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Abstract

Most of the existing reverse mortgage products include a guarantee that the loan value cannot
exceed the house value when the contract ends, which is called the No-Negative-Equity-Guarantee
(NNEG ). Although different models have been developed to price the NNEG, model risk is
typically not investigated. We evaluate the cash flows of different reverse mortgage designs and
the implied value of the embedded NNEG, taking into account model risk. We compare the
values of the NNEG and their sensitivities to different parameters generated from two popular
models in the literature for the house price process, i.e., the Geometric Brownian Motion model
and the VAR model. We calibrate the models using prices of regular mortgages and determine
the corresponding price ranges for reverse mortgages. We find quite substantial price ranges
for both models, indicating that there is substantial model risk in pricing the NNEG in reverse
mortgage products. The degree of model risk is larger in the VAR model than in the GBM model.
We also find that, among the different parameters that can affect the value of the NNEG, it is
most sensitive to the parameter that reflects the probability distribution of the future house price,
which is the house price increase rate in the VAR model and the dividend rate in the GBM model.
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Samenvatting

Een omkeerhypotheek is een lening die een huiseigenaar in staat stelt om (een deel van) de 
waarde van zijn huis om te zetten in cash, zonder het te hoeven verkopen. De omkeerhypotheek 
verschilt van een gewone hypotheek doordat aflossing pas plaatsvindt wanneer de huiseigenaar 
komt te overlijden of het huis verlaat, en doordat rente in de meest gebruikte constructies 
niet direct wordt betaald maar wordt bijgeschreven bij de schuld. De omkeerhypotheek bevat 
meestal een garantie die ervoor zorgt dat het bedrag van de lening op de einddatum van het 
contract niet hoger is dan de waarde van het huis. Het prijzen van deze ingebedde garantie is 
complex en onderhevig aan modelrisico. In dit artikel gebruiken we twee verschillende modellen, 
een Geometric Brownian Motion (GBM) model en een Vector Autoregressive Model (VAR), 
en vinden dat de prijs van de garantie in beide modellen sterk gevoelig is voor de parameter 
die de verwachte huisprijsontwikkeling weergeeft. Het kalibreren van deze parameter op basis 
van prijzen van reguliere hypotheken leidt tot een brede range van mogelijke prijzen voor de 
omkeerhypotheek. De prijs van een omkeerhypotheek is dus relatief sterk gevoelig voor model-
risico, wat mogelijk verklaart waarom de markt voor omkeerhypotheken moeilijk op gang komt.
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Management Summary

A reverse mortgage is a loan that allows homeowners to convert (part of) the value of their house
into cash. Instead of a fixed end date, as in case of a traditional mortgage, the borrower pays
back the loan when (s)he dies, or when the home is sold. Reverse mortgages typically include
a guarantee that the loan value cannot exceed the house value when the contract ends. This
guarantee is called the No-Negative-Equity-Guarantee (NNEG ). Although different models have
been developed to price the NNEG, model risk is typically not investigated. In this paper, we
determine the value of the NNEG and investigate its sensitivity to different parameters, using
two popular models for the house price process: a Geometric Brownian Motion (GBM) model
and a Vector Autoregressive Model (VAR) model. In both models, we interpret the house as a
dividend paying asset, where the dividend is parametrized by the dividend yield. Our analysis
shows that the price of the NNEG is highly sensitive to the dividend yield. This high sensitivity is
a concern because the dividend yield is difficult to estimate or calibrate accurately. We calibrate
the dividend yield using prices of regular mortgages and determine the corresponding price ranges
for reverse mortgages. We find that the difference between the lower bound and the upper bound
of the calibrated price of the NNEG can be quite large. For example, for a lump-sum reverse
mortgage (the most popular reverse mortgage design) with a loan of 30 percent of the initial
house value, the lower bound of the calibrated price of the NNEG for a couple consisting of a
male aged 67 and a female aged 64 is about 2.7% of the initial house value in the VAR model,
while the upper bound is around 19% percent of the initial house value. When the loan-to-value
ratio is 50 percent, the price of the NNEG ranges from about 19% to almost 40% of the initial
house value. The corresponding price intervals for the GBM model are somewhat smaller, but
still large. These wide price intervals show that there is considerable model risk when pricing the
NNEG. This high degree of model risk might imply that reverse mortgage providers are reluctant
to offer the product, or that they charge relatively high premiums to compensate for the model
risk. In the latter case, reverse mortgages may be unattractive to households. Hence, our findings
provide a potential explanation for the fact that the market for reverse mortgages is still relatively
small. If an active housing market arises where reverse mortgage providers can use house price
derivatives to reduce their exposure to model risk, the reverse mortgage market might expand.
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1 Introduction

When people are approaching their retirement age, their human capital decreases, while unex-
pected expenditures on health care may occur. Moreover, the main source of post-retirement
income, the pension payment, is threatened. This occurs because the pension system is under
stress due to the financial crisis and its aftermath, the aging population, and retirement of the
baby boom generation. With a less stable income from the pension system and longer life ex-
pectancy, individuals might face considerable financial problems after retirement. At the same
time, a large proportion of their accumulated wealth is typically invested in housing equities,
which, if liquidated, can generate substantial post-retirement income. A reverse mortgage is one
of the products available on the market that allows the elderly to use home equity to finance
retirement income, while staying in their home (until death or permanently moving out of the
home due to other reasons).

There is a substantial amount of literature that focuses on the demand and supply of reverse
mortgages. In an early empirical study, Venti and Wise (1991) found that very few families chose
to increase their post-retirement income by equitizing their house value. They argue that annuity
reverse mortgages cannot substantially increase the income of average elderly. However, more
recently, the reverse mortgage market began to expand. For example, in the US $30.21 billion of
reverse mortgage loans were made in 2009, while in a survey conducted in 2000 among middle-
aged adults in Hong Kong, approximately 11% of the respondents indicated that they would
“definitely or probably” apply for a reverse mortgage if it were available (Chou et al. 2006).
According to Shan (2011), the main reason that led to the market expansion in the US was the
increasing house price. Even though the market seems to have expanded, however, the demand
for reverse mortgages is still relatively low. Existing studies point at bequest motives (Davidoff,
2010; Michelangeli, 2008; Chou et al., 2006) and the complexity of the product (Davidoff et al.
2015) as potential explanations for limited demand. In addition, factors such as adverse selection
and moral hazard may affect the price of reverse mortgages, and, hence, their attractiveness to
potential buyers. Specifically, because some reverse mortgage designs have similar characteristics
as annuities, adverse selection problems (i.e., the fact that people who buy annuities tend to have
a longer life expectancy) may also exist in the reverse mortgage market. Moral hazard issues arise
when a reverse mortgage buyer reduces expenditure on maintaining the condition of the house
(Shiller and Weiss, 2000, Miceli and Sirmans, 1994).

There is also a growing amount of literature that focuses on the pricing and risk analysis of reverse
mortgage products (Wang, et al., 2008; Li, et al., 2010; Yang, et al., 2011; Chen, et al., 2010;
Lee, 2012; Shao, et al., 2015; Ji et al., 2012.). To evaluate different reverse mortgage designs
one needs to value the various cash flows involved. This requires the use of quantitative models,
including the quantification of interest rates, house prices, mortality, and so on. Typically, in
order to get a manageable model, one has to make use of simplifying assumptions. However, the
use of a simple model may come at the cost of model risk, i.e., one has to deal with a model
that is potentially mis-specified. Although different models have been developed to quantify the
risks and price the NNEG, model risk is typically not investigated. In this paper, we investigate
the impact of model risk on the price of the NNEG. We consider two types of models to value
the NNEG for various reverse mortgage designs. In the first model, the house price follows a
Geometric Brownian Motion (GBM) while in the second model, the house price is modeled using
a Vector Autoregressive Model (VAR) model. While both models have been used in prior studies
(e.g., Szymanoski, 1994; Wang et al., 2008; Ji et al., 2012 use a GBM model, and Shao et al.,
2015; Sherris and Sun, 2010; Alai et al., 2014; Cho et al., 2013 use a VAR model), the issue of
model risk has, to the best of our knowledge, not been investigated.

3
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In this paper we investigate the sensitivity of the price of the NNEG to changes in the (calibrated
or estimated) model parameters. In both models we interpret the house as a dividend paying
asset, where the dividend is parametrized by the dividend yield. Our analysis shows that the price
of the NNEG is highly sensitive to the dividend yield. This high sensitivity is a concern because
the dividend yield is difficult to estimate or calibrate accurately. This occurs for two reasons. First,
due to the recent crisis on the housing market, estimates can be highly sensitive to the period
that is chosen to estimate or calibrate the model parameters. Second, the dividend yield cannot
be determined using only house price data if the house has a nonzero price of idiosyncratic risk
(see, e.g., Shao et al., 2015). Therefore, we use data on prices of regular mortgages to calibrate
the dividend yield. Using these calibrated ranges of the dividend yield, we then determine the
model implied price ranges of the NNEG for different reverse mortgage products. We find quite
substantial price ranges, indicating that there is substantial model risk. With considerable model
risk, reverse mortgage providers might be reluctant to offer the product or charge high premiums
to compensate for the model risk, thus keeping some potential buyers out the market. This
suggests that the existence of substantial model risk might be another reason why the market
for reverse mortgage products is relatively small.

The organization of the remainder of the paper is as follows. In Section 2, we present three basic
reverse mortgage schemes and describe the cash flow pattern for each scheme. In Section 3, we
determine the market consistent reverse mortgage rate and quantify the value of the NNEG. We
price the NNEG and analyze its sensitivity to parameter risk with the GBM model in Section 4
and with the VAR model in Section 5. Section 6 studies the model risk. We conclude in Section
7.

4
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2 Reverse Mortgage Schemes

In this section, we present the reverse mortgage contract designs that we investigate in this paper.
A summary of the notation used in the paper can be found in Table 11 in the Appendix.

A reverse mortgage is a loan that allows homeowners to convert (part of) the value of their house
value into cash. Instead of a fixed end date, as in case of a traditional mortgage, the borrower
pays back the loan when (s)he dies, or when the home is sold. This time is denoted as date T .
The initial loan amount is typically expressed as a fraction ϕ of the house value, i.e., the initial
loan amount is

L0 = ϕH0, (1)

where H0 is the value of the house at the beginning of the contract. The fraction ϕ is referred
to as the loan-to-value ratio. This is a contract parameter, whose maximum value is set by
the lender, typically depending on characteristics of the house and on the characteristics of the
owners, such as, for example, their ages. Instead of receiving a lump sum amount, the loan
can also take the form of a whole life annuity of value L0 = ϕ · H0. On date T , the house is
sold and the net revenues of sales are used to pay back the loan. To protect the buyer of the
reverse mortgage from negative equity, the contract includes a No-Negative-Equity-Guarantee,
NNEG. Specifically, the repayment of debt on date T is capped at the net revenue from selling
the house. This implies that the outstanding debt is not fully repaid in case the net revenues
from the house are lower than the outstanding debt; the lender offers the buyer a guarantee NNT

which is defined as follows:

NNT =

{
LT − (1− δ) ·HT , if (1− δ) ·HT < LT ,

0, if otherwise,
(2)

where LT is the loan balance on date T , HT is the house price on date T , and δ is the proportional
transaction cost in case of a (forced) sale. On date t = 0, the lender charges a premium πNN to
cover for the guarantee.

To summarize, the main characteristics of the reverse mortgage are as follows:

• The borrower either receives a lump-sum amount of L0 = ϕH0 on date zero, or receives a
flat amount per period until the contract terminates.

• On date 0, the borrower pays a premium πNN for the NNEG to the lender.

• When the contract terminates on date T , the lender receives the minimum of the loan
balance on date T , which is denoted as LT , and the net revenues from selling the house,
i.e., the lender receives min{(1− δ) ·HT , LT } = LT −NNT .

It remains to specify how the loan balance accrues over time. We assume that contract termi-
nation occurs at the end of a period, i.e., T ∈ T = {1, 2, . . . , Tmax}, and that any intermediate
payments occur only on dates t ∈ T . We consider reverse mortgage schemes in which the lender
charges a deterministic interest rate of r per period. Whether the borrower pays interest before
date T depends on the type of reverse mortgage, as discussed below.

Lump sum contract—A lump-sum reverse mortgage product pays a lump-sum amount at con-
tract initiation. It is the most common type of reverse mortgage in most of the markets. There
are no intermediate interest payments and no principal repayment before contract termination.
Thus L0 = ϕH0, and the loan balance on date T , denoted by LT , equals:

LT = L0(1 + r)T . (3)

5
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Hence, the cash flow stream of the reverse mortgage is as follows:

• t = 0: the borrower receives L0 − πNN from the lender, where πNN is the premium for
the guarantee.

• t = T : the lender receives LT −NNT from the borrower.

Interest only contract—The contract is the same as the lump-sum contract, except that now
each year the borrower pays interest on the outstanding debt. So, the initial loan amount again
equals L0 = ϕH0, but now, due to payment of interest, the loan balance stays constant. Thus,
the loan balance on date T equals:

LT = L0. (4)

The cash flow stream of the reverse mortgage is as follows:

• t = 0: borrower receives L0 − πNN .

• t ∈ {1, . . . , T}: the borrower pays interest rL0.

• t = T : the lender receives LT −NNT from the borrower.

Tenure contract—The tenure reverse mortgage product pays a fixed amount C at the end of
each period until the termination of the contract. This means that the loan balance at time T
is given by

LT = C
T∑

s=1

(1 + r)s. (5)

The cash flow stream is as follows:

• t = 0: the borrower pays the premium πNN .

• t ∈ {0, . . . , T − 1}: the borrower receives C.

• t = T : the lender receives LT −NNT from the borrower.

The fixed payment C will be set such that the market value of the payments equals ϕH0. This
will be determined in the next section.

Table 1 summarizes the net cash flows from the point of view of the lender in each of the three
cases.

t = 0 t = 1 · · · t = T − 1 t = T

Lump-sum πNN − L0 0 · · · 0 LT −NNT

Interest only πNN − L0 rL0 · · · rL0 rL0 + L0 −NNT

Tenure πNN − C −C · · · −C LT −NNT

Table 1: This table presents the net cash flows in the three reverse mortgage schemes from the
point of view of the lender, with LT given by (3) for the lump sum contract, (4) for the interest
only contract, and (5) for the tenure contract.

6
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3 Pricing Reverse Mortgage Products

To determine the price of the reverse mortgage, we split it into two parts. We first determine the
market-consistent interest rate r for the “regular” loan without the NNEG. We then calculate
the NNEG as the present value of the loss of the lender at contract termination. We assume that
the conditions under which this loan is offered are market-consistent, i.e., arbitrage opportunities
are excluded. This means the existence of a Stochastic Discount Factor (SDF) Mt > 0 such
that a (random) payoff Xt at time t has price E(XtMt) at time 0. In addition, we assume that
mortality risk is independent of the other sources of risk (house price risk and financial risk), i.e.,
T is independent of (Ht,Mt).

1 Thus, we have

P
(t)
0 = E(Mt),

with P
(t)
0 the time 0 price of a zero coupon bond that pays off 1 at maturity, with time-to-maturity

t.

3.1 Termination Date

In this section, we model the probability distribution of the termination date T . We consider the
case where the contract terminates upon the decease of the last surviving household member. If
the borrower is a single person, T = Tx, where Tx is the remaining lifetime of the borrower at
time t = 0. If the borrower is a couple consisting of a male aged x and a female aged y, then
T = max{Tx, Ty}, where Tx and Ty are the remaining lifetimes of the spouses at time t = 0.

To model the probability distribution of T , we let sp
(g)
z,t denote the probability that a z-year-old

in year t with gender g ∈ {m, f} survives at least s more years, and let q
(g)
z,t be the probability

that a z-year-old in year t with gender g dies within a year. We assume that death always occurs
at the end of a year. Moreover, in case of a couple, we assume that Tx and Ty are independent.
Then, the probability that the contract terminates at the end of year t, P(T = t), is given by

P(T = t) = t−1p
(g)
x,0 · q

(g)
x+t−1,t−1

in case of a single insured of gender g and aged x at time t = 0, and is given by

P(T = t) =
(
t−1p

(f)
y,0 · q

(f)
y+t−1,t−1

)
·
(
1− t−1p

(m)
x,0

)

+
(
1− t−1p

(f)
y,0

)
·
(
t−1p

(m)
x,0 · q(m)

x+t−1,t−1

)

+
(
t−1p

(f)
y,0 · q

(f)
y+t−1,t−1

)
·
(
t−1p

(m)
x,0 · q(m)

x+t−1,t−1

)
,

(6)

for a couple with a male aged x and a female aged y at time t = 0.

3.2 Pricing the Loan without the Guarantee

In this section, we determine the market-consistent fixed interest rate for the mortgage without
the NNEG. For each of the three types of reverse mortgage, the market-consistent interest rate r

1The assumption that T is independent of (Ht,Mt) does not exclude the possibility that there is dependence

between mortality and other sources of risk under the actual probability distribution: the actual SDF M̃t might
satisfy M̃t = MtΛt, where Λt represents the change of measure going from the actual probability measure to the
probability measure used in pricing (and which might be converted into the risk neutral probability distribution). In
the former there might be dependence between mortality and the other risk sources. Only in the latter we assume
independence between T and (Ht,Mt).

7
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is determined such that the market value of the net cash flow stream to the lender (as displayed
in Table 1) is zero, given πNN = NNT = 0.

Lump sum contract—In absence of the NNEG, the lender pays L0 to the borrower on date
zero, and receives LT = (1 + r)T · L0 from the borrower upon contract termination. Therefore,
the market-consistent interest rate r solves:

L0 = E(LTMT ) = L0 · E((1 + r)T ·MT )

= L0

Tmax∑
t=1

(1 + r)t · E(Mt) · P(T = t),

where Tmax denotes the maximum value of T . Rewriting this condition shows that the market-
consistent interest rate r solves

1 =

Tmax∑
t=1

(1 + r)t · P (t)
0 · P(T = t). (7)

Thus, the required interest rate r depends on the term structure of interest rate at contract
initiation as well as on the probability distribution of the termination time T .

Interest only contract—The lender offers a loan of L0 on date zero, receives interest payments
rL0 in any year prior to termination, and receives L0 upon contract termination. The market-
consistent interest rate r in this case satisfies (after canceling L0 from both sides):

1 =

Tmax∑
t=1

[
r

t∑
s=1

P
(s)
0 + P

(t)
0

]
· P(T = t). (8)

Tenure contract—The lender pays the constant amount C to the borrower at times t =

0, . . . , T − 1, and receives LT = C
(∑T

s=1(1 + r)s
)

at time T . We assume that C is set

such that the market value of the payments at time t = 0 equals ϕH0, i.e.,

ϕH0 = C ×

(
Tmax−1∑
t=0

P(T > t) · P (t)
0

)
. (9)

The market-consistent interest rate r in this case follows from equating

ϕH0 = E(MTLT ), (10)

with ϕH0 given by (9). This yields (after canceling C from both sides):

Tmax−1∑
t=0

P(T > t) · P (t)
0 =

Tmax∑
t=1

P(T = t) · P (t)
0 ·

(
t∑

s=1

(1 + r)s

)
. (11)

3.3 Pricing the Guarantee

In this section we discuss the approaches that we consider to determine the price of the NNEG,
given that r is set equal to the market-consistent rate for the loan without the guarantee ((7),
(8), or (11)).

If the lender offers a NNEG, she runs the risk that the value of the net revenue from selling the
property at contract termination, after transaction costs, is lower than the outstanding debt. The

8
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lender then effectively acts as a guarantor who will cover the amount NNT from (2) on date T .
Assuming market-consistent pricing, the date-zero price of the guarantee is:

πNN = E [max {LT − (1− δ) ·HT , 0} ·MT ]

=

Tmax∑
t=1

E [max {Lt − (1− δ) ·Ht, 0} ·Mt|T = t] · P(T = t),

where LT is the loan balance on date T , given by (3), (4), or (5) depending on the type of
reverse mortgage, and where MT denotes the stochastic discount factor on date T . Because we
assume that T is independent of (Ht,Mt), the market price of the guarantee is:

πNN =

Tmax∑
t=1

π̃NN (t) · P(T = t), (12)

where π̃NN (t) = E [max {Lt − (1− δ) ·Ht, 0} ·Mt] denotes the time t = 0 price of the guar-
antee (exactly) ending at date t. For each of the three reverse mortgage designs, the value of
π̃NN (t) depends on the joint distribution of the house price Ht and the stochastic discount factor
(SDF) Mt.

In the next section we will consider two approaches to determine the value of π̃NN (t) by treating
it as a put option:

• The GBM model: we price the NNEG in a Black-Scholes world.

• The (VAR) model: we derive the joint distribution of the SDF process Mt and the house
price process Ht in the context of a Vector AutoRegression (VAR) model. The value of
the NNEG is then determined via simulation.

9
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4 Pricing with the GBM model

4.1 The NNEG in the GBM Model

In the first model, we interpret the house as a dividend paying asset in continuous time. Assuming
the dividend rate is q and the house price and the SDF follow a Geometric Brownian Motion, the
NNEG can be priced as a Black-Scholes (European) put option on the net house price. Indeed,
at contract termination, payments to the lender are capped by the net value of the house. As
long as the net house value is above the loan balance, the value of the NNEG will be zero. Only
when the net house value falls below the loan balance, the guarantee will have material effect.
Thus, the NNEG is a put option with strike price equal to the loan balance and with the net
house price as the underlying asset. The value of the option conditional on T = t is:

π̃NN (t) = E [max {Lt − (1− δ) ·Ht, 0} ·Mt]

= BSput ((1− δ)H0, Lt, rf , q, t, σ) , (13)

where

• rf is the risk-free rate, σ is the volatility of the house price, q is the dividend rate, and Lt

is the loan balance on date t given, by (3), (4), or (5) depending on the type of reverse
mortgage;

• the house price Ht is given by Ht = H0 exp
(
µt− 1

2σ
2t+ σWt

)
, with Wt ∼ N(0, t);

• the SDF Mt is given by Mt = exp
(
−rf t− 1

2λ
2t− λWt

)
, with λ = (µ+ q − rf )/σ;

• BSput (S0,K, rf , q, τ, σ) is the Black-Scholes price of a put option with initial value S0 of
the underlying, strike K, risk free rate rf , dividend rate q, maturity τ , and volatility σ.

4.2 Calibration of the GBM Model

The price of the guarantee in the GBM model depends on the dividend rate q, the proportional
transaction cost δ, the volatility of the house price σ, and the probability distribution of the
contract termination date T . It also depends on the loan balance Lt for all t ≤ Tmax. For the
lump-sum contract and the tenure contract, the loan balance depends on the market-consistent
mortgage rate r (from (7) and (11)), which in turn depends on the term structure of interest
rates and the probability distribution of the contract termination date T . In this section, we
discuss the calibration of these parameters.

δ and σ – Since the loan needs to be paid back within a limited period upon contract termination,
we conservatively set the transaction cost equal to the one in case of a forced sale, which is
δ = 30%.2 The volatility of the house price growth rate is calibrated based on the log return of
the Dutch House Price Index from the first quarter of 1996 to the second quarter of 2014. This
yields σ = 7%.

The probability distribution of T – To determine the probability distribution of T , we use the
survival rates published by the Dutch Actuarial Society (AG) in their AG2014 cohort life table.
Figure 1 displays P(T = t) for single individuals of different ages, and for a couple with a male
aged 67 and a female aged 64.

Risk free rate rf and mortgage rate r – In the GBM model, the term structure is flat at the risk

free rate rf . To determine this risk free rate rf (which we shall call the “equivalent risk free

2Nederlandse Vereniging van Banken: The Dutch Mortgage Market, 26 May 2014.

10



Model risk in the pricing of reverse mortgage products � 15

Figure 1: This figure displays P(T = t), the probability distribution of termination date T , for
single buyers of different ages, and for a couple with a male aged 67 and a female aged 64.

rate”), we consider the yield curve determined by the VAR model (see Section 5.1), and we let rf
be equal to the yield corresponding to the expected duration of the reverse mortgage contract in
the lump sum and interest only contract, while in the tenure contract, we let rf be equal to the
average yield from the first period to the expected duration of the reverse mortgage contract. The
expected duration of the contract is determined as the weighted average of the contract ending
times, with the weight of each time equal to P (T = t), the contract termination probability at
the corresponding time. The market consistent interest rates then follow from solving (7), (8),

and (11), with P
(t)
0 = 1

(1+rf )t
. With a constant equivalent risk-free rate, the market consistent

interest rate is equal to this equivalent risk-free rate (i.e., r = rf solves equations (7), (8) and
(11)). The equivalent risk free rate rf and the market-consistent mortgage rate r depend on the
age(s) of the borrower, as these determine the expected duration. The results are displayed in
Table 2. The corresponding loan balance as a function of time is displayed in Figure 2 for the
three types of reverse mortgages.

couple 65 70 75 80 85

Lump-sum 0.819% 0.815% 0.805% 0.794% 0.772% 0.744%
Interest-only 0.819% 0.815% 0.805% 0.794% 0.772% 0.744%

Tenure 0.742% 0.732% 0.711% 0.686% 0.649% 0.604%

Table 2: This table displays the market-consistent mortgage rate r, which is equal to the equiv-
alent risk free rate rf , for single buyers of different ages and for a couple, for the three types of
reverse mortgage products.

Dividend rate q – To calibrate the value of the dividend rate q, we use data on interest rates for
regular mortgages offered by Florius. Table 3 displays the interest rate charged by Florius, denoted
RF lorius(ϕ, Tm), for different loan-to-value ratios ϕ and terms of maturity Tm. The interest rate
is not linearly but stair-step increasing with the loan-to-value ratio. In the calibration we use the

11
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Figure 2: The loan balance Lt as a function of t, with L0 normalized to 1, for individual borrowers
of different ages and for a couple, in the lump-sum scheme (dashed lines), the interest-only scheme
(dotted lines), and the tenure scheme (solid lines), respectively. The vertical dashed-dotted lines
represent the expected time until decease of the (last surviving) borrower.

ϕ 1 3 5 6 10 15 20 30
0%-67% 1.25% 1.25% 1.25% 1.8% 1.88% 2.30% 2.7% 3.45%

68%-88% 1.45% 1.45% 1.45% 2.0% 2.08% 2.5% 2.9% 3.65%
89%-98% 1.75% 1.75% 1.75% 2.3% 2.38% 2.80% 3.2% 3.95%

99%+ 2.05% 2.05% 2.05% 2.60% 2.68% 3.10% 3.5% 4.25%

Table 3: This table displays the mortgage rate charged by Florius (RF lorius(ϕ, Tm)) for different
values of the term to maturity Tm and loan-to-value ratio ϕ. The data are obtained from the
website of Florius on 8 April 2016.

12
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Figure 3: This figure displays the interest rate charged by Florius for regular mortgages, as well
as the model-implied interest rate for q = qmin and for q = qmax. The upper three lines display
R(qmax, ϕ, Tm) (dotted), RFlorius(ϕ, Tm) (dashed) and R(qmin, ϕ, Tm) (dotted) as a function of
the term to maturity for ϕ = 98%. The lower three lines display these rates for ϕ = 67%.

interest rates for loan-to-value ratios ϕ ∈ {67%, 98%} and terms to maturity Tm ∈ {10, 15, 20}.
We first determine the model-implied interest rate for regular mortgages, denoted R(q, ϕ, Tm),
for these values of ϕ and Tm.3 We then determine the lower bound for q such that the model-
implied interest rates are no larger than the Florius interest rates for all ϕ ∈ {67%, 98%} and
Tm ∈ {10, 15, 20}, and the upper bound for q such that the model-implied interest rates are no
less than the Florius interest rates for all ϕ ∈ {67%, 98%} and Tm ∈ {10, 15, 20}, i.e., we let

qmin =max
{
q : R(q, ϕ, Tm) ≤ RFlorius(ϕ, Tm) for all ϕ, Tm

}
,

qmax =min
{
q : R(q, ϕ, Tm) ≥ RFlorius(ϕ, Tm) for all ϕ, Tm

}
,

The details of the procedure are discussed in the Appendix.4 We find qmin = 4.6% and qmax =
6.6%. Figure 3 displays the interest rates charged by Florius, RF lorius(ϕ, Tm), as well as the
model implied rates, R(qmin, ϕ, Tm) and R(qmax, ϕ, Tm), as a function of the time to maturity
Tm, for the two values of ϕ. We set the calibrated equal to

q = (qmin + qmax)/2 = 5.6%.

4.3 Sensitivity Analysis

In this section, we investigate the sensitivity of the price of the NNEG, πNN , to the various
parameter values. The sensitivities of π̃NN (t) follow straightforwardly from the “Greeks,” see,

3We take into account that in practice mortgage rates typically include mark-ups for operational costs and
Basel requirements.

4https://www.hypotheeklastencalculator.nl/berekenen/executiewaarde/
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for example, Hull (2015). The sensitivity of πNN then follows from (12). We first present
the partial derivatives of π̃NN (t) with respect to the various parameters. Then we illustrate
graphically the sensitivities of πNN with respect to these parameters.

To present the partial derivatives of π̃NN (t), we first notice that BSput (S0,K, rf , q, τ, σ), with
S0 = (1− δ)H0, K = Lt, and τ = t, is given by

BSput ((1− δ)H0, Lt, rf , q, t, σ) = e−rtLtΦ(−d2)− (1− δ)H0e
−qtΦ(−d1),

with

d1 =
log((1− δ)H0/Lt) + (rf − q + σ2/2)t

σ
√
t

,

d2 = d1 − σ
√
t,

where Φ is the cumulative distribution function of the standard normal distribution.

The partial derivatives of π̃NN (t) with respect to the loan-to-value ratio ϕ, the dividend rate q,
the transaction costs δ, and the house price volatility σ are given by

∂π̃NN (t)

∂ϕ
= e−rf tΦ(−d2)×

∂Lt

∂ϕ
,

∂π̃NN (t)

∂q
= t(1− δ)H0e

−qtΦ(−d1),

∂π̃NN (t)

∂δ
= e−qtH0Φ(−d1),

∂π̃NN (t)

∂σ
= (1− δ)H0e

−qtφ(d1)
√
t,

where ∂Lt/∂ϕ depends on the reverse mortgage scheme and where φ is the density function of
the standard normal distribution. These partial derivatives are all positive, implying that π̃NN (t)
and thus also πNN are increasing functions of these parameters.

These positive partial derivatives can easily be understood using the characteristics of the under-
lying put option. For example, an increase in the loan-to-value ratio ϕ results in an increase in
the strike price of the put option, which leads to a higher put option price. An increase in the
dividend rate q results in an increase in the risk premium (i.e., λ = (µ+ q− rf )/σ). This yields a
more widespread distribution of the SDF Mt, resulting in a higher put option price. An increase
in the transaction costs δ means a decrease in the underlying value (1 − δ)H0. But the delta
(∆) of a put option (i.e., the sensitivity of the put option price with respect to the underlying)
is negative, so that an increase in δ has a positive effect on the put option price. Finally, an
increase in the house price volatility σ is positive, following from vega (i.e., the sensitivity of the
put option price with respect to the volatility) being positive.

The second order partial derivatives are given by

∂2π̃NN (t)

∂ϕ2
= e−rf tφ(d2)

∂ logLt(ϕ)

∂ϕ

∂Lt(ϕ)

∂ϕ
/σ

√
t,

∂2π̃NN (t)

∂q2
= t2(1− δ)H0e

−qt
(
φ(d1)/σ

√
t− Φ(−d1)

)
,

∂2π̃NN (t)

∂δ2
= e−qtH0φ(d1)/(1− δ)σ

√
t,

∂2π̃NN (t)

∂σ2
= νd1d2/σ,

14
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with ν = ∂π̃NN (t)/∂σ, the partial derivative of π̃NN (t) with respect to σ (known as the “Greek”
vega). The second order partial derivatives with respect to ϕ and δ are positive, implying that
π̃NN (t) and thus also πNN are convex functions of ϕ and δ. On the other hand, the second
order partial derivatives with respect to q and σ can be both positive and negative. This implies
that π̃NN (t) can be both accelerating and decelerating as function of q and σ, depending on the
parameter values.

In Figure 4, we illustrate graphically πNN as a function of the loan-to-value ratio (ϕ, first row),
the dividend rate (q, second row), the proportional transaction cost (δ, third row), and the
volatility of the house price (σ, last row), with ϕ ∈ [0, 1], and with the latter three parameters
around their calibrated values. The left panels correspond to the the lump sum contract, the
middle panels to the interest-only contract, and the right panels to the tenure contract. In each
case, results are displayed for single borrowers of different ages. If ϕ is fixed, we set it equal
to ϕ = 0.50. If any of the other three parameters is kept fixed, its value is set equal to its
calibrated value. The initial house price is set equal to H0 = 1. Figure 5 complements Figure 4
by showing the second order partial derivatives with respect to ϕ and q as a function of ϕ and
q, respectively, and by showing ∂2π̃NN (t)/∂ϕ∂q = ∂2π̃NN (t)/∂q∂ϕ as a function of ϕ and q.
This latter second order derivative is given by

∂2π̃NN (t)

∂ϕ∂q
= te−rf tφ(d2)

∂Lt(ϕ)

∂ϕ
/σ

√
t.

All curves in Figure 4 are increasing as follows from the positive partial derivatives of π̃NN (t).
Their shapes can be understood by taking into account the second order partial derivatives. For
the same parameter values, the curves for older buyers typically correspond to lower values of
πNN . Older buyers have a higher probability of shorter remaining lifetimes. This would suggest a
higher value, since theta (i.e., the sensitivity of the standard put option price with respect to the
time-to-maturity, with symbol Θ) is typically negative, except for deep in-the-money put options.
However, there are two opposing effects. First, we have an effect via the strike price. Increasing
the time-to-maturity, increases this strike price (except in the interest only contract), which has
a positive effect on the put option value. Secondly, we have an effect via the risk free interest
rate: older buyers have a lower risk free interest rate (see Table 2). Since rho (i.e., the sensitivity
of the standard put option price with respect to the risk free interest rate) is negative, a lower
risk free rate implies a higher value of the put option. The graphs show the resulting net age
effects. In most cases the two positive effects (via the strike price and the risk free interest rate)
dominate the negative time effect (via Θ), except for the tenure contract with very low dividend
yields. The age effect is stronger in the lump sum case than in the interest only case. This can
be understood as follows. The lump sum and the interest only contract have the same risk free
rates, so an important difference in terms of the age effect between these two is the positive
strike effect, which is present in the lump sum but absent in the interest only contract. The
tenure contract has a lower risk free interest rates than the other two contracts (see Table 2),
so that here the magnitude of the net age effect compared to the other two is not immediately
clear, but can be observed from the figure (given the considered parameter values).

Among these calibrated parameters (dividend rate (q), proportional transaction costs (δ), and
volatility of the house price (σ)), πNN seems to be most sensitive to the dividend rate. For
example, πNN for a 65-year-old borrower increases from 1.68% to around 39.8% as the dividend
rate increases from 0% to 10% in the lump-sum scheme. In the interest-only scheme, πNN

increases from 0.01%% to 17.35% and in the tenure scheme, it increases from 4.21% to 42.28%.
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Figure 4: Sensitivity analysis of πNN for the lump-sum scheme (left), the interest only scheme
(middle) and the tenure scheme (right). The figure diplays πNN as a function of the loan-to-
value ratio (ltv=ϕ, first row), the dividend rate (q, second row), the proportional cost (δ, third
row), and the house price volatility (σ, fourth row).
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Figure 5: Sensitivity analysis of the derivatives of πNN for the lump-sum scheme (left), the
interest only scheme (middle) and the tenure scheme (right). The figure displays ∂πNN/∂q
and ∂πNN (t)/∂ϕ, respectively, as a function of the loan-to-value ratio (ltv=ϕ, first and third
row) and as a function of the dividend rate (q, second row and fourth row). In each case, the
transaction cost is set equal to δ = 0.3, and the volatility of the house price increasing rate is
set equal to σ = 0.07.
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5 Pricing with the VAR model

In this section we consider an alternative approach to model the joint distribution of (Ht,Mt).
This approach makes use of a Vector Auto Regression (VAR) model that includes the GBM model
as a special case. We first present the VAR model, the corresponding SDF, and the implied term
structure. Next, we discuss the parameter estimation and calibration. We conclude this section
by illustrating the pricing of the NNEG (i.e., πNN ).

5.1 The VAR Model

Five variables in total will be included in the VAR model: the Dutch GDP log growth rate,
the log return on the Dutch House price index (which reflects the growth rate of house prices),
inflation (quantified as the log price change in the CPI index), the 3 months Euribor rate, and
the spread of the 10 years zero coupon rate over the 3-months Euribor rate. Table 4 presents
the variable names and a short description of each of the variables. These choices are motivated
by the literature. Brooks and Tsolacos (1999) indicated that interest and inflation are significant
factors in explaining house price returns. Abelson et al. (2005) estimated a model using several
economic variables. They found that in the long run house prices are affected significantly by
disposable income, interest rates, equity prices, consumer price indexes, and the supply of housing.
Ang and Piazzesi (2003) describe the joint dynamics of bond yields and macroeconomic variables
in a VAR model. They include GDP as a factor in predicting housing prices and the yield curve.
Following this study, we also include GDP and inflation in our VAR model. In line with recent
studies (Sherris and Sun, 2010; Alai et al., 2013; Shao et al., 2012; and Cho et al., 2013), we
will use two factors from the yield curve, namely, the three months Euribor rate and the ten year
spread.

variable definition

hpi house price growth rate
gdp GDP growth rate
cpi inflation

y(1) 3-month zero-coupon rate

y(40) − y(1) 10-year yield spread

Table 4: This table presents the state variables used in the VAR model.

The dynamics of the five state variables, collected in the n-dimensional vector xt, with n = 5 in
our case, is assumed to follow the following VAR:

xt+1 = α+ Γxt +Σεt+1, (14)

where α is an n-dimensional vector of parameters, Γ is an n×n-dimensional matrix of parameters,
Σ an n × n-dimensional lower triangular matrix, and εt+1 is an n-dimensional vector of error

terms representing the shocks to the system, with εt+1
i.i.d∼ N(0n×1, In×n), where 0n×1 is an

n-dimensional vector of zeros, and In×n is the n-dimensional identity matrix.

Before proceeding, we discuss the link with the GBM model. Note that for Γ = 0, the VAR
model implies that

Ht = H0 exp

(
α1t+ σ1

t∑
s=1

ε1,s

)
, (15)
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with α1 the first component of α, σ1 the (1, 1)-component of Σ, and ε1,s the first component of
εs. Hence, the house price process in the GBM model is a special case of the house price process
in the VAR model, with Γ = 0 and α1 = µ− 1

2σ
2
1.

5.2 The Stochastic Discount Factor

The SDF Mt is given by Mt =
∏t

s=1ms, where ms > 0 is the SDF between periods s − 1 and
s, i.e., for a payoff Xs at time s the price Ss−1 at time s− 1 is given by

Ss−1 = Es−1(msXs),

with Es−1 the conditional expectation operator, conditional upon the information available at
time s− 1. For a payoff Xt at time t, the price at time t = 0 can be obtained by iterating this
equation backward, also using the law of the iterated expectations, resulting in

S0 = E

(
t∏

s=1

msXt

)
= E(MtXt),

with E = E0.

We model mt+1 to be exponentially affine:

mt+1 = exp

(
−y

(1)
t − 1

2
λ′λ− λ′εt+1

)
, (16)

with y
(1)
t the one-period (continuously compounded) interest rate, λ an n-dimensional vector of

“prices of risk”, and εt+1 the n-dimensional vector of error terms from (14). Given mt+1, we
find the SDF Mt:

Mt =
t∏

s=1

ms = exp

(
−

t∑
s=1

y(1)s − 1

2
λ′λt− λ′

t∑
s=1

εs

)
, (17)

where
∑t

s=1 εs follows an n-dimensional normal distribution with mean vector 0n×1 and covari-
ance matrix tIn×n. We note that the SDF that we use in the GBM model is a special case of
the SDF in (17).

5.3 The (Implied) Term Structure

The (nominal) term structure can be derived from the yields of the zero-coupon bonds. Define

the yield to maturity of a zero-coupon bond with time-to-maturity T as y
(T)
t , then we have

P
(T)
t = exp(−Ty(T)t ).

A T-year zero coupon bond, like any payoff in the economy, can be priced by the SDF. Therefore,
the price of this zero coupon bond at time t satisfies,

P
(T)
t = Et

(
mt+1P

(T−1)
t+1

)
(18)

For T = 1 we have

y
(1)
t = − log(P

(1)
t ) = − log (Et (mt+1 × 1)) = − log exp

(
−y

(1)
t

)
= y

(1)
t ,
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showing that the model is self-consistent.

By postulating

log(P
(T)
t ) = −A(T)−B(T)′xt, (19)

A(T) and B(T) can be solved recursively using this equation. This results in the following
equations:

A(T) = A(T− 1) +B(T− 1)′α− 1
2B(T− 1)′ΣΣ′B(T− 1)−B(T− 1)′Σλ

B(T) = Γ′B(T− 1) + δ1,
(20)

with δ1 = (0, 0, 0, 1, 0)′, selecting the fourth component of xt, which is y
(1)
t . The starting values

for A and B are A(0) = 0, B(0) = 0n (following from logP
(0)
t = log(1) = 0). The zero-coupon

yields are thus given by

y
(T)
t = a(T) + b(T)′xt, (21)

with a(T) = −A(T)/T and b(T) = −B(T)/T.

5.4 Data

For the five state variables, we use data retrieved from Datastream and the Dutch Central Bank
(DNB), from the first quarter of 2009 up to and including the first quarter of 2016. Figure 6
shows the evolution of the five state variables since the second quarter of 1995, when the HPI
growth rate became available. Since the GDP growth rate is only available quarterly, we use
quarterly data. There was a change in the evolution pattern during the financial crisis, especially
for the 3-month rate and the HPI growth rate. Both of them are essential in the pricing of the
NNEG. To better deal with the impact of the low interest rate and house price growth rate, we
use the subsample after the financial crisis in our estimation (i.e., starting from the first quarter
of 2009).

In the calibration of the prices of risk (the vector λ) we make use of interest rates, downloaded
from the website of the European Central Bank.5 We use the three-month, nine-month, and
one-year to thirty-year interest rates from the third quarter of 2014 to the first quarter of 2016.

5.5 Estimation and Calibration

The price of the guarantee in the VAR model depends on the proportional transaction cost δ,
the probability distribution of the contract termination date T , and the parameters in the VAR
model. In this section, we discuss the estimation/calibration of these parameters.

The proportional transaction cost δ and the probability distribution of T –These parameters are
set at the same values as in the GBM model.

Estimating the parameters of the VAR model – In line with the existing literature (Ang and Pi-
azzesi, 2004; Cochrane and Piazzesi, 2005 and 2008), we conduct a two-step estimation procedure
to determine the parameters of the VAR model and the SDF. In the first step, we estimate the
VAR model using maximum likelihood. In the second step, we treat the estimated parameters
in the VAR model as given, and calibrate λ, the vector of the prices of risk, by minimizing the
squared difference between the model-implied term structure of interest rates (as function of λ)
to the historical term structure of interest rates. The first step estimation results are shown in
Table 5. The calibrated values for the prices of risk are shown in the second and third columns

5See http://www.ecb.europa.eu/stats/money/yc/html/index.en.html.
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(a) HPI growth rate (b) GDP growth rate

(c) Inflation (d) 3-month rate

(e) 10-year spread

Figure 6: The figure displays the historical movements of the state variables in the VAR model.
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(columns “original 1” and “original 2”) of Table 6. In case of “original 1” we do not impose
restrictions on λ. In case of “original 2” we assume only the inflation, short rates, and 10-year
rate spreads have a non-zero price of risk. In the latter case, calibrated version of the VAR model
does not include the GBM model as special case.

α Γ

hpi
-0.00196 0.39646 0.2496 -0.26041 -3.68573 1.37647
0.00401 0.14667 0.24664 0.27633 1.52411 1.06391

gdp
-0.00636 0.22988 0.07766 -0.0519 -0.0393 2.25398

0.003 0.1097 0.18447 0.20668 1.13992 0.79572

cpi
0.00324 -0.06246 -0.14935 -0.04322 0.55684 -0.16527
0.00276 0.10074 0.1694 0.1898 1.04681 0.73073

y(1)
0.00067 0.0066 0.03084 0.00348 0.86901 -0.12491
0.00043 0.01585 0.02665 0.02986 0.16469 0.11497

y(40) − y(1)
0.0013 -0.02394 -0.05615 -0.04688 -0.00171 0.69047

0.00045 0.01654 0.02782 0.03117 0.1719 0.1200

µ = (I − Γ)−1α Σ

hpi -0.00491 0.00895 0 0 0 0
gdp 0.00103 0.0001 0.0067 0 0 0
cpi 0.00346 -0.00028 -0.00079 0.00609 0 0
y(1) 0.00154 -2.63E-05 -0.0008 5.82E-05 0.00054 0

y(40) − y(1) 0.00385 -0.00029 -0.00039 0.00016 0.00027 0.00083

Table 5: Estimation results of the VAR(1) model xt+1 = α + Γxt + Σεt+1. The first column
contains the state variables. The top panel displays the estimated coefficients and the corre-
sponding standard errors. The bottom panel displays the matrix Σ and the vector µ of model
implied quarterly equilibrium values of the state variables.

Original 1 Original 2

hpi -0.055 0
gdp 0.114 0
cpi -0.003 -0.0060

y(1) -0.126 -0.2525

y(40) − y(1) -0.008 -0.0162

Table 6: This table presents the calibrated λ (the prices of risk) for the case where we do not
impose restrictions on λ (“Original 1”), and for the case where we assume that only the inflation,
short rates, and 10-year rate spreads have a non-zero price of risk (“Original 2”).

For the log return on the house price index we find that it depends positively on its own lag (with
coefficient around 0.40) and negatively on the one-year interest rate (with coefficient around
−3.7). These effects are statistically significant (at the 5% significance level). The implied long
run average of the log return on the house price index (shown in the bottom panel of Table 5)
turns out to be −0.491%, i.e., around µhpi = −1.96% on an annual basis. The estimated volatility
of the house price index, equal to around 1.8% on an annual basis (i.e., ca.

√
4 × 0.895%), is
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lower than the calibrated value of the volatility used in the GBM model. This occurs because the
estimated volatility is based on a shorter sample, starting from the first quarter of 2009.

Re-calibrating the parameters of the VAR model – As discussed in the context of the GBMmodel,
the price of the NNEG is rather sensitive to the dividend yield. In the VAR model, the price
depends on the long run average of the log return on the house price index, which is related to
the dividend yield in the GBM model. Specifically, suppose that in the VAR model the house-
cum-dividend value H̃t+1 at time t+ 1 is given by

H̃t+1 = Ht+1 exp(qt), (22)

with qt the dividend yield. Then Ht = Et(Mt+1H̃t+1) yields,

qt = y
(1)
t − α1 −

1

2
σ2
1 − γ′1xt + λ1σ1, (23)

with (as before) α1 the first component of α, σ1 the (1, 1)-component of Σ, λ1 the first compo-
nent of λ, and with γ1 the first row of Γ. Like in the GBM model, we shall calibrate qt, based on
observed prices of regular mortgages. Due to the idiosyncratic risk component (see e.g., Shao et
al., 2015), we expect that the calibrated value based on regular mortgage data better reflects the
risk premium in the house price increase rate than the estimated value based on house price data.
The dividend yield qt can be calibrated in different ways, for example, by (re-)calibrating one or
more of the parameters of the right hand side of (23). In this paper we choose to calibrate qt by
(re)calibrating µhpi, the first component of µ = (In − Γ)−1α. To re-calibrate µhpi, we use the
same procedure as described for the GBM model, taking into account that a re-calibrated value
of µhpi results in (re)calibrated values of the whole vector α = (In − Γ)µ. Details are available
in the Appendix. To distinguish this re-calibrated value based on (regular) mortgage data from
the estimated value based on house price data, we denote the former by µm

hpi and the latter by

µh
hpi. The resulting upper and lower bound for the re-calibrated (annualized) µhpi are given by:

µm
hpi,min = −4.99% and µm

hpi,max = −1.14%.

Figure 7 displays the interest rates charged by Florius, RFlorius(ϕ, Tm), as well as the model
implied rates, R(µm

hpi,min, ϕ, Tm) and R(µm
hpi,min, ϕ, Tm), as a function of the time to maturity

Tm, for the two values of ϕ.
We set the re-calibrated value equal to the average of the upper and lower bound:

µm
hpi = (µm

hpi,min + µm
hpi,max)/2 = −3.065%.

For each of the three values µm
hpi,min, µ

m
hpi,max, and µm

hpi, we re-calibrate the prices of risk λ to
derive the corresponding SDF. In this way, by not re-calibrating just a single (ad hoc) parameter,
we aim to avoid disturbing the links between the different parts of the model. Table 7 displays
the resulting values of λ.
We conclude with a few observations. First, the re-calibrated drift based on mortgage data is
substantially lower than the estimated value based on house price data, i.e., µm

hpi = −3.065% <

µh
hpi = −1.96%. However, the estimated value µh

hpi lies between the lower and upper bound of the

re-calibrated value. Second, when translated in terms of dividend rate (using qt = −µhpi− 1
2σ

2
1+

y
(1)
t , with y

(1)
t = 0, using annualized parameter values), the lower and upper bounds µm

hpi,min and
µm
hpi,max correspond to dividend rates of qmax = 4.97% and qmin = 1.12%, respectively. Thus,

there is some (minor) overlap with the range found in the GBM model.
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Figure 7: This figure displays the mortgage rate charged by Florius as well as the model-implied
mortgage rate for µhpi = µhpi,min and for µhpi = µhpi,max. The upper three lines display
R(µhpi,min, ϕ, Tm) (dotted), RFlorius(ϕ, Tm) (dashed) and R(µhpi,max, ϕ, Tm) (dotted) as a func-
tion of the term to maturity for ϕ = 98%. The lower three lines display these rates for ϕ = 67%.

µm
hpi µm

hpi,min µm
hpi,max

hpi 0 0 0
gdp 0 0 0
cpi -0.0058 -0.0055 -0.0061

y(1) -0.2505 -0.2470 -0.2540

y(40) − y(1) -0.0163 -0.0166 -0.0161

Table 7: This table presents the re-calibrated λ corresponding to µm
hpi (second column), µm

hpi,min

(third column), and µm
hpi,max (last column).
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Figure 8: This figure displays the term structure of interest rates in the VAR model.

5.6 Pricing the NNEG

We can now price the NNEG with the VAR model. We use the end-of-sample term structure
of interest rates according to the VAR model, given by equation (21) with xt equal to the state
variables in the last period of the sample. The resulting term structure is displayed in Figure 8.
The corresponding market-consistent interest rates follow from solving (7), (8), and (11), with

P
(t)
0 = exp(−ty(t))t. The results are displayed in Table 8.

couple 65 70 75 80 85

Lump-sum 0.819% 0.815% 0.806% 0.793% 0.773% 0.741%
Interest-only 0.816% 0.811% 0.803% 0.790% 0.769% 0.737%

Tenure 0.847% 0.846% 0.844% 0.841% 0.835% 0.823%

Table 8: This table displays the market-consistent mortgage rate r in the VAR model, for single
buyers of different ages and for a couple, for the three reverse mortgage schemes.

We determine the price of the guarantee conditional at time t, i.e.

π̃NN (t) = E [max {Lt − (1− δ) ·Ht, 0} ·Mt] ,

via simulation. In our simulation we generate 5000 scenarios for (Ht,Mt). For each scenario,
we determine the corresponding value of max {Lt(ϕ)− (1− δ) ·Ht, 0} ·Mt, and we set π̃NN (t)
equal to the average of these simulated values. Combined with the probability distribution of T ,
this yields the value of πNN following from (12).

In Figure 9, we display πNN for the three reverse mortgage products as a function of the two
input parameters ϕ (the loan-to-value ratio) and δ (the forced sale proportional transaction cost),
with the other parameters set to their estimated or calibrated values, and with H0 = 1.
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Figure 9: Sensitivity analysis of πNN for the lump-sum scheme (left), the interest only scheme
(middle) and the tenure scheme (right) in the VAR model. πNN is plotted as a function of the
loan-to-value ratio (ϕ) in the first row and as a function of the proportional transaction cost (δ)
in the second row.
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The interest-only contract yields the lowest πNN value, and the tenure contract yields the highest
πNN value. With µm

hpi = −3.065%, πNN for a 65-year-old borrower is 56.97% for the interest-
only scheme when the initial loan-to-value ratio is 100%. The corresponding πNN is around
73.55% for the lump-sum scheme and 79.16% for the tenure scheme.
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6 Model risk

In the previous sections we discussed two approaches to price the NNEG. The results show that
among the calibrated/estimated parameters, the value of the NNEG seems to be quite sensitive
to the dividend rate q in the GBM model, and to the house price growth rate µhpi in the VAR
model. For both these parameters, we have calibrated the range of plausible values using data
on regular mortgages. This led to (in annual terms)

q ∈ [4.6%, 6.6%], for the GBM model,

µm
hpi ∈ [−4.99%,−1.14%], for the VAR model.

In this section, we compare the ranges of the value of πNN for the GBM model and for the VAR
model, resulting from the calibrated ranges of q and µm

hpi, respectively.

Figure 10 and Table 9 display the upper bound and the lower bound for πNN for both mod-
els, as a function of the loan-to-value ratio. All other parameters are set equal to their cali-
brated/estimated values, as discussed in Sections 4.2 and 5.5, respectively. We present results
for the case where the borrower is a couple, consisting of a male and a female, with the male
aged 67 and the female aged 64. As before, the initial house value is normalized to 1. Figure 10
also includes the results using the calibrated value of q in the GBM model (i.e., q = 5.6%) and
using the estimated value of µhpi in the VAR model (i.e., µh

hpi = −1.96%).

The results show that the difference in the values of πNN between the lower and upper bounds
can be quite substantial. For example, for the lump sum contract, we find using the VAR
model that the interval of πNN is around [0%, 5.4%] for the lowest loan-to-value ratio considered
(ϕ = 15.5%), changing to [24%, 45%] for the largest loan-to-value ratio considered (ϕ = 55%).
The corresponding intervals for the GBM model are somewhat smaller, but still large, and always
included in the intervals of the VAR model. These wide intervals, based on a regular mortgage
based calibration, show that there is considerable model risk when pricing the NNEG of reverse
mortgage products. This might be another reason why the reverse mortgage market is so small.
If there is an active housing market, where reverse mortgage providers can use derivatives to
reduce the exposure to model risk, the reverse mortgage market might expand.

Table 10 shows the maximum allowed loan-to-value ratio by the Dutch mortgage provider Florius
for lump sum reverse mortgages, as a function of the age(s) of the buyer(s).6 For the couple
that we consider, the maximum loan-to-value ratio is 15.5%. The reverse mortgage interest
rate charged by Florius is fixed at 3.9% regardless of the age and loan-to-value ratio.7 So, we
cannot directly make a comparison with our model based calculations of πNN . Based on a
simple “back-of-the-envelope” calculation, assuming that the NNEG corresponds more or less
to the difference between the reverse mortgage interest rate and a regular thirty-year mortgage
interest rate (3.45%, see Table 3), we find a value for the NNEG around 3.9%, which is inside
the intervals of both the GBM and VAR models.

In Figure 11 we display the upper and the lower bound of πNN for the GBM model and for the
VAR model, for single buyers as a function of the age of the buyer. The loan-to-value ratio is set
equal to the maximum allowed value by Florius, as displayed in Table 10. Thus, for the 65-year-
olds, ϕ = 18.5%, for the 70-year-olds, ϕ = 23.9%, and so on. We also include as reference the

6These data are obtained from the Florius website on 8 April 2016, see https://www.florius.nl/Pages/

handig/bereken-verzilver-hypotheek.aspx. After we fill in the date of birth and the house value of the
buyer, the maximum loan-to-value ratio will be obtained with the existing mortgage on the property equal to zero.

7The mortgage rate is also obtained from the Florius website on 8 April 2016, see previous footnote.
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Lump-sum Scheme

ϕ GBM VAR

15.5% 1.320% 4.560% 0.000% 5.370%
20% 3.270% 8.090% 0.070% 9.360%
30% 10.210% 17.160% 2.710% 19.200%
40% 19.090% 26.860% 9.720% 29.500%
50% 28.700% 36.760% 19.130% 39.930%
55% 33.620% 41.740% 24.180% 45.170%

Interest-only Scheme

ϕ GBM VAR

15.5% 0.430% 2.390% 0.000% 2.760%
20% 1.330% 4.750% 0.000% 5.560%
30% 5.470% 11.510% 0.330% 13.080%
40% 11.760% 19.120% 3.320% 21.230%
50% 19.120% 27.020% 9.350% 29.560%
55% 22.990% 31.010% 13.080% 33.760%

Tenure Scheme

ϕ GBM VAR

15.5% 2.260% 5.680% 0.170% 7.100%
20% 4.650% 9.290% 0.960% 11.320%
30% 11.950% 18.250% 5.890% 21.440%
40% 20.650% 27.760% 13.880% 31.980%
50% 29.960% 37.470% 23.340% 42.670%
55% 34.740% 42.370% 28.340% 48.060%

Table 9: The boundaries of πNN in the two models. The first column displays the loan-to-value
ratio; the second and third columns display the lower bound and the upper bound of πNN in the
GBM model; the fourth and fifth columns display the lower bound and the upper bound of πNN

in the VAR model.
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(a) GBM: lump-sum (b) VAR: lump-sum

(c) GBM: interest-only (d) VAR: interest-only

(e) GBM: tenure (f) VAR: tenure

Figure 10: The figure displays πNN as a function of the loan-to-value ratio in the three reverse
mortgage schemes. The left panels display πNN in the VAR model for the estimated value of
the house price increase rate (µh

hpi = −1.96%) and for the lower bound and the upper bound of
the calibrated range (µm

hpi,min and µm
hpi,max). The right panels display πNN in the GBM model

for the calibrated value of the dividend yield (q = 5.6%) and for the lower bound and the upper
bound of the calibrated range (q = qmin and q = qmax). All other parameters are set equal to
their calibrated value.
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Age 65 70 75 80 85 couple (64+67)

maxϕ 18.5% 23.9% 29.6% 35.3% 40.1% 15.5%

Table 10: The maximum loan-to-value ratio allowed by Florius.

simple “back-of-the-envelope” based calculation of the NNEG using the reverse mortgage and
regular mortgage rates of Florius. Similar to the results for the couples, we find a wide range for
πNN , ranging from close to 0% to almost 7% for a 70-year-old to a range from close to 0% to
around 3.5% for an 85-year-old. Again the interval in case of the GBM model is narrower than
in case of the VAR model, but for higher ages the GBM range is no longer fully contained in the
VAR range.

In our analysis, we have assumed that the termination rates are mortality rates given by the
AG2014 life table. However, there are two opposite forces that may drive the termination rates
away from the mortality rates in the AG2014 life table. On the one hand, there might be
adverse selection in buying a reverse mortgage product. Those who have a longer subjective life
expectancy may be more willing to buy a reverse mortgage product. Thus, the mortality rates
might be overestimated. On the other hand, the termination probability may be underestimated
because we ignore other reasons for termination, for instance moving permanently to a nursing
home. The fact that in our analysis we did not account for adverse selection and have assumed
away the possibility of termination due to causes other than decease implies that the degree of
model risk in the price of reverse mortgages is likely underestimated. We therefore performed a
sensitivity analysis in which we investigate the effects of alternative assumptions regarding the
termination rate on the price of reverse mortgages. We look at both cases where termination
rates increase and cases where termination rates decrease as compared to mortality rates from
AG2014. Chen, et al. (2011) and the HUD assume that the mobility rate is about 30% of the
mortality rate. Therefore, as an upper bound we consider the case where the termination rate
is 130% of the mortality rate given by the AG2014 table. We also consider cases where the
termination rate is 110% or 120% of the mortality rate. To investigate the potential impact of
adverse selection, we consider the case where the termination rate is 10%, 20% or 30% lower
than the mortality rate according to the AG2014 table. We find that increasing the termination
rate reduces the value of the NNEG and the sensitivity of πNN to the main parameters while
decreasing the termination rates has the opposite effect. But qualitatively, the results are largely
consistent with the findings when using the AG2014 life table. The main difference is that
the rates charged by Florius fall below the lower bound of the rates for the GBM model when
termination rates decrease by at least 20%. However, this is a quite extreme case. If the mobility
rate is 30% of the mortality rate, then a decrease of 20% in the termination rate as compared
to AG2014 implies that the adverse selection reduces the mortality rate by 38.5%.
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Figure 11: This figure displays the model implied price of the NNEG for single buyers, as a
function of the age of the buyer. The loan-to-value ratio is set equal to the maximum allowed
value by Florius, as displayed in Table 10. All other parameters are set equal to their calibrated
value. The solid lines display the lower bound and the upper bound of πNN in the GBM model.
The dashed lines display the lower bound and the upper bound of πNN in the VAR model. As
reference, the dashed-dotted line displays the value of πNN , assuming that it corresponds to the
difference between the reverse mortgage interest rate charged by Florius (3.9%) and the interest
rate charged by Florius for a regular thirty-year mortgage (3.45%, see Table 3).
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7 Conclusion

We have analyzed the effect of model risk on the price of the No-Negative-Equity-Guarantee
(NNEG ) which is typically imbedded in reverse mortgage products. We considered two different
models to determine the price, a GBM model and a VAR model, and investigated the sensitivity
of the price of the NNEG to the parameter values in each model. We find that in both models,
the price of the NNEG is particularly sensitive to the parameter that reflects the expected future
house price development, which is the house price increase rate in the VAR model and the
dividend rate in the GBM model. Calibration of these parameters using data on prices of regular
mortgages yields a dividend rate varying from 4.6% to 6.6% in the GBM model, and a house
price increase rate varying from −4.99% to −1.14% in the VAR model. Because the price of
the NNEG is highly sensitive to the value of the house price increase rate in the VAR model,
and to the value of the dividend rate in the GBM model, these wide ranges imply that there is
considerable model risk when pricing the NNEG. For example, for a lump-sum reverse mortgage
with loan-to-value-ratio of 30 percent issued to a couple with a male and a female aged 67 and
64, respectively, the lower bound of the calibrated price of the NNEG is about 2.7% of the initial
house value in the VAR model, while the upper bound is around 19% percent of the initial house
value. The model risk for other reverse mortgage designs and lenders of different ages is similar
in magnitude.

This substantial model risk means that pricing the NNEG in reverse mortgage products is quite
a challenging task. In our approach we made a number of possibly restrictive assumptions,
which might have impact on our findings. For example, in practice regular and reverse mortgage
interest rates might be determined in a different way than we model. This might affect our
calibration results, in particular, it might affect the degree of model risk that we find. In the
GBM model we only allow for one source of risk. In the VAR model we allow for multiple sources
of risk, but we assume that the house price risk factor is equal to zero. Other ways of calibrating
the prices of risk and the dividend yield might yield different outcomes. When calibrating the
ranges of the dividend yield (in the GBM model) and the house price increase rate (in the VAR
model), presented in the Appendix, we also impose strong assumptions. For example, we assume
independence between financial risk, house price risk, and default risk. Relaxing these and other
assumptions might affect the degree of model risk. Finally, we present results for both the GBM
and a version of the VAR model, but without making a clear choice between them. These are
topics of future research.
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Appendix

We use ordinary mortgage products to calibrate the dividend rate q in the Geometric Brownian
Motion Model and the expected house price growth rate µhpi in the VAR Model. First, we
describe the mortgage products used in the calibration. Next, we discuss the calibration of the
two aforementioned parameters in the two models. Table 11 summarizes the notation used in
the main text and in this appendix.

Mortgage Products—The cash flow pattern associated with a regular mortgage is very straight-
forward. A cash outflow equal to the initial loan amount is lent to the borrower at the beginning
of the contract and in the following years cash inflows will be generated from the interest pay-
ments and the repayments of the loans. From the lenders’ perspective, risks involved in a normal
mortgage are due to the default of the borrowers in combination with a house value lower than
the loan balance. To compensate the default risk, the bank charges an interest-rate that is above
the market-consistent rate without default. We can use the default probability and the recovery
rate in case of a default to assess the present value of the expected cash inflow at the contract
initiation, which can be compared to the cash outflow– the initial loan amount. In addition to
the default premium, the bank needs to reserve some capital that is at least 4% of the loan
balance as required by the Basel 1. The required return on the reserved capital, the hurdle rate,
is set to be 9.33%.8 Besides, we assume there is a 1% operation cost proportional to the loan
balance. By setting the net present value of all cash flows to the sum of the present value of
the operation cost and required profit on the reserved capital, we can derive the model-implied
mortgage rate, which depends on the loan-to-value ratio ϕ. We then compare the interest rates
for loan-to-value ratios ϕ = 98% and ϕ = 67% to the market rates, which are displayed in Table
3.

(a) GBM (b) VAR

Figure 12: These graphs plot the difference between the sum of the cash outflow and the required
premium (the LHS of equations (26) and (27 )) and the present value of all the future cash flows
(the RHS of equations (26) and (27 )) against the interest rate R for mortgage with Tm = 15
years. We set the dividend rate q in the GBM model and the house price growth rate µhpi in the
VAR model equal to their calibrated values.

The Geometric Brownian Motion (GBM) Model—The mortgage contract that we consider
is an annuity mortgage, which means that the lender pays a fixed amount per year during the
entire lifetime of the mortgage. In line with the continuous-time nature of the GBM model, we

8R. Tigchelaar, March 2014, Evaluation of methods for determining the credit risk premium for mortgages.
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Variable Definition

(x, y) The ages of the two spouses of the household (x: husband; y: wife)
Tx, Ty The times of death of the two spouses of the household

sp
(g)
z,t The probability that a z-year-old in year t with gender g survives at least s more years

q
(g)
z,t The probability that a z-year-old in year t with gender g dies within a year

p
(t)
0 The date-zero price of a zero-coupon bond with a unit payoff in date t
Lt The value of the loan balance at date t
Ht The value of the property at date t
ϕ The loan-to-value ratio
δ The proportional transaction cost related to selling the house
T The time at which the reverse mortgage contract terminates, i.e., T = max{Tx, Ty}
Tm The term to maturity of a regular mortgage
Tmax The maximum value of T
mt The stochastic discount factor linking year t− 1 to year t
Mt The stochastic discount factor linking year 0 to year t
C The fixed payments made each period in the tenure contracts

NN T The value of the No-Negative-Equity-Guarantee (NNEG ) at contract termination
πNN The premium for the No-Negative-Equity-Guarantee (NNEG)

π̃NN (t) The premium for the No-Negative-Equity-Guarantee (NNEG) ending at date t
q Fixed house net dividend rate

qmin The lower bound of the net dividend rate
qmax The upper bound of the net dividend rate
Φ The cumulative distribution function of the standard normal distribution
φ The probability distribution function of the standard normal distribution
S The initial value of the underlying asset
K Strike price of the put option
r Reverse mortgage rate
rf The risk-free rate in the GBM model
R Mortgage rate

RFlorius Mortgage rate charged by Florius
σ Annualized house price volatility
κ Markup for πNN

A Fixed rate of payments of the regular mortgage
Tm Term to maturity, Tm ∈ {10, 15, 20}
Tf Horizon for redemption of the loan, which is 30 year
β The default rate for the mortgage
τ Time of default
hpi The house price growth rate
gdp The GDP growth rate
cpi The inflation rate

y(1) The 3-month zero-coupon rate

y(40) The 10-year rate
λ The price of risk

µh
hpi The mean of the house price increasing rate estimated using historical house price data

µm
hpi The mortgage based drift

µm
hpi,min The lower bound of the mortgage based drift

µm
hpi,max The lower bound of the mortgage based drift

Table 11: This table contains the notations used in this paper.
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assume that the lender pays a continuous cash flow at an annual rate denoted by A. In the
GBM model, with R denoting the mortgage rate, the remaining liability Lt of the mortgage then
satisfies

dLt

dt
= RLt −A,

which implies

Lt = eRtL0 −A
eRt − 1

R
. (24)

Let Tf be the horizon for redemption of the loan (Tf = 30 years). The constant A is chosen
such that LTf

= 0. In other words,

A =
RL0

1− e−RTf
. (25)

The value of such a cash flow during the period from 0 to t is:

∫ t

0
Ae−rf tdt = A

1− e−rf t

r
.

The time-to-default is modeled as an exponential distribution, with default rate β set equal to
2% in the calibration. In the calculations, we assume the time-to-default to be independent of
(Ht,Mt).

9

The constant payment should satisfy that the present value of all the future cash flows equals to
the initial loan plus the required premium:

L0 + (ρ+ αh)

∫ Tm

0
Lt exp(−t · rf )dt

=

∫ Tm

0

(
A
1− e−rf t

rf
+ E (Mtmin {Lt, (1− δ)Ht})

)
βe−βtdt

+

(
A
1− e−rfTm

rf
+ e−rfTmLt

)
e−βTm

=A
1− e−(rf+β)Tm

rf + β
+

∫ Tm

0
E (Mtmin {Lt, (1− δ)Ht})βe−βtdt+ e−rfTmLte

−βTm

=A
1− e−(rf+β)Tm

rf + β
+

∫ Tm

0
e−rf tLtβe

−βtdt−
∫ Tm

0
E (Mtmax {Lt − (1− δ)Ht, 0})

βe−βtdt+ e−rfTmLte
−βTm

=A
1− e−(rf+β)Tm

rf + β
+

∫ Tm

0
e−rf tLtβe

−βtdt−
∫ Tm

0
BSput [(1− δ)H0, Lt, rf , q, t, σ]

βe−βtdt+ e−rfTmLte
−βTm

(26)

where h = 9.33% is the hurdle rate, α = 4% the reserve rate, and ρ = 1% the operation cost.

The interest rate R is determined by solving (26) using (24) and (25). Figure 12 plots the
difference between L0 + Premium (the LHS of (26)) and the present value of all the future cash
flows (the RHS of (26)) against the interest rate R. The R that leads to an intersection with
the horizontal line solves (26).

9See footnote 1.
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VAR Model—In the VAR model, we adopt a similar approach to calibrate the parameters by
fitting the model implied mortgage rate to the observed mortgage rate of Florius. We assume
payments occur at the end of every period. The maximum maturity is 30 years. Mortgage with
maturity shorter than 30 years needs to refinance at the end of the contract period.

With default risk, the annual payment A is set such that the expected present value of all the
future cash flows equal to the initial loan plus the required premium:

L0 + (ρ+ αh)

Tm∑
t=1

Lt−1EMt

=

Tm∑
t=1

(
t−1∑
s=1

E [A ·Ms] + E [min{Lt, (1− δ)Ht}Mt]

)
P(τ = t)

+

(
Tm−1∑
s=1

E [A ·Ms] + E [LTm ·MTm ]

)
P(τ > Tm) (27)

The time-to-default is modeled as a geometric distribution, with default probability β set equal
to 2% in the calibration. In the calculations, we assume the time-to-default to be independent
of (Ht,Mt).

10 The time-to-default τ is assumed to follow a geometric distribution,

The corresponding interest rate R solves

A ·
30∑
t=1

(
1

1 +R

)t

= L0, (28)

and the corresponding loan balance (before period t payment of A) is given by:

Lt = L0 · (1 +R)t −A ·
t−1∑
s=1

(1 +R)s (29)

for t > 1 and L1 = L0 · (1 +R)

The interest rate R follows from solving (27), using (28) and (29). Similar to the GBM model,
the R in Figure 12 that leads to an intersection with the horizontal line solves (27).

10See footnote 1.
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