, 2, .., nJ } to all possible mes when payments may occur. If asset
i does not pay anything at me uj the corresponding value cij is simply set to
zero.

⁴No ce that when we talk of yield we always mean zero-coupon yield, which is also known as the
spot rate for thematuirty under considera on. In the documents of the Commission UFR the nota on
zc(t, T ) is used for such rates.



An interpola ng discount curve p(0, t) for these coupon bonds must thus
sa sfy

(∀i ∈ I) mi =
∑
j∈J

cijp(0, uj). ( )

A specific criterion is needed to decide how the interpola on is defined between
the mes uj , since there are many possible ways to do this. O en one chooses a
criterion which regulates the smoothness of the interpola ng curve. One could
for example require the first and second order deriva ves of an interpola ng
curve g to stay small in a quadra c sense. This means that one tries to minimize

L(g) :=
∫ ∞

0
[g ′′(s)2 + α2g ′(s)2] ds ( )

over all g in a certain set of possible interpola ng func ons. No ce that a
parameter α > 0 is needed for the trade-off between the requirements that
both slope and curvature remain small. We will see later that this parameter has
a natural interpreta on as a speed of convergence when we consider forward
rates that converge to a specific value.

. . Smith-Wilson Approach
We thus want to define a discount curve p(0, t) which is smooth but also
market-consistent in the sense that it matches quoted market prices of certain
fixed income instruments. In the formula on of Smith & Wilson (Smith and
Wilson ) there is the addi onal requirement that the forward rates
converge to an a priori given value f∞. This is implemented by taking the
following form for the interpola on func on:

p(0, t) = (1 + g(t))e−f∞t . ( )

We thus look for a sufficiently smooth func on g which minimizesL(g) under
the constraints that g(0) = 0 and limt→∞ g ′(t) = 0 while sa sfying

mi =
∑
j∈J

cij(1 + g(uj))e−f∞uj ( )

for a given nI × nJ matrix C of cashflows and a nI × 1 vector m of market
prices. We will always assume that the rows of C are linearly independent
vectors so there are no superfluous instruments in our set. We define



c ij = cije−f∞uj and mi = mi −
∑

j∈J c ij , to ease the nota on of ( ) into
mi =

∑
j∈J c ijg(uj).

The solu on to this problem can be wri en in terms of certain basis func ons
SW (t, uj) which depend on me t and the maturi es uj . These func ons SW
introduced by Smith and Wilson (Smith and Wilson ) are scaled versions of
other func ons W that we will find more convenient to work with:

SW (t, u) = e−f∞(t+u)W (t, u), ( )
W (t, u) = αmin(t, u) − 1

2 e−α|t−u| + 1
2 e−α(t+u),

for⁵ (t, u) ∈ R+ × R+.

The func ons W are called exponen al tension splines and they were
introduced by Schweikert in (Schweikert ). Their proper es have been
shown to have certain advantages which are useful for modelling yield curves
and for other applica ons, see for example (Andersen , Andersen and
Piterbarg , Pruess ).

In EIOPA documenta on about the Smith-Wilson interpola on method
(EIOPA ) it is men oned that the func on W (t, u) is related to the
covariance func on of an integrated Ornstein-Uhlenbeck process. However, a
paper by Andersson and Lindholm (Andersson and Lindholm ) shows that
W does not exactly correspond to the covariance func on of an integrated
Ornstein-Uhlenbeck process unless some further restric ve assump ons are
imposed. But one may show⁶ that the func ons W represent the covariance
func ons of a certain stochas c process that can be constructed explicitly and
this ensures that a matrix with entries Wjk = W (uk , uj) is inver ble as long as
the uk represent different maturi es.

Theorem . . If there is a discount curve ( ) such that the smoothness criterion
( ) is minimized and such that all the market prices ( ) are fi ed perfectly, then g

⁵In our nota onR+ = [0,∞[ i.e. zero is included.
⁶Wewill not give proofs for the technical results in this Design Paper. They can be found in (de Kort

and Vellekoop ).



Figure : Inter- and extrapola on of Dutch Central Bank data for - - up to maturity
. Lower curve = Yields, Upper curve = Forwards.

must take the form⁷

g(t) =
∑
i∈I

ζi
∑
j∈J

c ijW (t, uj) ( )

with (ζi)i∈I a vector of weights and the func ons W as defined in ( ).

This result has the interpreta on of the best possible interpola on under a
criterion based on the operatorL, since the func ons SW that they propose
are simply scaled versions of the exponen al tension splines W .

The Smith-Wilson method may result in rather unnatural shapes for the
interpolated yield and forward curves beyond maturity 20 since forward rates
and yields are forced to converge to . %. The curve beyond maturity 20 is
therefore not consistent with interest rate markets. This leads to a direct
mismatch between values for assets and liabili es on the balance sheet for all
cashflows between maturi es 20 and 50, since fixed income assets are s ll
priced by the markets for those maturi es but the constructed discount curve is
not consistent with the market prices.

⁷Here and in the sequel we will always assume that certain technical condi ons are imposed on
the candidate func ons g for the inter- and extrapola on problem: g must have square integrable
first and second order deriva ves with limit zero and the second deriva ve g ′′(0) must equal zero as
well. The value of g(0) equals zero unless stated otherwise.



In Figure we show the forward rates and yields produced by EIOPA's inter-
and extrapola on method. We no ce a very unnatural kink in the term structure
of forward rates around the last liquid point (the "LLP" at maturity 20) which is
clearly the result of the requirement that forward rates converge to . %. If we
were to use the usual interpola on op miza on criteria without that
requirement the forward curve and yield curve would propagate more smoothly,
as we will see later.

. . Commission UFR Approach
The Commission UFR defines the UFR as the -month average of -year
(con nuous) forward rates (as observed at the end of the month)⁸:

f̂ (t,∞) = ln
(

1
120

119∑
i=0

(
p(t − i

12 , t − i
12 + 20)

p(t − i
12 , t − i

12 + 21)

))
.

When the Commission proposed this defini on in the fall of it led to a UFR
of 3.9%; it was 3.3% by early July . The 20-year forward rate was around
4% ten years ago and is now around 2%. If it stays around 2% the UFR thus
drops by 1

120 (4% − 2%) = 1.6 basis points per month in the coming months
since a new datapoint of approximately 2% is added every month while a point
around 4% is removed.

The first smoothing point, the forward at maturity 20, is defined as a
weighted average over (current !) forward rates between maturity 20 and later
maturi es⁹. This means that f̂ (t, 20) equals(

1
5 ln p(t,t+25)

p(t,t+20)

)
+ 1

2

(
1
10 ln p(t,t+30)

p(t,t+20)

)
+ 1

4

(
1
20 ln p(t,t+40)

p(t,t+20)

)
+ 1

8

(
1
30 ln p(t,t+50)

p(t,t+20) )
)

1 + 1
2 + 1

4 + 1
8

which can be rewri en in terms of yields:

120
45 y(t, t + 25) + 36

45 y(t, t + 30) + 12
45 y(t, t + 40) + 5

45 y(t, t + 50)
− 128

45 y(t, t + 20).

Note that this means that informa on in the discount curve for maturi es as
high as 50 years is assumed to be available from market data but that this

⁸In the nota on of the Commission, f̂ (t,∞) = UFRc(t) and f̂ (t, 20) = f ∗
c (t).

⁹The Commission also introduced an extra smoothing over me of this quan ty but DNB removed
this from the final implementa on of the method so we present here the method a er DNB's small
modifica on.



informa on is not influencing the es mate of the ul mate forward rate. In fact,
the ul mate forward rate only depends on market data for the 20-year forward
while the virtual forward rate at maturity 20 is assumed to depend on market
data for maturi es far beyond 20.

Extrapola on beyond the first smoothing point at maturity 20 is
implemented by taking for h ≥ 0:

p̂(t, 20 + h) = p(t, 20)e−f̂ (t,∞)h−(f̂ (t,20)−f̂ (t,∞)) 1−e−ah
a .

so
f̂ (t, 20 + h) = f̂ (t,∞) + e−ah(f̂ (t, 20) − f̂ (t,∞)).

This extrapola on func on is consistent with a Vasicek interest rate model (a er
maturity 20) under the addi onal assump on that there is no vola lity in
interest rates, i.e. that rates for any maturity in the future can be perfectly
predicted today¹⁰. The other parameters such as the convergence parameter
(a = 1/10), the maturity where extrapola on starts (LLP = 20) and the
number of monthly historical rates on which the UFR is based (H = 120) have
also been fixed by the Commission.

In the next sec on we will propose alterna ve methods in which the UFR is
es mated using market data without the implicit a priori assump on by EIOPA
and the Commission UFR that the uncertainty associated with the value of
cashflows that will be paid very far into the future is much smaller than the
uncertainty for cashflows that must be paid sooner.

¹⁰In terms of the original Vasicek model, the vola lity parameter σ of the short rate has been
chosen to be equal to zero. This makes all interest rates determinis c in this one-factor model.



. Unconstrained Alterna ves

. . A Smoother Discount Curve
The Smith-Wilson procedure defines a method to obtain an extrapolated
discount curve based on given market data. The asympto c value of the forward
rate is given a priori so it is an input parameter for the methodology.
Smoothness, as measured by the func onalL, is used as a criterion for the
interpola on between maturi es for which data are available. But the
requirement of a fixed and given ul mate forward rate means that the discount
curve may be less smooth around the last maturity for which liquid market data
are available. It would be more consistent to take the asympto c forward rate as
a free parameter, which is chosen in such a way that we get the smoothest
possible discount curve for all relevant maturi es. Mathema cally this would
mean that we propose to op mize the func onalL for a given value of α over
all possible func ons g in a certain class but also over all possible values of f∞.
This will not only give a more natural con nua on of the discount curve, but
also provides an objec ve es ma on method for the ul mate forward rate in
terms of market quotes for bond and swap data.

Problem . (Smoothest discount curve for converging forward curve)
Find the minimizer for f∞ in

min
f∞

min
g∈H(f∞)

L[g ] ( )

whereH(f∞) is the set of all interpola ng func ons that fit the market prices
perfectly for the chosen value of f∞ i.e. ( ) must hold.

It turns out that the asympto c forward rate can be characterized explicitly
as the solu on of a matrix equa on.

Theorem . . For an nI × nJ cashflow matrix C and price vector m ∈ RnI

the op mized asympto c forward rate f = f∞ of Problem solves

(m − CDf e)T (CDf WDf CT )−1CDf U
(

e + WDf CT (CDf WDf CT )−1(m − CDf e)
)

= 0

where

Wij = W (ui , uj), Df
ij = e−f uj 1i=j , Uij = uj1i=j



Figure : Inter- and extrapola on of Dutch Central Bank data for - - up to maturity
. Blue/Black = Yields, Red/Grey = Forwards.

and with e a vector full of ones inRnJ . If the cashflow matrix C is inver ble this
simplifies to ∑

j∈J

∑
k∈J

(ujπjefuj ) W−1
jk (πkefuk − 1) = 0

with π = C−1m.

This equa on can be solved rather easily using numerical algorithms since
only the matrix Df contains the unknown parameterf∞. Calcula ng the
op mized asympto c forward rate therefore typically takes only a frac on of a
second. Once the value has been determined, the usual Smith-Wilson
procedure can be applied.

In Figure we show the results of the inter- and extrapola on procedure
under assumed convergence of forward rates to a value of . % (dashed lines)
and to the value which is consistent with the Smith-Wilson smoothness criterion



beyond years (solid). Both yields and forwards are shown. The unnatural kink
at the last liquid point disappears and both the yield and forward values
converge to . % now that they are no longer constrained.

. . Smoother Forward or Yield Curves
The Smith-Wilson interpola on method is a transparent method that is easy to
implement because its fi ng procedure can be directly applied to bond and
swap data. But it has important disadvantages. The discount curve (and hence
certain zero coupon bond prices) can become nega ve. We also note that the
Smith-Wilson method with an UFR of . % results in a kink around the last liquid
point in the forward and yield curves which suggests that it is more natural to
apply a smoothness criterion to those curves instead of the discount curve.

To overcome this problem, we now propose two alterna ve extrapola on
methods. Where the Smith-Wilson approach takes the the first and second
order deriva ves of the (transformed) discount curve as a criterion for
smoothness, we will now minimize the weighted integrals over first and second
order deriva ves of the forward or yield curves. We s ll do this under the
condi ons that forward rates converge and that the market prices of a set of
given fixed income instruments are fi ed perfectly. This means we require that

J∑
j=1

cij e−
∫ uj

0 g(s) ds = mi , for i = 1, ... , I ( )

if we solve the problem for the forward curve g and

J∑
j=1

cij e−uj gy (uj ) = mi , for i = 1, ... , I ( )

if we solve it for the yield curve gy . Since

p(0, t) = exp(−
∫ t

0
f (0, s)ds) = exp(−ty(0, t))

this will also guarantee that p, and hence all coupon bond prices, will always be
strictly posi ve. If we apply the criterion to the forward curve, it will also lead to
increased smoothness of the discount curve. If we apply the criterion to the
yield curve the smoothness of the discount curve does not change.

We formalize the new op miza on problem as follows.



Problem . (Smoothest forward or yield curve which is constrained to
converge)

Find
min

g∈Hf
L[g ], min

g∈Hy
L[g ] ( )

whereHf consists of all func ons g sa sfying ( ) andHy consists of all
func ons g sa sfying ( ) with g(0) = a for a given value a > 0 in both cases.

Note that g(0) = a for func ons g inHf orHy so the ini al short rate r0
equals a given constant a. This implies that we assume that the short rate is
given. If this is not the case, we may determine its value by including it in the
op miza on procedure. We will show later in this sec on how to do this.

This problem can be solved explicitly in terms of the earlier defined func ons
W and a different class of interpola ng and extrapola ng func ons:

W (t, u) = 1 − e−αt cosh(αu) − 1
1
2α

2u2
+ 1t≤u

(
cosh(α(u − t)) − 1 − 1

2α
2(u − t)2

1
2α

2u2

)

These func ons can be wri en as affine combina ons of integrals of
Smith-Wilson func ons and are therefore smoother than the Smith-Wilson
func ons themselves. For every u > 0 we have W (0, u) = 0 and they all
converge to limt→∞ W (t, u) = 1. They become linear for very small posi ve
values of t in the sense that ∂2

1W (0, u) = 0.

Theorem . . The solu ons of Problem must take the form

g f (t) = g(0) +
∑
i∈I

ζ f
i
∑
j∈J

πf
j ciju2

j W (t, uj) , ( )

gy (t) = g(0) +
∑
i∈I

ζy
i

∑
j∈J

πy
j cijujW (t, uj)

with the func ons W as defined above. for certain weights the (ζ f
i )i∈I ,

(πf
j )j∈J , (ζy

i )i∈I and (πy
j )j∈J .

Figures and show the results for the same data as used in the previous
figure. No ce that the forward curve fla ens compared to the results of the
procedure in the previous sec on since we now take the smoothness of forward
rates as our op miza on criterion.



Figure : Inter- and extrapola on of Dutch Central Bank data for - - up to maturity
. Blue/Black = Yields, Red/Grey = Forwards. Shown if g f (t) i.e. criterion based on

smoothness of forward curve.

From this construc on we immediately get expressions for the ul mate
forward rate. Since lim

t→∞
W (t, u) = 1 and lim

t→∞
W (t, u) = αu for all u > 0,

this follows from ( ).
Moreover, we can derive rather simple and intui ve expressions for these

two es mated ul mate forward rates in terms of a linear combina on of yields
at different maturi es. Let

yk = y(uk) = − ln p(0, uk)/uk

denote the yield for maturity uk when 1 ≤ k ≤ n. We take u0 = 0 so we can
write y0 = f (0, 0) = y(u0) for the short rate.

Corollary . . The op mized asympto c forward rate equals a linear
combina on of the yields:

f∞ =
n∑

k=0
vkyk .



Figure : Inter- and extrapola on of Dutch Central Bank data for - - up to maturity
. Blue/Black = Yields, Red/Grey = Forwards. Shown if gy (t) i.e. criterion based on

smoothness of yield curve.

The weights {vk , k = 0..n} are vk =
∑n

j=1[G−1]jk with v0 = 1 −
∑n

k=1 vk

where the matrices Gf and Gy for the forward curve based method and the
yield curve based method are

G f
kj = 1

uk

∫ uk

0
W (s, uj)ds, Gy

kj = 1
αuj

W (uk , uj)ds.

respec vely.

As expected, we see that if all forward rates (and thus all yields) have the
same value, f∞ must also equal that value. Moreover, when the cashflow matrix
Cij is inver ble and the short rate is known we can observe the yields directly
since π = C−1m and yk = −(lnπk)/uk . This means that applying the whole
op miza on procedure to find ul mate forward rates is reduced to taking a
simple weighted sum of directly observable yields.



When α goes to infinity one can easily show that the interpola ng func ons
W (t, u) will converge to t

u (2 − t
u ) for t ≤ u and to 1 for t > u. The

interpola ng forward func on g f (t) is thus constant a er the last maturity
point un and since g is con nuous this means that the ul mate forward rate
equals the forward rate for the last maturity: f∞ = g(∞) = g(un) which
seems a natural choice¹¹.

If the short rate is not given a priori it can be chosen as a free parameter in
the op miza on problems. As indicated earlier, an explicit formula for this value
of the short rate which gives the smoothest curve for small maturi es can be
derived.

Corollary . . If nI = nJ = n, (cij)i∈I, j∈J is an inver ble matrix and the
ini al short rate is not known then the previous formula s ll holds if we
subs tute for the unknown short rate the op mized value

y0 =

n∑
j=1

1
uj

n∑
k=1

G−1
jk

y(uj) + y(uk)
2

n∑
j=1

1
uj

n∑
k=1

G−1
jk

where G equals Gf or Gy as defined above.

We now have four ways to inter- and extrapolate the risk-free term structure:
the Smith-Wilson method to construct the discount curve with an UFR of . %,
the Smith-Wilson method for the discount curve with a free UFR parameter, a
method based on the Smith-Wilson op miza on criterion which is applied to
the forward curve instead of the discount curve and a method where that
criterion is applied to the yield curve. In the next sec on we will inves gate
which asympto c values of forward rates are found for the last three methods
and how they compare to EIOPA's value of . %.

¹¹Some ins tu ons, such as the Dutch Central Bank, used this extrapola on before the Smith-
Wilson method was introduced.



. Results: Asympto c Forward Es mates

In this sec on we present the results of an empirical study of extrapola on
methods for the term structure. We consider the extrapola on method of Smith
and Wilson that forces forward rates to converge to 4.2%, as advocated by
EIOPA, but also an alterna ve formula on in which the asympto c value is not
restricted beforehand. Both methods require that we specify how quickly
convergence to the limit takes place (i.e. we need a speed of convergence) and
at which maturity we want convergence to start (i.e. we need a last liquid point
or first smoothing point). We will specify the values that have been chosen for
all cases discussed below.

Input data consisted of historical EURIBOR swap rates on all trading days in
the last ten years, which were obtained from Datastream. All rates were middle
rates and quotes were given with an accuracy that varied from . basis point
(in the beginning of the dataset) up to . basis point (for the most recent data).
Data for swaps with maturi es 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 12, 15, 20, 30, 40
and 50 years were downloaded and we always used all swap rates up to and
including maturity 20 but some mes included maturity 30 as well and
some mes included all rates, as will be indicated below.

An example of inter- and extrapolated yield and forward curves is shown in
Figure which shows the results for the market data of December , . We
used all swap data up to and including maturity 20 or 50 years and took α = 1

10
or α = 1

2 so four different graphs are shown. In all of them, the solid lines
represent the Smith-Wilson method in which the UFR is a free parameter,
whereas the dashed lines correspond to Smith-Wilson extrapola on to the
ul mate forward rate of 4.2%.

We see that the restric on that the forward rate must converge to that
asympto c value causes the forward curve to show a kink around maturity 20,
i.e. at the last maturity date for which market data was included in the
construc on of the curves. When the speed of convergence α is larger, this kink
becomes more pronounced. The solid lines in the three figures show that in all
three methods proposed in this paper, where such a restric on is no longer
imposed, the kink disappears. As a result we find asympto c values for forward
rates that are much lower than . %. Moreover, the asympto c values found
seem to be reasonably consistent when we vary α or the last liquid point. If
α = 1

10 we find . % and . % for last liquid points at 20 and 50 years



respec vely, while for α = 1
2 they become . % and . %. Inclusion of data

beyond maturity 20 thus barely changes our es mate of the asympto c forward
rate and we see that all four yield curves (the solid blue lines) hardly differ. The
yield curves generated by the original Smith-Wilson approach (the dashed blue
curves) show drama c changes when long maturity data is included. Indeed,
one sees that when swap data beyond maturity 20 is included, those forward
curves (the dashed red lines) are now hardly dis nguishable from the forward
curves for the new method.

In Figure we always use the criterion for the discount curve; plots for the
method based on yield or forward curves give results that hardly differ. Indeed,
we usually find asympto c values that are rela vely close to each other. Figure
can be used to examine this consistency between the three proposed methods,
as well as the influence of the maturi es that are included to construct the
curves. It shows monthly updates for the es mated asympto c forward rate
generated by the methods which smooth the discount curve (top graph), the
yield curve (middle graph) and the forward curve (bo om graph). We took the
original speed of convergence α = 1

10 in all cases and es mates are displayed
for the cases where instruments are interpolated up to a last liquid point of 20
years, 30 years or 50 years (purple line). The three graphs show that the first
two methods provide es mates which are more stable over me than the last
method. Indeed, the third method only gives good results when the last swap
with maturity 50 is included; if this not the case then the es mates are too
vola le to be of prac cal use.

In Figure , the same es mates of the asympto c forward rate are plo ed
but now for a daily update frequency. Again we find that es mates are too
vola le when only maturi es up to 20 or 30 years are included so only results
for maturity 50 are shown. This suggests that extrapola on of yields is possible
beyond maturity 20 but that market-implied forward rates are not smooth
enough to allow extrapola on if informa on from the far end of the curve is not
used. This seems to be caused by the rela vely low speed of convergence that
EIOPA prescribes. If we use the value of α = 1

2 instead of α = 1
10 then we get a

more stable pa ern, as shown in Figure .

Even though es mates differ a bit depending on the speed of convergence
and the last liquid point, the overall pa ern is similar. In the years before the
financial crisis of asympto c rates were close to the assumed value of
. %, but they have dropped substan ally since. A er the first two



methods show values which do not differ much when market data beyond
maturity 20 is included or not and values are much lower than . %. Between

and there is a more marked effect but the difference between results
up to and beyond maturity 30 are very small for both methods. We conclude
that extrapola on methods which implement an explicit trade-off between first
and second order deriva ves of the yield curve give stable es mates when data
up to maturity 20 are used. But inclusion of the data for maturity 30 seems
preferable since this does not lead to more vola le es mates. Swap rates of
maturi es up to 30 or up to 50 give roughly the same es mates so it does not
make much of a difference whether they are included or not.

We thus see that if extrapola on is applied to the discount curve or the yield
curve then the choice of the last used maturity only mildly affects the
asympto c es mates that are found a er . This supports the use of such
extrapola on methods to determine a proxy for long-term yields.



. Policy Implica ons & Outlook

We have inves gated inter- and extrapola on techniques that can be used to
create discount curves from observed market data under different assump ons
on asympto c forward rates. We have shown that an exis ng approach, which
requires the a priori specifica on of the asympto c value, can be extended in
such a way that this limit is implied by market data. Moreover, we show how the
op mal smoothness criterion of the original problem can also be applied to the
forward or yield curve instead of the discount curve. This leads to a
market-consistent asympto c forward rate which can be wri en as a weighted
combina on of yields at earlier maturi es, with weights that can be calculated
beforehand. This provides an intui ve characteriza on of asympto c forward
rates in terms of well understood market informa on. On days when reliable
market prices are available for high maturi es these can be easily incorporated
and when there is reduced liquidity for the highest maturi es the same method
can be used with a restricted set of maturi es.

An empirical study using swap data from the last ten years leads to the
following conclusions:

• Asympto c forward rates were close to . % in the years before the
financial crisis of and EIOPA's value was therefore not too far off.
They are es mated to be close to % today. This means that a -month
average of such rates would result in a decrease of . basis points per
month at the moment.

• Inclusion of data beyond maturity 20 makes the es mates of asympto c
forward rates more stable. For methods which smooth the forward curve,
inclusion of such later maturi es is necessary since forward rates before
maturity 20 do not seem to lead to good predic ons of forward rates at
later maturi es.

• For methods which smooth the yield or discount curve there is hardly any
difference in vola lity when higher maturi es are included or not. This
suggests that one could use all available maturi es up to 50 years if such
methods were to be applied.

• Since the es mates of all methods are roughly the same: there
seems to be hardly any influence from the choice of the convergence
speed α or the last liquid point.



Summarizing, we conclude that there is no indica on that data beyond
maturity 20 is not reliable enough to include in the design of the discount curve.
Policymakers can therefore not use a perceived lack of market informa on on
long term rates to defend their current op mis c view on the value of long term
liabili es. In fact, es mates of long term rates are quite stable over me. They
just happen to have drama cally decreased since the financial crisis. The
methods proposed by EIOPA and the Commission UFR suggest that uncertainty
about the value of liabili es which lie very far in the future is much less than for
liabili es which have to be paid soon. This is counterintui ve and hard to defend
for financial ins tu ons which see it as one of their main tasks to manage
interest rate risks over long horizons.

As a final remark, we note that we have always assumed that market prices
must be fi ed exactly. If one allows some mispricing of market instruments in
return for smoother curves, a different op miza on problem must be solved.
One could keep the same op miza on func on Lα, but one would have to
impose, for example, that the weighted sum of pricing errors does not exceed a
certain threshold value. Taking that value equal to zero would give back our old
solu ons but by varying it we can implement a trade-off between smoothness
and pricing accuracy. Such problems have been studied for the case where there
are no constraints on the asympto c behavior of forward rates and when
forward rates are observed directly (see for example (Andersen and
Piterbarg )). Finding the solu on under our addi onal requirements is an
interes ng topic for further research.
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Figure : Inter- and extrapola on of Datastream swap data of December , .
Blue/Black lines show yield curves, red/grey lines forward curves. Dashed lines correspond
to the EIOPA forward rate limit of . % while solid curves are based on forward rates with
a limit that is not specified a priori. We vary the speed of convergence parameterα (which
is 0.10 on the le and 0.50 on the right) and the last liquid point (which is 20 in the top
graphs and 50 for the bo om graphs).



Figure : Inter- and extrapola on based on Datastream swap data up to maturity
T = 20, 30, 50 when applying our objec ve func onal L to the discount curve (top
figure), yield curve (middle figure) and forward curve (bo om curve).



Figure : The same quan es are shown as in the previous figure but now on a daily basis.
The forward curve method in the bo om graph gave very vola le results a er when
the last included maturity was taken to be 20 or 30, so these results have been omi ed.



Figure : The same quan es are shown as in the previous figure but with different values
for α.
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