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Abstract

As a risk management tool, pension regulators require pension funds to maintain their short term
and nominal funding ratios higher than a certain level with a high probability, while pension funds
typically have long term and real ambitions. This thesis aims at measuring the effects of such reg-
ulatory constraints on pension funds’ investment decisions. We address the problem in a complete
market where equity risk, stochastic interest rate and stochastic inflation are present.

We find that regulatory constraints significantly limit pension funds’ portfolio choice. When
the funding ratio constraints are binding, pension funds are forced to hold more nominal assets
and less equity than without constraints, thus leading to utility losses. The utility losses are more
significant when constraints are short term as opposed to long term and when investors are less risk
averse. When stochastic interest rate and stochastic inflation is present, the constrained investors
suffer from much less utility losses compared to the myopic portfolio case because of the demand
to hedge the liabilities. Another important finding of our paper is that when the current funding
ratio is close to the regulatory “floor”, investors with different risk aversion hold similar portfolios
since they are obliged to meet the constraints and have to put their own risk appetite aside in such
situations.



Chapter 1

Introduction

The European pension system consists of three pillars: the statutory old-age benefits provided by
the government, the occupational pensions and the supplementary individual pension plans. We
focus on the second pillar pension schemes which involve the agreements between the sponsor, the
fund and the pensioner. In defined contribution (DC) pension plans, pensioners accumulate certain
amounts of contribution and the benefits received are based on these contributions. Another type
of pension plans, the defined benefit (DB) plans require pension funds (or employers) to provide
the promised benefits regardless of their investment outcome. There are variations of DB and DC
plans with different risk sharing mechanisms, for example collective DC, combinations of DB and
DC, and conditional indexation in DB plans.

Despite the pure DC plans where investment risks are entirely borne by pensioners, almost all
pension plans involve risk of underfunding where pension funds are unable to fulfill their obliga-
tions to pensioners. Regulators thus impose explicit risk management rules on pension funds, from
accounting standards for calculating pension liabilities to prudential regulations on funding levels.
We focus on the latter type of regulations.

The Dutch regulations for pensions, the Financial Assessment Framework (FTK) requires that
“there is at least a 97.5% chance that a fund will have a (nominal) funding ratio of 105% one
year later”. If pension funds fail to meet such requirements, they are obliged to draw up recovery
plans and stop taking more investment risks within a recovery period. In practice such regulatory
constraints are not strictly enforced, but it is interesting to investigate the effects of these constraints
on pension wealth and investment strategy if they were explicitly taken into account.

With modern asset and liability management (ALM) techniques, the pension manager can ad-
dress the regulations directly by adapting their investment strategies. However, the regulatory
constraints as stated in the FTK, with a short horizon and in nominal terms, are naturally in con-
flict with pension managers’ long term investment goal and real ambition. So our research question
is, in a continuous-time dynamic asset allocation framework, how can we reasonably capture this
dynamics and what are the impact of such regulatory constraints on pension investors’ asset allo-
cation decisions?

This thesis is developed on the basis of Martellini and Milhau (2012) and Shi and Werker
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(2012). Both papers considered institutional investors with CRRA utilities who dynamically in-
vest in a complete financial market with risky stocks and stochastic interest rates. Martellini and
Milhau (2012) compares the dynamic allocation strategies of a pension fund facing fully indexed
liabilities and seeking to maximize expected utility over terminal real funding ratio, under either
no constraints or minimum real funding ratio constraints. They show that the dynamic strategies
with constraints are reminiscent of portfolio insurance strategies. Shi and Werker (2012) also deals
with this type of dynamic problems using the Martingale approach by Cox and Huang (1989) and
dynamic programming. Instead of the portfolio insurance type constraints, they investigate the
different strategies under no constraints, long term VaR-type constraints or short term VaR-type
constraints. They show that the short term constraints, while preventing from large losses, also
limits the institutional investor’s ability to benefit from upside volatility and thus entails utility
losses.

This thesis is an extension to Martellini and Milhau (2012) in the sense that it distinguishes
between regulatory constraints over nominal funding ratio and the investor’s utility over real fund-
ing ratio. We also adopt the VaR-type constraint instead of portfolio insurance-type constraints
which is more precise in describing the FTK regulations. We extend Shi and Werker (2012) by
introducing inflation risk and stochastic liabilities.

Besides these two important references, this thesis is related to several strands of literature.

First, we consider the dynamic asset allocation problem in a complete market setting. Since
Merton (1969, 1971) developed the continuous time portfolio choice problem using dynamic pro-
gramming, the dynamic asset allocation literature has evolved based on Merton’s findings. The
dynamic programming approach to asset allocation is general enough to incorporate various pref-
erences and investment opportunity sets, but a closed-form solution is not always available. This
approach is well explained in textbooks such as Duffie (2001), and widely adopted in the dy-
namic asset allocation literature, for example Munk et al. (2004). On the other hand, inspired by
Karatzkas et al. (1987) and Cox and Huang (1989), there are many papers that adopt their “martin-
gale approach” to analyze the portfolio choice problem. In this paper we assume stochastic stock
prices, stochastic interest rates, and take into account inflation risk. The investment risk is spanned
by a stock index, a nominal zero-coupon bond and an inflation-indexed zero-coupon bond so that
we can assume a unique state price density and apply the martingale method. Explicit solutions
for the optimal asset allocation strategies to this kind of problems have been found using the mar-
tingale approach. Wachter (2002) derives an exact solution for an investor with power utility over
consumption and , constant interest rate and mean-reverting stock returns.

The second strand of literature are those related to asset liability management of pension funds.
Since the regulation as well as investment goals are over funding ratio rather than wealth, we need
to adequately value and index the pension liabilities. Papers such as Hoevenaars et al. (2008)
model the liability process as a real bond. Martellini and Milhau (2012) considers continuous or
discrete pension payments in the generic case, and one fully-indexed lump-sum payment in the
zero coupon case. It is also possible to incorporate conditional indexation as proposed in De Jong
(2006) and Kleinow (2010), where full indexation is only possible when funding ratio of the fund
is above certain threshold. For simplicity, we adopt the setup in Martellini and Milhau (2012), and
consider
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To measure the cost and benefit of regulatory constraints, we write the optimization problem
taking into account explicit funding ratio requirements. Thus this paper is related to the literature
about optimal asset allocation under constraints, especially VaR-type ones. The portfolio insurance
literature is a special case of the VaR-type constraints where probability of underfunding is zero.
Basak and Shapiro (2001) is one of the first papers that deal with this type of constraints in dynamic
allocation problems. Their findings show that the VaR constraint keep the portfolio value above or
at the threshold in favorable states but incurs sizable loss in unfavorable states. Cuoco et al. (2008)
consider the problem where the VaR constraints are short term and based on conditional informa-
tion. They show that when dynamically reevaluated, the losses in unfavorable states incurred by
long term VaR constraints are no longer present. Van Binsbergen and Brandt (2009) distinguish
between ex-ante and ex-post risk constraints. Kraft and Steffensen (2012) solves the constrained
program by dynamic programming. Shi and Werker (2012) takes a step further to compare the
long term and short term regulatory horizon. In the long term case, regulatory horizon is the same
as the investment horizon; in the short term case, the program is embedded with subsequent and
non-overlapping VaR constraints.

Van Binsbergen and Brandt (2006) also address the effects of regulatory constraints on the in-
vestment plans of DB pension plans. They find that ex ante risk constraints like the VaR constraint
in our problem tend to decrease the gain to dynamic investment while ex post risk constraint lead
to large utility gains.

The contribution of this thesis lies in three aspects. First, we extend the literature on VaR-based
asset allocation to incorporate stochastic liability. The results of Basak and Shapiro (2001) are ap-
plied to the pension fund ALM setting where regulatory constraints are a great concern of pension
funds. Second, we distinguish between nominal and real funding ratio constraints to reveal the
conflict between regulatory constraints and pension fund real objectives, while existing literature
have only focused on real funding ratio constraints. Lastly, we use the dynamic programming ap-
proach in the presence of short term VaR-type constraints while using funding ratio and inflation
as state variables.

The rest of this thesis proceeds as follows. Chapter 2 introduces the financial market settings,
assumptions on the pension fund, and regulatory constraints. Chapter 3 describes the theoretical
background and numerical procedures to solve dynamic asset allocation problems, namely the
Martingale Approach and Dynamic Programming. Chapter 4 solves the problem in a “Merton”
setting with constant interest rate and no inflation. Chapter 5 take a step further to add stochastic
inflation and stochastic interest rate. We distinguish between a fixed weight strategy, which is
more realistic in pension fund practice, and a dynamic strategy. Chapter 6 looks at how our results
change with different assumptions on asset returns and volatilities. Chapter 7 concludes.
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Chapter 2

Financial Market and Pension Fund
Settings

In this chapter we introduce the basic assumptions on the financial market, the pension fund, and
regulatory constraints relevant to our research question.

2.1 Financial Market

We consider a continuous-time stochastic economy on a finite horizon [0, T0]. There are three
sources of risk that are most critical to portfolio choice problems of defined benefit pension plans,
namely equity risk, interest rate risk and inflation risk. The market is dynamically complete in the
sense that all risks in the economy are spanned by existing assets, so that any possible state-of-
the-world can be replicated by dynamically trading these assets. The complete market assumption
enables us to solve for closed-form solutions using the Martingale Approach, which we will explain
in further detail in Chapter 3.

More specifically, the asset menu on the financial market includes a short term risk-free asset
(cash), a stock index, a default-free nominal bond and a default-free real bond. The nominal
short term interest rate rt follows the mean-reverting Vasicek process; this is the continuously
compounded logarithmic return on the cash account. The price St of the stock indexn and the
Consumer Price Index Φt follows a Geometric Brownian Motion. The CPI is the nominal price of
one unit of real consumption good, so the real price of any asset is its nominal price deflated by Φt.

In the objective probability space (Ω,F ,P),

drt = a(b+
σrλr
a
− rt)dt+ σrdzr,t

dSt = St((rt + σsλs)dt+ σsdzs,t)

dΦt = Φt((ϕ+ σΦλΦ)dt+ σΦdzΦ,t)

where the risks in the economy are represented by {zr,t, zs,t, zΦ,t}, standard Brownian Motions with
pairwise correlations ρrs, ρrΦ, ρsΦ, and (λr, λs, λΦ) are corresponding prices of risk. Note that since
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CPI is not directly traded on the market, the “price of inflation risk” is not directly observable. For
simplicity, the prices of risk λr, λs, λΦ, the volatilities σr, σs, σΦ and the instantaneous expected
inflation ϕ are assumed to be constant over time.

To write the model in a more compact way, denote with {zt} a three-dimensional standard
Brownian Motion with mutually independent entries and rewrite the volatilities and prices of risk
in a vector form. {zt} can be seen as an normalized version of the risks {zr,t, zs,t, zΦ,t}, and the
dependencies between {zr,t, zs,t, zΦ,t} are captured through the volatility matrix σ = (σr,σs,σΦ).
There are infinitely many ways of normalizing the risks, and the complete market assumption
implies existence of a unique price of risk vector λ and a unique pricing kernel Mt in each way of
normalization. See B for one way of performing such normalization.

drt = a(b+
σ′rλ

a
− rt)dt+ σ′rdzt

dSt = St((rt + σ′sλ)dt+ σ′sdzt)

dΦt = Φt((ϕ+ σ′Φλ)dt+ σ′Φdzt)

According to Girsanov’s Theorem, the dynamics of the financial market can be expressed with
an equivalent risk neutral probability measure Q, under which {z̃t} is a three-dimensional standard
Brownian Motion:

dz̃t = λdt+ dzt

dQ
dP

= exp

[
−
∫ T0

0

λ′dzt −
1

2

∫ T0

0

||λ||2dt
]

drt = a(b− rt)dt+ σ′rdz̃t

dSt = St(rtdt+ σ′sdz̃t)

dΦt = Φt(ϕdt+ σ′Φdz̃t).

The unique nominal pricing kernel is thus defined as

Mt =M0 exp

(
−
∫ t

0

rsds

)
Et
[
dQ
dP

]
=M0 exp

(
−
∫ t

0

rudu− λ′(zt − z0)− 1

2
||λ||2(t− 0)

)
,M0 = 1

or equivalently,

dMt

Mt

=− rtdt− λ′dzt.

With the pricing kernel it is possible to calculate the price of any existing asset as the expec-
tation (under objective measure P) of the product of the pricing kernel and the asset payoff. See
appendix C for the verification of this pricing kernel.
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The nominal bond is a zero-coupon bond that pays 1 unit of cash at maturity τ1 and the real
bond is a zero-coupon bond that pays Φτ2 amount of cash at maturity τ2. Their (nominal) prices at
time t are denoted B(t, τ1) and I(t, τ2) respectively,

B(t, τ1) = exp(−α(τ1 − t)rt + β1(τ1 − t))
I(t, τ2) = Φt exp(−α(τ2 − t)rt + β2(τ2 − t))

where

α(s) =
1− e−as

a

β1(s) = (α(s)− s)R∞ −
||σr||2

4a
α(s)2, R∞ = b− ||σr||

2

2a2

β2(s) = bα(s) + (ϕ− b− ||σΦ||2

2
)s+

1

2

∫ s

0

||α(u)σr − σΦ||2du

or equivalently, the dynamics of the bond prices under P is

dB(t, τ1)

B(t, τ1)
= (rt − α(τ1 − t)σ′

rλ)dt− α(τ1 − t)σ′
rdzt

dI(t, τ2)

I(t, τ2)
= (rt + (σΦ − α(τ1 − t)σr)′λ)dt+ (σΦ − α(τ1 − t)σr)′dzt

From the dynamics above we can see that the volatility vectors of the bonds are σB = −α(τ1−
t)σr and σI = σΦ − α(τ1 − t)σr, respectively. Note that by definition, α(τ1 − t) is the duration
of the nominal bond,

−dB(t, τ1)

drt

1

B(t, τ1)
= − exp(−α(τ1 − t)rt + β1(τ1 − t))(−α(τ1 − t)rt)

1

B(t, τ1)
= α(τ1 − t)

and similarly, α(τ2 − t) is the duration of the real bond.

Figure 2.1: Term structure of nominal and real interest rates
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The derivation of the bond price, dynamics and term structure for the nominal and real bond
are shown in Appendix D and E.

The calibrated parameters are the same as Munk et al. (2004), which has the same stock and
nominal short rate processes as ours. See Appendix A for the base case parameters used in this
thesis.

2.2 Pension Fund

We assume a closed pension fund, which means the fund ceases to exist and liquidates its assets
after a fixed date in the future. The fund only invests on behalf of its current members, and no
new entrants nor contribution payment is allowed. In reality pension funds operate on a “going
concern” basis, assuming a fixed length of investment horizon as time proceeds, and allowing new
entrants and/or new contribution payments. In such cases the allocation problem of the pension
fund reduces to a static one. The closed fund assumption however, is more aligned with prudential
regulations and pension managers’ ALM practice. It is also partially justified by the trend of
transitioning from DB to DC pension plans: the fund may be motivated to choose a future date
after which the DB plan is closed and switch to DC.

The wealth of the pension fund is a portfolio with initial endowment A0 that can be continu-
ously traded in the aforementioned assets,

dAt = At(rt + ω′tσ
′
tλ)dt+ Atω

′
tσ
′
tdzt.

In line with pension fund practice in reality, we impose short sale constraints that 0 ≤ ωt ≤
1,ω′tι ≤ 1 (ι is a vector of ones).

On the liability side, we model the pension liability as a lump-sum payment at time T0,

Lt = L0 exp[

∫ t

0

(ru + σ′L,uλ−
1

2
||σL,u||2)du+

∫ t

0

σ′L,udzu]

Although pension liabilities in the real world are rarely a single lump-sum payment, we can value
the stream of payments and calculate the duration for an equivalent lump-sum payment.

Pension funds mainly aim at providing retirement protection for its members, therefore its
investment objective is long term and indexed to wage or consumer price. However, they are
only required by regulators to fulfill their nominal obligations to pensioners and only need to
provide indexation if funding ratio is sufficient. We assume away the complication of conditional
indexation and consider real liabilities fully indexed to CPI, thus the same as a real bond: Lt =
I(t, T0),σL,t = σI = σΦ−α(T0− t)σr. The real funding ratio is calculated as the ratio of pension
asset versus the real liability Ft = At/Lt.

In contrast, the nominal funding ratio is calculated with nominal liabilities, or a nominal bond
Lnom,t = σB = B(t, T0),σLnom,t = −α(T0 − t)σr, Fnom,t = At/Lnom,t. The nominal funding
ratio appears in regulatory funding ratio constraints, as will be discussed in the next section.
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The pension fund has constant relative risk aversion(CRRA) utility over the surplus of terminal
real funding ratio above a subsistence level and investment horizon [0, T ].

U(FT ) =


(
AT
LT
−h)1−γ

1−γ ifFT > h

−∞ ifFT ≤ h

Due to its property of leading to the same asset allocation regardless of initial wealth, the
CRRA utility is one of the most commonly used utility function in pension fund ALM practice.
However this property is lost with the introduction of the subsistence level. The subsistence level
is the lowest real funding level that the pension fund imposes on itself. Because of the ambition to
provide inflation indexed pension payments the utility is derived from real funding ratio instead of
nominal ones. Intuitively, the subsistence level is the amount of real funding ratio that in case of a
closing fund, the fund aims to maintain “at all cost”. The subsistence level also reflects the fund’s
relative risk aversion since

RRA = −U
′′F

U ′
=

γ

1− h
FT

.

This parameter is hard to calibrate since pension funds in reality are rarely going bankrupt; we
calibrate this level h as the percentage allocation of pension wealth to index linked bonds, around
8%.

2.3 Regulatory Constraints

To ensure pension funds fulfill their obligations to pensioners, regulators impose a number of
accounting and prudential constraints on pensions. The Dutch pension regulations “Financial As-
sessment Framework” (FTK) requires pension funds to draw up recovery plans in the case of
underfunding to recover from the situation within a period of three years. Furthermore, pension
plans face VaR-type constraints imposed on nominal funding ratios, that the probability of having
a nominal funding ratio τ years later higher than k is at least 1− p,

Pr
t

(
At+τ
Lnomt+τ

< k) ≤ p.

The so-called long term constraints are those imposed at the beginning of the investment hori-
zon over terminal funding ratio; short term constraints are those when investment horizon is di-
vided into several non-overlapping periods (usually in one-year periods), imposed at the beginning
of each period over the end-period funding ratio. The current FTK regulations are similar to the
short term VaR constraints where τ = 1. We make the distinction between long term and short
term constraints and nominal and real constraints in order to analyze the impact of each type of
constraints on the fund’s asset allocation decisions.
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In special cases, for example p = 1, the VaR constraint becomes non-binding; when p = 0,
the VaR-constrained problem becomes a portfolio insurance one. We take the FTK setting and set
k = 1.05, p = 25%.

Furthermore, to unveil the possible differences between regulatory constraints imposed on
nominal and real funding ratios, we note that the ratio of nominal funding to real funding level
is on average quite stable. Dividing the nominal regulatory floor k by this ratio at time 0, we get an
“equivalent” regulatory floor on real funding ratios, thus making the real and nominal regulations
comparable. We explain this in details in Chapter 5.
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Chapter 3

Approach

We address the dynamic allocation problem by solving for the optimization program where we
maximize expected utility over terminal (real) funding ratio, both in the unconstrained case and
under VaR-type constraints.

Expressions for optimal wealth and weights can be found in the appendices. When closed
form solutions are not available, numerical results are obtained by dynamic programming methods,
which we explain in section 3.3.

3.1 The Optimization Problems

Unconstrained case

max
ωt

E

[
(AT/LT − h)1−γ

1− γ

]
s.t.AT = A0 exp

[∫ T

0

(ru + ω′uσ
′
uλ−

1

2
||ω′uσ′u||2)du+ ω′uσ

′
udzu

]

Long term VaR-type constraints

max
ωt

E

[
(AT/LT − h)1−γ

1− γ

]
s.t.AT = A0 exp

[∫ T

0

(ru + ω′uσ
′
uλ−

1

2
||ω′uσ′u||2)du+ ω′uσ

′
udzu

]
Pr[

AT
LNom,T

< k] ≤ p
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Basak and Shapiro (2001) shows a closed form solution for this problem. Our assumption of
lump-sum payment and full indexation enables us to write the value of liabilities exogenously,
so optimal portfolio weights can also be obtained by applying Ito’s lemma and the martingale
representation theorem. Otherwise only numerical solution is available.

Short term VaR-type constraints

max
ωt

E[
(AT/LT − h)1−γ

1− γ
]

s.t.AT = A0 exp

[∫ T

0

(ru + ω′uσ
′
uλ−

1

2
||ω′uσ′u||2)du+ ω′uσ

′
udzu

]
Prt[

At+τ
LNom,t+τ

< k] ≤ p,∀t ∈ [0, T ).

3.2 The Martingale Approach

Karatzas and Shreve (1987), Cox and Huang (1989) developed the martingale approach to portfolio
choice in continuous time. Assuming a complete financial market, there exists a unique pricing
kernel {Mt} and all outcomes of the world are attainable by dynamically trading the available
assets. As a result, the budget constraint that AT is attained by holding {ωt} assets with initial
wealth A0 can be replaced by simply writing A0 = E[MTAT ]. In such a setting the dynamic
asset allocation problem is reduced to a static one since we can first solve for the optimal terminal
wealth:

max
AT

E

[
(AT/LT − h)1−γ

1− γ

]
s.t.A0 = E[MTAT ]

and then solve for all previous optimal wealth using the martingale property of {MtAt},

At =
1

Mt

E[MTAT ]

Then the exposure of the obtained optimal intermediate wealth to the risk terms is the same as
those obtained by the trading strategy ωt that replicates the optimal wealth,

dAt = (...)dt+ Atω
′
tσ
′
tdzt.

See Appendix G for details of the derivation without funding ratio constraints. When long term
funding ratio constraints are present, we adapt the static optimization problem in the first step to
ensure that terminal wealth satisfies the constraints in some states of the world. The derivation of
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optimal terminal wealth is relegated to Appendix H. In the Merton case, the optimal asset weights
can also be solved, which we show in Appendix I.

When short term constraints are imposed, the martingale approach becomes infeasible. Thus
we turn to numerical method, explained in the next section.

3.3 Dynamic Programming

To solve for the dynamic asset allocation problem, the investor has to take into account all possible
future investment opportunities and optimal allocations. Only under certain circumstances can
closed-form solutions be found for such problems. Most of the times we have to rely on numerical
techniques like numerical dynamic programming.

The idea of using dynamic programming to solve dynamic optimization problems is a backward
recursive procedure. Bellman’s optimality condition states that,

”Principle of Optimality: An optimal policy has the property that whatever the initial state and
initial decision are, the remaining decisions must constitute an optimal policy with regard to the
state resulting from the first decision.”

In other words, the investor starts with the last period in time, where the closed form of value
function (the maximized expected terminal utility conditional on information available at each time
period) is known. Working backwards in time, the investor is able to solve the dynamic allocation
problem in all periods.

Now we explain the dynamic programming procedure used in this thesis.

Step 0: discretize state space into periods of length dt and simulate a large numberN of sample
paths for state variables, asset returns (short rate, stock excess returns and the two bond returns)
and liability over the horizon T .

Step 1: Since the portfolio return is endogenous in current funding ratio, make a grid for (real)
funding ratio F ; for each value of F generate the funding ratio return given a portfolio weight for
all sample paths, so we have N paths for next period’s funding ratio.

Step 2: The value function at terminal horizon is just the utility function over F , conditional on
the state variable(s). We start in the final period, which is one period ahead of the terminal horizon.

VT−1(FT−1,xT−1) ≡ max ET−1

[
(AT/LT − h)1−γ

1− γ

]
s.t.FT = FT−1 exp

[∫ T

T−1

(ω′uσ
′
uλ− σ′L,uλ−

1

2
||ω′uσ′u||2 +

1

2
||σL,u||2)du+

∫ T

T−1

(ω′uσ
′
u − σ′L,u)dzu

]
,

ωT−1 ≥ 0, ι′ωT−1 ≤ 1.

xt is a vector of state variables and Ft is the real funding ratio. The value function one period
ahead is the conditional expectation of next period’s value function, choosing the portfolio weight
that maximizes this expectation. Since we work with funding ratios, the effect of short interest
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rate is canceled out in the asset and liability side, so we only have one state variable Φt in the
nominal constrained case and no state variables in the real constrained case. We use a fourth-order
polynominal expansion of the state variable.

Step 3: Recursing backwards until time 0, we have an optimal weight and a value function for
each grid point of F and each simulation path. Now given an initial funding ratio and a sample
path we can determine the optimal allocation.

Step 4a: To add short term probability constraints, note that the conditional distribution of next
period’s funding ratio is lognormal and only depends on current funding ratio. In the Merton case
and when the constraints are on real funding ratio, there is no state variables except for Ft,

Ft+τ = Ft
AT/At+τ
Lt+τ/Lt

= Ft
exp[

∫ t+τ
t

(ru + ω′uσ
′
uλ− 1

2
||ω′uσ′u||2)du+

∫ t+τ
t

ω′uσ
′
udzu]

exp[
∫ t+τ
t

(ru + σ′L,uλ− 1
2
||σL,u||2)du+

∫ t+τ
t

σ′L,udzu]

= Ft exp[

∫ t+τ

t

(ω′uσ
′
uλ− σ′L,uλ−

1

2
||ω′uσ′u||2 +

1

2
||σL,u||2)du+

∫ t+τ

t

(ω′uσ
′
u − σ′L,u)dzu]

Therefore for each funding ratio grid point it can be calculated beforehand which weights
satisfy the probability constraint and which do not. Excluding the infeasible points in the grid
search over all possible weights, we can repeat Step 2 and get the optimal strategy under probability
constraints.

Step 4b: When the regulatory constraints are on nominal funding ratio, Φt acts as another
state variable. For each feasible weight and each funding grid point, perform a cross-sectional
regression of realized values of Vt+1(Ft+1) on a fourth order expansion of the state variable Φt.
With the estimated parameters, the fitted value for each sample path is the conditional expectation
of next period value function, and the optimal weight for each sample path can be found.

3.4 Cost and Benefit Analysis

Once the optimal portfolio wealth (and portfolio weight) is obtained for each type of strategy, the
“cost of regulatory constraints” can be measured by the certainty equivalent loss in initial funding
ratios,

V u
0 (F0 · exp−rceT ) = V constr

0 (F0).

This certainty equivalent loss rate rce is the annualized rate of initial funding ratio loss under
the unconstrained strategy if it were to have the same expected utility as the constrained strategy.

The benefit of said constraints can be measured by inspecting e. g. probability of shortfall,

PSF = Pr[FT < k],
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and expected shortfall in funding ratios,

ES = E[max(k − FT , 0)].
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Chapter 4

Myopic Portfolio Choice, Constant
Investment Opportunities

In this chapter we consider the simplified case with constant interest rate and no inflation. Investor
chooses between the risky stock and riskless cash. Liabilities behave like a zero-coupon bond with
the same interest rate. In this case the investment opportunity set is constant through time and there
is no demand for hedging liabilities. This is the so-called myopic portfolio choice.

The financial market is as follows.

dSt = St((rt + σ′sλs)dt+ σ′sdzt), rt ≡ r0

Lt = exp(−r0(T0 − t))

MT = Mt exp

(
−r0(T − t)− 1

2
λ2
s(T − t)− λs′(zT − zt)

)
,M0 = 1

4.1 Unconstrained

We confirm the classic Merton formula that the optimal portfolio weight in the unconstrained prob-
lem is

ωt =
1

γ
σs
−1λs(1−

h

Ft
).
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Figure 4.1: Numerical and theoretical weights in the unconstrained case.

Figure 4.1 shows the average allocation to stocks for an unconstrained investor. The line is the
theoretical optimal weight in the above formula, and the dots are results from numerical dynamic
programming with a rebalancing period of one year. The numerical results confirm the theoretical
optimal weights.

One interpretation for the optimal weight is that the investor sets aside at time 0 an amount
of cash that pays hLT at terminal horizon to make sure that funding ratio is always above the
subsistence level, then invests the fraction of the rest in the classic “speculative portfolio”. When
h = 0, the optimal strategy is irrelevant of inital funding ratio and constant through time. As h gets
larger, the investor invests less in stocks; the subsistence level acts as a measure for risk aversion,
or more precisely the aversion to being unable to fulfil one’s liability obligations. We illustrate this
with a higher subsistence level h = 0.5,
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Figure 4.2: Numerical and theoretical weights with different γ’s in the unconstrained case, h = 0.5.

From Fig. 4.2 we can see the effects of the subsistence level. The larger the current funding
ratio is, the more risk the investor is able to take. The funding ratio has on average a positive drift,
so as time goes on the allocation to stocks is larger. If funding ratio is very close to (but still higher
than) h, the investor takes no stock exposure.

4.2 Long term constraints

The optimal wealth under long term VaR-constraints is (see Appendix H for derivation)

AV aRT =


(yMT )−

1
γL

1− 1
γ

T + hLT if MT < min{M,M},
kLT if min{M,M} ≤MT < M,

(yMT )−
1
γL

1− 1
γ

T + hLT if MT ≥M

where M is such that (yMT )−
1
γL

1− 1
γ

T + hLT = kLT ; M is such that Pr[MT > M ] = p. In the
constant investment opportunity case in this chapter, M = 1

y
er(T0−T )(k − h)−γ ,

M = exp(λsN
−1(1− p)

√
T − (r0 + λ2

s/2)T ).

The following graph shows the dependence of terminal funding ratio on the state of the world
(the pricing kernel). The upper barrier M is the level such that the time 0 probability of a worse
final state MT is exactly p. The lower barrier M is such that the unconstrained terminal wealth
and the required “floor” coincides. It is shown on the graph that when the economy is so good
(pricing kernel is small enough) that an unconstrained strategy does not lead to breaching the VaR
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constraint, the investor behaves like an unconstrained investor. In intermediate states of the world,
the VaR-constrained investor has to hedge against the constraint to keep the funding ratio above the
required level. When the economy is very bad, it is very expensive to hold hedging assets so the
investor again behaves like an unconstrained investor. As long as the probability of having a ‘bad’
economy is kept to the required level, the magnitude of the loss is ignored. This is a commonly
criticized shortcoming of VaR constraints and has been analyzed in Basak and Shapiro (2001) and
Shi and Werker (2012).

Figure 4.3: Terminal funding ratio for the long term VaR constrained problem in different states of
the world. y-axis on the right is the PDF of pricing kernel.

Using the martingale property of {MtAt} and the Itô’s rule, the optimal asset weights for the
long term constrained problem can be solved as

ωt =
1

γ
σ−1λ(1− h

Ft
− (k − h)[N(d1(M))−N(d1(min{M,M}))]

Ft
)

+
(k − h)σ−1[φ(d1(M))− φ(d1(min{M,M}))]√

T − tFt
− y−

1
γ ΓtM

− 1
γ

t [φ(d2(M))− φ(d2(min{M,M}))] 1√
T − tFt

,

where Γt = exp(−(1− 1

γ
)r(T0 − t) +

1− γ
2γ2

λ2(T − t))

d1(x) =
log( x

Mt
)− (−r + λ2/2)(T − t)

λ
√
T − t

d2(x) =
log( x

Mt
)− (−r − λ2/2 + (1− 1

γ
)λ2)(T − t)

λ
√
T − t

.
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Note that this optimal weight requires dynamic rebalancing so our discretization might lead
to inconsistencies. To illustrate how well the discrete version of the long term constrained strate-
gies perform, we show in Figure 4.4 the terminal funding ratio distribution for an investor who
adopts the optimal allocation given above and rebalances at annual, semiannual, monthly, daily,
and continuous frequencies. As is shown in the graph, the discrete version of the strategy achieves
a terminal wealth closer to the theoretical optimal one as rebalancing approaches continuous trad-
ing. Considering the tradeoff between accuracy and efficiency, we adopt the monthly rebalancing
frequency here and also for the comparison of strategies in the next section.

Figure 4.4: Terminal funding ratio distribution for the long term VaR constrained problem with
different rebalancing frequencies.
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Figure 4.5: Relative allocation to stocks at time T/2.

Figure 4.5 shows the demand for stocks with long term VaR constraints relative to the uncon-
strained case under varying assumptions. In general, when state of the world gets worse, the VaR
constrained investor first decreases his stock portfolio to satisfy the constraint. As the economy
further deteriorates, the stock return is smaller but there is still chance to meet the constraint, so
the investor puts more allocation to stocks as a “gambling” behavior. When state of the world is
so bad that no strategy is available to meet the constraint, the constrained investor behaves like an
unconstrained one and let the loss occur.

The top left panel shows the impact of current funding ratio on the allocation decision. A
constrained investor facing lower current funding level is more sensitive to the economy since the
constraint is more binding. The top right panel shows the decisions of investors with different
risk aversion. More risk averse investors also invest more conservatively facing constraints. As
seen from the bottom left panel, stricter regulations can lead to more extreme portfolio weights.
Relaxing the allowed probability also shifts the start of the gambling behavior to better states of
the world. The bottom right panel shows that the investor with higher internal subsistence level
also invests more conservatively when facing constraints.

4.3 Short term constraints

With the short term constraints, the investor seeks to maximize expected terminal utility while
keeping the probability of funding ratio one year later falling under k lower than p, taking into
account possible future allocation decisions. We use dynamic programming to solve for the short
term constrained strategies. The probability constraints are calculated assuming that asset weights
are kept constant during the coming one year period. In addition, we impose short sales and
borrowing constraints. All infeasible weights are excluded from the investor’s choice set when
performing dynamic programming.

In the following graphs we compare optimal strategies under different types of constraints.
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Figure 4.6: Mean allocation to stocks in the unconstrained, long term and short term constrained
case

Figure 4.7: Left panel: mean funding ratio process in the unconstrained, long term and short term
constrained case. Right panel: distribution of terminal funding ratio

Figure 4.6 shows the average allocation to stocks under the unconstrained, long term con-
strained and short term constrained cases. On average the unconstrained portfolio has the largest
stock exposure compared with constrained ones and the short term constrained investor allocates
much less to stocks than other two types of investors. Figure 4.7(a) shows the average funding
ratio through time. As a result of the low stock exposure, the short term constrained investor has a
much lower mean terminal funding ratio.

Figure 4.7(b) shows the probability density distribution of terminal funding ratios in the three
cases. As is shown in the graph, the short term constraint guarantees the terminal funding ratio
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above the required level with a high probability, but loses probability mass in higher funding ratios.
The long term constrained portfolio also results in a terminal funding ratio distribution that is more
concentrated than the unconstrained case and loses probability of having a higher funding level.
Furthermore, the long term constraints would incur large losses with a small probability.

To demonstrate how the different constraints impact the investment behavior, we show in Fig-
ure 4.8 the allocation strategies when the stock return path is set at its 25%, 50%, 75% quantile at
each time step respectively. When state of the world is bad, the long term constrained investor
gambles in order to fulfil the constraint and the short term constrained investor is allowed to hold
only a very small stock portfolio. In the median case the funding ratio tends to increase over time
and the short term constraints become less binding and the short constrained strategy converges
to the unconstrained one. In the last panel, the short constrained strategy quickly converges to the
unconstrained case while the long term constrained investor takes less stock exposure because the
terminal funding ratio is guaranteed to exceed the required “floor”.

Figure 4.8: stock exposure when returns are at 25%, 50%, 75% quantile

Finally, the certainty equivalent loss rate of the two types of constraints as opposed to uncon-
strained case is shown in Figure 4.9. This rate can be interpreted as the percentage of initial funding
ratio reduction per year on the unconstrained strategy if it were to have the same expected utility
as the constrained ones. For example, with our base parameter setting and a certainty equivalent
loss rate of 10 basis points, a constrained investor starting with F0 = 1.1 is equivalent to an un-
constrained investor starting with approximately F0 = 1.09 . As initial funding ratio gets higher,
the constraints are less binding, and certainty equivalent loss is smaller. The short term constraints
lead to significantly higher certainty equivalent loss, around 40 basis points when F0 = 1.1 and
γ = 5, as opposed to long term constraints with 5 basis points.

The losses from long term or short term funding ratio constraints are higher when investor is
less risk averse. Apparently when the investor is more risk-seeking, he would prefer investing in a
larger equity portfolio, which is unacceptable because of the constraint.
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Figure 4.9: Certainty equivalent loss rate for short term and long term constrained investors. Left
panel: γ = 2. Right panel: γ = 5.

In conclusion of this chapter, the VaR-type regulations on funding ratios (especially the short
term ones) have a significant impact on investors allocation decisions. Although effectively reduc-
ing the probability of ending up with low funding levels, the constraints also confine the funding
level close to the regulatory floor and inhibit the investor from harvesting higher potentials of stock
return. The long term regulatory constraints do not have such a strong impact on the average stock
exposure, but might lead to gambling behavior and the small probability of incurring large losses
is unhedged. Both types of constraints lead to large utility losses when initial funding ratio is close
to the regulatory floor.
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Chapter 5

Dynamic Portfolio Choice, Stochastic
Inflation and Stochastic Interest Rate

In the last chapter we showed the gains and losses of long term and short term funding ratio
contraints when there is only one risky asset and interest rate is constant. In the real world this
is rarely the case; pension fund managers have to take into account inflation risk and interest
rate risk, among many others. In this chapter we add these complications and investigate the
demand for nominal and real bonds under different types of constraints. We first look at the fixed
weight strategy which is more realistic to pension fund: investors make decisions on strategic asset
allocations over a relatively long horizon and rebalance to the same weights every period during
the horizon. This strategy is dynamic in nature and is cost-efficient to implement, but often leads to
“buying high and selling low”. In a next section we turn to dynamic strategies where investors take
into account possible future scenarios and allocation decisions when making decisions for each
period. Without transaction costs and liquidity concerns this is superior to other strategies.

5.1 Fixed Weight Strategy

When h > 0, there is always a positive possibility that real funding ratio falls below the subsis-
tence level no matter what fixed weight the investor chooses. In such case utility as well as expected
utility goes to minus infinity, which makes the optimization problem infeasible. One way to cir-
cumvent this problem is to set a floor ε to the utility function: U∗(AT/LT ) = max{ (FT−h)1−γ

1−γ , ε}.
However, the truncation of the utility function introduces a bias into our solution. An alterna-
tive way is to invest in a real hedging portfolio with payoff hLT and the rest in a fixed weight
portfolio. As long as the investor rebalances the fixed weight portfolio continuously, this part
of wealth is always positive, so the total real funding ratio is always above h. In other words,
At = hLt + A∗t , A0 = hL0 + A∗0, A

∗
T = A∗0 exp[

∫ T
0

(ru + ω′σ′
uλ − 1

2
||ω′σ′

u||2)du + ω′σ′udzu].

This is equivalent to F ∗T =
A∗T
LT
, F ∗0 = F0 − h,maxω E[

(F ∗T )1−γ

1−γ ]. As a result,we can focus on the
“fixed weight” portfolio where effectively h = 0. Then the optimal fixed weight strategy consists
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of the famous speculative portfolio and liability hedging portfolio:

ω =

(∫ T

0

σ′uσudu

)−1(
1

γ

∫ T

0

σ′uλdu+ (1− 1

γ
)

∫ T

0

σ′uσL,udu

)

Next, we incorporate probabilistic constraints on terminal funding ratio. In the numerical set-
ting we also impose short sale constraints that the weights on stocks, nominal bonds and real bonds
are all between 0 and 1 and sum up to equal or smaller than one. Note that the choice set of fea-
sible weights depends on initial funding ratio, so there does not exist such weights that satisfy all
intermediate funding ratio constraints.

The nominal funding ratio is always larger than the real funding ratio because of the indexation.
The magnitude of the ratio of nominal to real funding is

Fnom,t/Freal,t =
At/Lnom,t
At/Lreal,t

=
Lt

Lnom,t
=

I(t, T0)

B(t, T0)

= Φt exp[ϕ(T0 − t) +
1

a
σ′rσΦ(α(T0 − t)− (T0 − t))]

This ratio is on average quite stable through time, in our parameter setting approximately
1.708 with several basis points variation in a 10 year horizon. We fix this ratio at Fnom2real =
Fnom,0/Freal,0 = 1.708, thus making the nominal and real funding ratio constraints compara-
ble. When the regulatory “floor” on nominal constraints is k, we denote the equivalent regulatory
“floor” on real constraints as k̄ = k/Fnom2real, since the time 0 price of buying a nominal bond
with payoff kLnom,T is equal to the time 0 price of buying a real bond with payoff k̄LT .

We illustrate the differences between nominal constrained and real constrained fixed weight
strategy. The rebalancing period is one year so at the beginning of each year the investor adjusts
his portfolio to make sure the portfolio weight is the same as the predetermined one. Notice that
this leads to “buy high and sell low” and the investor suffers losses as opposed to the dynamic
portfolio choice. We run the simulation with N = 10000 sample paths. Figure 5.1 show the
allocation to each asset with varying intial (nominal) funding ratios. We impose the assumption
that investor allocates 100% to the riskless asset (nominal bond in the nominal constrained case and
real bond in the real constrained case) if no strategy can satisfied the VaR constraint. When initial
funding is high, the constraints are not binding, and the nominal and real constraints converge to
the unconstrained strategy. When initial funding ratio is just above the regulatory required level
k, the nominal constrained investor holds a large amount of nominal bond, but if initial funding
is higher he turns to real bonds. This can be explained by the high correlation between real bond
returns and nominal bond return. Nominal bond and real bond act as substitutes in terms of inflation
hedging and since utility is in real terms the investor turns to real bonds as soon as he makes sure
the nominal VaR constraint is satisfied.

We also include a sensitivity analysis later to see whether different assumptions on inflation
volatility changes our conclusion. See Chapter 6 for further details.
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Figure 5.1: asset weights, γ = 5

Figure 5.2 shows that the nominal constrained investor suffers from approximately one more
basis point of certainty equivalent loss rate compared to the real constrained case when initial
funding ratio is very low. This is because the “safe” asset for a nominally constrained investor is
the nominal bond, and when no strategy exists to satisfy the constraints, the said investor has to
allocate fully in the safe asset. As initial funding ratio becomes larger, the certainty equivalent loss
is smaller since there are less states where the constraints are met. Compared with the certainty
equivalent loss in the last chapter, the certainty equivalent loss in the stochastic interest rate and
inflation case is much smaller, since in the constant interest rate case an investor bound by the
constraints gives away his relatively larger stock exposure for riskless cash, while the demand for
stocks in comparable settings in this chapter is much smaller due to the hedging demand. The real
bond and nominal bond returns are almost perfectly correlated, making them good substitutes for
each other, so the utility loss from exchanging one for another is not very significant.

26



Figure 5.2: Certainty equivalent losses under the two types of constraints

The shortfall probability is the probability of having a terminal (nominal) funding ratio smaller
than k. Intuitively, when initial funding ratio is low, the constrained investors are forced to hold
riskless assets and can never benefit from high returns of equities, thus having a much larger prob-
ability of shortfall than the unconstrained investor. When initial funding ratio is larger than k, there
exist feasbile weights to satisfy the constraints, so the shortfall probability of constrained investors
are kept to the level p while the unconstrained investor suffers from being “too aggressive”.
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Figure 5.3: Shortfall probability under no constraint, nominal constraints and real constraints.

Expected shortfall size is the magnitude of shortfall max{k − FT , 0} . It is shown in the
following graph that the expected shortfall size is limited when constraints are binding.

Figure 5.4: expected shortfall under no constraint, nominal constraints and real constraints.

As the constraint becomes binding, the investor allocates less to stocks and more to the hedging
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portfolio. In the nominal constrained case, the investor only invests in nominal bonds when the
constraint is very close to initial funding ratio. One explanation is that when the real bond and
nominal bond returns are highly correlated and real bond has a higher Sharpe Ratio, the investor
turns to the real bond as the hedging portfolio if the VaR constraint is not very stringent.

The optimal allocation never invests in cash; in fact, if we loose the short sale constraint the
investor would short nominal bonds and cash to buy real bonds and stocks. This is reasonable
since when the utility and regulatory constraints are over terminal funding ratio, the bonds that can
replicate liabilities are the new “risk free” asset instead of cash.

Comparing the portfolio choice of investors with different risk aversion parameters, we find that
they behave similarly when constraints are binding: they have approximately the same allocations.
As initial funding ratios are higher and the regulatory constraints are less binding, the investor
behave more according to their own risk aversion. The certainty equivalent loss is again larger for
less risk averse investors. The more risk averse the investor is, the larger the difference between
CE losses from nominally and real-ly constrained strategies.

Figure 5.5: Optimal asset weights, γ = 2

Figure 5.6: Optimal asset weights, γ = 10
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Figure 5.7: CE loss rate

One interesting observation is that in the real constrained case, there is still some demand for
nominal bonds when initial funding ratio is very close to the floor k. This can be explained by the
difference in bond return volatilities. The nominal bond return is slightly less volatile than the real
bond return, and the correlation between these two returns is very high, leading to the supplement
effects when constraints are binding.

5.2 Dynamic Asset Allocation

When investors are not bound by short sale constraints or transaction cost/ liquidity concerns, they
are able to continuously trade in the given asset classes and benefit from dynamic portfolio choice
using new information.

Unconstrained

Using the Martingale Approach, the optimal terminal wealth of an unconstrained investor is

A∗T = [(yMTLT )−
1
γ + h]LT

where y is chosen to fulfill the initial budget constraint E[MTA
∗
T ] = A0 ,

E[(yMTLT )−
1
γMTLT + hMTLT ] = A0.
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The optimal portfolio at each time t is therefore

A∗t =Et[
MT

Mt

A∗T ]

=Et

[
MT

Mt

(
A0 − E(hMTLT )

E[(MTLT )1− 1
γ ]

(MTLT )−
1
γ + h

)
LT

]

=
A0 − hLT,T0

0

MtE[(MTLT )1− 1
γ ]
Et[(MTLT )1− 1

γ ] + hLt,

and we have the optimal weight

ωt = [
1

γ
σ−1
t λ+ (1− 1

γ
)σ−1

t σL](1− h

Ft
) + σ−1

t σL
h

Ft
.

See Appendix G for detailed derivation.

Again the allocation is dependent on current funding ratio when h is nonzero. The investor sets
aside a real hedging portfolio that has payoff hLt to guarantee the subsistence level. The rest of
the portfolio wealth is invested in the performance seeking portfolio that gives the largest Sharpe
ratio and the liability hedging portfolio which has the largest correlation with pension liabilities.

Long term constraints

The terminal wealth of an investor with long term constraints on real funding ratio is

AV aRT =


(yMT )−

1
γL

1− 1
γ

T + hLT if MT < M,

k̄LT if M ≤MT < M,

(yMT )−
1
γL

1− 1
γ

T + hLT if MT ≥M

where M is such that (yM)−
1
γL

1− 1
γ

T + hLT = k̄LT ,
M is such that Pr0(MT > M) = p.
Since the pricing kernel is lognormally distributed, denote log(MT/Mt) ∼ N(µM,t,T , σ

2
M,t,T ), then

M ≡ (k̄−h)−γ

yLT
, M ≡ exp(Φ−1(1− p)σM,0,T + µM,0,T )M0.

The terminal wealth of an investor with long term constraints on nominal funding ratio is

AV aR,nomT =


(y1MT )−

1
γL

1− 1
γ

T + hLT if MT < M,

kLnom,T if M ≤MT < M,

(y1MT )−
1
γL

1− 1
γ

T + hLT if MT ≥M

where M is such that (y1MT )−
1
γL

1− 1
γ

T + hLT = kLnom,T ,
M is such that Pr0(MT > M) = p.
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The upper threshold M is the same for both types of consttaints. In each state of the world,
or each realizations of LT and Lnom,T , there is a corresponding lower threshold M(LT , Lnom,T )
which differs according to types of constraints. If M < M , the VaR constraint is never binding

and AV aRT = (yMT )−
1
γL

1− 1
γ

T + hLT = y−
1
γ (AuT − hLT ) + hLT . Otherwise, the investor allocates

in a “corridor option” to make sure that the terminal wealth in the intermediate states of the world
M ≤MT < M is kept exactly at the required floor level (k̄LT under real constraints and kLnom,T
under nominal constraints).

Figure 5.8 shows the terminal funding ratios dependent on pricing kernel. In the real con-
strained case, nominal funding ratio is not guaranteed to be no smaller than k with a probability of
1− p.

(a) Real constrained (b) Nominal constrained

Figure 5.8: terminal funding ratio

Figure 5.9 shows the distribution of terminal (nominal) funding ratio of an unconstrained in-
vestor, a long term nominally constrained investor and a long term real-ly constrained investor. As
is demonstrated on the graph, the constraints effectively limit the probability of reaching a terminal
funding ratio lower than 1.05, but also reduces probability mass in higher funding ratios.
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Figure 5.9: Distribution of terminal funding ratio under long term nominal constraints, long term
real constraints and no constraints.

In Figure 5.10 we compare the certainty equivalent loss induced by constraints on terminal
nominal and real funding ratio. The loss is measured against the theoretical optimal dynamic
strategy where the investor continuously rebalances and is not bound by long only constraint. The
nominal constraints lead to slightly higher certainty equivalent losses than real ones, approximately
one basis points for the same initial funding ratios. Compared to the fixed weight strategy, the
magnitude of the losses in the dynamic asset allocation case is larger when initial funding ratio is
low and smaller when initial funding ratio is high since the dynamic investor is allowed to go short
in order to make sure he satisfies the long term constraint.
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Figure 5.10: Certainty equivalent loss of long term nominal and real constraints.

We show the benefits of the constraints in Figures 5.11 and 5.12. Compared with the un-
constrained case, both the real constraints and nominal constraints significantly lower the shortfall
probability and expected shortfall size of terminal (nominal) funding ratio. The nominal constraints
are more effective in reducing the probability and magnitude of nominal funding shortfalls.

Figure 5.11: Shortfall probability under long term nominal and real constraints and no constraints.
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Figure 5.12: Expected shortfall under long term nominal and real constraints and no constraints.

Short term constraints

With short term constraints the problem can only be solved using dynamic programming methods.
However, when there are too many state variables or asset classes it suffers from the curse of
dimensionality, making it infeasible. It is therefore necessary to use approximations and make
certain assumptions to circumvent this problem.

One of the possible solutions is the simulation based dynamic programming method by Brandt,
Goyal, Santa-Clara and Stroud (2005) to solve for optimal portfolio weights. The main idea of
Brandt et al. (2005) is to use Taylor series expansions to approximate the value function at each
time point, and then solve for the FOC which is a polynominal containing optimal weight and some
conditional expectations. They used a fourth order Taylor expansion, which means the optimal
weight has to be solved iteratively given a starting value. The starting value of the weight is
obtained by using a second order expansion of the value function. However, this iteration may
not converge to optimal and is infeasible in the presence of probabilistic constraints as in our case.
Instead we find the optimal portfolio through a grid search across all feasible portfolio, as proposed
in van Binsbergen and Brandt (2008).

As soon as the conditional expectations mentioned above are known, we can solve for the
optimal weights numerically using the grid search. Brandt et al. (2005) proposed to regress the
realization of time t+ 1 value of the expressions in the conditional expectation on some polynom-
inals of the state varibales at time t accross the simulated sample paths. The fitted values of these
regressions are used as estimates of the conditional expectations.

This approach avoids grid search over all state varibles, however is still time-consuming.
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Koijen, Nijman and Werker (2007) improves the optimization by parameterizing the regression
coefficients as an affine expansion of the portfolio weights, reducing the number of cross-sectional
regressions. The linearity of the coefficients makes it possible to use KarushKuhnTucker con-
ditions instead of iteratively solve for the FOC when finding optimal weights. However, with
nonlinear probability constraints in our problem, KKT conditions can not be applied. We therefore
relegate this challenge to future research on this topic.
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Chapter 6

Sensitivity Analysis

6.1 Sensitivity to assumptions on inflation volatilities

We first investigate the differences between regulatory constraints on nominal and real funding
ratio under different assumptions on inflation volatility for a fixed weight investor. The pattern of
the constrained investor behavior is similar: when initial funding ratio is close to the regulatory
floor, the investor takes less stock exposure than the unconstrained one, and turns to nominal bonds
if the constraints are nominal.

Figure 6.1: Optimal asset weights, left panel: nominal constraints; right panel: real constraints.
σΦ = 0.012.
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Figure 6.2: Optimal asset weights, left panel: nominal constraints; right panel: real constraints.
σΦ = 0.024.

As inflation becomes more volatile, the correlation between real and nominal bonds becomes
smaller, and the investor can only fully replaces his nominal bond portfolio with real bonds when
initial funding ratio is much higher. Nominal constraints incur slightly more certainty equivalent
utility loss compared with real constraints. The difference between the CE losses incurred by nom-
inal and real constraints is larger when the correlation between real and nominal returns is lower
since the nominal constrained investor cannot use real bonds as a perfect substitute of nominal
bonds. Figure 6.3 compares the certainty equivalent loss rates under different inflation volatilities.
The certainty equivalent loss is smaller when initial funding ratio is higher, since there are less
states where the constraints are binding.

Figure 6.3: Certainty equivalent losses, left panel: σΦ = 0.012. Right panel: σΦ = 0.024.

6.2 Sensitivity to the inflation risk premium

The base case parameters used in our analysis as in Munk et al. (2004) assumes an inflation risk
premium of 0. However, in reality investors require higher returns on nominal bond for bearing
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inflation risk. As a result, a negative inflation risk premium is expected in our model setting.
Changing from λΦ = 0 in the base case to λΦ = −0.02 and λΦ = −0.05, the optimal asset weights
vary as initial funding ratio varies. When initial funiding is lower than 1.05, the investor holds no
stocks at all since he is not allowed to take risks; as initial funding grows and becomes less binding,
the stock exposure increases until it reaches the optimal level without constraints.

Figure 6.4: Optimal asset weights, left panel: nominal constraints; right panel: real constraints.
λΦ = −0.02.

Figure 6.5: Optimal asset weights, left panel: nominal constraints; right panel: real constraints.
λΦ = −0.05.
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Figure 6.6: Certainty equivalent loss rate, left panel: λΦ = −0.02. Right panel: λΦ = −0.05.

The reversed pattern of investment behaviors under different inflation risk premium does not
invalidate our earlier conclusions. Instead, it reinforces our conclusion that, when funding ratio
constraints are binding, the investors are forced to hold assets in line with the constraints. In Figure
6.5, due to the raised inflation risk premium, an unconstrained investor prefers nominal bonds to
real bonds. With binding nominal constraints, the investor allocates even more to nominal bonds.
With binding nominal constraints, the investor allocates in real bonds even if the unconstrained
demand for real bonds is zero.
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Chapter 7

Conclusions and Recommendations

In this thesis we look at the implications of explicitly imposing regulatory constraints on funding
ratios on pension funds asset allocation decisions. These constraints as a risk management measure
help regulators control the risk of underfunding of defined benefit pension plans. However, such
constraints as set by the Dutch pension regulations FTK are over nominal and short term funding
ratio, while pension funds typically have long term goals to provide indexed (real) benefits. As
we have shown in Figure 4.9, such conflict of interest incurs utility losses on pension investors.
Under short term constraints as opposed to long term constraints, this utility loss is higher. Less
risk averse investors suffer more from this utility loss since they would have invested in more risky
assets without the constraints.

When the constraints on nominal funding ratios are binding, the investor is forced to hold
nominal bonds that are otherwise undesirable because of their real ambitions. This is shown in
Figure 5.1. Furthermore, comparing between Figures 5.1, 5.5 and 5.6 shows that constrained
investors with different levels of risk aversion invest in similar strategies when constraints are
binding, deviating from their separate levels of risk preference.

Another problem of the VaR-type regulatory constraints is that when pension funds do get in
trouble, they are required not to take further risks, thus having to invest in ‘safe’ assets and stuck in
the underfunding status. On the other hand, when initial funding ratio is high enough for feasible
portfolio to exist, the constraints efficiently limit the shortfall probability to the required level, as
is shown in e.g. Figures 5.3 and 5.4.

The conclusions we have drawn depend on the simplified setting in our problem. For example,
we assume a complete market with real bonds with all durations, while in reality there may not
be enough supply for index-linked bonds. Transaction costs and liquidity constraints might also
prevent investors to benefit from dynamic asset allocation. It is also interesting to look at situations
where liabilities are not completely hedgeable, which is the case in reality where longevity risk is
not negligible.
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Appendix

A Base case parameter settings

Parameter Estimate
Interest rate process
a 0.0395
b+ σ′rλ/a 0.0369
σr 0.0195
Price index process
ϕ 0.0357
σΦ 0.0081
Stock price process
σs 0.1468
Correlation parameters
ρrΦ −0.0032
ρsr −0.0845
ρrΦ −0.0678
Prices of risk
λr −0.2747
λΦ 0
λs 0.343
Pension fund parameters
T 10
T0, τ1, τ2 15
γ 5
Fnom,0 1.1
Regulatory constraints
p 2.5%
k 1.05
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B Normalization of Brownian motions

In order to simplify the calculations, we first transform {zr,t, zs,t, zΦ,t} with respective pairwise
correlation ρrs, ρrΦ, ρsΦ into an orthogonal three-dimensional standard Brownian Motion and the
corresponding volatility vectors as well as the prices of risk. This transformation is not unique and
might have infinite other equivalent alternatives.

Denote a lower triangular matrix P =

 1 0 0
x21 x22 0
x31 x32 x33

 . We solve for each element of P

such that P

zr,tzs,t
zΦ,t

 = zt, E[zt] =

0
0
0

 , E[ztz
′
t] =

t 0 0
0 t 0
0 0 t

.

SinceE[zr,t] = E[zs,t] = E[zΦ,t] = 0, E[(zr,t, zs,t, zΦ,t)(zr,t, zs,t, zΦ,t)
′] = t

 1 ρrs ρrΦ
ρrs 1 ρsΦ
ρrΦ ρsΦ 1

 ,

it is easy to solve that

P =

 1 0 0
−ρrs√
1−ρ2

rs

1√
1−ρ2

rs

0

ρrsρsΦ−ρrΦ
d

ρrsρrΦ−ρsΦ
d

1−ρ2
rs

d

 , d =
√

(1− ρ2
rs)(1− ρ2

rs − ρ2
sΦ − ρ2

rΦ + 2ρrsρsΦρrΦ).

Furthermore, since (σr,σs,σΦ)′dzt ≡ (σrdzr,t, σsdzs,t, σΦdzΦ,t)
′, (σr,σs,σΦ)′λ ≡ (σrλr, σsλs, σΦλΦ)′,

the volatility vectors can be written as (σr,σs,σΦ) ≡ (P ′)−1diag(σr, σs, σΦ), and the price of risk
vector is λ ≡ P (λr, λs, λΦ)′.

C Verification of the pricing kernel

To verify the pricing kernel, first we show that the discounted price of the stock index is a martin-
gale under Q.

dSt = St(rtdt+ σ′sdz̃t),

or equivalently,

ST = St exp

(∫ T

t

(ru −
1

2
||σs||2)du+

∫ T

t

σ′sdz̃u

)
= St exp

(∫ T

t

rudu−
1

2
||σs||2(T − t) + σ′s(z̃T − z̃t)

)
.

For fixed T and t, σ′s(z̃T − z̃t) is Gaussian with mean zero and variance T − t. Using the
expression for expectations of log-normal random variables E[eZ ] = eµ+ 1

2
σ2

when Z ∼ N(µ, σ2),
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we obtain

EQ

[
ST exp

(
−
∫ T

t

rudu

)∣∣∣∣Ft] =StE
Q

[
exp

(
log(

ST
St

)−
∫ T

t

rudu

)∣∣∣∣Ft]
=StE

Q

[
exp

(
−1

2
||σs||2(T − t) + σ′s(z̃T − z̃t)

)∣∣∣∣Ft]
=St exp

(
−1

2
||σs||2(T − t) +

1

2
V arQ[σ′s(z̃T − z̃t)|Ft]

)
=St.

Next we show that if the expression for the pricing kernel is correct, then EP [MTST |Ft] =
MtSt. Since

MT = Mt exp

(
−
∫ T

t

rudu− λ′(zT − zt)−
1

2
||λ||2(T − t)

)
we have

EP [MTST |Ft] =MtStE
P

[
MT

Mt

· ST
St

∣∣∣∣Ft]
=MtStE

P

[
exp

(
−
∫ T

t

rudu− λ′(zT − zt)−
1

2
||λ||2(T − t)

+

∫ T

t

rudu+ (σ′sλ−
1

2
||σS||2)(T − t) + σ′s(zT − zt

)∣∣∣∣Ft]
=MtStE

P

[
exp

(
−1

2
||λ− σs||2(T − t)− (λ− σs)′(zT − zt)

)∣∣∣∣Ft]
=MtSt exp

(
−1

2
||λ− σs||2(T − t) +

1

2
V ar[(λ− σs)′(zT − zt)|Ft]

)
=MtSt.

Therefore the equation for the pricing kernel {Mt} is correct.

Furthermore, the pricing kernel at a given time is lognormally distributed,

log(
MT

Mt

) = −
∫ T

t

rudu− λ′(zT − zt)−
1

2
||λ||2(T − t) ∼ N(µM,t,T , σ

2
M,t,T ),

with conditional mean

µM,t,T = E

[
−
∫ T

t

rudu−
1

2
||λ||2(T − t)

∣∣∣∣Ft]
= −(rt − (b+

σ′rλ

a
))α(T − t)− (b+

σ′rλ

a
)(T − t)− 1

2
||λ||2(T − t),
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and conditional variance

σ2
M,t,T = V ar

[
−
∫ T

t

rudu− λ′(zT − zt)
∣∣∣∣Ft]

= V ar

[
−
∫ T

t

rudu

∣∣∣∣Ft]+ ||λ||2(T − t) + 2Cov

[
−
∫ T

t

rudu,−λ′(zT − zt)
∣∣∣∣Ft]

= −||σr||
2

2a
α(T − t)2 − ||σr||

2

a2
(α(T − t)− (T − t)) + ||λ||2(T − t) + 2

σ′rλ

a
[(T − t)− α(T − t)].

D Price, dynamics and term structure of the nominal bond

This derivation is due to Mamon(2004).

Under the risk neutral probability measure Q,

drt = a(b− rt)dt+ σ′rdz̃t.

Multiply by eat on both sides of the equation and apply Itô’s lemma, we have

d(eatrt) = abeatdt+ eatσ′rdz̃t.

Take the integral from s = 0 to s = t, we obtain

rt = e−at
[
r0 +

∫ t

0

abeasds+ σ′r

∫ t

0

easdz̃s

]
,

and it follows that for u > t,

ru = e−au
[
eatrt +

∫ u

t

abeasds+ σ′r

∫ u

t

easdz̃s

]
.

Note that when δ(t) is a deterministic function of t andZt is a Brownian motion, then
∫ t

0
δ(u)dZu

is Gaussian since by definition the stochastic integral is lim|π|→0

∑n−1
i=0 δ(ui)(Zui+1

−Zui) (the limit
is taken in terms of finer partition) and the increment (Zui+1

− Zui) ∼ N(0, ui+1 − ui).

Therefore rt is a Gaussian random variable under Q, rt ∼ N(µt, σ
2
t ), where

µt = EQ[rt] = r0 +

∫ t

0

a(b− EQ[ru])du = e−at[r0 + b(eat − 1)].

The last equality is easily obtained by solving the ODE d
dt
µt = a(b− µt) .
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Furthermore, by Itô’s isometry
(
E
[
(
∫ t

0
XudZu)

2
]

= E
[∫ t

0
X2
udu
])

,

σ2
t = V arQ[rt] = EQ

[(
e−atσ′r

∫ t

0

eaudz̃u

)2
]

= e−2atEQ

[
||σr||2

∫ t

0

e2audt

]
= ||σr||2

(
1− e−2at

2a

)

Again note that if rt is Gaussian for all t, then −
∫ τ
t
rudu is also Gaussian, with conditional

mean

µr,t,τ = EQ

[
−
∫ τ

t

r(u)du

∣∣∣∣Ft] = −
∫ τ

t

e−au
[
eatrt +

∫ u

t

abeasds

]
du = −(rt − b)α(τ − t)− b(τ − t),

where α(s) = 1−e−as
a

, and conditional variance

σ2
r,t,τ = V arQ

[
−
∫ τ

t

rudu

∣∣∣∣Ft] =CovQ
[∫ τ

t

rudu,

∫ τ

t

rsds

∣∣∣∣Ft]
=EQ

[(∫ τ

t

rudu− EQ

[∫ τ

t

rudu

∣∣∣∣Ft])(∫ τ

t

rsds− EQ

[∫ τ

t

rsds

∣∣∣∣Ft])∣∣∣∣Ft]
=

∫ τ

t

∫ τ

t

EQ
[
(ru − EQ[ru|Ft])(rs − EQ[rs|Ft])

∣∣Ft] duds
=

∫ τ

t

∫ τ

t

CovQ[r(u), r(s)|Ft]duds

=

∫ τ

t

∫ τ

t

||σr||2

2a
e−a(u+s)(e2amin{u,s} − e2at)duds

=
||σr||2

2a3
(2a(τ − t)− 3 + 4e−a(τ−t) − e−2a(τ−t))

=− ||σr||
2

2a
α(τ − t)2 − ||σr||

2

a2
(α(τ − t)− (τ − t)).

The fifth equality comes from Itô’s isometry in the following equation, when u, s > t,

CovQ[r(u), r(s)|Ft] =EQ

[
e−au

∫ u

t

σ′re
avdz̃v · e−as

∫ s

t

σ′re
avdz̃v

∣∣∣∣Ft]
=||σr||2e−a(u+s)

∫ min{u,s}

t

e2avdv

=
||σr||2

2a
e−a(u+s)(e2amin{u,s} − e2at).
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The time t price of a risk-free bond that pays one unit of cash at maturity τ is

B(t, τ) =EQ

[
1 · exp

(
−
∫ τ

t

rudu

)∣∣∣∣Ft]
= exp

(
EQ

[
−
∫ τ

t

r(u)du

∣∣∣∣Ft]+
1

2
V arQ

[
−
∫ τ

t

rudu

∣∣∣∣Ft])
= exp

(
−(rt − b)α(τ − t)− b(τ − t)− ||σr||

2

4a
α(τ − t)2 − ||σr||

2

2a2
(α(τ − t)− (τ − t))

)
= exp

(
−α(τ − t)rt + (α(τ − t)− (τ − t))(b− ||σr||

2

2a2
)− ||σr||

2

4a
α(τ − t)2

)

Denote R∞ = b − ||σr||2
2a2 , β1(s) = (α(s) − s)R∞ − ||σr||2

4a
α(s)2, then the bond price can be

written as

B(t, τ) = exp(−α(τ − t)rt + β1(τ − t)).

Applying Itô’s lemma, the bond price dynamics (under Q) can be written as:

dB(t, τ) =B(t, τ)(−dα(τ − t)rt − α(τ − t)drt + dβ1(τ − t)) +
1

2
B(t, τ)α(τ − t)2(drt)

2

=B(t, τ)[−(aα(τ − t)− 1)rtdt− α(τ − t)(a(b− rt)dt+ σ′rdz̃t)

+ aα(τ − t)R∞dt−
||σr||2

2a
α(τ − t)(aα(τ − t)− 1)dt] +

1

2
B(t, τ)α(τ − t)2||σr||2dt

=B(t, τ)[rtdt− α(τ − t)σ′rdz̃t].

Furthermore, the nominal term structure can be derived from the bond price. Denote with
R(t, τ) the time t nominal interest rate with time to maturity τ − t,

R(t, τ) =− 1

τ − t
log[B(t, τ)] = − 1

τ − t
[−α(τ − t)rt + β1(τ − t)]

=R∞ +
α(τ − t)
τ − t

(rt −R∞) +
||σr||2

4a(τ − t)
α(τ − t)2.

Since

lim
τ→t

α(τ − t)
τ − t

= 1, lim
τ→∞

α(τ − t)
τ − t

= 0, lim
τ→t

α(τ − t)2

τ − t
= 0, lim

τ→∞

α(τ − t)2

τ − t
= 0,

we can verify that R(t, t) = rt, R(t,∞) = R∞.

E Price, dynamics and term structure of the real bond

The time t price of a zero-coupon bond that pays Φτ at maturity τ is

I(t, τ) =EQ

[
exp

(
−
∫ τ

t

rudu

)
· Φτ

∣∣∣∣Ft]
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Under the risk neutral probability Q,

dΦt = Φt(ϕdt+ σ′Φdz̃t),

or equivalently,

Φτ = Φt exp

[∫ τ

t

(ϕ− 1

2
||σΦ||2)du+ σ′Φdz̃u

]
.

Similar to the derivation above, log Φτ
Φt

is also normally distributed with conditional mean

µΦ,t,τ = EQ

[∫ τ

t

(ϕ− 1

2
||σΦ||2)du

∣∣∣∣Ft] = (ϕ− 1

2
||σΦ||2)(τ − t)

and variance

σ2
Φ,t,τ = V arQ [σΦ(z̃τ − z̃t)| Ft] = ||σΦ||2(τ − t).

Since the sum of two Gaussian random variables are still Gaussian, we have

I(t, τ) =ΦtE
Q

[
exp

(
−
∫ τ

t

rudu+ log

(
Φτ

Φt

))∣∣∣∣Ft]
=Φt exp

[
µr,t,τ + µΦ,t,τ +

1

2

(
σ2
r,t,τ + σ2

Φ,t,τ + 2Cov(−
∫ τ

t

rudu, log
Φτ

Φt

|Ft)
)]

=Φt exp

[
−(rt − b)α(τ − t)− b(τ − t) + (ϕ− 1

2
||σΦ||2)(τ − t) +

1

2

(
−||σr||

2

2a
α(τ − t)2

−||σr||
2

a2
(α(τ − t)− (τ − t))

)
+

1

2
||σΦ||2(τ − t) +

1

a
σ′rσΦ[α(τ − t)− (τ − t)]

]
=Φt exp

[
−rtα(τ − t) + bα(τ − t)− b(τ − t) + ϕ(τ − t)− ||σr||

2

4a
α(τ − t)2

− ||σr||
2

2a2
α(τ − t) +

||σr||2

2a2
(τ − t) +

1

a
σ′rσΦ[α(τ − t)− (τ − t)]

]
,

where the covariance term is

Cov(−
∫ τ

t

rudu, log
Φτ

Φt

|Ft) =EQ

[
−
(∫ τ

t

rudu− EQ

[∫ τ

t

rudu

])(
log

(
Φτ

Φt

)
− EQ

[
log

(
Φτ

Φt

)])]
=EQ

[∫ τ

t

−(ru − E[ru])du

∫ τ

t

σ′Φdz̃s

]
=

∫ τ

t

−EQ

[∫ u

t

ea(s−u)σ′rdz̃s

∫ τ

t

σ′Φdz̃s

]
du

=

∫ τ

t

−σ′rσΦ

∫ u

t

ea(s−u)dsdu

=− σ′rσΦ

∫ τ

t

1− ea(t−u)

a
du

=− σ
′
rσΦ

a
((τ − t) +

ea(t−τ) − 1

a
) =

σ′rσΦ

a
[α(τ − t)− (τ − t)].
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Note that
∫ s

0
α(s)ds = s−α(s)

a
,
∫ s

0
α(s)2ds = s−α(s)

a2 − α(s)2

2a
, and denote

β2(s) =bα(s)− bs+ ϕs− ||σr||
2

4a
α(s)2 − ||σr||

2

2a2
α(s) +

||σr||2

2a2
s+

1

a
σ′rσΦ[α(s)− s]

=bα(s) + (ϕ− b)s+
1

2

(
||σr||2

∫ s

0

α(u)2du− 2σ′rσΦ

∫ s

0

α(u)du

)
=bα(s) + (ϕ− b− ||σΦ||2

2
)s+

1

2

∫ s

0

||α(u)σr − σΦ||2du,

we can rewrite the real bond price as

I(t, τ) = Φt exp(−rtα(τ − t) + β2(τ − t)) := Φt exp(At).

Applying Itô’s lemma, the dynamics (under Q) of the real bond price is

dI(t, τ) =dΦt exp(At) + Φt(exp(At)dAt +
1

2
exp(At)dA

2
t ) + dΦt(exp(At)dAt +

1

2
exp(At)dA

2
t )

=I(t, τ)

(
(ϕdt+ σ′Φdz̃t) + dAt +

1

2
dA2

t + (ϕdt+ σ′Φdz̃t)(dAt +
1

2
dA2

t )

)
=I(t, τ)

(
(ϕdt+ σ′Φdz̃t) + d(−rtα(τ − t) + β2(τ − t)) +

1

2
α(τ − t)2dr2

t

+ σ′Φdz̃t(−α(τ − t)drt +
1

2
α(τ − t)2dr2

t )

)
=I(t, τ)((rtdt− (α(τ − t)σr − σΦ)′dz̃t)

Denote with RI(t, τ) the time t real yield with time to maturity τ − t. By definition this is the
yield of holding the real bond with real price I(t, τ)/Φ(t) and real payoff of 1 from time t to τ ,

RI(t, τ) =− 1

τ − t
log[I(t, τ)/Φt] = − 1

τ − t
[−α(τ − t)rt + β2(τ − t)]

=R∞ − ϕ+
1

a
σ′Φσr +

α(τ − t)
τ − t

(rt −R∞ −
1

a
σ′Φσr) +

||σr||2

4a(τ − t)
α(τ − t)2

Since

lim
τ→t

α(τ − t)
τ − t

= 1, lim
τ→∞

α(τ − t)
τ − t

= 0, lim
τ→t

α(τ − t)2

τ − t
= 0, lim

τ→∞

α(τ − t)2

τ − t
= 0,

we can verify that RI(t, t) = rt − ϕ,RI(t,∞) = R∞ − ϕ+ 1
a
σ′Φσr.
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F Solution to fixed-weight problem

Suppose that at time 0 the fund manager chooses a fixed weight for the entire investment horizon
and continuously rebalances to this position. The unconstrained problem is then

max
ω
E[U(AT/LT )]

s.t.AT = A0 exp[

∫ T

0

(ru + ω′σ′
uλ−

1

2
||ω′σ′

u||2)du+ ω′σ′udzu],

where σt = (σS,σB,σI) = (σS,−α(T − t)σr,σΦ − α(T − t)σr).

The liability is a lump-sum payment indexed to CPI: Lt = I(t, T0). For nominal liabilities,
Lnom,t = B(t, T0).

LT = Lt exp[

∫ T

t

(ru + σ′L,uλ−
1

2
||σL,u||2)du+

∫ T

t

σ′L,udzt]

The funding ratio is therefore log-normally distributed: log(FT/Ft) ∼ N(µF,t,T , σ
2
F,t,T ), where

µF,t,T = µA,t,T − µL,t,T =

∫ T

t

(ω′σ′
uλ− σ′L,uλ−

1

2
||ω′σ′

u||2 +
1

2
||σL,u||2)du

σ2
F,t,T = σ2A, t, T + σ2L, t, T − 2Cov(A,L) =

∫ T

t

||ω′σ′
u − σL,u||2du

When h = 0, U(FT ) is also lognormally distributed. Writing down the expectation of the
terminal utility and taking first derivatives with respect to ω, the optimal fixed weight without
constraints is

ω =

(∫ T

0

σ′uσudu

)−1(
1

γ

∫ T

0

σ′uλdu+ (1− 1

γ
)σ′uσL,udu

)

G Solution to unconstrained problem

For simplification, write from now on E[X|Ft] := Et[X].

The following solution is due to Cox and Huang(1989).

The value of all liabilities between T1 and T2 evaluated at time t is

LT1,T2
t = EQ

t [

∫
(T1,T2]

e−
∫ s
t rududCs]

where {Ct} is a stream of fully-indexed liability payments. For simplicity write Lt,T0
t := Lt.

It is easy to see that MtL
T1,T2
t is a martingale under P when T1, T2 are fixed for all t. Note that

At incorporates liability payments up to time t, thus it is not a self-financing portfolio. Instead,
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At − Lt,T0
t (the surplus) is self-financing and Mt(At − Lt,T0

t ) is a martingale under P , resulting in
the following budget constraint

Et[MT (AT − LT,T0

T )] = Mt(At − Lt,T0
t )

or equivalently,

Et[MTAT ] = MtAt −MtL
t,T0
t +MtL

T,T0
t = Mt(At − Lt,Tt ).

To simplify the notation we assume liability is a one-off payment at maturity T0. The value of
real liabilities evaluated at time t is Lt, the time t price of a default free bond that pays one unit of
price index ΦT0 at maturity. Under this assumption we can write Lt,T0

t = Lt and Lt,Tt = 0 when
T < T0.

The pension fund has utility function defined over the excess of real funding ratio above a
certain subsistence level h,

U(FT ) =

{
(AT
LT
− h)1−γ/(1− γ) ifAT

LT
> h

−∞ ifAT
LT
≤ h

The unconstrained dynamic optimization problem is

max
AT

E0

[
(AT/LT − h)1−γ

1− γ

]
s.t.E0[MTAT ] = A0

Solution:

For each state of the world, {Lt} is exogenously given. The Lagrangian can be written for the
maximization problem:

L =
(AT/LT − h)1−γ

1− γ
− y(MTAT − A0),

where the constant y is the same in all states of the world.

The first order optimality condition is

1

LT

(
A∗T
LT
− h
)−γ
− yMT = 0.

So the optimal portfolio at time T is

A∗T = [(yMTLT )−
1
γ + h]LT

where y is chosen to fulfill the initial budget constraint E0[MTA
∗
T ] = A0:

E0[(yMTLT )−
1
γMTLT + hMTLT ] = A0.
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From the martingale property at time t

Et[MTAT ] = Mt(At),

the optimal portfolio at each time t is

A∗t =Et[
MT

Mt

A∗T ]

=Et

[
MT

Mt

(
A0 − E0(hMTLT )

E0[(MTLT )1− 1
γ ]

(MTLT )−
1
γ + h

)
LT

]
=

A0 − hL0

MtE0[(MTLT )1− 1
γ ]
Et[(MTLT )1− 1

γ ] + hLt.

Using Itô ’s lemma

d(A∗t − hLt) = (A∗t − hLt)[(...)dt+ (
1

γ
λ+ (1− 1

γ
)σL)′dzt]

Since the value of the financial portfolio evolves as

dAt = At[(rt + ω′tλ
′)dt+ ω′tσ

′
tdzt]

we have the optimal weight is

ωt = [
1

γ
σ−1
t λ+ (1− 1

γ
)σ−1

t σL](1− h

Ft
) + σ−1

t σL
h

Ft

H Solution to long term constrained problem

U(FT ) =

{
(AT
LT
− h)1−γ/(1− γ) ifAT

LT
> h

−∞ ifAT
LT
≤ h

max
AT

E0[U(FT )]

s.t.E[MTAT ] = A0

Pr0[
AT
LNomT

< k] ≤ p

For each state of the world, LT and LNomT are exogenous of the asset allocation, Ũ(AT ) :=
U(AT/LT ).

Ũ ′ =
(
AT
LT
− h
)−γ

1
LT
, Ũ ′ > 0 when AT

LT
> h

Ũ ′′ = −γ
(
AT
LT
− h
)−γ−1

1
L2
T
, Ũ ′′ < 0 when AT

LT
> h
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Define G(·) to be the inverse function of Ũ ′:

G(x) = LT [(LTx)−
1
γ + h].

It is strictly decreasing and continuous.

For each given state of the world, thus given (LT , L
Nom
T ), defineM(LT , L

Nom
T ) andM(LT , L

Nom
T )

as follows,
M(LT , L

Nom
T ) ≡ Ũ ′(kLNomT )/y1,

M(LT , L
Nom
T ) is such that Pr(MT > M) ≡ p,

y1 ≥ 0 solves the budgets constraintE[MTA
V aR
T (y1, LT , L

Nom
T )] = A0, A

V aR
T is the time T optimal

wealth in the long term VaR constrained problem.

For simplicity write M(LT , L
Nom
T ) and M(LT , L

Nom
T ) as M and M .

If M < M , then
G(y1M) > G(y1M) = kLNomT

Pr0[G(y1MT ) ≥ kLNomT ] = Pr0[MT ≤M ] > Pr0[MT ≤M ] ≡ 1− p.

Therefore the VaR constrained optimal wealth is the same as the unconstrained one,

AV aRT = AuT = G(y1MT ).

If M ≥M , then we have the following proposition:

Proposition 1. When M ≥M , the optimal wealth of the VaR agent is

AV aRT =


G(y1MT ) if MT < M,

kLNomT if M ≤MT < M,

G(y1MT ) if MT ≥M

Proof of Proposition 1.

Note that the probability constraint Pr0[ AT
LNomT

< k] ≤ p can be rewritten as

E0[1AT≥kLNomT
] ≥ 1− p.

Thus for each state of the world we can write the Lagrangian as

L(AT , y1, y2,MT , LT , L
Nom
T ) = Ũ(AT )− y1MTAT + y21AT≥kLNomT

where y1 is defined above and y2 is defined in the following lemma.

Lemma 1. For given LT , L
Nom
T and ∀MT , AV aRT in Proposistion 1 maximizes the Lagrangian

L(AT , y1, y2,MT , LT , L
Nom
T ):

max
AT
{Ũ(AT )− y1MTAT + y21AT≥kLNomT

} = Ũ(AV aRT )− y1MTA
V aR
T + y21AV aRT ≥kLNomT

where y2 ≡ Ũ(G(y1M))− y1MG(yM)− Ũ(kLNomT ) + y1M(kLNomT ) ≥ 0.
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Next, we show that for any other optimal solution AT that satisfies the budget constraint and
the VaR constraint, its expected utility is no larger than the expected utility of AV aRT .

E[Ũ(AV aRT )]− E[Ũ(AT )]

=E[Ũ(AV aRT )]− E[Ũ(AT )]− y1(A0) + y1(A0−) + y2(1− p)− y2(1− p)
≥E[Ũ(AV aRT )]− E[Ũ(AT )]− y1E[MTA

V aR
T ] + y1E[MTAT ] + y2E[1AV aRT ≥kLNomT

]− y2E[1AT≥kLNomT
] ≥ 0,

where the first inequality follows from y1 ≥ 0, y2 ≥ 0 and the budget constraint E[MT (AV aRT )] =
E[MTAT ] = A0 and the VaR constraint where holding with equality for AV aRT and inequality for
AT :

E[1AV aRT ≥kLNomT
] = Pr[MT ≤M ] = 1− p, E[1AT≥kLNomT

] ≥ 1− p.

The second inequality follows from Lemma 1. Therefore AV aRT is optimal.

End of proof of Proposition 1.

Proof of Lemma 1. First notice that y2 is chosen such that L(AV aRT , y1, y2,MT , LT , L
Nom
T ) is

continuous in MT :

L(AV aRT , y1, y2,M
−
, LT , L

Nom
T ) ≡ L(AV aRT , y1, y2,M, LT , L

Nom
T )

where M
−

means taking the limit from the left hand side of M .That is,

Ũ(kLNomT )− y1M(kLNomT ) + y2 ≡ Ũ(G(y1M))− y1MG(y1M).

Therefore, we have

y2 = Ũ(G(y1M))− y1MG(yM)− Ũ(kLNomT ) + y1M(kLNomT )

= Ũ(G(y1M))− y1MG(y1M)− Ũ(G(y1M))− y1MG(y1M)

= [Ũ(G(y1M))− y1MG(y1M) + y1kL
Nom
T M ]− [Ũ(G(y1M))− y1MG(y1M) + y1kL

Nom
T M ]

≥ 0

where the inequality follows from M ≤M and

∂

∂MT

(
Ũ(G(y1MT ))− y1MTG(y1MT ) + y1kL

nom
T MT

)
= −y1G(yMT ) + y1kL

Nom
T ≥ 0.

Then, to solve the piecewise problem of maxAT {L(AT , y1, y2,MT , LT , L
Nom
T )}, we use the

first order condition and notice the discontinuity at the point where AT = kLNomT . The local
maxima can only be achieved at either Ũ(A∗T )′ = y1MT and A∗∗T = kLNomT . To see which one is
the global maximum for different values of MT , we compare the value and Lagrangian value of
A∗T and A∗∗T .

When MT < M , we have

A∗T = G(y1MT ) > G(y1MT ) = A∗∗T
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and since ∂
∂AT

(
Ũ(AT )− y1MTAT

)
= Ũ ′(AT )− y1MT > 0 when AT < A∗T ,

L(A∗T , y1, y2,MT , LT , L
Nom
T ) = Ũ(A∗T )− y1MTA

∗
T + y2

> Ũ(A∗∗T )− y1MTA
∗∗
T + y2

= L(A∗∗T , y1, y2,MT , LT , L
Nom
T )

so A∗T is the global maximum.

When M ≤MT < M , we have

A∗T = G(y1MT ) ≤ G(y1MT ) = A∗∗T

and

L(A∗∗T , y1, y2,MT , LT , L
Nom
T ) = Ũ(A∗∗T )− y1MTA

∗∗
T + y2

= Ũ(G(y1MT )) + Ũ(G(y1M))− y1MG(y1M)− Ũ(kLNomT ) + y1M(kLNomT )− y1MTA
∗∗
T

> Ũ(A∗T )− y1MTA
∗
T = L(A∗T , y1, y2,MT , LT , L

Nom
T )

where the inequality comes from MT < M and the fact that when M ≤MT ,

∂

∂MT

{Ũ(G(y1MT ))− y1MTG(y1MT ) + y1G(y1MT )MT} = −y1G(y1MT ) + y1G(y1MT ) ≥ 0.

so A∗∗T is the global maximum.

WhenMT ≥M , the inequalities in the previous case is reversed, soA∗T is the global maximum.

Therefore AV aRT given in proposition 1 solves the maximization problem of the Lagrangian.

End of proof of Lemma 1.

I Optimal allocation with constant interest rate and no infla-
tion

As derived in Appendix H the optimal wealth in the long term constrained problem for the Merton
case is as follows,

AV aRT =


(yMT )−

1
γL

1− 1
γ

T + hLT if MT < min{M,M},
kLT if min{M,M} ≤MT < M,

(yMT )−
1
γL

1− 1
γ

T + hLT if MT ≥M

where Lt = e−r(T0−t), M is such that (yM)−
1
γL

1− 1
γ

T + hLT ≡ kLT , M is such that Pr0[MT >
M ] ≡ p .
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First note that M ≡ 1
y
er(T0−T )(k−h)−γ, M ≡ exp(λsN

−1(1−p)
√
T − (r+λ2

s/2)T ), M and
M are constant through time and holds for all states of the world. Using the Martingale property
of {MtA

V aR
t },

AV aRt =
1

Mt

Et[A
V aR
T MT ]

=
1

Mt

Et[(y
− 1
γ (MTLT )1− 1

γ + hMTLT )1MT<min{M,M}] +
1

Mt

Et[(kMTLT )1min{M,M}≤MT<M
]

+
1

Mt

Et[(y
− 1
γ (MTLT )1− 1

γ + hMTLT )1MT≥M ]

Denote − log(MT

Mt
) := Yt,T , which is normally distributed with µY = r(T − t) + 1

2
λ2
s(T − t),

σ2
Y = λ2

s(T − t),

AV aRt = y−
1
γM

− 1
γ

t L
1− 1

γ

t Et[e
r(1− 1

γ
)(T−t)−Y (1− 1

γ
)1
Y >− log(

min{M,M}
Mt

)
] + hLtEt[e

r(T−t)−Y 1
Y >− log(

min{M,M}
Mt

)
]

+ kLtEt[e
r(T−t)−Y 1− log( M

Mt
)<Y≤− log(

min{M,M}
Mt

)
] + y−

1
γM

− 1
γ

t L
1− 1

γ

t Et[e
r(1− 1

γ
)(T−t)−Y (1− 1

γ
)1
Y≤− log( M

Mt
)
]

+ hLtEt[e
r(T−t)−Y 1

Y≤− log( M
Mt

)
]

= y−
1
γM

− 1
γ

t L
1− 1

γ

t Et[e
r(1− 1

γ
)(T−t)−Y (1− 1

γ
)]

− y−
1
γM

− 1
γ

t L
1− 1

γ

t

∫ − log(
min{M,M}

Mt
)

−∞
er(1−

1
γ

)(T−t)−Y (1− 1
γ

) 1√
2πσ2

Y

e
− (Y−µY )2

2σ2
Y dY

+ hLtEt[e
r(T−t)−Y ]− hLt

∫ − log(
min{M,M}

Mt
)

−∞
er(T−t)−Y

1√
2πσ2

Y

e
− (Y−µY )2

2σ2
Y dY

+ kLt

∫ − log(
min{M,M}

Mt
)

− log( M
Mt

)

er(T−t)−Y
1√

2πσ2
Y

e
− (Y−µY )2

2σ2
Y dY

+ y−
1
γM

− 1
γ

t L
1− 1

γ

t

∫ − log( M
Mt

)

−∞
er(1−

1
γ

)(T−t)−Y (1− 1
γ

) 1√
2πσ2

Y

e
− (Y−µY )2

2σ2
Y dY

+ hLt

∫ − log( M
Mt

)

−∞
er(T−t)−Y

1√
2πσ2

Y

e
− (Y−µY )2

2σ2
Y dY

= y−
1
γM

− 1
γ

t L
1− 1

γ

t e
1
2

(− 1
γ

)(1− 1
γ

)λ2
s(T−t) − y−

1
γM

− 1
γ

t L
1− 1

γ

t e
1
2

(− 1
γ

)(1− 1
γ

)λ2
s(T−t)N(−d2(min{M,M}))

+ hLt − hLtN(−d1(min{M,M})) + kLt[N(−d1(min{M,M}))−N(−d1(M))]

+ y−
1
γM

− 1
γ

t L
1− 1

γ

t e
1
2

(− 1
γ

)(1− 1
γ

)λ2
s(T−t)N(−d2(M)) + hLtN(−d1(M))

where N(·) is the cumulative density function of the standard normal distribution,

d1(x) =
log( x

Mt
) + µY − σ2

Y

σY
,

d2(x) = d1(x) +
1

γ
σY .
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Applying Itô’s lemma,

dAV aRt = y−
1
γL

1− 1
γ

t e
1
2

(− 1
γ

)(1− 1
γ

)λ2
s(T−t)dM

− 1
γ

t − y−
1
γL

1− 1
γ

t e
1
2

(− 1
γ

)(1− 1
γ

)λ2
s(T−t)N(−d2(min{M,M}))dM

− 1
γ

t

+ y−
1
γL

1− 1
γ

t e
1
2

(− 1
γ

)(1− 1
γ

)λ2
s(T−t)N(−d2(M))dM

− 1
γ

t

− y−
1
γM

− 1
γ

t L
1− 1

γ

t e
1
2

(− 1
γ

)(1− 1
γ

)λ2
s(T−t)φ(−d2(min{M,M}))d(−d2)

dMt

dMt

− hLtφ(−d1(min{M,M}))d(−d1)

dMt

Mt + kLt[φ(−d1(min{M,M}))− φ(−d1(M))]
d(−d1)

dMt

dMt

+ y−
1
γM

− 1
γ

t L
1− 1

γ

t e
1
2

(− 1
γ

)(1− 1
γ

)λ2
s(T−t)φ(−d2(M))

d(−d2)

dMt

dMt + hLtφ(−d1(M))
d(−d1)

dMt

dMt

= AV aRt (...)dt+ AV aRt

[
1− h

Ft
− k − h

Ft

(
N(−d1(min{M,M}))−N(−d1(M))

)] λs
γ
dz

+ AV aRt

[
1

Ft
y−

1
γM

− 1
γ

t L
− 1
γ

t e
1
2

(− 1
γ

)(1− 1
γ

)λ2
s(T−t)[φ(−d2(M))− φ(−d2(min{M,M}))]

+
k − h
Ft

[φ(−d1(min{M,M}))− φ(−d1(M))]

]
(−λs)

λs
√
T − t

dz

= AV aRt (...)dt+ AV aRt ωtσsdz

Equating the diffusion terms of last equation yields,

ωt =
λs
γσs

[
1− h

Ft
− k − h

Ft

(
N(−d1(min{M,M}))−N(−d1(M))

)]
− 1

σs
√
T − t

[
1

Ft
y−

1
γM

− 1
γ

t L
− 1
γ

t e
1
2

(− 1
γ

)(1− 1
γ

)λ2
s(T−t)[φ(−d2(M))− φ(−d2(min{M,M}))]

+
k − h
Ft

[φ(−d1(min{M,M}))− φ(−d1(M))]

]
and φ(·) is the standard normal probability distribution function.
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