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1 Introduction and Related Literature

This project investigates the determinants of joint couples’ retirement decisions in Europe. A ma-

jority of retirees are married and many studies indicate that a significant proportion of individuals

retire within a year of their spouse. Many articles have documented the joint retirement of couples,

mostly in the United States and United Kingdom. A few notable examples (and datasets employed)

include Hurd (1990) (New Beneficiary Survey); Blau (1998) (Retirement History Study); Gust-

man and Steinmeier (2000) (National Longitudinal Survey of Mature Women); Michaud (2003)

and Gustman and Steinmeier (2004) (Health and Retirement Study); and Banks, Blundell, and

Casanova Rivas (2007) (English Longitudinal Study of Ageing, ELSA). In this research, we inves-

tigate the joint retirement of couples in Europe using data from the Survey on Health, Ageing and

Retirement in Europe (SHARE) and from ELSA.

In the Health and Retirement Study for example, 55% of respondents report that they expect

to retire at the same time as their spouses.1 There are at least two distinct reasons why couples

might retire simultaneously. One is that the partners receive correlated shocks (observable or not)

inducing retirement at similar times. The other is that retirement is jointly decided, reflecting the

taste and budget interactions of both members of the couple. For example, institutional reasons

related, say, to pensions and social security features, health insurance, etc., will provide constraints

and incentives under which retirement decisions are undertaken. Those will affect the timing of

retirement not only through embedded incentives that are common across potential retirees in

the population, but also provide guidance in the decision making of partners whose preference for

leisure may complement each other’s. Other sources of commonalities include assortative mating,

representing a source of common unobserved heterogeneity.

The distinction between these two drivers of joint retirement (which are not mutually exclu-

sive) is similar to the motivation for studying linear simultaneous equation models, and it parallels

the categorization by Manski (1993) of correlated and endogenous (direct) effects in social interac-

tions. There, as in this article, discerning these two sources of correlation in outcomes is relevant

for analytical and policy reasons. For example, if the estimated model does not allow for the joint

decision by the couple, then the estimate of the effect of a retirement-inducing policy shock will be

1The figure corresponds to those who answer either YES or NO to the question: “Do you expect your spouse to
retire at about the same time that you do?” (R1RETSWP). It excludes those whose spouse was not working.
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biased if the retirement times are indeed chosen jointly. Furthermore, the multiplier effect induced

by the endogenous direct effect of husband on wife or vice-versa is an important conduit for pol-

icy. The quantification of its relative importance is then important for both methodological and

substantive reasons.

Unfortunately, standard econometric duration models are not suitable for the analysis of

joint durations with simultaneity of the kind we have in mind. One tempting estimation strategy

is to include the spouse’s retirement date or, in the case of a hazard model, a time-varying variable

indicating his or her retirement date. Because this variable is a choice that is potentially correlated

with the unobservable variables determining a person’s own retirement, standard estimators are

bound to be inconsistent. Essentially, this approach would amount to including an endogenous

variable from a simultaneous equation model in the right-hand side of a regression. To address this

issue we employ an econometric duration model that allows for simultaneity developed in Honoré

and de Paula (2014). As in the linear simultaneous equation model, identification is obtained using

exclusion restrictions and, in our particular case, using the timing patterns in the data. We briefly

describe the methodology below and refer to Honoré and de Paula (2014) for futher details.

The broader literature on retirement is abundant, and a number of papers focusing on retire-

ment decisions in a multi-person household have appeared in the last decades. Hurd (1990) presents

one of the early documentations of the joint retirement phenomenon. Later papers confirming the

phenomenon and further characterizing the correlates of joint retirement are Blau (1998); Michaud

(2003); Coile (2004a); and Banks, Blundell, and Casanova Rivas (2007). Gustman and Steinmeier

(2000) and Gustman and Steinmeier (2004) work with a dynamic economic model in which the

husband’s and wife’s preferences are affected by their spouse’s actions, but the couple makes retire-

ment decisions individually.2 These papers focus on Nash equilibria to the joint retirement decision,

i.e. each spouse’s retirement decision is optimal given the other spouse’s timing and vice-versa.3

More recently, Gustman and Steinmeier (2009) present a richer (non-unitary) economic model with

a solution concept that differs from a Nash equilibrium and is guaranteed to exist and be unique.

Michaud and Vermeulen (2011) estimate a version of the “collective” model introduced by Chiap-

2In the family economics terminology, their model is a non-unitary model in which people in the household make
decisions individually. In unitary models, the household is viewed as a single decision-making unit. A characterization
of unitary and non-unitary models can be found in Browning, Chiappori, and Lechene (2006).

3When more than one solution is possible, they select the Pareto dominant equilibrium, i.e., for all other equilibria
at least one spouse would be worse off. If no equilibrium is Pareto dominant, the equilibrium where retirement by at
least one household member happens earliest is assumed (see, e.g., Gustman and Steinmeier (2000), pp. 515, 520).
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pori (1992) in which (static) labor force participation decisions by husband and wife are repeatedly

observed from a panel (i.e., the Health and Retirement Study). Casanova Rivas (2010) suggests

a detailed unitary economic dynamic model of joint retirement. Coile (2004b) presents statistical

evidence on health shocks and couples’ retirement decisions and Blau and Gilleskie (2004) present

an economic model that also focuses on health outcomes and couples’ retirement decisions. To the

best of our knowledge, ours is the first exploration of joint retirement using SHARE data.

In our estimated model, we assume that retirement decisions are made through Nash bar-

gaining on the retirement date. The Nash solution corresponds to a set of behavioral axioms on

the bargaining outcomes (essentially Pareto efficiency, independence of irrelevant alternatives and

symmetry), and it is widely adopted in the literature on intra-household bargaining. It can be

shown that this solution approximates the equilibrium outcome of a situation in which husband

and wife make offers to each other in an alternating order, and the negotiation breaks down with a

certain probability. As this probability goes to zero, the equilibrium converges to the Nash solution

(see Binmore, Rubinstein, and Wolinsky (1986)). Though this solution also leads to Pareto efficient

outcomes, it imposes more structure than Casanova Rivas (2010) or Michaud and Vermeulen (2011)

[see Chiappori (1992) and Chiappori, Donni, and Komunjer (2012)].

The econometric model used in our study builds on the developments in Honoré and de Paula

(2014). Although admittedly stylized, it extends traditional duration models that are well under-

stood and reasonably straightforward to estimate. The model extends the usual statistical frame-

work in a way that allows for joint termination of simultaneous spells with positive probability.

In the usual hazard modeling tradition, this property does not arise. One could appeal to exist-

ing statistical models (e.g., Marshall and Olkin (1967)) to address the joint termination alone as

done by An, Christensen, and Gupta (2004) in the analysis of joint retirement in Denmark, but

parameter estimates cannot be directly interpretable in terms of the couples’ simultaneous deci-

sion process. The model also extends simultaneous duration models differently from Honoré and

de Paula (2010): whereas that paper suggests a non-cooperative game theoretic framework, the use

of a cooperative framework is much more appealing for the application to joint retirement that we

address here. This brings in new features as well as new challenges. The framework presented in

this paper directly corresponds to an economic model of decision-making by husband and wife, and

it can consequently be more easily interpreted in light of such a model. To estimate the model, we
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resort to indirect inference (Smith (1993); Gourieroux, Monfort, and Renault (1993); and Gallant

and Tauchen (1996)), following Honoré and de Paula (2014).

The remainder of this paper proceeds as follows. Section 3 describes our model and the

empirical strategy for its estimation. In Section 2 we briefly describe the data and subsequently

discuss our results in Section 4. We conclude in Section 5.

2 Preliminary Analysis of the Data

We break our analysis between the Survey on Health, Ageing and Retirement in Europe (SHARE)

and the English Longitudinal Study of Ageing (ELSA).

2.1 Survey of Health, Ageing and Retirement in Europe

We base our analysis on four waves of the Survey of Health, Ageing and Retirement in Europe

(SHARE) data (collected on 2004, 2006/7, 2008/9 and 2011/2). The survey focuses on individuals

aged 50 or over and collected information on more than 60,000 people. In its first wave, data

was collected on households from 11 countries: Austria, Germany, Sweden, Netherlands, Spain,

Italy, France, Denmark, Greece, Switzerland and Belgium (plus Israel in 2005/6). Data from the

Czech Republic, Poland and Ireland was also gathered in wave 2 in addition to the original eleven

countries. In wave 3, data was collected in 13 countries (those from wave 2 minus Israel). finally in

wave 4, 4 additional countries were added: Hungary, Portugal, Slovenia and Estonia. A fifth wave

is currently being collected. To analyze retirement, we use the self-reported retirement date given

by individuals.4 Retirement is observed at least at an yearly frequency and, for many individuals,

at a monthly frequency. In this document we focus either on yearly data or use imputed months for

those who do not report their month of retirement. Throughout our analysis, we exclude households

with multiple spouses and/or couples throughout the period of analysis, couples with conflicting

information over marital status or other joint variables, and couples of the same gender.

To gain familiarity with the patterns of joint retirement, Table 1 documents wives’ re-

tirement behaviour given the retirement year of the husband among couples where both partners

have retired by their last interview. In this initial analysis, we use only couples with uncensored

4We also generated other retirement variables, based on time at work and income source. Although those variables
also indicate very similar patterns to the one we use here, we believe our measure of retirement is more suitable to
our exercise.
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retirement years for both spouses where both partners retire between 2005 and 2012.5

TABLE 1 HERE

It is apparent that a substantial proportion of individuals retire in the same year as their

spouses. An interesting pattern arising from the tabulation is that while official retirement rates

were constant in most countries in the sample, joint retirement seem more prevalent in 2005-2007

than in 2008-20126. This can probably be ascribed to the deterioration of economic conditions in

the second half of the period depicted in the table. Using data on expected retirement dates from

ELSA, for instance, Crawford (2011) finds some evidence that individuals positively revised their

expected retirement ages in direct response to asset value deterioration. Although that response is

relatively imprecisely estimated, a general increase in retirement age is observed around the crisis

period is detected though. As explained in the paper, this is can be ascribed to a tendency to

upwardly revise retirement expectations as one ages (which is observed in previous waves of the

survey), but also potentially an increase in risk aversion and/or uncertainty.

Breaking up the sample above by countries, we can also compare the relative frequencies of

observations where both partners are not censored with the overall frequencies from each country.

This is done in Table 2. As displayed, some countries with smaller representation and/or which

started being surveyed only in later waves in our SHARE sample have censoring in the retirement

date for at least one partner (i.e., Estonia, Hungary, Ireland, Portugal and Slovenia). The propor-

tion of joint retirees per country is positive in all remaining countries (except for Italy), though the

number of observations per country is then relatively small.

TABLE 2 HERE

In our subsequent statistical analysis, to avoid left-censoring, we select households that had

both partners in the labor force when the oldest in the couple was around 50 years-old. Right-

censoring occurs if the couple splits, when someone dies or has his or her last interview before the

end of the survey. This leaves us with 4,083 couples. Of those, 131 couples have both the husband’s

5Only 2 additional couples with both partners uncensored has a partner retiring before 2005. (In our subsequent
analysis we use many more couples as we also incorporate censored observations.)

6When absolute frequencies are used, the 2005-2007 sub-matrix is clearly “dominant diagonal” whereas the 2008-
2012 is clearly not.
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and the wife’s uncensored retirement dates.7 We condition covariates on the first “household year”:

when the oldest partner reaches 50 years-old.8 Because additional variables would reduce our sample

substantially (even using imputed versions of those variables), we decided to focus our study on a

relatively small subset of variables. The covariates we use are:

1. the age difference in the couple (husband’s age minus wife’s age in years);

2. dummies for country; and

3. self-reported health dummies (good health, very good health, and poor health);

Table 3 presents summary statistics for these variables. Note that we observe potential

censoring months even for the observations that are uncensored in the data. As pointed out

previously, this allows us to impose the same censoring process in the simulations as used to

generate the data. It should be noted that the censoring rate is quite elevated relative to similar

surveys such as the Health and Retirement Study. This is partly ascribed to SHARE being a

“younger” survey, where many individuals are still in the labor force by their latest interview, and

to its higher attrition rates.

TABLE 3 HERE

Figure 1 presents the Kaplan-Meier estimates for the retirement behavior in our sample

(measured in months since the oldest partner turned 50 years old). We should note that, since age

difference (husband’s age minus wife’s age) is positive, at on average 2.58 years (approximately,

30 months), the estimated distribution for women is shifted to the right with respect to their

calendar age. As seen from the graphs, two dates stand out: 120 and 180 months. Those two dates

correspond to ages 60 and 65, which are focal points for retirement decisions and coincide with the

official retirement ages for the countries in our sample during the period under study.9

FIGURE 1 HERE

7The sample used in Tables 1 and 2 focuses instead on couples retiring between 2005 and 2012. This reduces the
overall number of couples observed relative to the sample used in the analysis that follows. The number of couples
where both spouses are uncensored is smaller in the subsequent analysis because there we restrict ourselves to couples
where both partners were in the labor force when the oldest spouse was around 50-years old.

8We take the measurements from the first interview after the oldest spouse turns 50.

9See, for example, http://www.oecd.org/els/emp/ageingandemploymentpolicies-statisticsonaverageeffecti
veageofretirement.htm.
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As a preliminary assessment of how one’s retirement behaviour is affected by his or her

spouse’s retirement timing, we have also estimated a simple discrete duration analysis of a couple’s

retirement choices. On Table 4, we display the results for a logit model of retirement at a given year

as a function of dummies for the individual’s age, whether his or her spouse retires in that particular

year and whether his or her spouse has already retired. Columns labeled I display the probability

for retirement at a particular age given that the spouse has not retired nor retires at the same year.

Those labeled II provide the probabilities for retirement at a particular age given that the spouse

retires at the same year. We notice that the effect of contemporaneous spousal retirement on a

husband’s retirement timing is not statistically significant, but does appear significantly for the

wives, almost doubling the probability of retirement at certain ages. Columns III then show the

probabilities of retirement at given ages conditional on the spouse having already retired. Previous

retirement by the spouse is significant for both men and women.

TABLE 4 HERE

Finally, we estimate simple Weibull proportional hazards models for husbands and wives

separately on Tables 5 using some of the covariates enumerated above. Because of the high fraction

of censored observations, parameters are rather imprecisely estimated for many of the covariates

though we reject the hypothesis that they are jointly equal to zero in any of the specifications.

The parameter θ1 is the Weibull parameter that controls duration dependence. Both male and

female results display strong positive duration dependence: the probability of retirement increases

with age. Age difference, defined as husband’s age minus wife’s age, affects positively the hazard

rate of men and negatively the hazard rate of women. Since the oldest in the couple tends to be

the husband, this partly captures the fact that larger age differences will imply that women are

typically younger, lower their hazard of retirement. Improvements in health seem to affect both

men and women positively at first and then decay for men though not for women.

TABLE 5 HERE

2.2 English Longitudinal Study of Ageing

Our analysis of ELSA parallels that of the SHARE data. ELSA is a large scale longitudinal panel

study of people aged 50 and over, and their partners, living in private households in England. The
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same group of respondents have been interviewed at two-yearly interviews. The sample was drawn

from households that had previously responded to the Health Survey for England (HSE). We use

five different waves from ELSA. Wave 1 was conducted between 2002 and 2003 and the sample

was selected from three years of HSE: 1998, 1999 and 2001. Wave 2 was conducted between 2004

and 2005 (there was no refreshment sample). Wave 3 was collected between 2006 and 2007 and a

refreshment sample included new people from HSE 2001-2004, who were previously too young to

join ELSA. Wave 4 was taken between 2008 and 2009 and then again a refreshment sample included

new people from HSE 2006. Wave 5 was collected between 2010 and 2011 without a refreshment

sample. Finally, a sixth wave was collected between 2012 and 2013 together with a refreshment

sample of individuals aged between 50 and 55 from the HSE 2009, 2010 and 2011 surveys. This

allows us to observe the behaviour of retirees at the onset of reforms to the State Pension Age for

women (supposed to increase from 60 years old in April 2010 to 65 years old in 2020) and leverage

our identification strategy.

As with our analysis of SHARE, we select households that had both partners in the labor

force when the oldest in the couple was around 50 years-old. Right-censoring occurs if the couple

splits, when someone dies or has his or her last interview before the end of the survey. This leaves

us with 1,391 couples. Of those, 237 couples have both the husband’s and the wife’s uncensored

retirement dates and 75 of those (32%) retire on the same year. We condition covariates on the first

“household year” and use the same variables as in the SHARE analysis. The retirement timing is

selected to the date of the last job for those who qualify themselves are retired (or semi-retired)

(and, when that was not available, their self-reported retirement date). For ELSA, the timing

variable used is observed at an yearly frequency (and expressed in months for congruence with the

SHARE analysis).

Table 6 presents summary statistics for the variables we used. The censoring rate is also

higher in comparison to similar surveys such as the Health and Retirement Study but lower than

the one we found with SHARE.

TABLE 6 HERE

Figure 2 gives the Kaplan-Meier estimates for the retirement behavior in our sample (mea-

sured in months since the oldest partner turned 50 years old). As seen from the graph, one date

(180 months) stands out in the estimates for men. This corresponds to the State Pension Age in
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England. No such discontinuity is noticed in the female chart.

FIGURE 2 HERE

We have also estimated a simple discrete duration analysis of a couple’s retirement choices

using ELSA. On Table 7, we display the results for a logit model of retirement at a given year as

a function of dummies for the individual’s age, whether his or her spouse retires in that particular

year and whether his or her spouse has already retired. The description of each one of the columns

is as in the analogous table presented in our preliminary analysis of SHARE. We notice that the

effect of contemporaneous spousal retirement is not only more statistically significant than in our

presentation on SHARE, but also numerically more salient (for both genders). The probability of

retirement is often three to four times higher when the spouse retires in the same year. Previous

retirement by the spouse is also significant for both men and women.

TABLE 7 HERE

Finally, we also estimate simple Weibull proportional hazards models for husbands and wives

separately on Table 8 using some of the covariates enumerated above. Because of the high fraction

of censored observations, parameters are rather imprecisely estimated for many of the covariates

though we reject the hypothesis that they are jointly equal to zero in any of the specifications.

The parameter θ1 is the Weibull parameter that controls duration dependence. Both male and

female results display strong positive duration dependence: the probability of retirement increases

with age. Age difference appears to be a much more tenuous determinant of the hazard rate for

men than in the SHARE data. Here, improvements in health seem to affect both men and women

positively at first and then decay.

TABLE 8 HERE

3 Model and Empirical Strategy

3.1 Basic Setup

In this section we describe a simple economic model that captures the features that spouses may

decide jointly when to retire and that the optimal decision can be to retire at the same time. The
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framework is developed in Honoré and de Paula (2014) and we refer the reader to that paper for

additional details. The model is explicitly designed to have the proportional hazard model as a

special case. As is usual in choice models, the retirement decision depends only on the difference

in utility between being retired or not. The levels of the utilities do not matter. This implies

that many of the seemingly arbitrary assumptions made below are mere normalizations with no

behavioral implications.

In order to simplify the notation, we measure time in terms of “household age”. As men-

tioned earlier, in our empirical analysis family age is set to zero when the oldest partner in the

couple reaches age 50. Throughout, we use i = 1, 2 to denote the two spouses in a married couple.

n is used to index couples.

In our model, individual i with observable characteristics, xi, and whose spouse retires at

time tj , receives a utility flow of Ki > 0 before retirement. The vector (K1,K2) is the source of

randomness in our econometric model. It is drawn from a joint distribution and its elements are

potentially correlated due to, e.g., sorting or other commonalities. After retirement, the utility

flow at time s is given by the deterministic function, Zi(s)ϕi (xi)D(s, tj). The function D(s, tj) is

defined as (δ−1)1(s ≥ tj)+1 with δ ≥ 1 and it captures the idea that there can be complementarities

in retirement. These complementarities can be either ascribed to taste or to institutional features

such as Social Security rules that may promote coordination in retirement timing among husband

and wife. (Whereas this parameter would not be invariant to changes in such regulations, it may

be taken as fixed with respect to other counterfactuals.) In the calculations and exposition below,

we restrict our attention to the case where δ is greater than or equal to 1. The parameter δ could

in principle be less than one. However, this would not generate a positive probability that the

individuals retire at the same time (as observed in the data). Given these, the discounted utility

for individual i, who retires at ti and whose spouse retires at tj , is given by

U i(ti, tj ,xi, ki) ≡
∫ ti

0
kie
−ρsds+

∫ ∞
ti

Zi(s)ϕiD(s, tj)e
−ρsds.

We assume that the function Zi(·) is increasing with Zi(0) = 0. This simplifies the algebra,

and it implies that, at the time the retirement decision is made, the couples expect retirement to be

an absorbing state. As mentioned above, only the difference in utilities matters, so the assumption

is that retirement becomes relatively more attractive over time. In particular, we are not assuming
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that some absolute measure of happiness increases with age. The multiplicative structure for

Zi(s)ϕi (xi)D(s, tj) is imposed because we want the resulting model to have the same structure as

the familiar proportional hazard model. Except for that, it could easily be relaxed. In principle, it

is possible to allow for kinks or discontinuities in Zi(·). In a model without interdependence, those

would correspond to discontinuities in the hazard rate in the case of kinks in Zi(·) or, in the case

of discontinuities in Zi(·), positive probability of retirement at the discontinuity date to capture,

for example, the positive probability of retirement at ages 60 and 65.

The δ could be made spouse-specific as well, but we focus on homogeneous δ and leave this

degree of heterogeneity for future analysis. The reason for this is simplicity, and the fact that while

the probability of joint retirement will be driven by δ, it is difficult to think of features of the data

that would allow us to separately identify a δ for husbands and wives.

Given a realization (k1, k2) for the random vector (K1,K2), we assume that retirement

timing is obtained as the solution to the Nash bargaining problem [Nash (1950); see also Zeuthen

(1930)]:

maxt1,t2

(∫ t1
0 k1e

−ρsds +
∫∞
t1
Z1(s)ϕ1D(s, t2)e

−ρsds−A1

)
×(∫ t2

0 k2e
−ρsds+

∫∞
t2
Z2(s)ϕ2D(s, t1)e

−ρsds−A2

) (1)

where A1 and A2 are the threat points for spouses 1 and 2, respectively. In the estimation, we

set Ai equal to a fraction of the maximum utility individual i would obtain without the increased

utility from the externality from the spouse’s retirement. This specification of the threat points

makes economic sense, and it also saves us from having to deal with the possibility that there are

parameter values for which the factors in (1) cannot be made positive. In the general setting there

may also be asymmetric bargaining weights that appear as exponents in the objective function.

The Nash bargaining solution concept is widely used in economics (see, for example, Chi-

appori, Donni, and Komunjer (2012)). It can be derived from a set of behavioral axioms on the

bargaining outcomes (essentially Pareto efficiency, independence of irrelevant alternatives and sym-

metry) and it is widely adopted in the literature on intra-household bargaining. While it does not

pin down a particular negotiation protocol between the parties involved, it can be motivated by the

observation that it approximates the equilibrium outcome of a situation where husband and wife

make offers to each other in an alternating order and the negotiation breaks down with a certain
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probability. As this probability goes to zero, the equilibrium converges to the Nash solution (see

Binmore, Rubinstein, and Wolinsky (1986)).

As pointed out in Honoré and de Paula (2014), one alternative to the Nash bargaining

framework used here would be a utilitarian aggregation of the utility functions in the household

(i.e., the collective model of Chiappori (1992)). In that case, the retirement dates would solve:

max
t1,t2

cU1(t1, t2;x1,K1) + U2(t2, t1;x2,K2),

where c stands for the relative weight of agent 1’s utility. This leads to the following first-order

conditions:

c× ∂U1(t1, t2;x1,K1))

∂ti
+
∂U2(t2, t1;x2,K2)

∂ti
= 0, i = 1, 2.

The setting we propose focuses instead on maximizing (U1(t1, t2;x1,K1)−A1)×(U2(t2, t1;x2,K2)−

A2). This leads to the following first-order conditions:

U2(t2, t1;x2,K2)−A2

U1(t1, t2;x1,K1)−A1
× ∂U1(t1, t2;x1,K1))

∂ti
+
∂U2(t2, t1;x2,K2)

∂ti
= 0, i = 1, 2.

Consequently, the two are equivalent only if

c =
U2(t2, t1;x2,K2)−A2

U1(t1, t2;x1,K1)−A1
.

In this sense, the Nash bargaining setup imposes further restrictions on the model, as indicated in

Chiappori, Donni, and Komunjer (2012). That paper also establishes identification results when a

common set of covariates x affects both the threat points Ai, i = 1, 2 and utilities U i, i = 1, 2. Point-

identification is achieved using spouse-specific covariates that affect the threat points Ai, i = 1, 2,

but are excluded from U i, i = 1, 2. In our empirical investigation we rely instead on spouse-specific

covariates in U i, i = 1, 2 and no excluded variables in the threat point functions Ai, i = 1, 2.

Moreover, Chiappori, Donni, and Komunjer (2012) assume that latent variables (i.e., Ki, i = 1, 2)

are additively separable, which is not our case.

As discussed in Honoré and de Paula (2014), the above model allows for positive probabilities

of joint and sequential retirement when δ > 1. On the other hand, when δ = 1 the optimal
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retirement dates will correspond to

logZi(ti) = − logϕi + logKi, i = 1, 2.

Ki following a unit exponential distribution gives a proportional hazard model. For a general

distribution of Ki, this yields the generalized accelerated failure time model of Ridder (1990). This

is the sense in which the approach discussed in this section can be thought of as a simultaneous

equations version of a generalized accelerated failure time model.

3.2 Estimation: Indirect Inference

Because the likelihood for this model is not easily computed in closed form, we resort to simulation-

assisted methods. One potential strategy would be to use simulated maximum likelihood (SML),

where one non-parametrically estimates the conditional likelihood via kernel methods applied to

simulations of T1 and T2 at particular parameter values and searches for the parameter value that

maximizes the (simulated) likelihood. We opt for a different strategy for two main reasons. First,

our likelihood displays some non-standard features. For example, there is a positive probability

for the event {T1 = T2}. Second, consistency of the SML estimator requires a large number of

simulations, which can be computationally expensive.

To estimate our model we therefore employ an indirect inference strategy (see Gourieroux,

Monfort, and Renault (1993); Smith (1993); and Gallant and Tauchen (1996)). Rather than es-

timating the maximum likelihood estimator for the true model characterized by parameter θ, one

estimates an approximate (auxiliary) model with parameter β. Let n = 1, . . . , N index a sample

of households (couples). Then, under the usual regularity conditions,

β̂ = arg max
b

N∑
n=1

logLa (b; zn)
p−→ arg max

b
Eθ0 [logLa (b; zn)] ≡ β0 (θ0) (2)

where La is a pseudo–likelihood function (parameterized by b) for the auxiliary model, zn is the

data for observation n, and the expectation Eθ0 is taken with respect to the true model. β0 (θ0)

is known as the pseudo–true value and the key is that it depends on the true parameters of the

data–generation process (θ0). The basic idea, then, is that if one knew the pseudo–true value as a
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function of θ0, it could be used to solve the equation

β̂ = β0

(
θ̂
)

and obtain an estimator for θ0. In our case, we do not know β0(θ), but we can easily approximate

this function using simulations. For a particular value of the parameters of the structural model,

θ, we generate R draws

{(z1r (θ) , z2r (θ) , . . . , zNr (θ))}Rr=1

from our structural model. In practice this is done by transforming uniform random variables.

These are then kept fixed as one varies θ. The parameter, θ, enters through the transfromation of

these uniform random variables. We can then estimate the function

β0(θ) ≡ arg max
b
Eθ [logLa (b; zn)]

by

β̃R (θ) = arg max
b

1

R

R∑
r=1

1

N

N∑
n=1

(logLa (b; znr (θ))) .

This suggests finding θ̂ such that the generated data set using θ̂ gives the same estimate in the

auxiliary model as we got in the real sample, β̂ = β̃R

(
θ̂
)

. When the dimensionality of β is greater

than the dimension of θ, this is not possible, and one then estimates θ by a minimum distance

approach that makes the difference between β̂ and β̃R (θ) as small as possible.

While this approach is conceptually straightforward, it requires one to estimate β for each

potential value of θ. This can be computationally burdensome and we therefore adopt a slightly

different version based on the first-order conditions from estimating the auxiliary model. The

expression (2) implies that

1

N

N∑
n=1

Sa
(
β̂; zn

)
= 0,

and that β̂ converges to the solution to Eθ [Sa (b; zn)] = 0, where Sa is the pseudo–score associated

with La. Of course, the solution Eθ [Sa (b; zn)] = 0 is just β0 (θ0) from equaton (2). As before, we

15



estimate Eθ [Sa (·; zn)] as a function of θ using

1

R

R∑
r=1

1

N

N∑
n=1

Sa (·; znr (θ))

and θ0 is estimated by making it as close to zero as possible. Specifically, if dim (Sa) > dim (β), we

minimize (
1

R

R∑
r=1

1

N

N∑
n=1

Sa
(
β̂; znr (θ)

))>
W

(
1

R

R∑
r=1

1

N

N∑
n=1

Sa
(
β̂; znr (θ)

))
(3)

over θ. The weighting matrix W is a positive definite matrix performing the usual role in terms of

estimator efficiency. The optimal W can be calculated using the actual data (before estimating θ)

and the asymptotic properties follow from standard GMM arguments (see Gourieroux and Monfort

(1996) for details) . This strategy is useful because we only estimate the auxiliary model once using

the real data. After that, we evaluate its first-order condition for different values of θ.

The outcome variable in our empirical analysis is censored. To use simulation-based infer-

ence we must be able to simulate data that have been censored by the same process. In practice

this means that we must either model the censoring process parametrically or observe the censor-

ing times even for those observations that are uncensored in the data. As discussed below, our

application falls into the second category.

3.2.1 Auxiliary Model

Our auxiliary model is composed of four reduced-form models that are chosen to capture the features

of the data that are our main concern: the duration until retirement for each of the two spouses,

the idea that some married couples choose to retire jointly and the possibility that unobserved

shocks may be correlated. For the first two, we use a standard proportional hazard model for each

spouse with a Weibull baseline hazard and the usual specification for the covariate function. For

the third, we use an ordered logit model as suggested by our paper Honoré and de Paula (2010).

Finally, we use the correlation of residuals from a regression of time-to-retirement for husband and

wife on relevant covariates to capture any association in unobservables. We present the models in

more detail below.
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3.2.2 Weibull Proportional Hazard Model

For each spouse i, the hazard for retirement conditional on x is assumed to be λi (t|x) = αit
αi−1 exp

(
x>βi

)
.

The (log) density of retirement for spouse i conditional on x, log fi (t|x), is then given by:

log
{
λi (t) exp

(
x>βi

)
exp

(
−Zi (t) exp

(
x>βi

))}
= logαi + (αi − 1) log t+ x>βi − tαi exp

(
x>βi

)

The (conditional) survivor function can be analogously obtained and is given by:

logSi (t|x) = log
{

exp
(
−Zi (t) exp

(
x>βi

))}
= −tαi exp

(
x>βi

)

Letting ci,n = 1 if the observed retirement date for spouse i in household n is (right-)censored, and

= 0 otherwise, we obtain the log-likelihood function:

logLi =
N∑
n=1

(1− ci,n)
(
logαi + (αi − 1) log (ti,n) + x′i,nβi

)
−

N∑
n=1

tαi
i,n exp

(
x′i,nβi

)
3.2.3 Ordered Logit Model Pseudo MLE

In the spirit of the estimation strategy suggested in Honoré and de Paula (2010), we also use an

ordered logit model as an auxiliary model. Whereas the Weibull model will convey information on

the timing of retirement, this second auxiliary model will provide information on the pervasiveness

of joint retirement and help identify the taste interactions leading to this phenomenon (i.e., δ).

Define

yn =


1, if t1 > t2 + 1

2, if |t1 − t2| ≤ 1

3, if t2 > t1 + 1

Incorrectly assuming an ordered logit model for yn yields

P (yn = 1 or yn = 2) = Λ
(
x>n γ1

)
and P (yn = 2) = Λ

(
x>n γ1 − γ0

)
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where Λ (·) is the cummulative distribution function for the logistic distribution. This allows us to

construct the following pseudo-likelihood function:

Q =
∑
yn=0

log
(

1− Λ
(
x>0nγ

))
+
∑
yn 6=0

log
(

Λ
(
x>0nγ

))
+
∑
yn 6=2

log
(

1− Λ
(
x>1nγ

))
+
∑
yn=2

log
(

Λ
(
x>1nγ

))

where

x0n =

(
x>n

...0

)>
x1n =

(
x>n

...1

)>
γ =

(
γ>1

...− γ0
)>

The explanatory variables in the three parts of the auxiliary model need not be the same,

and they need not coincide with the explanatory variables in the model to be estimated. In the

empirical section below, the covariates in the Weibull auxiliary models are each spouses’s own values

of the explanatory variables in the model of interest. We use a constant only as an explanatory

variable in the ordered logit model. This leaves the number of overidentifying restrictions constant

across specifications.

3.2.4 Covariance in Failure Times

To allow for correlation in the unobservables variables K1 and K2, we use copula functions. To

perform the estimation, we augment our auxiliary models with the covariance in failure times

(including censored observations in both data and simulation moments). Specifically, we calculate

the covariance between the residuals from a regression of (log) failure time on all covariates for

husband and wife. An alternative is to use the residuals from regressions on spouse-specific variables

and/or to define generalized residuals from a proportional hazard model estimated by maximum

likelihood. The reason why we did not choose those approaches is that the asymptotic distribution

for the covariance would then depend on nuisance parameters (i.e., the regression coefficients). This

is not the case if we use the same set of covariates for husband and wife and estimate the model

by OLS.

4 Results

We now present estimation results for our simultaneous duration model using monthly data on

couples’ retirement. The discount rate ρ is set to 0.004 per month (i.e., 5% per year) and the threat

points are set at 0.6 times the utility level they would have obtained if his or her partner never
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retired.10 The number of simulations in each set of estimates is R = 10. Here we assume that Zi(·)

is smooth: Zi(t) = tθ1i . As pointed out earlier, it is possible to allow for non-smoothness in Zi(·)

and we hope to incorporate this to account for positive probabilities of retirement at ages 60 and

65. In our baseline specifications, utility flows while in the labor force are drawn from independent

unit exponentials, Ki ∼ exp(1). To allow for positive correlation between the unobserved variables

K1 and K2 (induced, e.g., by sorting), we use a Clayton-Cuzick copula function (see Clayton and

Cuzick (1985)). More precisely, we model the joint cummulative distribution function of K1 and

K2 as:

FK1,K2(k1, k2; τ) = K(1− exp(−k1), 1− exp(−k2); τ),

where

K (u, v; τ) =

 (u−τ + v−τ − 1)
−1/τ

for τ > 0

uv for τ = 0.

The unobservables are independent when τ = 0. When τ > 0, there is positive dependence between

variables K1 and K2. Specifically, Kendall’s rank correlation for the Clayton-Cuzick copula is

equal to τ/(2 + τ) (see, for example, Trivedi and Zimmer (2006)). This copula is commonly used

to introduce dependence in the duration literature. Finally, we take ϕi(xi) = exp(θ>2ixi). This

implies that when δ = 1 and τ = 0, the durations follow simple independent proportional hazard

Weibull models (Lancaster (1990), p.44). This is the sense in which our approach generalizes simple

standard econometric duration models. We also note that, even if δ = 1, the copula used here plays

the dual role of introducing correlation between the unobserved variables K1 and K2 and allowing

for unobserved heterogeneity in the hazard rates to retirement.

In this paper, we only present results for a very simple specification of our model, using

only age difference and self-reported health as additional controls (plus country dummies in the

case of SHARE). Table 9 presents our estimates using the SHARE data. There is positive duration

dependence: retirement is more likely as the household ages. Age differences tend to increase the

retirement hazard for men and decrease it for women as in our independently estimated duration

models. Since men are typically older and we count “family age” from the 50th year of the older

partner, a larger age difference implies that the wife is younger at time zero and less likely to retire

10Our experience with the HRS nevertheless suggests that this choice will not matter for the estimated parameters
of interest.
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at any “family age” than an older woman (i.e., a similar wife in a household with a lower age

difference).

We estimate versions of the model allowing for correlation in the unobservable component

and not. As expected, the interaction parameter is higher when correlation in unobservables is

precluded: any correlation in retirement timing rests more heavily on that parameter. Perhaps

surprisingly, when correlation is allowed for, the interaction parameter is estimated at very close to

one. In terms of our model, this means that the monthly utility flow of retirement increases very

little (if at all) when one’s partner retires. We should nevertheless highlight that our inference on

the effect of one spouse’s retirement on the other spouse retirement choise is severely complicated

by the attrition levels in the data. We also note that the copula parameter is around 0.8, yielding

a Kendall’s rank correlation coefficient of about 0.3. This is higher than our findings for the

analysis with the HRS (see Honoré and de Paula (2014)). As explained previously, this correlation

is potentially due to, e.g., sorting or other commonalities, and indicates that such phenomena are

more prevalent in European data.

TABLE 9 HERE

The results for ELSA are much more marked. When no correlation between unobservables

is imposed, the interaction parameter is high and estimated at 1.46 when only age difference is used

and at 1.36 when self-reported health is allowed for. When we allow for correlation between the

unobservables, the parameter is estimated at 1.03 and 1.01, which is slightly below our previous

findings for the HRS. In comparison with both the HRS and SHARE, the correlation in unob-

servables, encompassing potential commonalities, is much stronger with an implied Kendall’s rank

correlation of about 0.53. This parameter is nevertheless very noisily estimated.

TABLE 10 HERE

With ELSA we are able to examine the behaviour of retirees at the onset of reforms to the

State Pension Age for women (supposed to increase from 60 years old in April 2010 to 65 years

old in 2020) and leverage our identification strategy. To study the effect of the reform, we run

the specifications above (without unobserved heterogeneity) controlling for whether the wife was

exposed to the reform (i.e., born after 1950). The results are displayed on Table 11. As intuition

would suggest, the reform affects directly the wife’s inclination to retire, lowering the hazard rate
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of retirement. The direct effect on husband’s hazard rate is positive, but numerically small and

statistically insignificant. Consequently, the reform’s effect on husbands navigates mostly via its

effects on women, delaying retirement. Interestingly, if one estimates a duration model with the

wife’s exposure to the reform, a statistically significant and positive coefficient is obtained for the

direct effect of the reform on a husband’s hazard rate of retirement.

TABLE 11 HERE

5 Concluding Remarks

The presents an analysis of joint retirement in Europe. Whereas high rates of attrition and the

fewer number of waves lead to rather tenuous effets in the Survey of Health, Ageing and Retirement

in Europe (SHARE), the longer running English Longitudinal Study of Ageing (ELSA) provides

strong evidence of complementarities. Despite these shortcomings, both the reduced form and

structural analysis yield evidence that retirement is best modeled as a joint economic decision.

This is potentially important for estimating the effect of policy interventions. In particular, we are

able to assess the effect of a reform to the State Pension Age for women (supposed to increase from

60 years old in April 2010 to 65 years old in 2020). The reform directly affect women’s propensity

to retire and, indirectly, the retirement of men.
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Appendix: Figures and Tables

Figure 1: Kaplan-Meier Estimates (SHARE): Husband and Wife
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Figure 2: Kaplan-Meier Estimates (ELSA): Husband and Wife
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Table 1: Conditional Retirement Year Frequency (in %) (SHARE)

Wife
Husbands 2005 2006 2007 2008 2009 2010 2011 Total

2005 42.86 14.29 0.00 7.14 21.43 7.14 7.14 100.00
2006 13.33 36.67 6.67 10.00 16.67 13.33 3.33 100.00
2007 8.33 0.00 41.67 8.33 20.83 20.83 0.00 100.00
2008 2.86 5.71 17.14 22.86 20.00 22.86 8.57 100.00
2009 0.00 11.76 8.82 17.65 26.47 32.35 2.94 100.00
2010 3.12 3.12 6.25 31.25 21.88 21.88 12.50 100.00
2011 6.06 12.12 18.18 6.06 15.15 24.24 18.18 100.00

Source: SHARE. The total number of couples with uncensored retirement years for both spouses
is 202. There are many more observations where either husband or wife retire before 2005, but
only 2 of those are uncensored for both spouses.
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Table 2: Frequency by Country (SHARE)

Overall Both Uncensored
(%) (%)

Austria 9.46 7.92
Belgium 16.94 13.86
Czech Republic 5.51 7.43
Denmark 3.64 5.45
Estonia 1.46 0.00
France 16.84 22.28
Germany 5.93 7.92
Greece 2.29 0.50
Hungary 1.77 0.00
Irland 0.10 0.00
Italy 7.90 6.44
Netherlands 9.25 11.39
Poland 2.39 5.45
Portugal 2.18 0.00
Slovenia 1.98 0.00
Spain 5.93 2.97
Sweden 4.05 5.94
Switzerland 2.39 2.48
N 962 202

Source: SHARE. These summary statistics pertain to
the analysis documented on Table 1. The analysis in
subsequent tables uses a different sample selection.

Table 3: Summary statistics (SHARE)

All Observations Uncensored Censored
Variable Mean N Mean N Mean N

Gender 0.50 8166 0.59 552 0.49 7614
Failure Month 90.50 8166 122.97 552 88.15 7614
Censored 0.93 8166 0 552 1 7614
Censoring Montha 92.41 8166 151.16 552 88.15 7614
Age Dif. 2.58 8166 1.85 552 2.63 7614
Excellent Health 0.15 7474 0.14 523 0.15 6951
Very Good Health 0.28 7474 0.24 523 0.29 6951
Good Health 0.38 7474 0.47 523 0.38 6951
Fair Health 0.16 7474 0.13 523 0.16 6951
Poor Health 0.03 7474 0.02 523 0.03 6951

a. For those uncensored, the censoring month is either the last interview or death
date, which ever is the earlier date. It is used in the simulations for indirect
inference.
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Table 4: Probability of Retirement at Different Ages (SHARE)

Husbands Wives
Variable Coef.a Ib IIc IIId Coef.a Ib IIc IIId

(Std. Err.) (in %) (in %) (in %) (Std. Err.) (in %) (in %) (in %)
Spouse Retires at t -0.09 0.57 †

( 0.27 ) ( 0.30 )

Spouse Retired < t 1.75 ∗∗ 1.19 ∗∗
( 0.16 ) ( 0.21 )

Age 54 0.25 0.06 0.05 0.32 2.03 ∗∗ 0.27 0.48 0.89
( 0.80 ) ( 0.59 )

Age 55 2.44 ∗∗ 0.50 0.46 2.79 3.15 ∗∗ 0.83 1.46 2.68
( 0.45 ) ( 0.51 )

Age 56 2.50 ∗∗ 0.53 0.49 2.98 3.08 ∗∗ 0.77 1.36 2.49
( 0.46 ) ( 0.52 )

Age 57 3.19 ∗∗ 1.05 0.96 5.74 3.74 ∗∗ 1.49 2.60 4.73
( 0.43 ) ( 0.50 )

Age 58 3.18 ∗∗ 1.04 0.96 5.70 3.98 ∗∗ 1.88 3.28 5.92
( 0.44 ) ( 0.50 )

Age 59 3.87 ∗∗ 2.05 1.88 10.72 4.62 ∗∗ 3.52 6.05 10.68
( 0.42 ) ( 0.49 )

Age 60 5.43 ∗∗ 9.12 8.42 36.49 5.87 ∗∗ 11.28 18.34 29.42
( 0.40 ) ( 0.47 )

Age 61 4.69 ∗∗ 4.57 4.20 21.50 4.99 ∗∗ 5.01 8.53 14.75
( 0.42 ) ( 0.52 )

Age 62 4.95 ∗∗ 5.83 5.37 26.17 5.59 ∗∗ 8.78 14.54 24.00
( 0.43 ) ( 0.52 )

Age 63 4.75 ∗∗ 4.81 4.42 22.44 5.08 ∗∗ 5.47 9.28 15.96
( 0.48 ) ( 0.63 )

Age 64 4.62 ∗∗ 4.28 3.94 20.38 3.88 ∗∗ 1.71 2.98 5.39
( 0.54 ) ( 1.12 )

Age ≥ 65 6.65 ∗∗ 25.37 23.75 66.07 6.59 ∗∗ 20.72 31.58 46.14
( 0.48 ) ( 0.71 )

N of Individuals 4083 4083

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%.
a. Coefficient estimates are for a logit regression of retirement at year t on age dummies, whether the spouse retires
that year and a dummy for whether the spouse is already retired. Observations correspond to an individual-year.
b. Probability of retirement at given age given that spouse has not yet retired.
c. Probability of retirement at given age given that spouse retires that year.
d. Probability of retirement at given age given that spouse has already retired.

Table 5: Weibull Duration Model (SHARE)

HUSBANDS WIVES

Variable Coef. Coef. Coef. Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

θ1 5.57 5.75 5.46 5.87 6.38 6.55
( 0.19 ) ( 0.21 ) ( 0.22 ) ( 0.24 ) ( 0.27 ) ( 0.29 )

Age Dif./10 0.34 ∗∗ 0.44 ∗∗ 0.48 ∗∗ -1.35 ∗∗ -1.44 ∗∗ -1.45 ∗∗
( 0.13 ) ( 0.13 ) ( 0.14 ) ( 0.12 ) ( 0.12 ) ( 0.12 )

Excellent or Very Good Health -0.37 ∗∗ -0.10
( 0.13 ) ( 0.16 )

Fair or Poor Health -0.39 ∗ 0.18
( 0.19 ) ( 0.19 )

Country Controls NO YES YES NO YES YES
Number of Obs. 4803 4083 3737 4803 4803 3737

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. θ1 is the Weibull parameter.
Significance levels are not displayed for θ1. Ommitted category is Good Health.
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Table 6: Summary statistics (ELSA)

All Observations Uncensored Censored
Variable Mean N Mean N Mean N

Gender 0.50 2782 0.54 777 0.49 2005
Failure Month 145.63 2782 161.93 777 139.31 2005
Censored 0.72 2782
Censoring Month 156.22 2782 199.85 777 139.31 2005
Age Dif. 2.82 2778 2.35 777 3.01 2001
Excellent Health 0.19 2381 0.19 716 0.19 1665
Very Good Health 0.34 2381 0.32 716 0.35 1665
Good Health 0.34 2381 0.35 716 0.34 1665
Fair Health 0.10 2381 0.12 716 0.10 1665
Poor Health 0.03 2381 0.02 716 0.03 1665

a. For those uncensored, the censoring month is either the last interview or death
date, which ever is the earlier date. It is used in the simulations for indirect
inference.

Table 7: Probability of Retirement at Different Ages (ELSA)

Husbands Wives
Variable Coef.a Ib IIc IIId Coef.a Ib IIc IIId

(Std. Err.) (in %) (in %) (in %) (Std. Err.) (in %) (in %) (in %)
Spouse Retires at t 1.19 ∗∗ 1.472 ∗∗

( 0.21 ) ( 0.215 )

Spouse Retired before t 1.01 ∗∗ 0.736 ∗∗
( 0.16 ) ( 0.168 )

Age 54 0.29 0.07 0.23 0.20 -0.746 0.08 0.34 0.16
( 1.16 ) ( 1.055 )

Age 55 2.25 ∗∗ 0.51 1.65 1.39 1.568 ∗∗ 0.78 3.29 1.60
( 0.69 ) ( 0.462 )

Age 56 2.15 ∗∗ 0.46 1.49 1.25 1.886 ∗∗ 1.06 4.47 2.19
( 0.71 ) ( 0.443 )

Age 57 2.88 ∗∗ 0.95 3.06 2.57 1.664 ∗∗ 0.85 3.61 1.76
( 0.65 ) ( 0.474 )

Age 58 3.70 ∗∗ 2.13 6.69 5.66 2.432 ∗∗ 1.82 7.47 3.73
( 0.61 ) ( 0.416 )

Age 59 3.01 ∗∗ 1.08 3.46 2.91 2.667 ∗∗ 2.29 9.27 4.67
( 0.65 ) ( 0.407 )

Age 60 4.00 ∗∗ 2.85 8.82 7.48 4.556 ∗∗ 13.42 40.32 24.45
( 0.61 ) ( 0.355 )

Age 61 3.62 ∗∗ 1.97 6.21 5.25 3.501 ∗∗ 5.12 19.05 10.13
( 0.63 ) ( 0.392 )

Age 62 3.67 ∗∗ 2.05 6.46 5.46 3.626 ∗∗ 5.76 21.05 11.32
( 0.63 ) ( 0.394 )

Age 63 4.34 ∗∗ 3.96 11.95 10.20 3.746 ∗∗ 6.45 23.11 12.59
( 0.61 ) ( 0.401 )

Age 64 4.50 ∗∗ 4.58 13.66 11.69 3.314 ∗∗ 4.29 16.33 8.55
( 0.61 ) ( 0.448 )

Age ≥ 65 5.34 ∗∗ 10.07 26.95 23.59 3.489 ∗∗ 5.06 18.86 10.02
( 0.59 ) ( 0.372 )

N of Individuals 1391 1391

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%.
a. Coefficient estimates are for a logit regression of retirement at year t on age dummies, whether the spouse retires
that year and a dummy for whether the spouse is already retired. Observations correspond to an individual-year.
b. Probability of retirement at given age given that spouse has not yet retired.
c. Probability of retirement at given age given that spouse retires that year.
d. Probability of retirement at given age given that spouse has already retired.
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Table 8: Weibull Duration Model (ELSA)

HUSBANDS WIVES

Variable Coef. Coef. Coef. Coef.
(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

θ1 3.24 3.30 3.07 3.14
( 0.10 ) ( 0.11 ) ( 0.11 ) ( 0.11 )

Age Dif. -0.05 -0.07 -0.50 ∗∗ -0.50 ∗∗
( 0.08 ) ( 0.08 ) ( 0.07 ) ( 0.08 )

Excellent or Very Good Health 0.03 0.07
( 0.11 ) ( 0.12 )

Fair or Poor Health -0.06 0.01
( 0.16 ) ( 0.18 )

Number of Obs. 1389 1166 1389 1215

Significance levels : † : 10% ∗ : 5% ∗∗ : 1%. θ1 is the Weibull parameter.
Significance levels are not displayed for θ1. Ommitted category is Good Health.
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Table 9: Simultaneous Duration (SHARE)

Wife Husb. Wife Husb. Wife Husb. Wife Husb.
Variable Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef.

(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.08 1.01 1.08 1.00
( 0.18 ) ( 0.29 ) ( 0.51 ) ( 0.02 )

θ1 6.44 5.84 6.53 5.84 6.55 5.95 6.73 5.95
( 0.45 ) ( 0.24 ) ( 2.40 ) ( 0.32 ) ( 1.90 ) ( 0.87 ) ( 0.36 ) ( 0.78 )

Age Diff. -1.58 ∗∗ 0.31 -1.50 ∗∗ 0.30 -1.76 ∗∗ 0.34 † -1.52 ∗∗ 0.34
( 0.57 ) ( 0.14 ) ( 0.80 ) ( 0.22 ) ( 0.42 ) ( 0.19 ) ( 0.36 ) ( 0.44 )

≥ V.G. Health -0.16 -0.45 ∗∗ -0.13 -0.45 ∗
( 0.23 ) ( 0.15 ) ( 0.22 ) ( 0.18 )

≤ Fair Health 0.21 -0.57 ∗∗ 0.06 -0.48 ∗
( 0.27 ) ( 0.21 ) ( 0.33 ) ( 0.22 )

Country Controls YES YES YES YES
τ 0.81 0.77

( 2.58 ) ( 1.00 )

N 4083 4083 3715 3715
Function Value 6.09 1.68 7.42 2.02

Significance levels :† : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for θ1 or δ. ρ = 0.004 and R = 10.

Table 10: Simultaneous Duration (ELSA)

Wife Husb. Wife Husb. Wife Husb. Wife Husb.
Variable Coef. Coef. Coef. Coef. Coef. Coef. Coef. Coef.

(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.46 1.03 1.36 1.01
( 0.12 ) ( 0.32 ) ( 0.18 ) ( 0.13 )

θ1 2.82 2.85 2.94 3.18 3.01 3.29 3.11 3.38
( 0.17 ) ( 0.11 ) ( 0.34 ) ( 1.11 ) ( 0.36 ) ( 0.27 ) ( 0.19 ) ( 0.18 )

Age Diff. -0.74 ∗∗ 0.16 -0.56 ∗∗ 0.01 -0.56 ∗∗ 0.12 -0.53 -0.08
( 0.26 ) ( 0.16 ) ( 0.26 ) ( 0.20 ) ( 0.42 ) ( 0.19 ) ( 0.38 ) ( 0.23 )

≥ V.G. Health 0.16 0.05 0.12 0.11
( 0.24 ) ( 0.20 ) ( 0.21 ) ( 0.20 )

≤ Fair Health 0.29 0.14 0.22 0.17
( 0.24 ) ( 0.34 ) ( 0.36 ) ( 0.27 )

τ 2.26 2.81
( 5.13 ) ( 2.56 )

N 1389 1389 1110 1110
Function Value 1.91 0.01 3.72 0.11

Significance levels :† : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not displayed for θ1 or δ. ρ = 0.004 and R = 10.
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Table 11: Simultaneous Duration: Reform (ELSA)

Wife Husb. Wife Husb.
Variable Coef. Coef. Coef. Coef.

(Std. Err.) (Std. Err.) (Std. Err.) (Std. Err.)

δ 1.33 1.26
( 0.13 ) ( 0.22 )

θ1 2.79 3.06 2.93 3.28
( 0.19 ) ( 0.21 ) ( 0.27 ) ( 0.18 )

Reform -0.71 ∗∗ 0.05 -0.69 ∗∗ 0.08
( 0.26 ) ( 0.18 ) ( 0.31 ) ( 0.22 )

Age Diff. -0.44 ∗∗ 0.14 -0.31 0.13
( 0.36 ) ( 0.19 ) ( 0.43 ) ( 0.23 )

≥ V.G. Health 0.15 0.04
( 0.18 ) ( 0.19 )

≤ Fair Health 0.25 0.12
( 0.24 ) ( 0.29 )

N 1389 1110
Function Value 3.50 3.65

Significance levels :† : 10% ∗ : 5% ∗∗ : 1%. Significance levels are not
displayed for θ1 or δ. ρ = 0.004 and R = 10.
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