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Abstract

On average, "young" people underestimate whereas "old" people

overestimate their chances to survive into the future. We adopt a

Bayesian learning model of ambiguous survival beliefs which repli-

cates these patterns. The model is embedded within a non-expected

utility model of life-cycle consumption and saving. Our analysis

shows that agents with ambiguous survival beliefs (i) save less than

originally planned, (ii) exhibit undersaving at younger ages, and (iii)

hold longer on to their assets than their rational expectations coun-

terparts who correctly assess survival probabilities. Our ambiguity-

driven model therefore simultaneously accounts for three important

empirical findings on household saving behavior.
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1 Introduction

One important element of life-cycle models of consumption and saving is

the process of how individuals form and revise beliefs about their life ex-

pectancy when they grow older. In line with the rational expectations

paradigm it has been common in the literature to consider expected util-

ity (EU) maximizing agents whose updated subjective beliefs coincide with

objective conditional survival probabilities. Only recently, researchers have

focused on subjective assessments of survival probabilities which greatly de-

viate from projected life-table survival rates. According to the Health and

Retirement Study (HRS)1, younger people strongly underestimate their

(relatively high) probability to survive to some target age. At the same

time older people strongly overestimate their lower probability to survive

to some target age.2 Such patterns can neither be reconciled with the

rational expectations paradigm nor with the standard notion of Bayesian

learning.

In this paper we argue that these biases between subjective beliefs and

objective probabilities can be explained by a model of belief formation

that takes individuals’ambiguity attitudes into account. We demonstrate

that such an ambiguity-driven model of belief formation has profound im-

plications for life-cycle consumption and savings decisions. Our approach

can accommodate relevant empirical findings on household saving behavior

which proved to be puzzling for rational expectations life-cycle models. We

proceed in several steps.

First, in Section 2, we adopt a Bayesian learning model of ambiguous

survival beliefs as developed by Ludwig and Zimper (2013) which can ex-

plain the key stylized facts on survival beliefs observed in the HRS data.

Subjective survival beliefs are modeled as conditional neo-additive capaci-

ties (Chateauneuf, Eichberger, and Grant 2007). These are a parsimonious

class of non-additive probability measures that arise within Choquet ex-

1In the HRS (Health and Retirement Study) people are asked about their subjective
probability assessment to survive from some interview age up to a specific target age.
Target age is mostly 10 to 15 years in advance, see, e.g., Ludwig and Zimper (2013) for
details.

2Similar differences between subjective beliefs and objective data have been reported
in various other datasets, cf. Ludwig and Zimper (2013) for a discussion.
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pected utility (CEU) theory (Schmeidler 1989, Gilboa 1987).3 Neo-additive

capacities stand for a linear transformation of (non-extreme only) additive

probabilities so that the probability weighting function for probabilities

between zero and one is flatter than the 45-degree line. Biases of subjec-

tive beliefs from some additive probability measure are captured by two

parameters only. One parameter measures the degree of ambiguity– or

the lack of confidence– a decision maker has in the additive probability

measure. A second parameter measures the degree of over-, respectively

under-estimation through which ambiguity is resolved.4

In Section 3, we build on this biased Bayesian learning model by general-

izing a stochastic life-cycle model to the case of CEU decision makers. Our

CEU life-cycle model generally describes dynamically inconsistent behav-

ior. Throughout the remainder of our analysis we focus on naive households

who do not anticipate that their future selves will depart from their own

current self’s optimal consumption and saving plan.5

In Section 4 we present a simplified version of our model which pro-

vides guidance for our quantitative analysis. We show analytically that

we can expect households (i) to save less than originally planned at young

age if they are “moderately optimistic”about their future survival in old

age, (ii) to save less than under rational expectations if they are “suffi -

ciently pessimistic” at young age and (iii) to have higher asset holdings

than their rational expectations counterparts if they are optimistic in old

age for suffi ciently many periods.

To investigate whether these conditions hold quantitatively we return to

the full model in Section 5 and calibrate it to simulate household decisions.

We estimate parameters of ambiguous survival beliefs and demonstrate–

in the first part of Section 6– that calibrated beliefs can account for the

empirical facts as elicited in the HRS. Our parameter estimates are in line

with standard estimates of the curvature of probability weighting functions

as reported in Wu and Gonzalez (1996).

3When restricted to gains this is equivalent to the celebrated concept of cumulative
prospect theory (Tversky and Kahneman 1992).

4Neo-additive capacities are in line with empirical evidence in the decision theoretic
literature suggesting inversely S-shaped probability weighting functions– either due to
ambiguity attitudes (Wu and Gonzalez 1999) or likelihood insensitivity (Wakker 2010).

5We provide arguments for this focus in Subsection 3.5.
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As our main result we show– in the second part of Section 6– that the

misperception of lifespan risk indeed simultaneously adds to existing expla-

nations for three stylized facts in the data on savings behavior: On average,

CEU agents with subjective survival beliefs at working age have a saving

rate of 21.9% compared to a rational expectations model with an average

saving rate of 22.8%. In addition, the realized saving rate is 2.8 percentage

points lower than what the CEU agent at age 20 actually planned to save.

This corresponds to ample empirical evidence on dynamically inconsistent

behavior, in particular undersaving. Survey evidence indicates that peo-

ple save less for retirement than actually planned and they save less than

they think they should.6 In addition, according to the National Retirement

Risk Index, 51% of working age households are at risk of being unable to

maintain their pre-retirement standard of living in retirement, cf. Munnell

et al. (2010).

Simultaneously, the extended CEU life-cycle model matches well the

important stylized fact that people hold substantial assets late in life and

dissave less than predicted by the standard life-cycle model.7 Using HRS

data, Hurd and Rohwedder (2010) report that the median household at

age 85 (95) holds around 49% (21%) of assets of age 65.8 Our model

predicts average asset holdings at age 85 (95) of 46.4% (23.5%) of the

assets at age 65 which is very close to the data. Asset holdings are also

substantially higher than respective values for rational agents.

The extent towards which our model can quantitatively resolve one or

the other puzzle on household saving crucially hinges on the inter-temporal

elasticity of substitution (IES). The IES governs the relative strength of un-

dersaving at young age and high asset holdings at old age. Our benchmark

6Bernheim and Rangel (2007), and Laibson et al. (1998) quote numerous studies
indicating self-reported mistakes in terms of private saving decisions for retirement. See
also Bernheim (1998) and Choi et al. (2006) for studies on undersaving.

7There are numerous extensions of the standard life-cycle model which aim at ex-
plaining this feature of the data. The two main explanations for large assets holdings
late in life are bequest motives (Hurd 1989, Lockwood 2012), and precautionary saving
due to possibly large health expenditures (De Nardi, French, and Jones 2010).

8Reported values are extrapolated median wealth paths for single households ac-
cording to Figure 1a and 1b in Hurd and Rohwedder (2010), p. 28. Note that the
results depend on how to measure wealth changes and whether to concentrate on singles
or couples. See also De Nardi et al. (2010) for data on elderly asset holdings across
income quintiles.

4



results are for a value of the IES of one third. A lower (higher) value of 0.25

(0.5) leads to higher (lower) asset holdings of the elderly and less (more)

undersaving. Specifically, an IES of 0.25 generates simulated median asset

paths that are consistent with the empirical evidence reported by Hurd and

Rohwedder (2010).

The phenomena of undersaving and dynamically inconsistent behavior

have also been studied within the context of hyperbolic discounting models,

cf. Laibson et al. (1998) and Laibson (1998). In contrast, our ambiguity-

driven approach is based on an axiomatic decision theoretic model. We

thereby attempt to “opening the black box of decision makers instead of

modifying functional forms” (Rubinstein 2003). In addition, our model

simultaneously generates undersaving at young age and large old-age as-

set holdings. This is not possible within the standard hyperbolic time-

discounting life-cycle model.9

Finally, Section 7 concludes our analysis with an outlook on future

research. Appendix A recalls formal definitions from Choquet decision

theory. Appendix B sketches the construction of ambiguous survival beliefs

through a model of Bayesian learning by Ludwig and Zimper (2013). All

formal proofs are relegated to Appendix C. Supplementary material is

contained in Appendix D.

2 Ambiguous Survival Beliefs

2.1 Motivation: Biases in Survival Beliefs

This paper is concerned with, first, modeling age-dependent updating of

subjective beliefs of an agent about her chances to survive into the future

and, second, with merging such a model of subjective beliefs into a stan-

dard life-cycle model of consumption and savings. Point of departure of our

analysis is HRS data on subjective survival beliefs. Figure 1 summarizes

this data by plotting average age-specific biases in survival beliefs– the

difference between the respective average subjective belief and the aver-

age objective data– for three waves of the HRS between 2000 and 2004.

9In a companion paper we study the difference between the CEU model and the
quasi-hyperbolic discounting model, cf. Groneck et al. (2013).

5



We observe that relatively “young”– younger than age 65-70– respondents

underestimate whereas relatively “old”– above age 70– respondents over-

estimate their chances to survive into the future. For example, a 65 year

old women underestimates her objective probability to become 80 years

by about 20 percentage points. Respondents between ages 85 and 89 in

the sample exhibit an average overestimation by about 15 to 20 percentage

points.

To model such subjective survival beliefs, fix some state space Ω and

some σ-algebra F on Ω with the interpretation that F contains all sur-

vival events that are relevant to an agent’s decision on an optimal life-time

consumption plan. We denote by Zk,t ∈ F the event that the agent sur-

vives from period k to the end of period t. The standard expected utility

approach would consider an additive probability space (Ω,F , π) such that

the agent maximizes at each age h ≥ 0 the expected utility of her future

consumption streams with respect to the conditional probability measure

π
(
· | Ĩh

)
. Ĩh ∈ F denotes the age-dependent random information that the

agent receives about her future survival chances. This information process

is typically described as a filtration process over the agent’s age so that

the agent learns more relevant (statistical) information about her future

survival chances while she grows older. Standard consistency results for

Bayesian updating (e.g., Doob 1949) imply that π
(
Zk,t | Ĩh

)
converges,

for all Zk,t, with probability one to the agent’s objective survival prob-

ability, denoted ψk,t, if she receives more statistical information. If this

expected utility approach was a good description of reality, we would, e.g.,

expect that the subjective belief of a representative 85 year old agent to

survive from age 90 to 91 is closer to the true survival probability ψ90,91

than the corresponding subjective survival belief of a representative 75 year

old agent.

As the data in Figure 1 show, this convergence property of subjective

additive conditional measures is violated for subjective survival beliefs in

the HRS (as well as in other datasets, cf. the discussion in Ludwig and

Zimper (2013)). To explain these patterns we therefore follow Ludwig and

Zimper (2013) who develop a closed-form model of Bayesian learning under

ambiguity which gives rise to a parsimonious notion of ambiguous survival

beliefs. Our approach uses this model of ambiguous survival beliefs to
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Figure 1: Relative difference of subjective survival probabilities and cohort
data
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Notes: This graph shows deviations in percentage points of subjec-

tive survival probabilities from objective data. Objective survival

rates are based on cohort life table data. Future objective data is

predicted with the Lee and Carter (1992) procedure.

Source: Own calculations based on HRS, Human Mortality Data-

base and Social Security Administration data.

construct a non-additive probability space (Ω,F , ν (· | ·)) such that ν (· | ·)
constitutes a conditional neo-additive capacity in the sense of Chateauneuf

et al. (2007) which is updated in accordance with the Generalized Bayesian

update rule.10 In contrast to additive conditional probabilities π
(
Zk,t | Ĩh

)
,

neo-additive conditional probabilities ν
(
Zk,t | Ĩh

)
can replicate the pat-

terns of Figure 1 because they do not necessarily converge through Bayesian

updating to the objective probabilities ψk,t. The neo-additive probability

space constructed in this paper can thus provide a more realistic model of

survival beliefs than any additive probability space.

10For the formal definitions of these decision theoretic terms see Appendix A and
references therein.
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2.2 A Parsimonious Model

In a nutshell, Ludwig and Zimper (2013) model ambiguous survival beliefs

as a weighted average of a standard additive probability measure and the

degree of optimism, respectively pessimism, by which the decision maker re-

solves her ambiguity towards objective information. The respective weight

represents the degree of ambiguity– or the lack of confidence– that the de-

cision maker has in the additive probability measure. The model is informa-

tion driven so that ambiguity– and thus the weight on relative optimism–

increases in the amount of information. To simplify the analysis, Ludwig

and Zimper (2013) associate information with age to the effect that ambi-

guity increases in the agent’s actual age (i.e., when the objective survival

probability decreases). For the reader’s benefit we present a rigorous re-

view of the Ludwig and Zimper (2013) learning model in Appendix B. In

what follows, we only restate the model’s parsimonious characterization of

ambiguous survival beliefs.

Fix some T ≥ h ≥ 0 with the interpretation that the agent perceives

it as possible to live until the end of period T whereas she perceives it as

impossible to live longer than T . Denote by δ ∈ [0, 1] an initial degree

of ambiguity (or degree of likelihood insensitivity). λ ∈ [0, 1] denotes a

psychological bias parameter which measures whether the agent resolves

her ambiguity through over- or rather through under-estimation of the

true probability. In this framework, Ludwig and Zimper (2013) derive the

following result which we build on:

Observation 1 (Ludwig and Zimper 2013). The h-old agent’s age-dependent
ambiguous belief to survive from age k with h ≤ k < T to target age t with

k < t ≤ T is given by

νhk,t = δh · λ+ (1− δh) · ψk,t (1)

with

δh =
δ

δ + (1− δ) · 1
1+
√
h

(2)

for age-independent parameters δ, λ ∈ [0, 1].

The h-old agent’s belief to survive from age k to some target age t
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is thus formally described as an age-dependent weighted average of the

objective survival probability with weight 1−δh and the psychological bias
parameter λ with weight δh. For δ = 0 we have for all h that νhk,t = ψk,t so

that all ambiguous survival beliefs reduce to objective survival probabilities

and the standard rational expectations approach is nested as a special case.

For any δ > 0, the dynamics of the model imply that agents exhibit

more pronounced ambiguity attitudes with increasing age. This feature

captures the intuitive notion that, as the objective risk of survival becomes

less likely, agents attach less and less certainty to this objective probabil-

ity. According to our estimates of {δ, λ} presented in Section 5, objective
survival probabilities ψk,t decrease with age to values lower than λ. The

model’s convergence property hence implies that survival rates are overes-

timated eventually even when the initial degree of likelihood insensitivity,

δ, is low.11

2.3 Neo-additive Probability Space

It remains to translate the above notion of ambiguous survival beliefs

into the construction of the relevant conditional neo-additive probabil-

ity space (Ω,F , ν (· | ·)). To this purpose define the finite state space

Ω = {0, 1, ..., T} and let the σ-algebra F be the powerset of Ω. We in-

terpret Dt = {t} , t ∈ Ω as the event in F that the agent dies at the

end of period t. Define age h of the agent as the following event in F :
h = Dh∪ ...∪DT . Further, formally define Zk,t = Dt∪ ...∪DT as the event

in F that the agent survives from period k to the beginning of period t.

The relevant information filtration of our model is simply given by F1 ⊂
... ⊂ FT = F such that, for each age h, Fh is generated by the following
partition of Ω: {{0} , .., {h− 1} , {h, ..., T}}. That is, if the agent turns age
h she (trivially) observes that she has not died in any previous period but

will die at the end of either period h or h+ 1 or ... or T .

Finally, we assume that ν (· | ·) satisfies (i) ν (∅ | ·) = 0, ν (Ω | ·) = 1, (ii)

11If we were to assume that households do not have any memory to the effect that δh =
δ for all h = 0, . . . , T , we would get qualitatively similar results. Quantitatively this
would however imply that the degree of ambiguity would be substantially higher for
many ages than with increasing δh. We will come back to this aspect in the interpretation
of our main results below.
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ν (· | ·) is a conditional neo-additive capacity in the sense of Chateauneuf
et al. (2007) which is updated in accordance with the Generalized Bayesian

update rule where (iii) for all h, Zk,t 6= ∅ and Zk,t 6= Ω with h ≤ k < T and

k < t ≤ T , ν (Zk,t | h) ≡ νhk,t with ν
h
k,t given by (1).

We make explicit use of this conditional neo-additive probability space

(Ω,F , ν (· | ·)) in Section 3.4 where we introduce Choquet expected utility
(=CEU) decision makers within the life-cycle model of consumption and

savings.

3 Life-Cycle Model

This section generalizes a life-cycle model to the case of CEU decision

makers with ambiguous survival beliefs. The non-additive survival beliefs

are given as neo-additive capacities, cf. equation (1).

3.1 Demographics

We consider a large number of ex-ante identical agents (=households).

Households become economically active at age (or period) 0 and live at

most until age T . The number of households of age t is denoted by Nt.

Population is stationary and we normalize total population to unity, i.e.,∑T
t=0 Nt = 1. Households work full time during periods 1, . . . , tr − 1 and

are retired thereafter. The working population is
∑tr−1

t=0 Nt and the retired

population is
∑T

t=tr
Nt.

We refer to age h ≤ t as the planning age of the household, i.e., the age

when households make their consumption and saving plans for the future.

At ages h = 1, . . . , T , households face objective risk to survive to some

future period t. We denote corresponding objective survival probabilities

for all in-between periods k, h ≤ k < t, by ψk,t where ψk,t ≤ 1 for all t ≤ T

and ψk,t = 0 for t = T + 1. Population dynamics are correspondingly given

by Nt+1 = ψt,t+1Nt, for N0 given.

3.2 Endowments

There are discrete shocks to labor productivity in every period t = 0, 1, ..., , tr−
1 denoted by ηt ∈ E, E finite, which are i.i.d. across households of the same
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age. The reason for stochastic labor productivity in our model is to impose

discipline on calibration. For sake of comparability, our fully rational model

should feature standard elements as used in numerous structural empirical

studies, as, e.g., by Laibson et al. (1998), Gourinchas and Parker (2002)

and several others. By ηt = (η1, . . . , ηt) we denote a history of shocks and

ηt | ηh with h ≤ t is the history (η1, . . . , ηh, ..., ηt). Let E be the powerset

of the finite set E and E∞ be the σ-algebra generated by E,E, .... We as-

sume that there is an objective probability space (×∞t=0E,E
∞, π) such that

πt(η
t | ηh) denotes the probability of ηt conditional on ηh.
After retirement at age tr households receive a lump-sum pension in-

come, b. Retirement income is modeled in order to achieve a realistic

calibration. Without a pension system, the old-age saving motive would

lead to unrealistic saving behavior. Pension contributions are levied at

contribution rate τ .

Collecting elements, income of a household of age t is given by

yt =

{
ηtφtw (1− τ) for t < tr

b for t ≥ tr.

The interest rate is fixed at r. There are no annuity markets, an as-

sumption which can be justified by the observed small size of private an-

nuity markets.12 We assume a fixed zero borrowing constraint. We define

cash-on-hand as xt ≡ at (1 + r) + yt so the budget constraint writes as

xt+1 = (xt − ct) (1 + r) + yt+1 ≥ 0 (3)

Define total income as ytott = yt + rat, saving as st = ytott − ct and gross

savings as assets tomorrow, at+1.

3.3 Government

We assume a pure PAYG public social security system. We denote by χ

the net pension benefit level, i.e., the ratio of pensions to net wages. The

12See Friedman and Warshawsky (1990). Observe that pessimistic survival beliefs
extenuate the annuity puzzle.
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government budget is assumed to be balanced each period and is given by

τw
tr−1∑
t=0

φtNt = b

T∑
t=tr

Nt = χ (1− τ)w

T∑
t=tr

Nt. (4)

Accidental bequests– arising because of missing annuity markets– are

taxed away at a confiscatory rate of 100%.13

3.4 CEU Preferences

Households face two dimensions of uncertainty, respectively risk, about pe-

riod t consumption. First, due to our assumption of productivity shocks,

agents face a risky labor income. Second, agents are uncertain with respect

to their life expectancy. While we model income risk in the standard objec-

tive EU way, we model uncertainty about life-expectancy in terms of a CEU

agent who holds neo-additive survival beliefs as stated in Observation 1.

Denote by u (ct) the agent’s utility from consumption at age t. We as-

sume that utility is strictly increasing in consumption and that the agent

is strictly risk-averse, i.e., u′ (ct) > 0, u′′ (ct) < 0. Given the productivity

shock history ηh, denote by c ≡ (ch, ch+1, ch+2...) a shock-contingent con-

sumption plan such that the functions ct, for t = h, h+1, ..., assign to every

history of shocks ηt|ηh some amount of period t consumption.
Expected utility of an h-old agent from consumption in period t > h

contingent on the observed history of productivity shocks ηh is given as

Et [u (ct)] ≡ Et
[
u (ct) , π

(
ηt|ηh

)]
=
∑
ηt|ηh

u (ct) π
(
ηt|ηh

)
where we introduceEt [·] as a shortcut notation for the expectation operator
with respect to productivity shock ηt in period t, conditional on period h.

We assume additive separability and discounting at rate β. For any

s ∈ {h, h+ 1, ..., T} and survival until period s, the agent’s von Neumann
13Revenue from this source is used for government consumption which is otherwise

neutral.
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Morgenstern utility (vNM) from a consumption plan c is then defined as

U (c (s)) = u(ch) +
s∑

t=h+1

βt−hEt [u (ct)] .

To model survival uncertainty of an agent of age h we use the conditional

neo-additive probability space (Ω,F , ν (· | ·)) of Section 2.3. Denote by
νh ≡ ν (· | h) the agent’s age-conditional neo-additive capacity. In order to

formalize utility maximization over life-time consumption with respect to

neo-additive probability measures, we henceforth describe an h-old agent

as a CEU decision maker who maximizes her Choquet expected utility from

life-time consumption with respect to νh. By Observation 8 in Appendix A,

this agent’s CEU from consumption plan c with respect to νh is given as

E
[
U (c) , νh

]
= δh

[
λ sup
s∈{h,h+1,...}

U (c (s)) + (1− λ) inf
s∈{h,h+1,...}

U (c (s))

]

+ (1− δh) ·
T∑
s=h

[U (c (s)) , ψ (Ds)]

where we have for any c that

sup
s∈{h,h+1,...}

U (c (s)) = u(ch) +
T∑

t=h+1

βt−hEt [u (ct)] ,

inf
s∈{h,h+1,...}

U (c (s)) = u(ch).

Observe that we require

T∑
t=h+1

βt−hEh [u (ct)] > 0, ∀ h = 0, . . . (5)

a condition we insure to hold via calibration, see below.

Proposition 1 Consider an agent of age h. The agent’s Choquet expected
utility from consumption plan c is given by

E
[
U (c) , νh

]
= u(ch) +

T∑
t=h+1

νhh,t · βt−h · Eh [u (ct)] (6)

13



where the subjective belief to survive from age h to t ≥ h is given by

νhh,t =

{
δh · λ+ (1− δh) · ψh,t for t > h

1 for t = h
(7)

with

δh =
δ

δ + (1− δ) · 1
1+
√
h

,

cf. Observation 1.

Proof. Relegated to Appendix C.

Like the survival beliefs model of Section 2 lifetime utility of CEU agents

in equation (6) reduces to the standard rational expectations EU case if

and only if there is no initial ambiguity, i.e., if δ = 0, implying for every age

h that νhh,t = ψh,t. In contrast to the standard EU model, which is dynam-

ically consistent, the CEU model (6) describes a dynamically inconsistent

decision maker whenever the agent has ambiguous survival beliefs.

3.5 Naivety versus Sequential Sophistication

In models with time inconsistency one has to take a stance on what infor-

mation the agent has concerning the future. The literature dealing with

time inconsistency distinguishes between naive and sophisticated agents,

cf. Strotz (1955) or inter alia O’Donoghue and Rabin (1999) for procrasti-

nation models.

Naifs are not aware of their time inconsistency and believe that their

future “selves”will be acting rational, i.e., in their interest. Naive agents

construct consumption and saving plans that maximize lifetime utility at

age h. Self h then implements the first action of that sequence expecting

future selves to implement the remaining plan. Coming to the next period,

self h+ 1 conducts her own maximization problem and implements actions

that do not necessarily coincide with the plan of self h.

In contrast, sophisticates are fully aware of their time inconsistent be-

havior, cf., e.g., Angeletos et al. (2001). Sophisticates correctly predict

that their own future selves will not be acting according to the preference

of the current self. Thus, they take actions that seek to constrain future

selves behavior (commitment devices).
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The CEU framework differs from the aforementioned models in being

information driven. Within this model, the naive agent is a much more

logical construction. It assumes that the agent cannot exactly anticipate

information she will gain in the future. In contrast, the sophisticated agent

anticipates receiving new information. This is an extremely stylized the-

oretical construction. Furthermore, there exists a large literature which,

from an empirical perspective, rather supports the assumption of naive

agents, cf. O’Donoghue and Rabin (1999) and the literature cited therein.

For these reasons and in order to focus our analysis we concentrate on naive

agents. The comparison to sophisticated agents is done in Groneck et al.

(2013).

Naive CEU Agent

In order to characterize optimal behavior, it is convenient to work with the

recursive representation of the planning problem. We assume that income

risk is first-order Markov such that π(ηt | ηt−1) = π(ηt | ηt). It is then
straightforward to set up the recursive formulation of model (6) for the

naive agent. The value function of age t ≥ h viewed from planning age h

is given by

V h
t (xt, ηt) = max

ct,xt+1

{
u (ct) + β

νhh,t+1

νhh,t
Et
[
V h
t+1

(
xt+1, ηt+1

)]}
.

The naive CEU agent’s first order condition is given by the standard

Euler equation:

Proposition 2 The consumption plan c = (ch, ch+1, ...) of a naive CEU

agent must satisfy, for all t ≥ h,

du

dct
≥ β (1 + r) ·

νhh,t+1

νhh,t
· Et

[
du

dct+1

]
(8)

which holds with equality if at+1 > 0.

The first-order condition has important implications for expected growth

of marginal utility (and hence for consumption and savings decisions):
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Observation 2 Suppose that at+1 > 0. For a naive household of age h the

expected growth of marginal utility

1. from h to h+1 is higher than under rational expectations if the house-

hold is pessimistic with regard to survival to the next period, i.e.,

if νhh,h+1 < ψh,h+1, and vice versa for an optimistic household;

2. from t to t+1, t > h is always lower than under rational expectations.

Proof. Relegated to Appendix C.

Consider a household that is (at least initially) pessimistic with regard

to survival into the future as in the data shown in Figure 1. The first part

of Observation 2 then implies that the household tends to spend too much

today relative to tomorrow in comparison to rational expectations. The

second part of the observation entails that the household plans in period h

to overcorrect this consumption-savings decision in future periods. Notice

that this is a difference to the hyperbolic time discounting model in which

the naive household thinks that he will just revert back to the plan of a

rational agent in future periods. One may view it as more realistic that

households plan to correct savings choices in the future rather than just

reverting to a path considered as rational. On the contrary, an optimistic

household in our sense always saves more than his rational expectations

counterpart and plans to continue doing so in the future.

These two parts of the observation exemplify two potentially offsetting

effects on today’s saving behavior of pessimistic agents. Analyzing marginal

propensities to consume of a simplified version of our model, cf. Section 4,

shows that the extent towards which CEU households indeed overspend

depends on whether current survival beliefs are suffi ciently pessimistic rel-

ative to future optimistic survival beliefs. Hence, first-order conditions

derived here only provide partial insights.

That such a plan also implies time inconsistent behavior follows from

inspection of the marginal rates of substitution (MRS) between any two

subsequent periods from the perspective of different planning periods. Un-

der time consistency, these objects would be identical. We have for any
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planning period h and periods h < k < t that

MRShck,ct =
(
βt−k

)−1 v
h
h,k

vhh,t

Eh

[
du
dck

]
Eh

[
du
dct

] .
Comparing the MRS of age h with the MRS of any age h + i < k we

find that the decisive term is the ratio of subjective beliefs which obeys the

relationship

νhh,k
νhh,t

=
δh · λ+ (1− δh) · ψh,k
δh · λ+ (1− δh) · ψh,t

6=
δh+i · λ+ (1− δh+i) · ψh+i,k

δh+i · λ+ (1− δh+i) · ψh+i,t

=
νh+i
h+i,k

νh+i
h+i,t

.

Therefore, MRShck,ct 6= MRSh+i
ck,ct

.

Aggregation over Households

Wealth dispersion within each age bin is only driven by productivity shocks.

We denote the cross-sectional measure of agents with characteristics (at, ηt)

by Φt(at, ηt). Denote by A = [0,∞] the set of all possible asset holdings

and let E be the set of all possible income realizations. Define by P (E)

the power set of E and by B (A) the Borel σ-algebra of A. Let Y be the
Cartesian product Y = A× E and M = (B (A)) . The measures Φt(·)
are elements of M. We denote the Markov transition function– telling

us how people with characteristics (t, at, ηt) move to period t + 1 with

characteristics t + 1, at+1, ηt+1– by Qt(at, ηt). The cross-sectional measure

evolves according to

Φt+1 (A× E) =

∫
Qt ((at, ηt) ,A× E) · Φt (dat×dηt)

and for newborns

Φ1 (A× E) = N1 ·

Π(E) if 0 ∈ A

0 else.
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The Markov transition function Qt(·) is given by

Qt ((at, ηt) ,A× E) =


∑

ηt+1∈E π
(
ηt+1|ηt

)
· ψt,t+1 if at+1 (at, ηt) ∈ A

0 else

for all (at, ηt) ∈ Y and all (A× E) ∈ Y. Observe that the transition from t

to t+ 1 is governed by the objective survival probabilities ψt,t+1.

Aggregation gives average (or aggregate)

consumption: c̄t =
∫
ct(at, ηt)Φt(dat × dηt),

assets: āt =
∫
at(at, ηt)Φt(dat × dηt),

income: ȳt = (1− τ)w
(∑tr−1

t=0 φtNt + χ
∑T

t=tr
Nt

)
,

total income: ȳtott = ȳt + rāt,

savings: s̄t = ȳtott − c̄t.

4 Simple Model

In order to provide insights for the numerical analysis below, we now de-

velop a simple three-period model (T = 2) without productivity risk (ηt = 1

for all t) which can be solved analytically. We abstract from borrowing con-

straints, hence at+1 < 0, t < T is possible. The no-Ponzi condition aT+1 ≥ 0

is of course assumed. Let

U0 = u(c0) + βν0
0,1u(c1) + β2ν0

0,2u(c2) = u(c0) + βν0
0,1

(
u(c1) + β

ν0
0,2

ν0
0,1

u(c2)

)
and U1 = u(c1)+βν1

1,2u(c2), where superscripts again denote the respective

planning age. We assume a CRRA per-period utility function with θ 6= 1

given by

u (ct) = Γ +
c1−θ
t

1− θ , (9)

for all t with preference shifter Γ ≥ 0 such that condition (5) holds.

In light of the data on subjective beliefs displayed in Figure 1 we in-

terpret period 0 of the simple model as the period when survival beliefs

express relative pessimism with respect to survival, i.e., up to actual age

of about 65 − 70. Period 1 then reflects the period when there is relative

optimism in the data. Correspondingly, we make the following assumption:
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Assumption 1 We assume for some δ > 0 that

ψ0,1 > ν0
0,1 = δ0λ+ (1− δ0)ψ0,1 (10)

i.e., that λ < ψ0,1 (pessimistic beliefs), as well as

ψ1,2 < ν1
1,2 = δ1λ+ (1− δ1)ψ1,2 (11)

i.e., that λ > ψ1,2 (optimistic beliefs).
14

4.1 Rational Expectations

The reference model is the standard solution to the rational expectations

model (where δ0 = δ1 = 0):

Observation 3 Policy functions of the rational expectations solution to
the simple model are linear in total wealth, wt ≡ xt+ht (where xt ≡ atR+yt

is cash on hand and ht ≡
∑T

s=t+1

(
1

1+r

)s−t
ys is human wealth): ct = mtwt

where wt+1 = (wt − ct)R and

mt =


bψ

− 1
θ

t mt+1

1+bψ
− 1
θ

t mt+1

= 1
1+ 1

bψ
− 1
θ

t mt+1

for t < T

1 for t = T

for b ≡
(
βR1−θ)− 1

θ .

Proof. See, e.g., Deaton (1992).

4.2 Naive CEU Household

To draw a distinction between rational expectations and CEU households,

we use superscript n to denote policy functions (in terms of marginal

14Notice that, despite equation (11), we may have that the household in period 0 is
pessimistic with respect to survival from period 1 to 2, hence we may have that

ψ1,2 > ν01,2 = δ0λ+ (1− δ0)ψ1,2.

This is so because δ0 < δ1 and therefore less weight is put on the optimism parameter λ.
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propensities to consume) of naive CEU households. Given that the house-

hold consumes all outstanding wealth in the final period 2 (i.e. mn
2 = 1)

the solution of the household’s problem for all other periods are as follows:

Proposition 3 The solution for the naive CEU household is as follows:

• The solution to the problem in period 1 is:

c1,n
1 = m1,n

1 w1 where m1,n
1 =

1

1 + 1

b(ν11,2)
− 1
θ

• The plan in period 0 for period 1 is:

c0,n
1 = m0,n

1 w1 where m0,n
1 =

1

1 + 1

b

(
ν00,2

ν00,1

)− 1
θ

• The solution in period 0 is:

c0,n
0 = m0,n

0 w0 where m0,n
0 =

1

1 + 1

b(ν00,1)−
1
θm0,n

1

Proof. See Appendix C.

Interpreting this proposition yields the following observation:

Observation 4 Under Assumption 1, equation (11), we get m1,n
1 < m1 so

that the naive household saves more out of accumulated wealth in period 1

than the household with rational expectations.

Accumulated wealth in turn is an endogenous object. We shall see

below that a suffi ciently pessimistic naive CEU household will save less out

of initial wealth in period 0. While it is therefore clear that accumulated

wealth of the naive CEU household in period 1 is lower than for rational

expectations, relative wealth positions across the two households in period 2

depend on the relative strength of suffi cient pessimism in period 0 vis-a-

vis optimism in period 1. It is therefore ultimately a quantitative question
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whether accumulated wealth in period 2 of CEU households exceeds wealth

of households with rational expectations.15

To understand savings behavior in period 0 we next provide a definition

which bounds optimism in period 1 by the ratio of subjective beliefs from

the perspective of period 0:

Definition 1 A household is moderately optimistic if ν1
1,2 <

ν00,2
ν00,1
.

Observation 5 From the expressions in Proposition 3 it immediately fol-

lows that m0,n
1 < m1,n

1 under moderate optimism, i.e., a moderately opti-

mistic naive CEU household plans in period 0 to save more out of accumu-

lated wealth in period 1 than he actually does.

That is, only if optimism expressed in the data on subjective beliefs

is not too large there is hope for our quantitative analysis to match the

stylized fact that households, in the course of the life-cycle, save less than

originally planned.

Observation 6 We have that m0,n
1 ≤ m1, i.e., the naive CEU household

plans in period 0 to save more out of wealth in period 1 than the rational

expectations household.

Proof. Relegated to Appendix C.

This observation directly follows from our earlier Observation 2 in Sec-

tion 3. It implies that, to generate undersaving in our model, pessimism in

the first period must be suffi ciently large in order to dominate the effect of

Observation 6:

Definition 2 (Suffi cient pessimism) We label the period 0 naive house-

hold as suffi ciently pessimistic if
ν00,1
ψ0,1

<
(
m1,n
1

m1

)θ
< 1.

The second inequality in the above definition follows from Observa-

tion 5. To satisfy suffi cient pessimism for a given fraction m1,n
1

m1
, ν0

0,1 must

be decreased more strongly relative to ψ0,1 when risk aversion, θ, is in-

creased.
15To provide a full characterization we could of course express consumption in all

periods as a function of initial wealth. Terms however get messy and interpretation is
easier with marginal propensities to consume out of current wealth.
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Observation 7 Under suffi cient pessimism we get that

m0,n
0 > m0,

i.e., the CEU household consumes more than the RE household in period 0.

Proof. See Appendix C.

Only if the household is suffi ciently pessimistic in the sense of Defin-

ition 2, the model generates undersaving (relative to the solution to the

rational expectations model).

The analysis of the simple model clarifies that it is a quantitative ques-

tion whether the full-blown stochastic model can generate the three em-

pirical regularities on saving behavior we discussed in Section 1: (i) time

inconsistent behavior to the effect that people save less than originally

planned (under “moderate optimism”); (ii) undersaving at young age (un-

der “suffi cient pessimism”); (iii) high old age asset holdings (if optimism

eventually outweighs initially low asset accumulation due to pessimism).

We now return to this quantitative question by calibrating the full-blown

stochastic model.

5 Calibration

5.1 Household Age

Households enter the model at age 20 (model age 0). The last working year

is age 64, hence tr = 45. We set the horizon to some maximum biological

human lifespan at age 125, hence T = 105. This choice is motivated by

Weon and Je (2009) who estimate a maximum human lifespan of around

125 years using Swedish female life-table data between 1950− 2005.

5.2 Objective Cohort Data

For objective survival rates we estimate cohort specific survival rates for

US cohorts alive in 2007. Objective cross-sectional data is taken from

the Social Security Administration (SSA) for 1890− 1933 and the Human

Mortality Database (HMD) for the years 1934− 2007. To obtain complete
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cohort tables, future survival rates are predicted by the Lee and Carter

(1992) procedure. Details are described in Ludwig and Zimper (2013).

Since data on survival rates is unreliable for ages past 100 we estimate

survival rates assuming the Gompertz-Makeham law.16 Accordingly, the

mortality rate µt at age t is assumed to follow

µt = α1 + α2 · exp (α3 · t) + εt, εt ∼ N (0, σ2).

We estimate parameters {αi}3
i=1 to get an out of sample prediction for ages

past 100. The resulting predicted mortality rate function fits actual data

very well and is used as objective cohort data in the simulation. According

to our estimates, the average mortality rate approaches 1 at ages around

age 110 (t = 90). For all ages t = 91, . . . , 105, we set the objective survival

rate to ψt,t+1 = ε = 0.01.

5.3 Estimated Subjective Survival Beliefs

We follow Ludwig and Zimper (2013) and estimate parameters δ ≡ δh=0

and λ by pooling a sample of HRS data formed of HRS waves {2000, 2002, 2004}.
Except for heterogeneity in sex and age, we ignore all other heterogeneity

across individuals. This gives δ = 0.118 and λ = 0.406.17

5.4 Preferences

As in the simple model of the previous section, per period utility is assumed

to be CRRA, u (ct) = Γ +
c1−θt −1

1−θ , at all ages t. As a benchmark, we choose

θ = 3.0– corresponding to an inter-temporal elasticity of substitution (IES)

of one third– and consider as range for sensitivity analysis θ ∈ {2, 4}.
Given θ > 1, per period utility is negative and therefore the preference

shifter Γ must be calibrated such that condition (5) holds for all t, ηt. We

set Γ = 76.7 for the naive CEU agent which turns out to be suffi ciently

high.18 We further set the discount rate ρ to 5%.

16See, e.g., Preston et al. (2001), p. 192.
17Estimation results are separately for men and women. We take an equally weighted

average of the estimated parameters to get an approximation for λ and δ in the popu-
lation.

18This relates to Hall and Jones (2007) who calibrate– in a different model setup–
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Table 1: Calibrated parameters
Technology and Prices
w = 1 Gross wage
r = 0.042 Interest rate
τ = 0.124 Social security contribution rate
χ = 0.322 Net pension benefit level
Income Process
κ = 0.97 Persistence of income
ε = 0.68 Variance of income
{φt} Age specific productivity estimated from PSID
Preferences
θ ∈ {2, 3, 4} Coeffi cient of relative risk aversion
ρ = 0.05 Subjective discount rate
ΓCEU = 76.65 Preference shifter for naive CEU agent
Subjective Survival Beliefs
δ = 0.118 Initial degree of ambiguity
λ = 0.406 Degree of optimism
Age Limits and Survival Data
0 Initial model age (age 20)
tr = 45 retirement (age 65)
T = 105 Maximum human lifespan (age 125){
ψk,t
}

Objective survival rates from SSA and HMD
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5.5 Prices and Endowments

Wages are normalized to w = 1. We consider a symmetric two-state first-

order Markov chain for the income process in periods t = 0, . . . , tr with

state vector E = [1 + ε, 1− ε] and symmetric transition matrix Π = [κ, 1−
κ; 1− κ, κ]. We take as initial probability vector of the Markov chain π0 =

[0.5, 0.5]′. Values of persistence and conditional variance of the income

shock process are based on the estimates of Storesletten et al. (2004)

yielding κ = 0.97 and ε = 0.68.

Age specific productivity {ψt} of wages is estimated based on data
from the Panel Study of Income Dynamics (PSID) applying the method

developed in Huggett et al. (2007). The interest rate is set to r = 0.042

based on Siegel (2002). For the social security contribution rate we take the

US contribution rate of τ = 0.124. The pension benefit level then follows

from the social security budget constraint, cf. equation (4).

All parameters are summarized in Table 1.

6 Results

6.1 Subjective Survival Beliefs

Predicted and Actual Subjective Survival Beliefs

Figure 2 compares predicted subjective survival rates resulting from the de-

cision theoretic model with their empirical counterparts and corresponding

objective survival rates. Jumps in the figure are due to changes in inter-

view age and respective target age in the survey, cf. Ludwig and Zimper

(2013). Predicted subjective beliefs fit data on subjective survival proba-

bilities well. In particular, the model replicates underestimation of survival

rates at younger ages and overestimation at older ages.19

a preference shifter in the range of [22.1; 131.9]. Notice that this is just an arbitrary
monotone transformation. Any choice of Γ > 76.7 ensures that the value of life is always
higher than the value of death.

19Ludwig and Zimper (2013) perform sensitivity analyses with regard to choice of
initial age and the specific form of the experience function. They show that results do
not hinge on these aspects.
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Figure 2: Objective, subjective and predicted survival rates
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Notes: In the HRS interviewees are asked about their survival belief to a specific

target age depending on the age at interview: Respondents between ages 50-69 are

asked their probability to survive to 80, while agents between 70-74 (and 75-79,

80-84, 85-89) are asked about their belief to survive until 85 (and 90, 95, 100). The

figure shows these subjective survival beliefs for different target ages (solid blue

line), the corresponding objective survival rates (dashed-dotted red line) and the

simulated subjective survival beliefs from the estimated CEU model (dashed green

line).

Survival Belief Functions

Figure 3 compares subjective survival belief functions of CEU agents to ob-

jective cohort data. The panels in the figure show unconditional survival

rates viewed from different planning ages where target age t is depicted

on the abscissa. In each of the panels experience and thus likelihood in-

sensitivity does not change. In line with Hammermesh (1985) and several

others, the subjective survival function is generally flatter than its objective

counterpart. The figure confirms that for younger ages underestimation of

objective probabilities dominates while for old agents overestimation be-

comes more pronounced. Observe the initial drop of subjective beliefs

which might be viewed as extreme. It is a consequence of our parsimonious

specification. In our companion paper, cf. Groneck et al. (2013), we doc-

ument that these survival belief functions are similar to quasi-hyperbolic

time discounting functions which also feature such an initial drop. Just as

quasi-hyperbolic discount functions approximate hyperbolic discount func-

tions (which do not feature an initial drop), our specification is an ap-

proximation to a more complex structure of non-additive beliefs where the
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initial drop would wash out.20 One can therefore view our model as a

micro-foundation of the (quasi-)hyperbolic time discounting approach.

Figure 3: Unconditional probabilities
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Notes: Unconditional objective and subjective survival probabili-

ties viewed from different planning ages h.

Relationship to Experimental Findings on Probability Weighting

We compare estimates of our model and the implied linear probability

weighting functions to inversely S-shaped probability weighting arising in

cumulative prospect theory (CPT), cf. Tversky and Kahneman (1992).

With this exercise we check whether the estimated parameters {δ, λ} are
in the range of what is found in CPT.

In CPT, it is standard to assume a single-parameter functional form for

the probability weighting function. Applied to (age dependent) survival

beliefs such a functional form, as, e.g., used by Wu and Gonzalez (1996),

20For example, feeding into our model the corresponding continuous probability
weighting functions, see below, results in similar quantitative predictions regarding the
phenomenon of undersaving. However, such an ad-hoc model does not generate higher
asset holdings at older ages. Results are available upon request.
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is given by

$h

(
ψh,t, ξh

)
=

(
ψh,t
)ξh[(

ψh,t
)ξh +

(
1− ψh,t

)ξh] 1
ξh

. (12)

For ξh = 1, we have $h

(
ψh,t, ξh

)
= ψh,t. Decreasing ξh means increasing

curvature of the probability weighting function. Standard estimates of ξh–

not featuring age dependency– reported by Wu and Gonzalez (1996) are

in the range of [0.5, 0.9].

Figure 4: Probability weighting vs. linear CEU model
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Notes: The figure shows the linear CEU subjective probabilities and the probability

weighting functions compared to the 45-degree line. The estimates used for the

probability weighting function are ξ1 = 0.75 (for age 20) and ξ61 = 0.57 (for age 80)

We illustrate how our model relates to this concept. To this end we

use that the neo-additive capacity of Observation 1 can be seen as a linear

approximation to the probability weighting function (12), $̃h = β0 +β1ψk,t

with β0 = λδh and β1 = (1− δh), cf. Wakker (2004). Minimizing the
Euclidean distance we back out the implied ξh for every planning age h

that best matches the respective neo-additive capacity.

Figure 4 displays neo-additive beliefs and the probability weighting

function for young agents (age 20) and older agents (age 80). In both

models the functions exhibit an overestimation of low probabilities and an

underestimation of high probabilities. Recall that δh is increasing with

age. Consequently, the neo-additive line gets flatter and curvature of the

implied inversely S-shaped probability weighting function increases, i.e.,

28



ξh decreases. At younger ages (left panel) likelihood insensitivity (or am-

biguity) is low so that the probability weighting function is close to the

45-degree line. For older agents, as likelihood insensitivity is increased,

both functions flatten out. Notice that younger agents form beliefs about

an objective survival rate that is closer to one so that the underestimation

part of the function is relevant. On the other hand, the average survival

belief of 80 year old agents is further away from one making the overesti-

mation part of the function relevant.

Figure 5: CEU and probability weighting
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Notes: δh is calculated with equation (2), the cor-

responding probability weighting factor ξ is de-

termined by minimizing the quadratic distance
1
2

[
νhk,t −$

(
ψk,t, ξ

)]2
for all h.

Estimates of ξh, δh for each planning age h are depicted in Figure

5. Parameters of the probability weighting function corresponding to the

CEU subjective survival rates for every planning period are in a range of

ξh = [0.56, 0.75] which is well within the bounds of conventional estimates

reported by Wu and Gonzalez (1996). We are thus content with our own

estimates applied to the specific context of subjective survival beliefs.21

21Relating back to our discussion in footnote 11, assuming no updating gives an
estimate of about δ = 0.56 and a degree of optimism of about λ = 0.42. This implies
a curvature parameter of the probability weighting function of about 0.6. Accordingly,
the downward drop in conditional probabilities displayed in figure 3 is even stronger for
young ages. Otherwise, results are not affected much by this ad hoc– but arguably even
more parsimonious– specification.
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6.2 Life-Cycle Profiles with Ambiguous Beliefs

Plan vs. Realization of Naive CEU Agents

This section compares average plans and realized actions of naive CEU

agents. These agents update their plans in each period. As a way to

compare any gap between plans made at age h and realizations in t ≥ h

for CEU agents we denote planned average consumption with superscripts

and compute

c̃ht =

∫
cht (at, ηt)Φ

h
t (dat × dηt) (13)

for all t. This gives us hypothetical average consumption profiles in the

population if households would stick to their respective period-h plans in

all periods t = h, . . . , T . Observe that Φh
t (·) is an artificial distribution

generated by respective plans of households. We refer to equation (13)

as (average) “planned”consumption (asset, ...) profile in the figures that

follow. By dynamic consistency, we have for RE agents that

cht (at, ηt) = c1
t (at, ηt) hence c̃ht = c̃t

for all h = 1, . . . , T . These equalities do not hold for naive CEU agents.

Figure 6 compares these objects for naive CEU agents. We compute

average consumption, c̃ht , net savings, s̃
h
t , assets, ã

h
t and total income, ỹ

tot
t

as well as corresponding average realizations. Initially, CEU agents, on

average, plan to save more and consume less during working life which

would result in higher assets. The planned average saving rate of 20 year

old CEU agents is 24.7 percent, whereas the realized saving rate is 21.9

percent. We can thus replicate empirical findings reviewed above that

people save less than originally planned, cf. Choi et al. (2006). In the sense

of the simple model of Section 4, cf. Observation 5, the naive CEU agent

is “moderately optimistic”: the marginal propensity to consume (MPC) is

lower throughout when making their plan and
νhh,h+2
νhh,h+1

> νh+1
h+1,h+2 at all ages,

cf. Figure 8 in Appendix D for the latter.
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Figure 6: Average “planned”and realized life-cycle profiles of CEU agents
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Notes: Average planned life-cycle profiles of CEU agents at plan-

ning age 20 (h = 1) compared to average ex-post profiles. MPC

denotes the marginal propensity to consume out of cash-on-hand

which is approximated by computing averages of∆c/∆x from the
associated policy functions.

6.3 Ambiguous versus Rational Survival Beliefs

Life-Cycle Profiles in Baseline Calibration

To highlight the effects of modeling subjective survival beliefs on life-cycle

profiles of consumption, saving and asset holdings we compare the CEU

model (assuming naive agents) with ambiguous survival beliefs with a ra-

tional expectations (RE) model where agents use objective survival data.

Figure 7 compares average life-cycle profiles for CEU with RE agents.

On average, CEU agents exhibit undersaving during early working life until

age 57 relative to RE agents. Naive CEU agents first consume more than

RE agents but start to consume less at age 46 leading to higher saving at

age 58 and higher asset holdings later in life. The subjective survival belief

model gives rise to undersaving at younger ages– due to an underestimation

of future survival– and to higher asset holdings at older ages– due to an
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Figure 7: Average life-cycle profiles: RE versus naive CEU
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Notes: Average life-cycle profile of naive CEU agents compared to

RE agents. MPC denotes the marginal propensity to consume out

of cash-on-hand which is approximated by by computing averages

of ∆c/∆x from the associated policy functions.

overestimation of the survival rate at older ages. In line with the insights

of Section 4, naive CEU agents are suffi ciently pessimistic, cf. Definition

2, to generate undersaving relative to RE agents. Thus, the MPC is higher

at younger ages. With rising age, CEU agents become more and more

optimistic with respect to their survival beliefs so that at older ages the

marginal propensity is higher for the RE agents.

Table 2 comprises these results by reporting summary statistics. The

average saving rate22 of CEU agents during their working life is roughly

one percentage point lower than the average saving rate of RE agents.

More strikingly, average asset holdings of the elderly of ages 85+ are very

different between the two types. For CEU agents assets of the elderly are

roughly 107 percent of average assets. On the contrary, for RE agents,

average asset holdings of the elderly are only 52 percent of average assets.

22The saving rate is defined as the ratio of average savings to average income.
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Table 2: Summary Statistics
RE CEU

Ratio of max. consumption1) 2.07 1.91
Age at max. consumption 60 57
Saving rate2) 22.8% 21.9%
Assets at age 85 relative to 653) Average 35.4% 46.9%

Median 31.0% 37.3%
Assets at age 95 relative to 653) Average 8.1% 23.9%

Median 3.1% 11.6%
Assets of ages 85+ rel. to lifetime average4) 52.2% 106.9%
1) Maximal consumption relative to consumption at age 25
2) We define the “average”saving rate as the ratio of averages during

working life. We hence compute
∑
st/
∑
yt

3) Assets of age 85 (95) relative to assets at retirement entry.
4) Percentage difference of average assets during ages 85-110 relative to

average assets through whole life.

Assets of an agent at age 85 (95) relative to her assets at retirement

entry are still 46.9% (23.9%) while these values are much lower for RE

agents, especially at very old ages. To make our results comparable to the

empirical evidence reported by Hurd and Rohwedder (2010), cf. Section 1,

Table 2 also reports numbers on median asset holdings.23 These numbers

indicate that the median decumulation speed of RE agents is 31.0
3.1
≈ 10.0

compared to 37.3
11.6
≈ 3.2 for CEU agents which is substantially closer to the

empirical Hurd and Rohwedder (2010) benchmark of 2.3.

A Trade-offBetween Matching Both Empirical Facts

The inter-temporal elasticity of substitution (IES)– the inverse of the co-

effi cient of relative risk aversion θ– influences the willingness to smooth

consumption over time. Increasing the IES leads to more consumption at

younger ages and to a higher degree of undersaving by the CEU agent. This

leads to less asset accumulation. In contrast, high old-age asset holdings of

CEU agents is less pronounced when the intertemporal substitution elas-

ticity is high. Thus, the choice of the IES determines whether undersaving

23Recall that median wealth paths for single households in the HRS indicate that
households at age 85 (90) still hold around 49 (21) percent of their assets of age 65
Hurd and Rohwedder (2010). This corresponds to a decumulation speed of 4921 = 2.3.
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or high old-age asset holdings is predominant.

Table 3: Summary Statistics for different IES1)

High IES Low IES
RE CEU RE CEU

Ratio of max. consumption 1.88 1.70 2.23 2.08
Age at max. consumption 58 55 60 59
Saving rate 19.9% 16.6% 25.0% 24.9%
Assets at 85 rel. to 65 Average 25.1% 25.7% 42.3% 57.7%

Median 17.3% 9.4% 35.9% 51.7%
Assets at 95 rel. to 65 Average 2.6% 5.0% 13.5% 36.5%

Median 0.7% 1.0% 9.1% 29.4%
Assets at 85+ rel. to average 31.4% 40.0% 68.7% 145.8%
1) High IES is θ = 2, low IES is θ = 4. For a description of how the
statistics are constructed see Table 2.

Table 3 shows the saving rate and asset holdings for different values of

the IES by setting θ ∈ {2, 4}. In case of a high IES (θ = 2), undersaving

by CEU agents increases to 3.3 percentage points. At the same time the

difference of average asset holdings of the elderly between CEU and RE are

less pronounced. Nevertheless, CEU agents have on average roughly 8.6

percentage points higher relative average assets at old age than RE agents.

A lower elasticity (θ = 4) leads to very pronounced high asset holdings

of elderly CEU agents which are 77.2 percentage points higher than for

average RE agents. The undersaving effect almost vanishes, though. With

θ = 4, assets of a 85 (95) year CEU agent relative to the assets at age 65

are at 57.7 (36.5) percent. CEU median asset holdings at age 85 relative

to age 65 are 51.7 percent and close to the empirical point estimate of 49

percent, cf. Hurd and Rohwedder (2010). The median CEU decumulation

speed is 51.7
29.4
≈ 1.75 which is in fact lower than the empirical benchmark

of 2.3.24 Therefore, our model would exactly replicate this fact with an IES

somewhere in the reasonable range of [0.25, 0.33].

24The corresponding median RE decumulation speed is 35.9
9.1 ≈ 3.94 which again is

far off the empirical benchmark.
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7 Conclusion

This paper studies implications of ambiguous survival beliefs for consump-

tion and saving behavior. Point of departure of our analysis is the observa-

tion that “young”people tend to underestimate whereas “old”people tend

to overestimate their survival probabilities. In a first step, we develop and

parameterize a model of Bayesian learning of ambiguous survival beliefs

which replicates these patterns. In a second step, we merge the resulting

conditional neo-additive survival beliefs into a stochastic life-cycle model

with CEU (=Choquet expected utility) agents.

We show that agents in our model behave dynamically inconsistent. As

a result (naive) CEU agents save less at younger ages than they actually

planned to save. Due to pessimism at young age, CEU agents also save

less than an agent with rational expectations. Despite this tendency to un-

dersave, CEU agents eventually have higher asset holdings after retirement

because of the overestimation of survival probabilities in old age. Over-

all, our model adds to explanations for three empirical findings at once:

(i) time inconsistency of agents, (ii) undersaving at younger ages and (iii)

high asset holdings at old age. Hence, our model hits at– but does not

kill– “three birds with one stone”.

Our approach relates to recent models in behavioral economics which

shed light on several phenomena of economic decision making that can-

not be explained by standard rational expectations models. This line of

research highlights features such as bounded rationality and bounded self-

control, see Bernheim and Rangel (2007) for a review. Studies report large

gaps between self-reported behavior and self-reported plans and/or prefer-

ences. A problem of calibrating these studies is that additional preference

parameters reflecting the degree of present-bias are hard to observe and

there is not much consensus concerning their values. As opposed to this

stream of literature, parameters necessary to calculate ambiguous survival

beliefs can be directly estimated from data on subjective survival beliefs.

Thus, our approach seems quantitatively more reliable.

Although deviations from exponential discounting have been studied ex-

tensively, only few studies have looked at peoples’subjective beliefs about

their own life expectancy and the consequences in life-cycle models. Initi-
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ated by Hammermesh (1985), empirical researchers have become interested

in using data on subjective expectations in such and related studies.25 A

number of studies report significant effects of subjective survival beliefs on

economic decision making which strongly supports our approach.26 Pre-

sumably, constructing simple heuristic subjective survival rates from HRS

survey data would lead to qualitatively similar life-cycle behavior as our

model with ambiguous belief formation.27 In contrast to such a heuristic

construction of missing data points, our structural model provides an ex-

planation of the data within a Bayesian learning model under ambiguity

with a sound decision theoretic foundation.

As an avenue for future research we intend to study welfare conse-

quences of social security in a life-cycle model with ambiguous survival

beliefs. Laibson et al. (1998) document large welfare gains of a defined

contribution plan as a commitment device for a sophisticated hyperbolic

consumer. In contrast, Imrohoroglu et al. (2003) find no welfare gains in

general equilibrium. A problem when calibrating these studies is that ad-

ditional preference parameters reflecting the degree of present-bias are not

observable. The size of welfare effects of a pay-as-you-go social security

system crucially depends on the hyperbolic discount rate.28 In contrast,

parameters of our model can be directly estimated from data on subjective

survival beliefs.
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A Appendix: Choquet Decision Theory

A.1 Choquet Integration and Neo-additive Capaci-

ties

Consider a measurable space (Ω,F) with F denoting a σ-algebra on the

state space Ω and a non-additive probability measure (=capacity) κ : F →
[0, 1] satisfying

(i) κ (∅) = 0, κ (Ω) = 1

(ii) A ⊂ B ⇒ κ (A) ≤ κ (B) for all A,B ∈ F .
The Choquet integral of a bounded F-measurable function f : Ω → R

with respect to capacity κ is defined as the following Riemann integral

extended to domain Ω (Schmeidler 1986):

E [f, κ] =

∫ 0

−∞
(κ ({ω ∈ Ω | f (ω) ≥ z})− 1) dz+

∫ +∞

0

κ ({ω ∈ Ω | f (ω) ≥ z}) dz.

(14)

For example, assume that f takes onm different values such that A1, ..., Am

is the unique partition of Ω with f (ω1) > ... > f (ωm) for ωi ∈ Ai. Then
the Choquet expectation (14) becomes

E [f, κ] =
m∑
i=1

f (ωi) · [κ (A1 ∪ ... ∪ Ai)− κ (A1 ∪ ... ∪ Ai−1)] .

This paper focuses on non-additive probability measures that are de-

fined as neo-additive capacities in the sense of Chateauneuf et al. (2007).

Recall that the set of null events, denoted N , collects all events that the
decision maker deems impossible.

Definition 3 Fix some set of null-events N ⊂ F for the measurable space
(Ω,F). The neo-additive capacity, ν, is defined, for some δ, λ ∈ [0, 1] by

ν (A) = δ · νλ (A) + (1− δ) · µ (A) (15)

for all A ∈ F such that µ is some additive probability measure satisfying

µ (A) =

{
0 if A ∈ N
1 if Ω\A ∈ N
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and the non-additive probability measure νλ is defined as follows

νλ (A) =


0 iff A ∈ N
λ else

1 iff Ω\A ∈ N .

In this paper, we are exclusively concerned with the empty set as the

only null event, i.e., N = {∅}. In this case, the neo-additive capacity ν in
(15) simplifies to

ν (A) = δ · λ+ (1− δ) · µ (A)

for all A 6= ∅,Ω. The following observation extends a result (Lemma 3.1) of
Chateauneuf et al. (2007) for finite random variables to the more general

case of random variables with a bounded range (see Zimper 2012 for a

formal proof).

Observation 8 Let f : Ω→ R be an F-measurable function with bounded
range. The Choquet expected value (14) of f with respect to a neo-additive

capacity (15) is then given by

E [f, ν] = δ (λ sup f + (1− λ) inf f) + (1− δ)E [f, µ] . (16)

According to Observation 8, the Choquet expected value of a random

variable f with respect to a neo-additive capacity is a convex combination

of the expected value of f with respect to some additive probability measure

µ and an ambiguity part. If there is no ambiguity, i.e., δ = 0, then the

Choquet expected value (16) reduces to the standard expected value of a

random variable with respect to an additive probability measure. In case

there is some ambiguity, however, the second parameter λ measures how

much weight the decision maker puts on the least upper bound of the range

of f. Conversely, (1− λ) is the weight he puts on the greatest lower bound.

A.2 The Generalized Bayesian Update Rule

CEU theory has been developed in order to accommodate paradoxes of the

Ellsberg type which show that real-life decision-makers violate Savage’s

sure thing principle Savage (1954). Abandoning of the sure thing principle
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has two important implications for conditional CEU preferences. First,

in contrast to Bayesian updating of additive probability measures, there

exist several perceivable Bayesian update rules for non-additive probability

measures (Gilboa and Schmeidler 1993; Pires 2002; Eichberger, Grant, and

Kelsey 2007; Siniscalchi 2011). Second, if CEU preferences are updated

in accordance with an updating rule that universally satisfies the principle

of consequentialism, then these CEU preferences violate the principle of

dynamic consistency (in a universal sense) whenever they do not reduce to

EU preferences (cf. Zimper 2012 and references therein).

In the present paper we assume that the agents form conditional capac-

ities in accordance with the Generalized Bayesian update rule such that,

for all non-null A,B ∈ F ,

κ (A | B) =
κ (A ∩B)

κ (A ∩B) + 1− κ (A ∪ ¬B)
. (17)

An application of (17) to a neo-additive capacity ν gives rise to the following

observation.

Observation 9 If the Generalized Bayesian update rule (17) is applied to
a neo-additive capacity (15), we obtain, for all non-null A,B ∈ F ,

ν (A | B) = δB · λ+ (1− δB) · µ (A | B)

such that

δB =
δ

δ + (1− δ) · µ (B)
.
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B Appendix: Bayesian Learning of Ambigu-

ous Survival Beliefs

This appendix briefly recalls the learning model of ambiguous survival be-

liefs as introduced in Ludwig and Zimper (2013). We consider an h-old

agent, with 0 ≤ h ≤ k, who observes the random sample information Ĩn(h)

which counts how many individuals out of a sample of size n (h) have sur-

vived from age k to t. By assumption, these individuals have the same i.i.d.

objective survival probability as the agent.

B.1 The Benchmark Case of Additive Survival Be-

liefs

At first, consider a standard Bayesian decision maker whose additive esti-

mator for the chance of surviving from k to t conditional on Ĩn(h) is defined

as the conditional expected value

E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
where the random variable θ̃ stands for the agent’s survival chance with

support on (0, 1). By the i.i.d. assumption of individual survivals, Ĩn(h) is,

conditional on the true survival probability θ̃ = θ, binomially distributed

with probabilities

µ
(
Ĩn(h) = j | θ

)
=

(
n (h)

j

)
θj (1− θ)n−j for j ∈ {0, ..., n (h)} .

We further assume that the agent’s prior over θ̃ is given as a Beta distrib-

ution with parameters α, β > 0, implying E
[
θ̃, µ

(
θ̃
)]

= α
α+β

. That is, we

assume that

µ
(
θ̃ = θ

)
= Kα,βθ

α−1 (1− θ)β−1

where Kα,β = Γ(α+β)
Γ(α)Γ(β)

is a normalizing constant.29

29The gamma function is defined as Γ (y) =
∞∫
0

xy−1e−xdx for y > 0.
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By Bayes’rule we obtain the following conditional distribution of θ̃

µ
(
θ̃ = θ | Ĩn(h) = j

)
=

µ
(
Ĩn(h) = j | θ

)
µ (θ)∫

(0,1)
µ
(
Ĩn(h) = j | θ

)
µ (θ) dθ

= Kα+j−1
α+j,β+n(h)−kθ

α+j−1 (1− θ)β+n(h)−j−1 for θ ∈ (0, 1)

Note that µ
(
θ̃ | Ĩn(h) = j

)
is itself a Beta distribution with parameters

α + j, β + n (h) − j. The agent’s subjective survival belief conditional on
information Ĩn(h) = j is thus given as

E
[
θ̃, µ

(
θ̃ | j

)]
=

α + j

α + β + n (h)

=

(
α + β

α + β + n (h)

)
E
[
θ̃, µ

(
θ̃
)]

+

(
n (h)

α + β + n (h)

)
j

n (h)
,

for j ∈ {0, ..., n (h)} .

That is, the posterior estimator E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
is a weighted average

of her prior survival probability E
[
θ̃, µ

(
θ̃
)]
, not including any sample

information, and the observed sample mean j
n(h)
.

B.2 Ambiguous Survival Beliefs

Turn now to a Choquet decision maker with neo-additive capacity

ν
(
θ̃
)

= δ · λ+ (1− δ) · µ
(
θ̃
)

such that the conditional neo-additive capacity ν
(
θ̃ | Ĩn(h)

)
results from an

application of the Generalized Bayesian update rule. Instead of the additive

estimator E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
we now suppose that the agent’s estimator for

her survival chance is given as the conditional Choquet expected value

E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
=δĨn(h)

(
λ sup θ̃ + (1− λ) inf θ̃

)
+
(

1− δĨn(h)
)
E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
.

For a Beta distribution µ
(
θ̃
)
, Ludwig and Zimper (2013) prove the follow-

ing result:
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Observation 10 The Choquet decision maker’s ambiguous survival belief
is given as

E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
= δĨn(h) · λ+

(
1− δĨn(h)

)
· E
[
θ̃, µ

(
θ̃ | Ĩn(h)

)]
, (18)

with

δĨn(h) =
δ

δ + (1− δ) · µ
(
Ĩn(h)

)
where the unconditional distribution of Ĩn(h) is given by

µ
(
Ĩn(h) = j

)
=

(
n (h)

j

)
(α + j − 1) · ... · α · (β + n (h)− j − 1) · ... · β

(α + β + n (h)− 1) · ... · (α + β)
,(19)

for j ∈ {0, ..., n (h)} .

Finally, to derive from (18) the parsimonious characterization of am-

biguous survival beliefs in Observation 1, we employ several simplifying

assumptions:

Assumption 2 The additive part E
[
θ̃, ν

(
θ̃ | Ĩn(h)

)]
is, for any informa-

tion Ĩn(h), given as the objective probability, denoted ψk,t, to survive from

age k to t.

Assumption 3 The agent’s additive prior over the parameter space is
given as a uniform distribution, i.e., a Beta distribution with parameters

α = β = 1, implying for (19) that µ
(
Ĩn(h) = j

)
= 1

1+n(h)
.

Assumption 4 The age-dependent sample-size function is given as

n (h) =
√
h for h ≤ T

which implies, by Assumption 3, that

µ
(
Ĩn(h) = j

)
=

1

1 + n (h)
, for j ∈ {0, ..., n (h)} .

Assumption 2 is an extreme version of the rational Bayesian learning

part of the model developed in Appendix B.1. It specifies a fully informed
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prior and hence simplifies upon Ludwig and Zimper (2013).30 By this as-

sumption any difference between subjective survival beliefs and objective

survival probabilities are exclusively driven by the ambiguity part of the

agent’s belief. Assumption 3 allows for an explicit expression of the un-

conditional probability µ
(
Ĩn(h)

)
which only depends on age h, i.e., it is

identical for every observed sample information Ĩn(h) if h is fixed. By as-

sumption 4, the agent observes a strictly increasing sample while growing

older.

30Ludwig and Zimper (2013) are more explicit about the rational Bayesian learning
part of the model and assume a proportional bias in prior additive beliefs.
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C Appendix: Formal Proofs

Proof. [Proof of Proposition 1] The objective probability to survive until
period t is given as

ψh,t =

t−1∏
s=h

ψs,s+1

implying

ψh,t =

T∑
s=t+1

ψh(Ds)

where Dt denotes the event that the agent dies at the end of period t.

Consequently, (5) can be equivalently written in terms of survival beliefs

as

E
[
U (c) , νh

]
= δh

(
λ

(
u(ch) +

T∑
t=h+1

βt−hE [u (ct) , π (ηt|ηh)]
)

+ (1− λ)u(ch)

)

+ (1− δh)
(
u(ch) +

T∑
t=h+1

ψh(Dt)
t∑

s=h+1

βs−hE [u (cs) , π (ηs|ηh)]
)

= u(ch) + δhλ
T∑

t=h+1

βt−hE [u (ct) , π (ηt|ηh)]

+ (1− δh)
T∑

t=h+1

ψh(Dt)
t∑

s=h+1

βs−hE [u (cs) , π (ηs|ηh)]

= u(ch) + δhλ
T∑

t=h+1

βt−hE [u (ct) , π (ηt|ηh)]

+ (1− δh)
T∑

t=h+1

ψh,t · βt−hE [u (ct) , π (ηt|ηh)]

= u(ch) +

T∑
t=h+1

(
δhλ+ (1− δh)ψh,t

)
βt−hE [u (ct) , π (ηt|ηh)]

= u(ch) +
T∑

t=h+1

νhh,tβ
t−hE [u (ct) , π (ηt|ηh)] .
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Proof. [Proof of Observation 2] Rewrite equation (8) to

Et

[
du

dct+1
du
dct

]
=

(
β (1 + r) ·

νhh,t+1

νhh,t

)−1

1. Proofing the first part of the observation is trivial because
(
β (1 + r) · νhh,h+1

)−1
>(

β (1 + r) · ψh,h+1

)−1
whenever νhh,h+1 < ψh,h+1 and vice versa.

2. For the second part observe that expected marginal utility growth

for the naive agent is lower for all ages t > h than under rational

expectations if
νhh,t+1
νhh,t

>
ψh,t+1
ψh,t

= ψt,t+1. For δ > 0 (giving δh > 0,

all h) this always holds because

νhh,t+1

νhh,t
> ψt,t+1

⇔
δhλ+ (1− δh)ψh,t+1

δhλ+ (1− δh)ψh,t
> ψt,t+1

⇔ δhλ+ (1− δh)ψh,t+1 > ψt,t+1

(
δhλ+ (1− δh)ψh,t

)
⇔ δhλ+ (1− δh)ψh,t+1 > δhλψt,t+1 + (1− δh)ψh,t+1

⇔ δhλ(1− ψt,t+1) > 0.

Proof. [Proof of Proposition 3]

• The first-order condition in period 1 is:

uc(c1) = βRν1
1,2uc(c2)

which gives

c1,n
1 = m1,n

1 w1 where m1,n
1 =

1

1 + 1

b(ν11,2)
− 1
θ

.

• Period 0: The plan for period 1 gives the first-order condition:

uc(c1) = βR
ν0

0,2

ν0
0,1

uc(c2)
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which yields

c1,n
1 = m1,n

1 w1 where m1,n
1 =

1

1 + 1

b

(
ν00,2

ν00,1

)− 1
θ

• The first-order condition in period 0 is:

uc(c0) = βRν0
0,1uc(c1)

yielding

c0 = m0,n
0 w0 =

1

1 + 1

b(ν00,1)−
1
θm0,n

1

w0

Proof. [Proof of Observation 6] To get that m0,n
1 ≤ m1 we need

ν0
0,2

ν0
0,1

≥ ψ1,2.

This always holds, see Observation 2.

Proof. [Proof of Observation 7] We have already established above that

m0,n
1 < m1,

i.e., the optimistic CEU household plans to save more in the second period

than the RE household. In order to get that

m0,n
0 > m0,

i.e., that the CEU household consumes more than the RE household in
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period 1 we require that

1

1 + 1

b(ν00,1)−
1
θm0,n

1

>
1

1 + 1

b(ψ00,1)−
1
θm1

⇔ (ν0
0,1)−

1
θm0,n

1 > (ψ0
0,1)−

1
θm1

⇔
ν0

0,1

ψ0,1

<

(
m0,n

1

m1

)θ
.
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D Appendix: Supplementary Results

Moderate Optimism
Moderate optimism is defined in Observation 5, Section 4. It implies

that the ratio of subjective beliefs of planning age h is always higher than

the subjective belief to survive to the next period of planning age h + 1,

i.e.
νhh,h+2
νhh,h+1

> νh+1
h+1,h+2. Figure 8 confirms this for the numerical exercise.

Figure 8: Moderate Optimism and Subjective Survival Belief
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Notes: The figure shows that the ratio of subjective beliefs

from planning age h,
νhh,h+2
νhh,h+1

(black dotted line) is always

higher than the belief to survive to the next period from

planning age h+1, νh+1
h+1,h+2 (red solid line).
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