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ZEROTOPIA – BOUNDED AND 
UNBOUNDED PENSION ADVENTURES 
 

 

Abstract 

Pension funds often use Gaussian interest rate models – such as 

those used and validated by the Dutch central bank – which assign a 

high probability to rates falling below their current levels, deep into 

negative territory. However, since 2008, central banks have resorted 

mostly to quantitative easing instead of deep cuts in short rates to 

expand monetary policy. The ECB (Draghi, 2014) has even stated that 

short interest rates could not fall further (than -0.50%), thus 

suggesting that the Gaussian models used by pension funds lack 

realism.  

 If a lower bound exists, a Gaussian pension fund – one that uses 

a Gaussian model – will tend to buy bonds or derivatives in order to 

hedge the risk of negative rates, although this risk is small. The funds 

used to hedge the risk of negative rates could be best invested 

elsewhere.  

 Finally, monetary expansion close to the lower bound, realised 

through quantitative easing, can impact equity prices more than 

liability prices, thus benefitting pension funds overall. By contrast, 

higher interest rates would be a bigger risk if liabilities are 

overhedged. A Gaussian pension fund may fail to recognize the 

unusual risks near the lower bound. 
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Nederlandse samenvatting 

Pensioenfondsen gebruiken meestal door DNB gesanctioneerde 

gaussische rentemodellen, waarin de kans op negatieve rente onder 

de huidige omstandigheden groot is. De centrale banken echter 

hebben quantitative easing geïmplementeerd in plaats van de rente 

verder omlaag te brengen toen deze in de buurt van nul kwam. En 

in de toekomst zal de korte rente niet lager zijn dan nu (dus rond de 

-0.5%) volgens de ECB (Draghi). De modellen van de 

pensioenfondsen zijn dus volgens de ECB niet realistisch. 

 Als er een ondergrens bij een rente van nul is, neigt een gaussisch 

pensioenfonds – een fonds dat een gaussisch model gebruikt – er 

naar om obligaties of derivaten te kopen om het risico van negatieve 

rentes af te dekken (zelfs wanneer dat risico klein is), zodat kapitaal 

anders ingezet kan worden. 

 Tot slot heeft, bij een ondergrens voor rente rond de nul, 

monetaire versoepeling mogelijk meer impact op de aandelenprijzen 

dan op die van de verplichtingen. Omgekeerd vormen hogere rentes 

en lagere obligatieprijzen een groter risico wanneer verplichtingen 

teveel gehedged worden. Deze atypische risico’s ziet een gaussisch 

model niet. 
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1. Introduction 
 

1.1  Empirical Motivation: stylised facts on interest rates 

Pension funds often rely on Gaussian affine term structure models in 

their ALM exercises. In the Netherlands, the Dutch National Bank 

[DNB] has also validated the KNW (Koijen, Nijman and Werker, 2010) 

model. These models reproduce the stylised fact – a rule of thumb – 

that yearly changes in short interest rates have historically followed a 

normal distribution with a 1% standard deviation. 

 However, since 2009, short rates have nearly always hovered 

around zero. In addition, central banks have continued to ease the 

monetary stance with non-conventional tools, i.e., quantitative 

easing [QE], instead of lowering their rates below zero. The U.S. 

Federal Reserve has unequivocally changed monetary instruments 

when interest rates approached the zero level, while the European 

Central Bank pushed rates to a slightly negative level (see B.2 on 

page 41 for a discussion), claiming that this is the effective lower 

bound. We use here the acronym ZLB, which stands for Zero1 Lower 

Bound.  

 Gaussian models cannot accommodate both a historical standard 

deviation of approximately 1% and an interest rate volatility that 

drops to close to 0% for any extended period of time. These models 

assume that the short rate is the unique policy instrument and 

ignore the historical use of quantitative easing as a substitute near 

the zero bound. In technical terms, Gaussian models cannot truncate 

the distribution of short rates at zero. 

 

																																																													
1  US data are consistent with a zero lower bound, while both European data and 
the ECB suggest -0.5% as a possible lower bound. We use a model calibrated 
with US data and denote zero as a simplification for the lower bound. 
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Figure 1: 3-Month Treasury Bills rates since 1934 

	
 
Figure 1 shows the secondary market yield for 3-month U.S. Treasury Bills. 
The upper panel consists of monthly data since 1934. In the two ‘depression’ 
periods 1937-1941 and 2009-2015, 3-month rates were virtually constantly at 
zero. 
The lower panel zooms in on the recent 2008-2015 period, with daily data. The 
pre-2009 daily volatility is ‘absorbed’ as short rates approach zero, which is 
inconsistent with Gaussian models. 
We display the 3-month rate because it reflects the short-term expectations of 
monetary policy. The overnight rates are driven by monetary policy, which is not 
a continuous-time equilibrium process as described by the model: at the very 
least, monetary policy does not change between FMOC meetings.  
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Then, if a lower bound exists, Gaussian models assume a too high 

probability to rates becoming negative when rates are already very 

low.  

We further discuss in this introduction: 

- Models that yield non-negative rates, and how well they capture 

empirical (historical) facts. 

- For the near future, whether the recently observed ZLB-like policy 

is backed by theory, and whether we can reasonably trust the 

existence of a (Z)LB. 

- Whether profound institutional changes could permit central 

banks to abstract from the ZLB in a more distant future.  

 

1.2  Interest rate models consistent with stylised facts 

Between the end of 2008 and 2015, the Federal Reserve set a target 

range of ["% − ".&'%] for the refinancing short rate, with zero as an 

explicit lower bound. The bottom panel of Figure 1 shows the daily 

secondary market 3-month Treasury Bills, which volatility declined to 

virtually zero as short rates approached zero. 

 Empirical facts are supportive of interest models with a low bound 

on interest rates. Figure 2 shows that the volatility of the long and 

short rates can decouple: after 2009, while the volatility of short 

rates fell close to zero, that of the 10-year bond yield remained high.  

 Since Gaussian models are not compatible with the volatility of 

short term rates falling to zero as rates approach zero, alternative 

models must be used. 

 The historical alternatives are the CIR model of Cox et al. (1985) and 

the family of log-normal models (see for instance Rendleman and 

Bartter, 1980; Black et al., 1990; Black and Karasinski, 1991). Yet the 

volatility of long and short yields cannot decouple in CIR and log-
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normal models: in these models, the volatility of short and long rates 

fall to zero altogether as short rates fall to zero.  

 Reproducing such volatility discrepancy requires non-affine short 

rates dynamics, such as embedded in quadratic term structure and 

ZLB/shadow models. It has been shown that both ZLB and quadratic 

models permit a good historical fit (small pricing error for both short 

and long-term bonds, see references in the text). 

 Quadratic term structure models make the short rate a quadratic 

function of a Gaussian process. As desired, the modelled short rate is 

never negative (or not more than a chosen ‘lower bound’), its 

volatility can shrink to zero, and the volatility of the long rate is non-

linear in the short rate. But economic interpretation of this model is 

difficult: the short rate is not quadratic in inflation, so factors do not 

relate to the economy. In addition, since the factors in quadratic and 

Gaussian models differ, the sensitivity to the factors cannot be 

compared in these two models. 

 The ZLB model of Krippner (2012) takes the observed short rate 𝑟𝑟 =
𝑟𝑟 + as the positive part2 of a shadow equilibrium rate 𝑟𝑟, which is 

assumed to be Gaussian. The future ZLB rate can be thought of as an 

option on a Gaussian process; this option has zero intrinsic value, 

and its time value typically increases with the maturity of the option. 

Bond yields are functions of such options, and the volatility of the 

term structure changes in a non-linear way. 

 In addition, a precise comparison can be made with non-ZLB 

models currently used by pension funds. Away from the zero bound, 

the impact of the lower bound vanishes, and the ZLB models 

behaves as the reference shadow Gaussian model. Near the ZLB, the 

short rate progressively becomes less sensitive to the state of the 

economy. 
																																																													
2  We use x + = max(x, 0) to denote the positive part of a number. 
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Figure 2: 3-Month Treasury Bills and Bonds rates since 1934 
 

 
 
Figure 2 adds the dynamics of 10-year bond rates (the T-Bond, in blue) to Figure 
1 on page 9. 
At the monthly frequency, the short rates are more volatile than the long rates 
(upper pane). 
The same applies with daily data up to 2009 (lower pane). From 2009, the 
volatility of the short rate vanishes, while that of the long rate remains high.  
The volatility of long rates cannot be higher than that of short rates in CIR and 
log-normal models. 
Data source: The U.S. Federal Reserve 
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 Finally, ZLB models developed at central banks permit 

interpretation of state variables. This is not possible with quadratic 

models, with for instance a shadow rate that follows a Taylor-type 

rule (positive link with inflation) that is only attenuated by the ZLB.  

 A slightly more mathematical review of interest rate models can 

be found in Appendix B on page 39. 

 

1.3  Is there an economically motivated lower bound on nominal 

interest rates?  
The ZLB model can be motivated in economic terms if two conditions 

hold: (a) equilibrium short rates desired by central banks may 

become negative, but (b) central banks must maintain non-negative 

interest rates. 

 Standard theory dictates that (a) is true: the Taylor rule stipulates 

that for each one percentage point increase in inflation, the central 

bank should raise the nominal interest rate by at least one 

percentage point. Equilibrium nominal interest rates should then 

become negative when inflation falls. 

 The standard argument for (b) is the availability of currency, i.e., 
the view that individuals would not put money in the bank if deposit 

rates are more negative than the cost of storing and securing 

money.3 For details, see Goodhart (2013) and other references on 

shadow rates. 

 If a lower bound exists, it does not need to be exactly zero 

because money storage has a cost. ECB president Mario Draghi 

(Draghi, 2014, 2015) declared that the ‘effective lower bound’ on 

																																																													
3  Investors can accept negative rates since they would otherwise need to pay 
intermediary costs, plus the cost of storing and securing physical currency, plus 
potential insurance costs. 
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nominal rates ‘had been reached’, which indicates -0.50% as a 

possible floor. 

 It is often thought that institutional investors cannot pass negative 

rates on to individuals. This means that a negative short rate would 

lower institutional investors’ profits. 

 To avoid such impact, individual accounts have in practice been 

exempted from negative rates: 

- In 2014, the ECB lowered the deposits facility rates to -0.20% as 

from September 2014, then to -0.30% from December 2015, and to 

-0.40% from March 2016; at the same time, the refinancing rate 

was reduced from 0.05% to 0% in 2016. 

- On February 6, 2015, the Danish central bank lowered its currency 

deposit rate to -0.75%, but simultaneously expanded the cap on 

current accounts with zero deposit rates. It also maintained the 

lending rate at 0.05%. 

- The Swiss central bank set all base rates to around -0.75% in 

January 2015. However, like the Danish central bank, it exempts 

domestic deposits (up to a cap) from negative rates. 

 

It is worth noting that both the larger negative rates in Denmark and 

Switzerland were designed as a temporarily defense of a quasi-

pegged policy, to cool off an upward currency pressure that these 

central banks could not fight with asset purchases4 due to their 

relatively small size: ‘[this policy move is] a stand against an acute 

threat to the Swiss economy and to counter the risk of a deflationary 

trend emanating from the massive overvaluation of the Swiss franc’ 

(Zurbrügg, 2015, p.3). 
																																																													
4  The Swiss central bank discontinued its asset-purchases-based euro-peg 
policy on January 15, 2015. The Swiss franc thereupon rose by 20%. The non-
conventional negative-interest-rates monetary policy was implemented to 
protect the currency. With negative inflation, this policy could continue. 
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 We argue that deeply negative interest rates designed to force 

institutional investors to invest in non-domestic assets are only 

feasible for ‘small’ economic zones; ZLB models are justified for larger 

economic zones. 

 

1.4  Can institutional changes remove the ZLB? 

Since the main argument underlying the ZLB is the availability of 

paper money that does not bear interest, digitalization could in 

theory help remove the lower bound constraint. Yet the combination 

of digital currency and negative interest rate policies is uncharted 

territory; some possible implementations issues are:  

- If digitalization is perceived as a means of imposing negative 

interest, consumers may shift money abroad. Capital flight 

occurred in Ecuador, when it started to digitalise its currency, due 

to fears of de-dollarization. 

- Preventing capital transfers implies restricting international 

transactions and banning electronic currencies such as bit-coin 

and other neo-currencies.  

- Even if achievable, it is still possible that negative interest in a 

digitalised currency world generates speculation on the prices of 

financial and real estate assets. Loose monetary policy is now 

thought to have contributed to price bubbles and subsequent 

financial instability since the end of the 1990s.  

 

For the foreseeable future, quantitative easing seems to be the new 

standard, and a digitalised negative interest policy remains 

uncharted territory.  
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2. Set-up and assumptions 

 

2.1  Definitions and notations 

In all illustrations/quantifications, the interest rates generating 

process is the ZLB/shadow model used and calibrated in Krippner 

(2012)[K12]. It involves a two-factor Vasicek model for equilibrium 

interest rates plus a ZLB constraint, which performs a non-linear 

transformation of the shadow Vasicek model. 

 We use the two-factor Vasicek model and calibration of Krippner 

(2012), but interpret the shadow term structure model as having 

explicit factors, with 𝜋𝜋 as the inflation5 expectation and 𝑟𝑟4 as the 

shadow real rate. 

 𝑟𝑟 denotes the shadow-short rate, a two-factor Vasicek process, 

which satisfies 𝑟𝑟 = 𝑟𝑟4 	+ 𝜋𝜋. By contrast 𝑟𝑟 = [𝑟𝑟]+ denotes the 

observed short rate, bounded from below.  

 We use the following definitions: model parameters are constants 

that in theory would never need to be updated; real rates are 

dynamic and reflect the changing state of the economy, so they are 

updated to fit the recent (ideally, current) yield curves.  

 For simplicity, all examples are with zero coupon bonds (so their 

par value is one) and liability.  

 
	  

																																																													
5  In Figure 2, the long and short rates seem to evolve almost parallel beyond the 
business cycle, which shows a very persistent factor, usually modelled as 
inflation, and modelled as integrated. It was traditionally modelled as mean-
reverting, but developments of the level of interest rates have always surprised, 
and an integrated or quasi-integrated factor appears a more robust specification 
than an estimated long-term mean. In recent calibration (see for instance 
Christensen and Rudebusch, 2014, or Koijen et al., 2010), inflation, the level 
factor is either integrated or quasi-integrated. 
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2.2  Focus of the study 

We here assume that equilibrium interest rates follow a Gaussian 

shadow model, and that a ZLB constraint exists — market 

prices/yields are thus ZLB prices/yields — but that a Gaussian pension 

fund fails to incorporate this constraint in the equilibrium/shadow 

model6 that it has otherwise correctly identified. We analyse the 

impact of this unique source of mis-specification on the interest rate 

hedging policy, whether it is derivative or bond-based; we give 

qualitative comments on how interest-rate risk may feed into the 

equity risk budget; finally we discuss the consequences of further 

quantitative monetary easing. 

 

2.3  Rationale for main results 

When rates are close to the ZLB, Gaussian models forecast a 

probability of negative rates that is simply too high. Overestimation 

of the probability of negative rates may result in overestimation of 

derivative prices: buying insurance against a risk that does not exist 

is costly. Overestimation of liability risk also tends to lead to bond 

over-hedging, in turn exposing the pension fund to the risk of a rise 

in interest rates. Hedges based on duration or on modelled bond 

sensitivity — the bond sensitivity is the derivative of the model price 

– are also wrong with the same qualitative implications.   

 For an investor with a limited total risk budget, overestimation of 

interest rate risk may reduce the equity risk budget. 

 Last, failing to take the ZLB into account may also lead to 

misinterpretation of the monetary policy:  the instantaneous real 

																																																													
6  Pension funds did not incorporate a ZLB in their Gaussian models before 2008 
because the probability of having negative rates was of second order: short rates 
were several standard deviations above zero, so the ZLB option was far out of the 
money and worth little. As a rule of thumb, short rates at 3% were above the ZLB 
by 3 times the annual interest rate volatility. 
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rate (nominal rate minus inflation) rises as inflation falls as a sole 

consequence of the lower bound.  

 Although our study focuses on pension funds and uses the 

vocabulary typical of this sector, the results apply to other 

institutional investors with long-term liabilities as well. 

 

2.4  General lessons from the specific ZLB/Shadow model used in 

illustrations 

The qualitative conclusions of this study are likely to hold with any 

Gaussian model. Gaussian models assume a state-independent 

sensitivity of bond yields to inflation,7 which the ZLB diminishes in a 

non-linear way, so using any Gaussian bond sensitivity should result 

in wrong hedging demands. 

 The K12 model is low dimensional, thus the in-sample fit is lower 

than that of higher dimensional models. Adding stochastic volatility, 

other non-linearities in addition to the lower bound, or a third 

‘curvature’ factor, would give more flexibility to fit historical data. 

Alternatively, infinite-dimensional models such as the Hull-White 

model would also be able to perfectly fit any observed term structure 

(thanks to a continuously re-calibrated term structure of forward 

rates). Note that with any model, valuation errors still could arise for 

illiquid, long-dated liabilities where market rates are not fully 

observed.  

 One motivation to base this study on a two-factor model is that 

pension funds’ risk management models are often based on two-

factors. 

																																																													
7  For instance, the sensitivity of the bond yield to inflation does not depend on 
the shape of the forward yield curve in a Hull-White model. Inflation is replaced 
by a persistent factor in models with implicit variables. Similar sensitivities are 
then expected to arise as in the K12 model. 
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 Although higher dimensional models could better fit historical 

data in-sample, they do not necessarily make better forecasts. In 

addition, the main ingredient of an interest rate risk hedging 

program is the future sensitivity of liability prices to inflation and real 

rates. Since these sensitivities are unobserved, they are subject to 

model risk, and over-fitting usually yields poorer prediction of 

sensitivities. With a limited amount of data near the ZLB, over-fitting 

is a risk that cannot be well controlled. 

 Another motivation is that low-dimensional models with explicit 

factors permit clear interpretations.  

 In the K12 model, long yields tend to fall because of the convexity 

effect, i.e., the volatility of inflation. As the volatility of short rates 

diminishes when these approach the ZLB, so does convexity. 

Recalibration of a low-dimensional Gaussian model near the lower 

bound discards historical information and ‘assumes’ lower inflation 

volatility, or that nominal short rates barely react to inflation. Such 

‘assumptions’ are not always correct, as the historical inflation 

volatility and the link with interest rates shows.  

 Recalibrating higher-dimensional parameter models would 

generate similar distortions, but with less straightforward 

interpretation. For instance, in the Hull-White model, forward rates 

are a free parameter typically recalibrated to match observed yield 

curves, but which changes cannot be interpreted.  
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3. ZLB, distribution of future interest rates, and derivatives’ prices  

 

3.1  Distribution of state variables in one year 

Figure 3 shows 𝑟𝑟7, the observed ZLB rates in one year (at 𝑡𝑡 = 7), 

which is the positive part of the future equilibrium rates 𝑟𝑟7. The 

distribution of 𝑟𝑟7is the left-truncated distribution of 𝑟𝑟7, which is the 

sum of the expected inflation 𝜋𝜋7	and the equilibrium real rate 𝑟𝑟74, 

both Gaussian processes. These processes are positively correlated, 

meaning that deflation is likely to be associated with recession, and 

inflation with economic growth.  

 In these two graphs, the real rate is 7.'% while inflation is 

−7.'%. Here, both the shadow and the ZLB rates are zero at time 

zero: (𝑟𝑟" = 𝑟𝑟" = "%), but the real rate is greater than desired by the 

central bank.  

 These graphs illustrate that Gaussian models assign an 

overestimated probability to short rates becoming negative: they 

predict a normal rather than a truncated distribution for future short 

rates. 

 

3.2  Impact on derivatives hedging policy 

Derivative instruments are often used in ALM to circumvent practical 

limitations such as the lack of ability to trade complex strategies, the 

cash/borrowing constraints,8 or to guarantee of a future minimum 

income from the investment of future premiums. Receiver swaptions 

or floors (which pay the difference between a fixed and a market  

																																																													
8  Hedging demands can be close to 100%, in particular when the funding ratio 
is low. As we will see, they can even exceed 100% if the pension fund hedges its 
long-term liabilities with shorter-maturity bonds when interest rates are low. 
With borrowing constraints and without derivatives, liability hedging could not 
only be difficult to implement but also prevent the pension fund from investing 
in risky assets. 
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Figure 3: Distribution of state variables at 𝑡𝑡 = 7𝑌𝑌,  

starting with 𝜋𝜋" = −7.'%, 𝑟𝑟"4 = 7.'% 
 

 
 
 
Figure 3 shows the simulated distribution of the two state factors underlying the 
shadow rate (𝑟𝑟: = 𝜋𝜋: + 𝑟𝑟4) and the observed ZLB short rate: 𝑟𝑟: = 𝑟𝑟: +, a 
truncation of the unobserved shadow rate. 
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rate) are protection against the risk of low yields. These derivatives, 

often traded over-the-counter, may be overpriced with Gaussian 

models that attribute a positive probability to rates being negative 

and to bond prices9 exceeding par value if these risks are ruled out 

by a ZLB. Pension funds would be better off not to purchase 

unnecessary protection. 

 A call option on a 15-year zero-coupon bond with strike 1 (par 

value) is typically worth a couple of percentage points (up to 5%) in a 

Gaussian model with reference starting conditions. One cannot 

exclude the possibility that a pension fund that wishes to hedge 

80% of its liability risk with swaptions will lose a couple of 

percentage points of funding ratio each year, as long as the short 

rates remain near the ZLB.  

 
  

																																																													
9  A positive probability of negative short rates implies a positive probability of 
bond prices rising above par. Gaussian models assume that bond prices follow a 
log-normal distribution, whereas they are bounded from above, at par value. 
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4. The formation of the modelled yield curve 

 

4.1  Shadow rates overestimate market liability prices 

For any shadow model, the ZLB/market bond yield is always at least 

the shadow bond yield. After all, the ZLB bond yield is the 

expectation of the ZLB short rates minus a convexity adjustment; ZLB 

rates are at least equal to the shadow rate, and the convexity 

adjustment is lower with a ZLB.10 

 Figure 4 shows the importance of these two factors with the 

Krippner (2012) model with long calibration.11 Qualitatively, the 

discrepancy between the ZLB and shadow price grows as inflation 

and the shadow short rate fall. 

 In the left panel, the shadow and ZLB rates are both zero at time 

zero (𝑟𝑟" = 𝑟𝑟" = "), yet long shadow yields are lower than ZLB yields, 

entirely because of the convexity adjustment. 

 In the right panel, shadow short rates are negative at time zero 

(𝜋𝜋" = 𝑟𝑟" 	− 7%, 𝑟𝑟"4 = "), so the ZLB also impacts the short end of the 

yield curve. Shadow short yields are below zero, and ZLB short yields 

are equal to zero. 

 

  

																																																													
10  The bond price is the expectation of the exponent of minus the integral of 
future short rates, and the variance of future short rates pushes bond prices up. 
In Gaussian models, the distribution of future short rates is normal, so the 
convexity adjustment is only linked to the variance of short rates. 
11  Note that the shadow price is not the price modelled by the pension fund, 
unless the equilibrium real rate is given by a macro-model (or by the ECB) and 
inflation is observed. 
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Figure 4 : Shadow and ZLB yield curves  

 
with 𝜋𝜋" = −7.'%, 𝑟𝑟"4 = 7.'% with 𝜋𝜋" = −7%, 𝑟𝑟"4 = "% 

  
 
In the two panels, the black dotted curves represent the modelled shadow yields 
(K12 model), where inflation is persistent (the level factor) and the equilibrium 
real rate mean-revert quicker (the slope factor). 
Long shadow yields decrease because of the convexity adjustment: bond prices, 
the expectation of the exponential of minus average future short-term rates, are 
more impacted by falls rather than by rises in the future short rate 
The red points show the ZLB yield curve. ZLB short rates cannot fall below zero, 
which limits the convexity adjustment. As inflation falls, forward rates fall closer 
to the ZLB, and short rates can barely fall further. The convexity adjustment then 
disappears altogether. 
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4.2  Updating and recalibration 
If the interest rate process follows a ZLB/shadow model, then the 

interest rate dynamics and the shape of the yield curve are modified 

near the ZLB. 

 Recalibration makes it possible to better capture the local 

dynamics, but not the non-linearities.  

 The following subsections illustrate the valuation/dynamics trade-

off between a ‘global fit’ (i.e., long-term calibration) and a ‘local fit’ 

(i.e., short-term calibration) of a Vasicek model.  

 As illustrated in Figure 4 on the opposite page, the convexity of 

the Gaussian yield curve — the extent to which the long-term yields 

slope downwards — is linked to the long-term volatility of interest 

rates. With the Vasicek model, the convexity is constant. 

 If the Gaussian pension fund focuses on the long-term properties 

of the model, it will use panel data — made up of the time series of 

all relevant bond yields — to calibrate the model. The pension fund 

will measure correctly both the high historical sensitivity of short 

rates to inflation and the historical inflation volatility. It will correctly 

model the average historical convexity, but it will overestimate this 

near the ZLB. Modelled long yields will have a more negative slope 

than market yields because the ZLB truncates the distribution of 

future short rates and flattens the long-term yield curve.  

 With a low-dimensional model, the Gaussian pension fund 

updates state variables — here, inflation expectations and the real 

rate — to fit the yield curve as well as possible, but it has no control 

over the shape of long-term yields. 

 Typically, such Gaussian pension funds would match the 10-year 

bond yield, while underestimating very long-term liabilities, as 

illustrated in Figure 5. 
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 Underestimation of long-term bond yields can go unnoticed if 

they are illiquid. Such underestimation would lead to overestimation 

of the funding ratio and to a pension fund that feels poorer than it 

really is. The funding ratio would also be reported as riskier than it 

really is. 
 Recalibration gives more weight to recent history, but as it 

discards historical information, it becomes irrelevant for any long-

term application. Just as long-term calibration of the Vasicek model 

implies better fits when rates are significantly above zero, short-term 

calibration generally allows a better fit of the yield curve when rates 

are close to the ZLB. 

 Near the ZLB, recalibration reduces convexity by assuming low 

inflation volatility or a disconnect between interest rates and 

inflation. This can sometimes allow better approximation of the 

local, very short-term dynamics. 

 Such approximated dynamics are only valid locally, for a particular 

level of inflation. Gaussian models assume a linear constant 

relationship between short rates and inflation, while this 

relationship is state dependent, high in normal times (as shown by 

historical data) and low near the ZLB (which disconnects short rates 

from state variables). So, a recalibrated Gaussian model would not 

be able to capture the long-term dynamics and distribution of 

interest rates. 
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Figure 5: ZLB, LT- and ST-calibration 
 

 
 
The red curve shows the ZLB curve with initial conditions: 𝜋𝜋; = −1%, 𝑟𝑟;4 = 0%, as 
in the right-hand panel of Figure 4 on page 24. 
The black curve shows the Gaussian yield curve with long-term calibration. Value 
of factors minimizes the sum of the price discrepancy of 0 to 20-year bonds, 
which implies a focus on long yields (the higher the duration, the more price is 
sensitive to yield). With long-term calibration, the Gaussian yield curve remains 
convex, and very long-term yields, even though included in the objective 
function, are poorly fitted. The 15-year yield is underestimated by 12 basis 
points, the 17-year yield by 20bp, and the 20-year yield by 35bp. 
The blue points and curve show a recalibrated Gaussian yield curve. The 
recalibrated model implicitly assumes a low sensitivity of the short rate to 
inflation, which diminishes convexity makes it possible to perfectly fit yields 
(except for maturities of less than two years which have little weight in the 
optimization program). 
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 Recalibration of high dimensional models — such as the Hull-

White model — or of models with implicit state variables is expected 

to lead to similar but less visible implicit changes:12 all Gaussian 

models assume linear dynamics instead of non-linear. 

 Remark 4.1: We aim for — but this is never entirely feasible — 

interest rate models that fit the yield curve and the interest rate 

dynamics when rates are either high or low.13 Model parameters 

would be calibrated with a large set of historical data and barely 

need updating; planning to recalibrate a model is the ex-ante 

recognition that it fails to capture the long-term dynamics of interest 

rates. In addition, with the low signal-to-noise ratio typical of 

financial markets, recalibrating a model using a short-time frame 

generates noise in parameter estimates and can lead to noise 

trading. Rather than planning to change models randomly, it makes 

sense to build a model that is valid in every possible situation. 

 

 
  

																																																													
12  In a Hull-White model, the shape of long-term forward rates could become 
steeper near the ZLB, but such changes can be difficult to notice since they are 
essentially non-parametric. 
13  This is called the conditional distribution of interest rates in all states of the 
world. 
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5. Bond over-hedging near the ZLB 

 

Liability hedging programs are usually based on duration or 

sensitivity analysis. The former is a model-independent rule of 

thumb, the latter is model-dependent. Both are prospective 

estimates of the unknown sensitivities of long yields to inflation and 

to the real rate. Any error in the calculation of sensitivities alters the 

effectiveness of the hedging program.  

 All illustrations in this section rely on the K12 model, assuming that 

a ZLB exists; the base scenario is that of the right-hand panel in 

Figure 4, with 𝜋𝜋" = −7%, 𝑟𝑟"4 = "%. Keep in mind that ZLB 

sensitivities are state-dependent and that they depend on the value 

of inflation and the equilibrium real rate. 

 We first analyse the sensitivity errors of Gaussian models, then 

their impact on liability hedging.  

 

5.1  Sensitivity Analysis 

In a Gaussian (shadow) model the sensitivity of bond yields to state 

variables is independent of their levels; the ZLB implies a non-linear, 

state-dependent attenuation of the sensitivity. 

 As inflation is assumed to follow a random walk,14 the derivatives 

of bond yields of all maturities with regard to inflation are equal and 

constant across states in the shadow model; the ZLB attenuation is 

option-like, see Figure 6. Figure 7 shows bond sensitivities to the real 

rate and their attenuation. 

 
	  

																																																													
14  If inflation were modelled as a near-unit root process (highly auto-
correlated), then the inflation sensitivity in the Gaussian model would decrease 
marginally with maturity but would still be constant across states and time. 
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Figure 6: Derivative of yield with regard to inflation 

 
Gaussian yields have a constant sensitivity to inflation, the ‘level’ factor. 

 

Figure 7: Derivative of yield with regard to real rate 

 
Because of mean reversion, the derivative of the bond yield with respect to the 
(equilibrium) real rate is a decreasing function of maturity. In a Gaussian model, 
it is state-independent (blue points for ST and yellow line for LT in the K12 
model). It is attenuated by the ZLB model in a non-linear way (red line with 
points): when equilibrium short rates are negative, the sensitivity to the real 
rate shrinks all the way to zero for short maturities and partly for others. 
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5.2  Over-hedging with Gaussian models 

 

Duration hedging: 

Pension funds sometimes rely on duration hedging, that is, they 

match the value-weighted maturity of assets with that of the 

liability. This concept is strictly valid for a one-integrated factor 

interest rate model (Merton, 1973, also called the Black model). 

However, since in our two-factor model the level factor (inflation) 

predominantly matters for long yields, duration hedging can be 

thought as a first-order approximation for sensitivity hedging of 

long-dated liabilities.  

 Pension funds often invest in bonds with a shorter maturity than 

that of the liabilities.15 The rule of thumb16 is that a Gaussian pension 

fund would borrow short-term funds which have sensitivity zero, 

and that it would invest in two 10-year bonds (or a 1.33 unit of a 15-

year bond) to hedge the sensitivity of a 20-year liability. However, 

the sensitivity profile of Figure 6 implies that it suffices to buy 1.55 

units of 10-year bonds (or a 1.15 unit of a 15-year bond) to hedge the 

20-year inflation risk. 

 A pension fund that seeks full immunization of interest rate risk 

with a duration hedge is exposed to the risk of a rise in inflation. A 

rise of inflation by 1.5% leads to a funding ratio loss17 of 7% if a 10-

																																																													
15  The DNB reported in 2006 an average liability duration of 15 years, with an 
average asset duration of 5 years. 
16  This would be correct if all yields were zero and bonds were worth 1. Then, a 
fall of yields by 1% raises the price of the liability by 20%, from 1 to 1.2, while the 
price of a 10-year bond rises by 10%, and the price of the cash account does not 
instantly change. To be precise, calculations take into account the actual value of 
the 10- and 20-year bonds. 
17  Assume for instance that the initial funding ratio is 100% and that the 
liability risk is fully hedged; alternatively, hedging weights would be of 𝐴𝐴/𝐿𝐿 for 
any initial funding ratio. Then inflation rises (and the pension fund does not 
rebalance its portfolio). 
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year bond is used for hedging, and of 3.6% if a 15-year bond is used 

for hedging.  

 

Sensitivity hedges: 

Two different bonds are needed to hedge both the inflation and real 

rate risk factors. In the shadow K12 model, inflation risk can be 

calculated by duration, so the long-short hedging portfolio has the 

value-weighted duration of the lability.   

 Suppose long-term (20-year) liabilities are hedged with the 

combination of a 15-year and a 10-year bond.  

 As illustrated in table 1, the Gaussian hedge involves 

approximately two 15-year bonds minus one 10-year bond, for a 

value-weighted duration of 20 years. 

 A 1.5% rise in inflation and in equilibrium short rates leads to a 

funding ratio loss of 2.8% with long-term calibration and of 1.8% 

with an ideal short-term calibration: even though short-term 

calibration perfectly captures local dynamics, it does not capture the 

impact of non-negligible changes in inflation. Sensitivity hedging, 

however, leads to a lower risk than duration hedging, which involves 

a 3.8% loss when a 15-year bond is used for hedging. 

 The pension fund overhedges interest rate risk. This result is 

qualitatively similar with long- and short-term calibration and is 

expected to be similar with a wide range of Gaussian models. 
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Table 1: Hedging with a 10-year and a 15-year bond  
(‘& ∗ 7' − 7" = 𝑜𝑜𝑜𝑜	 ≠ 	&"’?) 
 

 
 
The top panel shows the hedging weights in the 10- and 15-year bonds. The first 
column shows the optimal hedging weights, the middle column the Gaussian 
model hedging weights with long-term calibration, and the right column with 
short-term calibration.  
The Gaussian pension fund replicates a 20-year liability with approximately two 
15-year bonds and a short position in a 10-year bond, which matches the 
duration of the liability (2*15-1*10=20); this holds both for short-term and long-
term calibration.  
The ZLB hedge, however, requires both less leverage and less duration (in the 
ZLB, a long position of 160% is needed in the 15-year bond rather than 200%). 
The bottom panel shows the residual exposure in the case of a rise by 1.5% in 
state variables. If inflation rises by 1.5%, the Gaussian pension fund trying to 
shut interest rates would see its funding ratio fall by 1.8% with short-term and 
by 2.8% with long-term calibration.  
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Risk associated with possible valuation issues: 

As we have seen, long-dated liabilities may become overpriced near 

the ZLB if the Vasicek shadow model is calibrated using a long-time 

span.18 This overvaluation could increase over-hedging, with minor 

benefits — the bond risk premium would vanish together with the 

bond volatility near the ZLB — but with the risk of additional losses 

for the pension fund if interest rates rise. 

 A 35 basis point error on a 20-year yield may seem insignificant, 

but it represents an 8% price error on the 20-year bond or liability. 

An 8% over-investment, followed by an inflation increase of 1.5%, 

generates a 6.4% loss, even larger than losses associated with simple 

duration hedges.19 

 Steep rises of inflation and interest rates rarely recur in a single 

scenario, and crash risk has a low probability in equilibrium models. 

Scenarios with repeated small losses (inflation rises by one percent 

and falls back repeatedly, and short rates remain close to zero) are 

more frequent and overall costlier in expectation (when losses are 

weighted by their probability).  

 Derivatives’ losses may arise even without a rise in inflation. They 

are more frequent and costly. 

 

Risk budgeting implications of interest rate model risk 

Possible reasons for resorting to risk budgeting are that regulations 

require pension funds to be overfunded over the medium term, that 

																																																													
18  The same could arise with calibration using a short-time span if long-dated 
bonds are illiquid. 
19  This error varies with circumstances. It is lower if for instance only a fraction 
of the liability is hedged; it is higher if for instance inflation is lower. 
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pension cuts are unpopular among pension participants,20 and that 

insurance companies must always be overfunded.  

 Misspecification of the term structure model prevents the risk-

budgeting Gaussian pension fund from securing a minimum funding 

ratio: as the Gaussian pension fund seeks to shut off interest rate 

risk, it overhedges interest rate risk and is exposed as a consequence 

to the risk of an economic recovery. 

 Overestimation of interest risk may reduce the equity risk budget 

of investors that have a total risk budget. 

  When the two sources of error are combined, the distribution of 

the future funding ratio (in one or five years) can become left-

skewed with a high probability of underfunding instead of being 

right-skewed above 100%. Additionally, investment opportunities 

can be missed. Simulations of such effects are available on demand.  

 
  

																																																													
20  Fiduciary duties require managers to protect pension promises. This is 
sometimes interpreted as a duty to avoid pension cuts. 
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 6. Conclusion 

 

If a lower bound exists, it modifies the interest rate dynamics in a 

non-linear way. Gaussian models are unable to describe 

simultaneously the interest rates dynamics when short rates above 

zero move at least one on one with inflation, and the dynamics 

when short rates close to zero disconnect from inflation. 

 Gaussian models may overestimate the probability of negative 

rates. A Gaussian pension fund will then allocate funds to hedge the 

risk that rates would fall deeper in negative territory, even though 

this risk is very small.  

 Derivatives may involve a cost that is maintained so long as rates 

remain close to zero. The use of bonds usually involves overhedging 

and possible exposure to the one-off risk of a rise in rates. Indeed, 

with a ZLB, the risk of a rise of interest rates is greater than that of a 

fall, regardless of the underlying model. Expanding liability hedging 

programs when bond yields are close to zero may then be risky. 

 The incorporation of a lower bound in a Gaussian model — which 

truncates the distribution of rates at zero or possibly -0.50% — helps 

flatten the long end of the yield curve and could lower the value of 

long-dated (illiquid) liabilities.  

 Models without a ZLB make it difficult to read the monetary 

stance: near the ZLB, real interest rates rise as inflation falls, and a 

recalibrated Gaussian model signals that the real rate will be 

permanently higher due to central banking policy. However, the rise 

in the real rate may only be due to the ZLB constraint and not be 

permanent. In line with econometric theory, the central bank may 

indeed seek to expand monetary policy, for instance through 

quantitative easing. 
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Appendices  

 

A) Introduction and organization of the appendices 

 

Pension funds often rely on Gaussian affine term structure models in 

their ALM exercises. In the Netherlands, the Dutch National Bank 

[DNB] has also validated the KNW (Koijen, Nijman and Werker, 2010) 

model. Since 2009, the U.S. Federal Reserve has used non-

conventional tools — other than lowering the short term rates below 

zero — to make its monetary policy more expansive, arguably 

because of a lower bound on short rates. If a lower bound exists on 

short rates: 

- the assumed dynamic of these models is unrealistic since 2009 

(see Section 1 on page 6). 

- the assumption that short rates may become very negative may 

lead to overvaluation of long-term liabilities. 

 

In this study, we have analysed the impact of non-linear interest 

rate dynamics on pension funds hedging policy, while discussing the 

impact of different ways for pension funds to fit a ‘wrong’ model to 

the current yield curve, mainly updating versus recalibration. Of 

course, all models are wrong. It is, however, convenient to assume 

that the pension fund will use the correct model, with only one 

misspecification: the failure to incorporate a zero bound. This makes 

it easy to analyse the impact of the zero bound.  

 Note that by assuming that the underlying equilibrium is an 

extended Vasicek model, similar to what many pension funds use 

today, we implicitly recognize the benefits of an underlying Gaussian 

model. 
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This appendix is organised as follows: 

- Section B reviews interest rate models: B.1 gives an overview of 

interest rate models that yield non-negative interest rates, and 

B.2 discusses the lower bound in Europe. 

- Section C summarizes the pricing framework with ZLB-Shadow 

Gaussian models, and specifically with the two-factor model of 

Krippner (2012) in C.2. 

 

B) Review of interest rate models 

 

B.1) ZLB versus alternative approaches 

Denoting 𝑊𝑊(𝑡𝑡) as a Brownian motion and 𝑑𝑑𝑊𝑊(𝑡𝑡) as its increments, 

we modify the Ornstein-Uhlenbeck process in (1) to formulate and 

discuss non-negative interest rate models: 

 

 𝑑𝑑𝑋𝑋: = 𝜅𝜅	 𝜃𝜃 −	𝑋𝑋: ⋅ 	𝑑𝑑𝑡𝑡	 + 𝜎𝜎	𝑑𝑑𝑊𝑊(𝑡𝑡)    (1) 

 

Definition: (1) is called univariate if 𝑋𝑋_𝑡𝑡 is a scalar (just as 𝜅𝜅, 𝜃𝜃, and	𝜎𝜎), 

independent multivariate if 𝑋𝑋:′ is a vector and 𝜅𝜅 is diagonal,21 and 

multivariate otherwise (then 𝑋𝑋′_𝑡𝑡 and 𝜃𝜃 are vectors while 𝜅𝜅 and 𝜎𝜎 

are matrices). 

 The idea of Cox, Ingersoll, and Ross (1985) is to use 𝑟𝑟: = 𝑋𝑋: and to 

impose a state-dependent local volatility 𝜎𝜎(𝑟𝑟:) that goes to zero 

when the short rate approaches zero (specifically the volatility of the 

short rate is proportional to the square root of 𝑟𝑟:). Then, given 

(𝜃𝜃, 𝜅𝜅 > "), the pull-back 𝜅𝜅	(𝜃𝜃	 − 	𝑟𝑟:) ensures a ‘reflection’ of the 

short rate away from zero. In equation (2), the zero level is then 

called a reflecting barrier. 

																																																													
21  Then each univariate 𝑋𝑋O is a univariate OU process which mean reversion 
dynamics is described by (𝜅𝜅O, 𝜃𝜃O). 
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 𝑑𝑑𝑟𝑟: = 𝜅𝜅	 𝜃𝜃	 − 	𝑟𝑟: ⋅ 	𝑑𝑑𝑑𝑑	 + 𝜎𝜎	 𝑟𝑟:	𝑑𝑑𝑑𝑑(𝑑𝑑)   (2) 

 

A multivariate Cox Ingersoll Ross requires positive state variables, 

which exclude economic interpretation since inflation for instance 

can be negative. In addition, from 2009 to 2015 short-term rates 

stayed at zero, which is inconsistent with the idea of a reflecting 

barrier. 

 The log-normal model (see a univariate representation in 

equation 3) has qualitatively similar dynamics: the volatility of long 

and short rates shrinks to zero as the short rates falls.  

 

 𝑑𝑑𝑟𝑟: = 𝜅𝜅	 ⋅ 	 𝜃𝜃	 − 	𝑟𝑟: ⋅ 	𝑑𝑑𝑑𝑑	 + 𝜎𝜎	𝑟𝑟:	𝑑𝑑𝑑𝑑(𝑑𝑑)    (3) 

 

With these models, the volatilities of short and long yields go 

together to zero. Yet the following non-linear transforms of the 

Ornstein-Uhlenbeck process in (1) permit non-linear volatility 

dynamics: 

 

 𝑑𝑑𝑋𝑋: = 𝜅𝜅	 𝜃𝜃	 − 	𝑋𝑋: ⋅ 	𝑑𝑑𝑑𝑑	 + 𝜎𝜎	𝑑𝑑𝑑𝑑 𝑑𝑑 ;		𝑟𝑟: = 𝑋𝑋:
&    (4) 

 𝑑𝑑𝑟𝑟: = 𝜅𝜅	 𝜃𝜃	 − 	𝑟𝑟: ⋅ 	𝑑𝑑𝑑𝑑	 + 𝜎𝜎	𝑑𝑑𝑑𝑑(𝑑𝑑); 			𝑟𝑟: 	= 𝑟𝑟: +   (5) 

 

Equation (4) is a simple22 quadratic term structure model (see Ahn et 

al., 2002). Volatility in Quadratic term structure models is non-linear, 

and the simple model in equation (4) has zero volatility at 𝑟𝑟:=0. The 

fact that short rates have a zero mass at precisely zero could be a 

limitation to reproduce the US yield curves. In addition, factors lack 
																																																													
22 𝑓𝑓(𝑥𝑥) = 𝛼𝛼	 + 𝛽𝛽	𝑥𝑥	 + 	𝑥𝑥U𝜓𝜓	𝑥𝑥 (using multivariate notations) yields the family of 
Quadratic (affine) term structure models (Ahn et al., 2002). The conditional and 
unconditional distributions of the interest rates can be represented as an infinite 
mixture of noncentral 𝜒𝜒X distributions. 
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structural interpretation, since one cannot envisage that central 

banks set interest rates as a quadratic function of inflation and 

economic growth. 

 The model in (5) is the ZLB model, where the observed short rate 𝑟𝑟 

is the positive part of a Gaussian shadow-rate in (1). Truncation 

generates a positive mass at zero, thus making developments 

experienced in the US explicitly possible. The interpretation of the 

state variables is the same as in the shadow-model. The ZLB bond  
price reads 𝑃𝑃(𝑡𝑡, 𝑇𝑇) 	= 	𝑒𝑒𝑒𝑒𝑒𝑒(− 𝑓𝑓	]

" 𝑡𝑡 + 𝑢𝑢 	𝑑𝑑𝑢𝑢 ∙ 7	), where 𝑓𝑓(𝑡𝑡 + 𝑢𝑢)	,  

the modified forward rate, can be interpreted as an option on the 

shadow short rate. As soon as 𝑟𝑟: < ", short maturity options have 

little value and volatility, but deeply negative shadow short rates are 

needed for the volatility of the long bonds to drop to a level close to 

zero. The volatility of the term structure increases non-linearly with 

shadow and ZLB short rates.  

 Overall, in the category of models that yield non-negative interest 

rates, we choose the ZLB model developed at central banks. These 

score high on three important criteria: economic interpretation (they 

permit negative state variables that are arbitrarily correlated, 

negative equilibrium interest rates, and yet positive observed ones), 

a good fit (short-term rates can remain low for protracted periods of 

time), and tractability. In addition, they permit a direct comparison 

with Gaussian models commonly used by pension funds, since they 

can share the same underlying dynamics and calibration. 

 

B.2) The Lower bBound in the European Monetary Easing  

The switch from conventional to unconventional monetary policy as 

rates approach zero has been less clear-cut with the European 

Central Bank than with the U.S. Federal Reserve. 
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Figure 8: European 3-month and 10-year yields 
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 Quantitative easing has been more limited in Europe. Purchase of 

government bonds has mainly been implemented after the promise 

of reform. The requirement that the ECB buys only high-quality non-

government bonds has been seen as a limitation to ‘full-blown QE’, 

although securitised loans (e.g., mortgages) were eligible.  

 Contrary to the Fed, the ECB has instituted slightly negative rates 

for banks (but not for customers). However, there are indications that 

current rates are close to a lower bound: the ECB (Draghi, 2015) made 

an explicit statement to that effect. Following its commitment to give 

virtually unlimited support and to make a big policy move, the ECB 

recently cut rates by 10 basis points — much lower than the usual 

50bp cut in normal times or 100bp in case of distress.  

 The Financial Times (FT, 2016) states that some banks are 

considering stashing cash in costly deposit boxes instead of keeping 

it with the European Central Bank. This also suggests that we are 

indeed not far from the lower bound. 

 

C) Pricing with ZLB models 
	

C.1) Bond pricing formulas 

 

Liability price in the shadow model 

The pension liability is modelled by a zero-coupon payment at time 

𝑇𝑇 as a proxy for a more complicated distribution of cash flows. 

 Denote 𝔼𝔼 as the expectation under ℚ, with ℚ as the risk-neutral 

measure, a virtual measure where risk is not rewarded. r is the 

(modelled) Gaussian shadow rate and 𝑟𝑟 	= 	 𝑟𝑟+ the ZLB rate. 

The shadow price of the liability is given by (6): 

 𝐿𝐿: = 𝔼𝔼ℚ[𝑒𝑒𝑒𝑒𝑒𝑒(− 𝑟𝑟]	𝑑𝑑𝑑𝑑
d
: 	)]     (6) 
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Liability price in the ZLB model 

The market-consistent (ZLB) price at time 𝑡𝑡 is given by (7) 

 𝐿𝐿_𝑡𝑡 	= 𝑃𝑃(𝑡𝑡, 𝑇𝑇): 	= 	𝔼𝔼ℚ[𝑒𝑒𝑒𝑒𝑒𝑒(− 𝑟𝑟]𝑑𝑑𝑑𝑑
d
: 	)]    (7) 

 

Pricing error with the shadow model 

Because 𝑟𝑟 ≤ 𝑟𝑟, the shadow price 𝐿𝐿: is at least equal to 𝐿𝐿:, the ZLB 

market price. Equation (9) shows that the overestimation of the 

liability price is at least equal to the expectation of a cash account 

that only accrues when short rates are negative (with their absolute 

value). Writing 𝑟𝑟 = 𝑟𝑟+ + 𝑟𝑟g we have:23 

 

 𝐿𝐿: ≥ 𝐿𝐿: 	 ⋅ 	𝔼𝔼ℚ 𝑒𝑒𝑒𝑒𝑒𝑒 𝑟𝑟g ]𝑑𝑑𝑑𝑑
d
: 	     (9) 

 

The overestimation from the shadow model grows as either state 

variable falls, i.e., as the shadow rate becomes negative and the 

nominal interest rate falls to zero. 

 

ZLB pricing 

The ZLB rate models were introduced by Black (1995) with a 

univariate 𝑓𝑓(𝑟𝑟) = 𝑟𝑟+ for any underlying/shadow 𝑟𝑟 model. In his 

original method, bonds are priced by simulation as in equation (7), 

since even with a Gaussian 𝑟𝑟, the expectation in (7) does not have a 

closed form solution. 

																																																													
23  This is easily seen because: 

𝑃𝑃(𝑡𝑡, 𝑇𝑇) 	= 𝔼𝔼ℚ 𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑟𝑟]𝑑𝑑𝑑𝑑
d

:
	 	= 	𝔼𝔼ℚ 𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑟𝑟]+ 	+ 	𝑟𝑟]g 𝑑𝑑𝑑𝑑

d

:
	 		

≥ 	𝔼𝔼ℚ 𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑟𝑟]+	𝑑𝑑𝑑𝑑
d
: 		 ⋅ 	𝔼𝔼ℚ 𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑟𝑟]g	𝑑𝑑𝑑𝑑

d
: 	 	   (8)	

≥ 𝑃𝑃 𝑡𝑡, 𝑇𝑇 	 ⋅ 	𝔼𝔼ℚ 	𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑟𝑟]g	𝑑𝑑𝑑𝑑
d

:
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 Closed form solutions for bond prices are sometimes useful. 

Krippner (2012, 2013) obtained bond prices as an integral of options 

with closed form values by rewriting the bond price in terms of 

forward rates. Denoting 𝑇𝑇	 = 	𝑡𝑡 + 𝜏𝜏, we have: 

 
 𝑃𝑃(𝑡𝑡, 𝑇𝑇) 	= 𝔼𝔼ℚ 𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑟𝑟 𝑡𝑡 + 𝑢𝑢 𝑑𝑑𝑢𝑢 ⋅ 	7]

" 	 	 		  (10)	
   = 	𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑓𝑓"

] 𝑡𝑡 + 𝑢𝑢 𝑑𝑑𝑢𝑢 ⋅ 	7 	
 

The ZLB condition is transposed to the forward rate, and the 

availability of money also implies that the future yield of any current 

bond will always be non-negative. Taking the limit at the time prior 

to maturity, this condition applies to the forward rate, which yields 

(11) and (12). 

 

 𝑓𝑓(𝑡𝑡 + 𝑢𝑢) = 𝑓𝑓 𝑡𝑡 + 𝑢𝑢 +     (11) 

 

 𝐿𝐿: 	= 𝑃𝑃	(𝑡𝑡, 𝑇𝑇) = 	𝑒𝑒𝑒𝑒𝑒𝑒 − 𝑓𝑓]" 	 𝑡𝑡 + 𝑢𝑢 𝑑𝑑𝑢𝑢 ⋅ 	7    (12) 

 

Since the distribution of the forward rate is also known in closed 

form for Gaussian affine term structure models, the ZLB-floored 

forward rate 𝑓𝑓 can also be expressed as an option on the shadow-

forward 𝑓𝑓: 

 

 𝑓𝑓(𝑡𝑡, 𝑡𝑡 + 𝑢𝑢) = 𝑓𝑓(𝑡𝑡, 𝑡𝑡 + 𝑢𝑢) 	+ 	𝑧𝑧(𝑡𝑡, 𝑡𝑡 + 𝑢𝑢)    (13) 

 

where 𝑧𝑧(𝑡𝑡, 𝑡𝑡 + 𝑢𝑢) is an American option on the shadow forward rate, 
i.e., a derivative of an American option on the shadow bond price. 

Krippner (2012) approximates this American option by a European 

option with a closed form solution. The approximation error has 
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been shown to be negligible in recent research (Christensen et al., 

2013; Christensen and Rudebusch, 2014). This yields (14) 

 

 𝑧𝑧 𝑡𝑡, 𝜏𝜏 = lim
l→	"

n
nl

op :,],]+l;7
q :,],]+l

	     (14) 

 

where 𝐶𝐶s(… ) is a European option price that serves as an empirical 

proxy for the American version which is harder to value. With 

Gaussian affine term structure models, forward rates being Gaussian, 

𝐶𝐶s is known in closed form, yielding for 𝑧𝑧 and 𝑓𝑓: 

 

 𝑧𝑧 𝑡𝑡, 𝜏𝜏 = −𝑓𝑓 𝑡𝑡, 𝜏𝜏 ⋅ 7 − 𝑁𝑁 v :,]
w ]

+ 𝜔𝜔 𝜏𝜏 7
	&y

	𝑒𝑒𝑒𝑒𝑒𝑒 − 7
&

v :,]
w ]

&
	   

	
 𝑓𝑓 𝑡𝑡, 𝜏𝜏 	= 𝑓𝑓 𝑡𝑡, 𝜏𝜏 ⋅ 	𝑁𝑁 v :,]

w ]
+ 𝜔𝜔 𝜏𝜏 7

&y
	𝑒𝑒𝑒𝑒p − 7

&
v :,]
w ]

&
	   (15) 	

 

where 𝑁𝑁 is the Gaussian cumulative distribution function and 𝑤𝑤() 
the volatility of the forward rate. The ZLB bond price is then 

computed as in (12) as a simple integral of options. 

 See C.3 on page 49 for computation details for Gaussian affine 

term structure models. 

 

C.2) Krippner (2012) – a ZLB with a 2-factor Vasicek shadow model  

The K12 model is a special case of a ZLB/shadow-Vasicek model, 

where one of the two factors of the Vasicek shadow model, namely 

inflation, is integrated. It can be compared to KNW08, a two-factor 

Gaussian model, obtained by setting 𝑛𝑛 = & in the general model of 

Appendix C.3. The state variables of KNW08 have the following 

dynamics: 
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- The real rate 𝑟𝑟4 follows an OU process:24 

 𝑑𝑑𝑟𝑟:4 = −𝜅𝜅}	(𝑟𝑟:4 	− 𝛿𝛿})	𝑑𝑑𝑑𝑑	 + 𝜎𝜎4	𝑑𝑑𝑊𝑊:
4 

- The expected25 inflation 𝜋𝜋 follows 

 𝑑𝑑	𝜋𝜋: = −𝜅𝜅y	(𝜋𝜋: 	− 𝛿𝛿y)	𝑑𝑑𝑑𝑑	 + 𝜎𝜎y	𝑑𝑑𝑊𝑊:
y 

 

Proof: From KNW08 to K12: sketch of the proof and notations  

 Since inflation is integrated in K12, the K12 shadow model is the 

limit of the KNW08 model when the mean-reversion of inflation 

tends to zero: 𝜅𝜅y → 	".  

 To obtain the forward rate in equation (16) on the next page we 

use the detailed formulas of Appendix C.3 and use lim
�→	"

G(κ, τ) = τ, 
and, by the Continuous Mapping Theorem, lim

�→	"
G&(κ, τ) = τ&. 

 Notations for the K12 Vasicek shadow model are similar to those for 

KNW08, but abstract 𝜅𝜅y = " , as well as 𝛿𝛿y = 𝛿𝛿4 = ".26 

																																																													
24  Note that if 𝑟𝑟 = 𝛿𝛿 + 𝑋𝑋 and 𝑑𝑑𝑋𝑋 = −𝜅𝜅	𝑋𝑋	𝑑𝑑𝑑𝑑	 + 𝜎𝜎	𝑑𝑑𝑊𝑊,  
then 𝑑𝑑𝑟𝑟 = −𝜅𝜅	(𝑟𝑟 − 𝛿𝛿)	𝑑𝑑𝑑𝑑	 + 𝜎𝜎	𝑑𝑑𝑊𝑊. 
25  Since no risk premia are assumed on unexpected inflation risk, expected 
inflation is on average equal to realised inflation. 
26  We interpret 𝑋𝑋É as inflation and 𝑋𝑋X as the real rate, but these are unobserved 
state variables in K12. 
And the mean-reversion cannot be identified for each state variable when these 
are not observed. In such models, it is customary to write 𝑟𝑟 = 𝛿𝛿 + 𝑋𝑋Ñ ,where 𝑋𝑋Ñ 
have no mean reversion. But when one factor is integrated, 𝛿𝛿 cannot be 
identified either. If we really calibrated K12 to observed real rates and inflation, 
then 𝛿𝛿, 𝛿𝛿4, 𝑎𝑎𝑎𝑎𝑑𝑑	𝛿𝛿y would of course be identified. 
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K12 shadow forward yield: 

				𝑓𝑓(𝑡𝑡, 𝜏𝜏) 	= 𝜋𝜋(𝑡𝑡) + 𝑟𝑟4(𝑡𝑡)𝑒𝑒𝑒𝑒𝑒𝑒(−𝜅𝜅} ⋅ 𝜏𝜏) + 𝜎𝜎y𝜆𝜆y𝜏𝜏	 + 	𝜎𝜎4	𝜆𝜆4	𝐺𝐺 𝜅𝜅}, 𝜏𝜏  	
     				− 7

&
𝜎𝜎y&	𝜏𝜏& 	− 	 7

&
𝜎𝜎4&	 𝐺𝐺 𝜅𝜅}, 𝜏𝜏 & − 𝜌𝜌	𝜎𝜎y	𝜎𝜎4 ⋅ 𝜏𝜏 ⋅ 	𝐺𝐺(𝜅𝜅}, 𝜏𝜏)       (16)	

 
where 𝜆𝜆y is the risk premium attached to inflation risk, 𝜆𝜆4 to the real 
interest rate risk, and the function 𝐺𝐺 𝜅𝜅	, 𝜏𝜏 = 7

â
7 − 𝑒𝑒𝑒𝑒𝑒𝑒 −𝜅𝜅	 ⋅ 𝜏𝜏 . 

 

Shadow forward yield volatility: 
 𝜔𝜔(𝜏𝜏) 	= 𝜎𝜎y& ⋅ 𝜏𝜏	 + 𝜎𝜎4& ⋅ 	𝐺𝐺(&𝜅𝜅}, 𝜏𝜏) 	+ 	&	𝜌𝜌	𝜎𝜎y𝜎𝜎4 ⋅ 𝜏𝜏 ⋅ 	𝐺𝐺(𝜅𝜅}, 𝜏𝜏)   (17) 
 

where 𝜎𝜎y(𝑡𝑡) is the volatility of the level factor in the shadow forward 

rate and 𝜎𝜎4 𝑡𝑡 ⋅ 	𝑒𝑒𝑒𝑒𝑒𝑒(−𝜅𝜅} ⋅ 𝜏𝜏) the volatility of the slope factor. These 

elements permit the construction of the ZLB rate 𝑓𝑓ä(𝑡𝑡, 𝜏𝜏) as in (19). 

 

K12 shadow interest rate yield: 

writing 𝑟𝑟 𝑡𝑡, 𝜏𝜏 = 7
]

𝑓𝑓(𝑡𝑡, 𝑢𝑢)𝑑𝑑𝑢𝑢]
" 	we have for the shadow bond-yield: 

 
 𝑟𝑟 𝑡𝑡, 𝜏𝜏 = 𝜋𝜋 𝑡𝑡 + 𝑟𝑟4 𝑡𝑡 ⋅ 7

]
𝐺𝐺(𝜅𝜅}, 𝜏𝜏)  

  +	𝜎𝜎y𝜆𝜆y
7
&
	𝜏𝜏 + 	𝜎𝜎4	𝜆𝜆4

7
âã
	 7 − å âã,]

]
                   (18)	

−	𝜎𝜎y&
7
ç
	𝜏𝜏& − 𝜎𝜎4& ⋅

7
𝜅𝜅}&

7
&
−
7
𝜏𝜏
𝐺𝐺 𝜅𝜅}, 𝜏𝜏 +

7
&𝜏𝜏

𝐺𝐺 &𝜅𝜅}, 𝜏𝜏 	

−	𝜌𝜌	𝜎𝜎y	𝜎𝜎4 ⋅ 	
7
𝜅𝜅}&

7
&
𝜅𝜅}𝜏𝜏 −

7
𝜏𝜏
𝐺𝐺 𝜅𝜅}, 𝜏𝜏 + 𝑒𝑒𝑒𝑒𝑒𝑒 −𝜅𝜅}	𝜏𝜏 	

 

Calibration: 

The calibration in Krippner (2012) is: 𝜅𝜅} 	= 	 .éèèê, 𝜆𝜆y = .7êé', 𝜆𝜆4 =
.&èë', 𝜎𝜎_𝜋𝜋 = ."7í&, 𝜎𝜎4 = ."&'", 𝜌𝜌 = .ê"ëè and, for the risk premia, 

𝜆𝜆y = ".7êé' and 𝜆𝜆4 = ".&èë' 
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C3) Computation details for a general shadow-Gaussian model  

Krippner (2012, p15) obtains the following formulae in the case of the 

independent multivariate Gaussian affine term structure model. The 

notation is inspired by Chen (1995), where 

 

𝑟𝑟(𝑡𝑡) = 𝑠𝑠Ñ(𝑡𝑡)
î

Oï7

	 

 

and the 𝑠𝑠Ñ 𝑡𝑡 , 𝑛𝑛 ∈ [7: 𝑁𝑁] are state variables that follow correlated 

Ornstein-Uhlenbeck processes under the physical ℙ measure: 

 

𝑑𝑑𝑠𝑠Ñ(𝑡𝑡) = 𝜅𝜅Ñ[𝜇𝜇Ñ − 𝑠𝑠Ñ(𝑡𝑡)]𝑑𝑑𝑡𝑡 + 𝜎𝜎Ñ	𝑑𝑑𝑊𝑊Ñ(𝑡𝑡) 
 

with 𝜅𝜅Ñ, 𝜇𝜇Ñ, 𝜎𝜎Ñ being positive numbers representing the long-run 

level, mean reversion rate, and volatility of the 𝑠𝑠Ñ and 𝑊𝑊Ñ(𝑡𝑡) 
correlated Wiener processes. The constant market prices of risk are 

denoted 𝜆𝜆Ñ, usually positive numbers which lift forward rates. The 

bond price of maturity 𝜏𝜏 = 𝑇𝑇 − 𝑡𝑡 reads at time 𝑡𝑡: 
 

𝑃𝑃(𝑡𝑡, 𝜏𝜏) = 𝑒𝑒𝑒𝑒𝑒𝑒 −𝐻𝐻 𝑡𝑡 − 𝑠𝑠Ñ 𝑡𝑡 ⋅ 	𝐺𝐺 𝜅𝜅Ñ, 𝜏𝜏
î

Ñï7

	  

 

where the function 𝐻𝐻(𝜏𝜏) for Gaussian affine term structure models is 

 

𝐻𝐻(𝜏𝜏) = −
7
&
𝑇𝑇𝑟𝑟 Ξ 𝜏𝜏 Ψ + 𝜇𝜇Ñ + 𝜎𝜎Ñ

𝜆𝜆Ñ
𝜅𝜅Ñ

	
î

Ñï7

	 𝜏𝜏 − 𝐺𝐺 𝜅𝜅Ñ, 𝜏𝜏  

 

with 

𝑇𝑇𝑟𝑟[⋅] as the matrix operator, Ψ as ΨOú = 7/𝜅𝜅O𝜅𝜅ú, and 
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 Ξùû 𝜏𝜏 = 𝜌𝜌Oú𝜎𝜎O	𝜎𝜎ú ⋅ [𝜏𝜏 − 𝐺𝐺(𝜅𝜅O, 𝜏𝜏) − 𝐺𝐺(𝜅𝜅ú, 𝜏𝜏) + 𝐺𝐺(𝜅𝜅O + 𝜅𝜅ú, 𝜏𝜏)]. 
 

The shadow forward rate 

A single numerical integration of the ZLB forward rate in (19) is 

necessary to obtain the bond price. The ZLB forward rate reads 

 

 𝑓𝑓ä(𝑡𝑡, 𝜏𝜏) = 𝑓𝑓ä(𝑡𝑡, 𝜏𝜏) 	+ 	𝑧𝑧ä(𝑡𝑡, 𝜏𝜏)    (19)	

  = 𝑓𝑓 𝑡𝑡, 𝜏𝜏 ⋅ 	𝑁𝑁 v :,]
w ]

+ 𝜔𝜔 𝜏𝜏 7
&y
𝑒𝑒𝑒𝑒𝑒𝑒 − 7

&
v :,]
w ]

&
	  	

 

with the shadow forward rate 

				𝑓𝑓(𝑡𝑡, 𝜏𝜏) = 𝜇𝜇îî
Ñï7 		+ 	 [𝑠𝑠Ñ(𝑡𝑡) − 𝜇𝜇Ñ]𝑒𝑒𝑒𝑒𝑒𝑒(−𝜅𝜅Ñ	𝜏𝜏) 	+

𝜎𝜎Ñî
Ñï7 	𝜆𝜆Ñ	𝐺𝐺(𝜅𝜅Ñ, 𝜏𝜏) −

7
&
𝑇𝑇𝑇𝑇[Θ 𝜏𝜏 Ψ]    (20)	

 

where ΘO,ú 𝜏𝜏 = 𝜌𝜌Oú𝜎𝜎O𝜎𝜎ú ⋅ 𝜅𝜅O𝜅𝜅ú	𝐺𝐺(𝜅𝜅O, 𝜏𝜏)𝐺𝐺(𝜅𝜅ú, 𝜏𝜏), 
 

𝑇𝑇𝑇𝑇[⋅] as the trace operator, 𝑁𝑁[⋅] as the standard normal cdf and 𝜔𝜔(𝜏𝜏) 
as the annualised instantaneous option volatility: 

 

 𝜔𝜔(𝜏𝜏) 	= lim
l→	"

7
l
	∑ 𝜏𝜏, 𝜏𝜏 + 𝛿𝛿     (21)	

= 𝜎𝜎Ñ& ⋅ 	𝐺𝐺(&𝜅𝜅Ñ, 𝜏𝜏)
î
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	+ 	&	 𝜌𝜌°Ñ

î
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	𝜎𝜎°𝜎𝜎Ñ ⋅ 	𝐺𝐺(𝜅𝜅° + 𝜅𝜅Ñ, 𝜏𝜏)
î
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